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CLEARING UP MYSTERIES – THE ORIGINAL GOAL

E. T. Jaynes


Abstract : We show how the character of a scientific theory depends on one's 
attitude toward probability. Many circumstances seem mysterious or 
paradoxical to one who thinks that probabilities are real physical properties 
existing in Nature. But when we adopt the “Bayesian Inference” viewpoint of 
Harold Jeffreys, paradoxes often become simple platitudes and we have a more 
powerful tool for useful calculations. This is illustrated by three examples from 
widely different fields: diffusion in kinetic theory, the Einstein–Podolsky–Rosen 
(EPR) paradox in quantum theory, and the second law of thermodynamics in 
biology.
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• Every year there are several new papers disproving Bell’s 
theorem


• … published in top journals, and authored by well known and 
well qualified scientists


• Some even supply computer code


• Jaynes’ dismissive discussion of EPR, Bell, and all that continues 
to be quoted and to inspire professionals and amateurs alike

Impossible?
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Computer  runs dialogue;

inputs are angles 


n <- 1

Begin Loop


Print: “input angle no.”, n

Wait for input

Compute output

Output: +1 or -1

n <- n +1


End Loop

1
θ1n, n = 1,2,…

Computer  runs dialogue;

inputs are angles 


n <- 1

Begin Loop


Print: “input angle no.”, n

Wait for input

Compute output

Output: +1 or -1

n <- n + 1


End Loop

2
θ2n, n = 1,2,…

Task: mean value of product of outputs,

given both inputs, converges to ;

mean values of outputs, given inputs, converge to zero.

−cos(θ1 − θ2)

No communication at all, during the run!

No communication at all, during the run!
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Stars mark the differences and correlations in a Bell−CHSH experiment

But how could there be any correlation at all?


EASY! Both computers run the same RNG (same seed, same parameters)

or have the same hard disk full of previously collected random numbers


For instance, for trial “n” both computers use same uniform random angle 

Computer 1 outputs  

Computer 2 outputs  

This generates the “triangle wave”     (red)


It’s also possible to generate the correlation 

But  is impossible  (blue)

ϕn ∈ [0, 2π)
sign cos(ϕn − θ1n)
−sign cos(ϕn − θ2n)

1 − 2 ((θ1 − θ2)/2π mod 1)− 1
2 )

− 2
3 cos(θ1 − θ2)

−cos(θ1 − θ2)

Standard CHSH experiment


Alice chooses from 

Bob from 


Differences (mod ):


{0, 1
2 π}

{ 1
4 π, 3

4 π}
2π

1
4 π, 2π− 1

4 π, 3
4 π, 1

4 π

cf.  Peres–Horodecki criterion

https://en.wikipedia.org/wiki/Peres%E2%80%93Horodecki_criterion


• There exists no probability space  with r.v.’s   taking values in 
,  , such that





• Thus: there do not exist functions  (taking values ) and a 
probability measure  such that 





• Bell’s proof used only two particular choices for each of , and showed 
that approximate equality is not possible either

(Ω, ℙ) Aθ, Bϕ

{−1, + 1} θ, ϕ ∈ [0,2π)

∀θ, ϕ : 𝔼(Aθ) = 0 = 𝔼(Bϕ), 𝔼(AϕBθ) = − cos(θ − ϕ)

A, B +/ − 1
ℙ

∫ A(θ1, ω)B(θ2, ω)ℙ(dω) = − cos(θ1 − θ2)

θ, ϕ

Bell’s theorem
Bell (1964)



• I will suppose that the two computers contain an i.i.d. sequence 
of random elements  drawn from 


• I will suppose that Computer and Computer  contain 
modules which implement the functions  and  
defined on 


• Step 1: imagine both parties always submit the same angles. 
(One can rerun the programs from the same starting state as 
often as we like, with runs as long as we like). The correlation 
must always be . Therefore 

ω1, ω2, … (Ω, ℙ)

1 2
A( ⋅ , ⋅ ) B( ⋅ , ⋅ )

[0,2π) × Ω

−1 B ≡ − A

Gull’s proof
(I make extra assumptions, but still need more rigour)



