

Schrödinger's cat meets Occam's razor

Richard D. Gill

Mathematical Institute
Science Faculty
Leiden University

May 7, 2009

Discussion

Baby QM

- A quantum system is described by a vector $|\psi\rangle$ in complex Hilbert space \mathcal{H} such that $\|\psi\|^2 = \langle \psi | \psi \rangle = 1$
- It evolves unitarily: in discrete time, $|\psi\rangle \mapsto U|\psi\rangle$ where $UU^*=U^*U=I$, hence $U^{-1}=U^*$
- ▶ Thus at time $n \in \mathbb{Z}$, the system is in state $U^n | \psi \rangle$
- A von Neumann measurement of the quantum system corresponds to a decomposition of \mathcal{H} into orthogonal closed subspaces labelled by the measurement outcomes $x \in \mathcal{X}$
- The outcome is x and the state jumps to $\Pi_x |\psi\rangle/\sqrt{p(x)}$ with probability $p(x) = \|\Pi_x |\psi\rangle\|^2$
- $\Pi_x = \Pi_x^2 = \Pi_x^* = \text{orthogonal projection into subspace "x"}$

Baby QM

- A quantum system is described by a vector $|\psi\rangle$ in complex Hilbert space \mathcal{H} such that $\|\psi\|^2 = \langle \psi | \psi \rangle = 1$
- It evolves unitarily: in discrete time, $|\psi\rangle \mapsto U|\psi\rangle$ where $UU^* = U^*U = I$, hence $U^{-1} = U^*$
- ▶ Thus at time $n \in \mathbb{Z}$, the system is in state $U^n | \psi \rangle$
- A von Neumann measurement of the quantum system corresponds to a decomposition of \mathcal{H} into orthogonal closed subspaces labelled by the measurement outcomes $x \in \mathcal{X}$
- The outcome is x and the state jumps to $\Pi_x |\psi\rangle/\sqrt{p(x)}$ with probability $p(x) = \|\Pi_x |\psi\rangle\|^2$
- \blacksquare $\Pi_x = \Pi_x^2 = \Pi_x^* = \text{orthogonal projection into subspace "x"}$

Toddler QM, "Schrödinger picture"

- ▶ Define $\rho = |\psi\rangle\langle\psi|$, suppose $x \in \mathbb{R}$ and define $X = \sum_x x\Pi_x$; define $f(X) = \sum_x f(x)\Pi_x$
- ▶ The evolution of the state is $\rho \mapsto U\rho U^*$
- Measurement of X yields random x with probability trace $\rho \Pi_x$; expectations given by $\langle f(x) \rangle = \operatorname{trace} \rho f(X)$
- The state jumps to $\Pi_x \rho \Pi_x / p(x)$, under which the probability law of measurement of X is δ_x
- Extends to probabilistic mixtures: $\rho = \sum_{x} p_{x} |\psi_{x}\rangle \langle \psi_{x}|$

Toddler QM, "Heisenberg picture"

- ▶ Define $\rho = |\psi\rangle\langle\psi|$, suppose $x \in \mathbb{R}$ and define $X = \sum_{x} x \Pi_{x}$; define $f(X) = \sum_{x} f(x) \Pi_{x}$
- ▶ The evolution of an *observable* is $X \mapsto U^*XU$
- ▶ Measurement of *X* yields random *x* with $\langle f(x) \rangle$ = trace $\rho f(X)$
- The *state* jumps to $\Pi_x \rho \Pi_x / p(x)$, under which the probability law of measurement of X is δ_x
- ▶ ... all this because trace $U\rho U^*f(X) = \text{trace}\rho f(U^*XU)$

Kindergarten QM

- \triangleright A state ρ is a nonnegative operator with trace 1
- A quantum operation on a state producing an outcome x is described by a collection of operators A_{xy} such that

$$\sum_{x,y} A_{xy}^* A_{xy} = I$$

ightharpoonup The outcome is x with probability

$$p(x) = \operatorname{trace} \rho \sum_{y} A_{xy}^{*} A_{xy}$$

and the state jumps to

$$\sum_{y} A_{xy} \rho A_{xy}^* / p(x)$$

Theory: the following are equivalent

- operator-sum representation
- completely positive norm preserving maps (physical properties implied by mixture interpretation of $\rho = \sum p_i \rho_i$)
- bringing separate systems together into a composite system, unitary evolution, von Neumann measurement, discarding components of composite systems

