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“Notice all the computations, theoretical scribblings, and lab equipment, Norm.
  Yes, curiosity killed these cats.”



Baby QM

! A quantum system is described by a vector |ψ〉 in complex
Hilbert spaceH such that ‖ψ‖2 = 〈ψ |ψ〉 = 1

! It evolves unitarily: in discrete time, |ψ〉 $→ U |ψ〉 where
UU ∗ = U ∗U = I , hence U−1 = U ∗

! Thus at time n ∈ Z, the system is in state U n|ψ〉
! A von Neumann measurement of the quantum system

corresponds to a decomposition ofH into orthogonal closed
subspaces labelled by the measurement outcomes x ∈ X

! The outcome is x and the state jumps to "x |ψ〉/√p(x)

with probability p(x) = ‖"x |ψ〉‖2

! "x = "2
x = "∗

x = orthogonal projection into subspace “x”
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Toddler QM, “Schrödinger picture”

! Define ρ = |ψ〉〈ψ |, suppose x ∈ R and define X = ∑
x x#x ;

define f (X) = ∑
x f (x)#x

! The evolution of the state is ρ $→ UρU ∗

! Measurement of X yields random x with probability trace ρ#x ;
expectations given by 〈 f (x)〉 = trace ρ f (X)

! The state jumps to #xρ#x/p(x), under which the probability
law of measurement of X is δx

! Extends to probabilistic mixtures: ρ = ∑
x px |ψx〉〈ψx |



Toddler QM, “Heisenberg picture”

! Define ρ = |ψ〉〈ψ |, suppose x ∈ R and define X = ∑
x x#x ;

define f (X) = ∑
x f (x)#x

! The evolution of an observable is X $→ U ∗ XU
! Measurement of X yields random x with 〈 f (x)〉 = trace ρ f (X)

! The state jumps to #xρ#x/p(x), under which the probability
law of measurement of X is δx

! . . . all this because traceUρU ∗ f (X) = traceρ f (U ∗ XU )



Kindergarten QM

! A state ρ is a nonnegative operator with trace 1

! A quantum operation on a state producing an outcome x

is described by a collection of operators Axy such that

∑

x,y

A∗
xy Axy = I

! The outcome is x with probability

p(x) = trace ρ
∑

y

A∗
xy Axy

and the state jumps to

∑

y

AxyρA
∗
xy/p(x)

.



Theory : the following are equivalent

! operator-sum representation

! completely positive norm preserving maps (physical properties

implied by mixture interpretation of ρ = ∑
piρi )

! bringing separate systems together into a composite system,

unitary evolution, von Neumann measurement, discarding

components of composite systems

More precisely, any quantum operation can be realised as follows:

! System of interest A meets ancillary system B

ρ = ρ A !→ ρ A ⊗ ρB
0 = ρ AB

! Unitary evolution ρ AB !→ U AB ρ AB U AB∗

! Measure B von Neumann-wise

! Discard B: define ρ A by

trace(ρ AX A) = trace(ρ AB X A ⊗ I B) ∀ X A

Kraus, Naimark, Stinespring



The Church of the Larger Hilbert Space

Suppose |ψ〉AB is a pure state on AB.
Schmidt: we can choose o.n.b.’s such that

|ψ〉AB =
∑

λi |i〉A ⊗ |i〉B, λi ∈ R+

If we discard B the state of A is

ρ A = traceB(ρ
AB) =

∑
λ2i |i〉A〈i |A

So we can forget about probability altogether . . . (?)



Schrödinger’s cat

! Atom in state |0〉 does nothing
! Atom in state |1〉 emits a particle, decaying to state |0〉
! Particle is registered by detector

which releases poison killing the cat

! Atom in state α|0〉 + β|1〉: cat killed with probability |β|2

But atom, detector, poison, cat are one quantum system

! |0〉 ⊗ |live cat evolves to |0〉 ⊗ |live cat〉
! |1〉 ⊗ |live cat evolves to |0〉 ⊗ |dead cat〉
! Hence

(
α |0〉 + β |1〉

)
⊗ |live cat〉

evolves to

|0〉 ⊗
(
α |live cat〉 + β |dead cat〉

)

But such cats have never been seen . . .



A myriad solutions

! QM is wrong; Schrödinger’s equation should be modified

Add stochastic term, due to gravity (C.S.L., Penrose)

! There is no problem: predictions have been tested in the lab.