• Step 2. Imagine party  submits a very long sequence of uniformly distributed 
random angles , and party  submits the same sequence shifted (mod ) by the 
amount 


• Thanks to the extra assumptions, the pairs of outcomes can be denoted by  
 where  are i.i.d pairs from the probability measure 

 on  


• We can expand the bounded random function  on the circle in its random 
Fourier series , where the summation is over    and the 

complex numbers  are random (i.e., depend on )


• Because  is real, for   we have  

1
θn 2 2π

δ

A(θn, ωn), − A(θn + δ, ωn) (θn, ωn)
Uniform × ℙ [0,2π] × Ω

A(ϕ)

∑n
cn exp(inϕ) n ∈ ℤ

cn ω

A n = − n′￼ cn = cn′￼

Gull’s proof (continued)
(I made extra assumptions, but still need more rigour)



• Step 3, take expectation value of  (average over ), 
substitute for  (twice) by Fourier series:  and  


• This gives a double summation over , and integrals over .                             
The integration over  of  is zero unless  .  We finish with a 
single summation 


• But by assumption, the quantity whose expectation value we took (the empirical 
correlation between the outcomes as a function of the difference between the 
setting pairs) must converge to . Therefore all 

 are zero except when 


• This is a contradiction since  only takes the values  

−A(θ, ω)A(θ + δ, ω) θ, ω
A ∑n cn exp(inθ) ∑n′￼

cn′￼exp(in′￼(θ + δ))

n, n′￼ θ, ω
θ exp(i(n + n′￼))θ) n = n′￼

∑n∈ℤ 𝔼 |cn |2 exp(inδ)

−cos(δ) = − 1
2 (exp(iδ) + exp(−iδ))

cn n = ± 1

A ±1

Gull’s proof (continued)
(I made extra assumptions, but still need more rigour)



• In fact we don’t need it: there are proofs of stronger results with weaker assumptions, using 1969 
CHSH inequality, strengthened by use of martingale theory to take care of time & memory. 
[RDG 2003 – Delft quantum physicists David Elkouss & Stephanie Wehner 2016]


• Open problem: can we prove Gull’s theorem without making the i.i.d. assumption, and the 
memorylessness assumptions, which Gull seems to need? [I seemed to need them to make his 
outline proof work; he doesn’t make those assumptions explicitly]


• Could we even let Alice and Bob each submit a large number N of angles in one batch, and allow 
those two computers to process all the angles arbitrarily?


• This question should be considered also for a more traditional approach via CHSH in which 
Alice submits a fair Bernoulli sequence of angles taken from the pair  and Bob 
(independently) from 


• Idea: avoid measurability issues by just considering settings which are whole numbers of 
degrees and use discrete Fourier transform


• How to show that it is also not possible to even approximately reproduce the negative cosine?

{0, 1
2 π}

{ 3
4 π 1

4 π}

Conclusion
Gull’s proof works, at least, as theoretical physics, 

though not perhaps yet as mathematical physics



• Gull's theorem revisited, Richard D. Gill & Dilara Karakozak (2020) 
https://arxiv.org/abs/2012.00719 (presently at version 5)


Note: in principle one could produce the negative cosine, or close to produce 
it, by using quantum internet to set up N entangled qubit pairs in the quantum 
memories of two separated quantum computers. Unlike the experiment with 
separated classical computers, one could not test by giving a clone of the same 
computer different sets of inputs. So once you have checked (close to) perfect 
anti-correlation in “step 1”, you cannot try anything else. You have to start all 
over again.

Reference
(And a note on quantum computers and quantum internet)

https://arxiv.org/abs/2012.00719


• Can we get uniform convergence in sup norm, a.s., of all sample correlations?


 


• New experiments to minimise statistical errors?


• Tests of circular symmetry?