More precisely, any quantum operation can be realised as follows:

- System of interest A meets ancillary system B $\rho = \rho^A \mapsto \rho^A \otimes \rho_0^B = \rho^{AB}$
- Unitary evolution $\rho^{AB} \mapsto U^{AB} \rho^{AB} U^{AB*}$
- Measure B von Neumann-wise
- ▶ Discard B: define ρ^A by

$$\operatorname{trace}(\rho^A X^A) = \operatorname{trace}(\rho^{AB} X^A \otimes I^B)$$

The Church of the Larger Hilbert Space

Suppose $|\psi\rangle^{AB}$ is a pure state on AB.

Schmidt: we can choose o.n.b.'s such that

$$|\psi\rangle^{AB} = \sum \lambda_i |i\rangle^A \otimes |i\rangle^B, \quad \lambda_i \in \mathbb{R}_+$$

If we discard B the state of A is

$$\rho^{A} = \operatorname{trace}_{B}(\rho^{AB}) = \sum_{i} \lambda_{i}^{2} |i\rangle^{A} \langle i|^{A}$$

So we can forget about probability altogether ...(?)

Schrödinger's cat

- ightharpoonup Atom in state $|0\rangle$ does nothing
- ▶ Atom in state $|1\rangle$ emits a particle, decaying to state $|0\rangle$
- Particle is registered by detector which releases poison killing the cat
- ► Atom in state $\alpha |0\rangle + \beta |1\rangle$: cat killed with probability $|\beta|^2$

But atom, detector, poison, cat are one quantum system

- $ightharpoonup |0\rangle \otimes |\text{live cat evolves to } |0\rangle \otimes |\text{live cat}\rangle$
- ▶ $|1\rangle \otimes |$ live cat evolves to $|0\rangle \otimes |$ dead cat \rangle
- Hence $(\alpha | 0) + \beta | 1)$ \otimes | live cat | evolves to
 - $|0\rangle \otimes (\alpha | \text{live cat}\rangle + \beta | \text{dead cat}\rangle)$

But such cats have never been seen ...

A myriad solutions

- ► QM is wrong; Schrödinger's equation should be modified Add stochastic term, due to gravity (C.S.L., Penrose)
- ▶ There is no problem: predictions have been tested in the lab.
- There is no problem: as Bohr said, we must always assume "Heisenberg cut" between quantum and classical level
- Many worlds
- ▶ Bohm: nonlocal, deterministic hidden layer
- Church of the larger Hilbert space
- Physicist's solution:
 - Model system A, (pointer of) device B, environment C; after interaction, when we discard C, ρ^{AB} is diagonal in basis of pointer (Zurek)
 - Model system A, (pointer of) device B, environment C; environment is initially in a mixed state; after interaction ρ^{ABC} is diagonal in basis of pointer (Nieuwenhuizen)

NB the environment can be an *in*vironment

Objections

- ► The physicists' solutions show that for toy models, in the limit of many particles, long time ... classical behaviour "seems to emerge" However the limiting situation is "outside the model"
- ► Many solutions involve a "preferred basis" thus already build in what they are supposed to predict
- Many solutions are only solutions because they restrict the domain of discourse
- Many solutions are merely word games "We need a more general notion of" probability, logic, reality ... Many worlds = many words?

New solution

- ▶ Hepp: algebraic approach, *emergence* of superselection rules
- Belavkin, Landsman
- *Philosophy*: look for niche for "life as we know it" within purely quantum universe.
- Characterized by causality (time ordering, spatial separation)
 - ▶ Given: a unitary U and a state ρ on Hilbert space \mathcal{H}
 - \triangleright $\mathcal{B}(\mathcal{H})$: all bounded operators (all "observables")
 - $\mathcal{C} \subseteq \mathcal{B}(\mathcal{H})$, a set of beables: a commuting unital von Neumann algebra
 - ▶ $UCU^* \subseteq C$: the causality principle; allows the *beables* to be *viable* (backwards Heisenberg picture)

In case you had forgotten:

- ▶ A unital von Neumann algebra: subset of $\mathcal{B}(\mathcal{H})$ algebraically closed for addition, composition, *, scalar multiplication; containing the identity; closed under topology of weak convergence: $X_n \to X$ iff trace $(\rho X_n) \to \operatorname{trace}(\rho X)$ for all ρ
- Every *commuting* von Neumann algebra is isomorphic to some $L^{\infty}(\Omega, \mathcal{F}, P)$

Define predictables A = C' (commutant of C). Then

$$\mathcal{C} = \mathcal{A}'$$

$$ightharpoonup U\mathcal{C}U^* \subseteq \mathcal{C} \text{ iff } U^*\mathcal{A}U \subseteq \mathcal{A}$$

Thus we have

$$\mathcal{C} \subseteq \mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$$

Beables (viables) \subseteq predictables \subseteq observables

Past beables are beable; the beables are viable!

Future predictables are predictable, too

Any state ρ , restricted to \mathcal{A} , can be *uniquely* decomposed as *probabilistic mixture* over $x \in \Omega$ of quantum states ρ_x on \mathcal{A} (concentrating on x, when restricted to \mathcal{C}).

Conditional probabilities in QM only exist in this case!!

Restricted to C,

the *backwards* Schrödinger evolution is deterministic, the forwards Schrödinger evolution is stochastic.

The state ρ_x encapsulates the probability distribution of the future evolution of x (in Ω)

The physics of a viable world is *not* time-reversible

Note: *H must* be infinite dimensional for non-trivial examples

Examples

Everything in quantum information

Everything in quantum optics (continuous time!)

The C.S.L. model

SCHRODINGER'S CAT IS DEPRESSED

Ē

Example 1

(closed subspace of two-sided tensor product of countable no. of copies of \mathbb{C}^2)

o.n.b.'s labelled by pair of nonneg. integers written in binary; reversed binary e.g. $|10;001\rangle = |2;4\rangle$

Example 1 (cont.)

- Pure state $|n; c_0, c_1, c_2, ... \rangle$, $\sum_m |c_m|^2 = 1$
- Schrödinger evolution: new (unnorm.) state is $|2n+0;c_0,c_2,...\rangle$ or $|2n+1;c_1,c_3,...\rangle$

with probabilities

$$\sum_{m \text{ even}} |c_m|^2$$
 and $\sum_{m \text{ odd}} |c_m|^2$ respectively

Example 2

Theorem

• This picture is generic – see my cat paper, first section, where I analyse the case

$$\mathcal{H} = l_2 \otimes l_2$$

A: everything which commutes with number operator on first component,

$$X \mid n; m\rangle = n \mid n; m\rangle$$

 \mathcal{C} : all functions of X

Discussion

- Siven \mathcal{H} and U there typically exist many mutually incompatible, non-trivial, \mathcal{C}
- Our universe allows many incompatible "real worlds"!
- ➤ We live in one of them. Our notions of causality are derived from our notions of space (separation) and time (direction) (or vice-versa)
- Space-separation commutativity locality
- \triangleright Given partial information about \mathcal{C} , the *causality* assumption could fix other properties of it
- Thus the classical world \mathcal{C} can indeed emerge from causality/locality and from the laws of quantum physics

- Physics must show how time and space are emergent properties
- Space-time exists by virtue of gravity which exists by virtue of matter having a location in space-time
- ► Particles have trajectories in the past, but are waves in the future Past space-time is frozen, future space-time is still to be born
- Quantum measurement = continual stochastic birth of space-time

- ► A-realism or B-realism? the distinction is purely academic!
 - A realism: only relative (inter-subjective) reality exists Landsman (an A-realist): B-realists are hallucinating
 - ▶ B realism: there exists a unique objective reality RDG (a B-realist): A realists are hallucinating
- ► Is the aim of physics merely to predict, or is it to understand? What is the role of mathematics? Provides tools to calculate, or models to give understanding?

- N.P. Landsman (1995)
 Observation and superselection in quantum mechanics
 Studies in the History and Philosophy of Modern Physics 26
 1355–2198
- V.P. Belavkin (2007)
 Eventum Mechanics of Quantum Trajectories: Continual
 Measurements, Quantum Predictions and Feedback Control
 Submitted to Reviews on Mathematical Physics
 arXiv.org: math-ph/0702083
- R.D. Gill (2009)
 Putting Schrödinger's cat to rest
 Preliminary draft