! There is no problem: as Bohr said, we must always assume

“Heisenberg cut” between quantum and classical level

! Many worlds

! Bohm: nonlocal, deterministic hidden layer

! Church of the larger Hilbert space

! Physicist’s solution:

Model system A, (pointer of) device B, environment C;

after interaction, when we discard C,

ρAB is diagonal in basis of pointer (Zurek)

Model system A, (pointer of) device B, environment C;

environment is initially in a mixed state; after interaction

ρABC is diagonal in basis of pointer (Nieuwenhuizen)

NB the environment can be an invironment



Objections

! The physicists’ solutions show that for toy models,

in the limit of many particles, long time . . .

classical behaviour “seems to emerge”

However the limiting situation is “outside the model”

! Many solutions involve a “preferred basis” thus already build in

what they are supposed to predict

! Many solutions are only solutions because they restrict the

domain of discourse

! Many solutions are merely word games

“We need a more general notion of”

probability, logic, reality ...

Many worlds = many words?



New solution

! Hepp: algebraic approach, emergence of superselection rules

! Belavkin, Landsman

Philosophy: look for niche for “life as we know it”

within purely quantum universe.

Characterized by causality (time ordering, spatial separation)

! Given: a unitary U and a state ρ on Hilbert spaceH

! B(H): all bounded operators (all “observables”)

! C ⊆ B(H), a set of beables:

a commuting unital von Neumann algebra

! UCU ∗ ⊆ C: the causality principle; allows the beables to be
viable (backwards Heisenberg picture)



In case you had forgotten:

! A unital von Neumann algebra: subset of B(H) algebraically

closed for addition, composition, ∗, scalar multiplication;
containing the identity; closed under topology of weak

convergence: Xn → X iff trace(ρXn) → trace(ρX) for all ρ

! Every commuting von Neumann algebra is isomorphic to some

L∞(",F, P)



Define predictables A = C ′ (commutant of C). Then

! C = A′

! UCU ∗ ⊆ C iff U ∗AU ⊆ A
Thus we have

C ⊆ A ⊆ B(H)

Beables (viables) ⊆ predictables ⊆ observables

Past beables are beable; the beables are viable!

Future predictables are predictable, too



Any state ρ, restricted to A, can be uniquely decomposed as
probabilistic mixture over x ∈ " of quantum states ρx on A
(concentrating on x , when restricted to C).

Conditional probabilities in QM only exist in this case!!

Restricted to C,
the backwards Schrödinger evolution is deterministic,

the forwards Schrödinger evolution is stochastic.

The state ρx encapsulates the probability distribution of

the future evolution of x

The physics of a viable world is not time-reversible

Note: H must be infinite dimensional for non-trivial examples

(the conditional state on A, given x in Ω)

(in Ω)



Examples

Everything in quantum information

Everything in quantum optics (continuous time!)

The C.S.L. model



Example 1

M2 M2 M2C2C2 M2C2

Schrödinger evolution: left shift
Hilbert space:  l2 ⊗  l2

(closed subspace of two-sided tensor product of countable no. of copies of  C2 )

o.n.b.’s labelled by pair of nonneg. integers written in binary; reversed binary
e.g.    | 1 0 ; 0 0 1 〉  =  | 2 ; 4 〉



Example 1 (cont.)

• Pure state | n ; c0,c1,c2,... 〉,  ∑m |cm|2 = 1

• Schrödinger evolution: new (unnorm.) state is                   
| 2n +0 ; c0,c2,... 〉    or    | 2n +1 ; c1,c3,... 〉                

with probabilities                                             
∑m even  |cm|2    and    ∑m odd  |cm|2  respectively



Example 2

Mp Mp MpCpCp M2Cp

Mp

Md

Mq

Schrödinger evolution:
U1: unitary on circle
U2: swap on vertical pair
U3: left shift horiz. row

U1

U2

U3



Theorem

• This picture is generic – see my cat paper, 
first section, where I analyse the  case         
H  = l2 ⊗ l2                                                   
A : everything which commutes with 
number operator on first component,                       
X  | n ; m〉 = n | n ; m〉                                                      
C : all functions of X



Discussion

! GivenH and U there typically exist

many mutually incompatible, non-trivial, C

! Our universe allows many incompatible “real worlds”!

! We live in one of them. Our notions of causality are derived

from our notions of space (separation) and time (direction)

(or vice-versa)

! Space-separation – commutativity – locality

! Given partial information about C, the causality assumption
could fix other properties of it

! Thus the classical world C can indeed emerge from
causality/locality and from the laws of quantum physics



! Physics must show how time and space are emergent properties

! Space-time exists by virtue of gravity which exists by virtue of

matter having a location in space-time

! Particles have trajectories in the past, but are waves in the future

Past space-time is frozen, future space-time is still to be born

! Quantum measurement = continual stochastic birth of space-time

! A-realism or B-realism? – the distinction is purely academic!

A realism: only relative (inter-subjective) reality exists

Landsman (an A-realist): B-realists are hallucinating

B realism: there exists a unique objective reality

RDG (a B-realist): A realists are hallucinating

! Is the aim of physics merely to predict, or is it to understand?

What is the role of mathematics?

Provides tools to calculate, or models to give understanding?
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