• The grasshopper problem 


D. Chistikov, O. Goulko, A. Kent, M. Paterson(2020)                                                
Globe-hopping. Proc. R. Soc. A 476: 20200038.                                                                
http://dx.doi.org/10.1098/rspa.2020.0038

̂ρ N(θ, ϕ) = N−1
N

∑
n=1

Aθ(ωn)Bϕ(ωn)

Appendix
Remarks

http://dx.doi.org/10.1098/rspa.2020.0038


• The usual CHSH experiment has: two settings each for Alice and Bob; 
repeatedly chosen anew by fair coin tosses


• Say “trial n results in success” if the outcomes are equal and the two 
settings are not both “setting no. 2”, otherwise “fail”


• Let S be the total number of successes in N trials


• On distributed classical computers (allowed to communicate between 
each two trials) S is stochastically less than or equal to Binom(N, 0.75) 
distributed


• Quantum computers connected by quantum internet could achieve 
Binom(N, 0.85)

Appendix
More remarks



Appendix
Yet more remarks
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Abstract: The famous singlet correlations of a composite quantum system consisting of two two-level
components in the singlet state exhibit notable features of two kinds. One kind are striking certainty
relations: perfect anti-correlation, and perfect correlation, under certain joint settings. The other kind
are a number of symmetries, namely invariance under a common rotation of the settings, invariance
under exchange of components, and invariance under exchange of both measurement outcomes.
One might like to restrict attention to rotations in the plane since those are the ones most commonly
investigated experimentally. One can then also further distinguish between the case of discrete
rotations (e.g., only settings which are a whole number of degrees are allowed) and continuous
rotations. We study the class of classical correlation functions, i.e., generated by classical physical
systems, satisfying all these symmetries, in the continuous, planar, case. We call such correlation
functions classical EPR-B correlations. It turns out that if the certainty relations and rotational symmetry
holds at the level of the correlations, then rotational symmetry can be imposed “for free” on the
underlying classical physical model by adding an extra randomisation level. The other binary
symmetries are obtained “for free”. This leads to a simple heuristic description of all possible classical
EPR-B correlations in terms of a “spinning bi-coloured disk” model. We deliberately use the word
“heuristic” because technical mathematical problems remain wide open concerning the transition
from finite or discrete to continuous. The main purpose of this paper is to bring this situation to
the attention of the mathematical community. We do show that the widespread idea that “quantum
correlations are more extreme than classical physics would allow” is at best highly inaccurate, through
giving a concrete example of a classical correlation which satisfies all the symmetries and all the
certainty relations and which exceeds the quantum correlations over a whole range of settings. It is
found by a search procedure in which we randomly generate classical physical models and, for each
generated model, evaluate its properties in a further Monte-Carlo simulation of the model itself.

Keywords: singlet correlations; twisted Malus law; EPR-B experiments; local hidden variables;
spinning coloured disk model; spinning coloured ball model; simulation models; Bell’s theorem

1. The Problem, in a Picture

Just about every introduction to Bell’s (1964) theorem [1], stating the incompatibility of quantum
mechanics with classical physics, contains the picture shown in Figure 1.

Entropy 2020, 22, 287; doi:10.3390/e22030287 www.mdpi.com/journal/entropy
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A sample of classical correlation functions obtained from the coloured spinning disk model



• Pauli spin matrices


  


• Notice: self-adjoint, square to   (  identity), anti-commute; eigenvalues 


• Let  


• self-adjoint, squares to  ( identity), eigenvalues 


• Let  as the corresponding normalised eigenvectors of ,  etc.


• State-vector of the singlet state


 


• Mean values of measurement outcomes of spin of either particle in any direction


 


• Correlations (expectation of product) are negative cosine


 

σx = ( 0 1
1 0), σy = ( 0 −i

i 0), σz = ( 1 0
0 −1)

Id 2 × 2 ±1

⃗σ = (σx, σy, σz); for  ⃗a ∈ ℝ, ∥ ⃗a ∥2 = 1 define  σ ⃗a = ⃗a ⋅ ⃗σ

±1

|z+⟩, |z−⟩ ∈ ℂ2 σz

Ψ =
1

2
( |z+⟩ ⊗ |z−⟩ − |z−⟩ ⊗ |z+⟩ ) ∈ ℂ2 ⊗ ℂ2 = ℂ4

⟨Ψ |σ ⃗a ⊗ Id |Ψ⟩ = 0 = ⟨Ψ | Id ⊗ σ ⃗b |Ψ⟩

⟨Ψ |σ ⃗a ⊗ σ ⃗b |Ψ⟩ = − cos( ⃗a ⋅ ⃗b )




