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Abstract

The asymptotic power of the Mantel-Haenszel test is compared to that

of its competitors.

1 Introduction

Suppose we compare a treatment with a control in each of S subpopulations or

strata, where the outcome is binary: success or fail. In an investigation of a sus-

pected serial killer nurse, the experimental units might be the shifts at a number of

different wards of various hospitals and/or in different time periods. The treatment

is “suspect is on duty”. The success outcome is “incident”: a death or reanimation

or other medical crisis occurs on the ward ;-). We are interested in whether the

treatment increases the probability of success.

The situation of our nursing example is of course not a double-blind random-

ized clinical trial, so the model should not be taken too seriously. It can however

still be interesting to detect departures from the model, for whatever reason they

might occur—the suspect might have been assigned more often than other nurses

to difficult shifts, for instance a fully-licensed nurse gets shifts which one would

hesitate to assign to a trainee-nurse; the suspect may tend to have more shifts in

busy periods when all the beds on the ward are occupied, than in quiet periods

where he is sent on a training course or takes vacation; the suspect might be a

better nurse so that he alerts the emergency team when a more lazy nurse would

not notice anything, with the result that an incident starts on his shift instead of

the next one or not at all; he might just have bad luck to be on sick leave during a

quiet period, fit and on duty and catching up with overtime during a busy period.
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Suppose for i = 1, . . . , S that

X i ∼ Bin(mi , pi )

Yi ∼ Bin(ni , qi ),
(1)

all independent of one another. X i and Yi stand for the numbers of incidents

in the suspect’s mi shifts and the remaining ni shifts, respectively, in stratum

(ward/hospital/time period) i . Define

p̂i = X i/mi ,

q̂i = Yi/ni ,

Ni = mi + ni ,

N =
∑

i

Ni .

(2)

The Cochran-Mantel-Haenszel test of the null-hypothesis pi = qi for all i against

the alternative pi ≥ qi for all i , with at least one inequality strict, is the one-sided

test based on the weighted and normalized sum of estimated differences pi − qi

TMH = N−
1
2

S∑
i=1

mini

mi + ni

( p̂i − q̂i ). (3)

Up to a normalization constant, TMH is the score test statistic of the null-hypothesis

ρ = 1 in the popular model of a common odds ratio

pi/(1− pi )

qi/(1− qi )
= ρ for all i (4)

and working with the conditional distribution of the data given the “column totals”

X i + Yi . The alternative hypothesis is ρ > 1. Under this conditioning, and

under the assumption of a constant odds ratio ρ, the distribution of the data only

depends on ρ. The constant odds ratio model, also known as the proportional

odds model, is not only attractive from a subject-matter point of view but also

from a mathematical point of view, since it gives us an exponential family and

consequently inferential problems with very nice properties.

One may display the data as a collection of 2× 2 tables, see Table 1. We will

also use an alternative notation where the S strata are labelled with indices s, the

(i, j)’th element of the s’th 2× 2 table is denoted by nsi j , and addition over row

or column elements is indicated by a dot, see Table 2.

Because the test is the score test in a one-parameter model, it is (conditionally)

locally uniformly most powerful for testing the null hypothesis ρ = 1 against the

alternative ρ > 1. Usually one makes a minor “continuity correction” to TMH and
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Table 1: Data for stratum i

X i mi − X i mi

Yi ni − Yi ni

X i + Yi (mi + ni )− (X i + Yi ) mi + ni

Table 2: Alternative notation, data for stratum s

ns11 ns12 ns1·

ns21 ns22 ns2·

ns·1 ns·2 ns··

divides it by the square root of the null-hypothesis uniform minimum variance

unbiased estimate of its unconditional null-hypothesis variance, and compares it

(one-sidedly) to the standard normal distribution. In principle however one can

compare it to its null-hypothesis conditional distribution, which is of course just a

permutation distribution: permutations of the assignments of treatment (“suspect

is on duty”) to experimental units (shifts) within strata, keeping the outcomes

fixed. The just-mentioned unbiased estimate of the null hypothesis unconditional

variance is constant under the permutation distribution and hence identical to the

variance of the null hypothesis permutation distribution.

Under the null-hypothesis, and conditional on the column totals, the X i are

independent and hypergeometrically distributed so that the test becomes an ex-

tension to the case of multiple independent 2 × 2 tables of Fisher’s exact test for

independence in a single 2× 2 contingency table.

Mantel and Haenszel’s contribution was to introduce modifications to a test

statistic earlier proposed by Cochran, so as to extend good properties of the test

to the situation where the number of strata is large, while the stratum sample

sizes Ni = mi + ni are very small. Their modification, in its two-sided form

(the statistic should be compared to the chi-square distribution with one degree of
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freedom) and our alternative notation,

χ2
MH =

(∣∣∣∣∣∑
s

(
ns11 −

ns·1ns1·

ns··

)∣∣∣∣∣− 1
2

)2

∑
s

n
s·1 n

s·2 n
s1· ns2·

n2
s··(ns··− 1)

,

has excellent properties when N =
∑

i Ni → ∞, independently of whether the

number of the strata or the size of each stratum increases to infinity. The test is an

ubiquitous workhorse in epidemiology, particularly in “matched pair” retrospec-

tive case-control studies, when each mi = ni = 1. Another common application

(or rather, extension) is in survival analysis, with one stratum per failure time (the

survivors up to that time instant), and X i + Yi = 1 for all i , when the statistic

becomes the well known log rank test of Peto and Peto, also known as the score

test of a proportional hazards alternative in the Cox regression model. Mantel and

Haenszel’s insight that one could formally use the analysis of a collection of inde-

pendent 2×2 tables in this context, was a stroke of brilliance, and it had enormous

impact.

In the alternative formulation, but going back to our original notation, we see

that the test compares the total number of “incidents”
∑

X i to the null hypothesis

expected number,
∑ X i+Yi

mi+ni
mi , using the permutation distribution to get the p-

value. But the expected number is constant under permutations (or: constant,

conditional on X i + Yi ). Thus the test is nothing else than a permutation based

test based on the statistic
∑

X i . The null hypothesis distribution respects the

stratification by considering permutations within strata only.

Mantel and Haenszel’s modifications to the Cochran statistic were (1) the use

of the conditional permutation variance, which ensures good properties when one

has many small strata, and (2) the introduction of the “continuity correction” 1
2
.

We do not need to take account of either of these technical innovations in this

study. The relation between the two forms of the statistic given above will be

further elucidated, in the section after the next.

2 Asymptotic theory

In this and the next section I will compare the power of the Mantel-Haenszel test

against that of various natural competitors in various situations, where I keep the

number of strata fixed but let their size grow indefinitely. In order to obtain an

interesting comparison I suppose that the larger the sample size, the smaller the

effect of the treatment; so called-local alternatives. Effectively I will be computing
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the Pitman asymptotic relative efficiency between the different tests. The different

situations are: (i) the qi are arbitrary, and in general all different; (ii) the qi are

all equal. The statistician may or may not believe she is in situation (i) or (ii),

and she may or may not be correct in her belief. In the situation when the qi are

different but the statistician acts as though they are equal, I will again suppose

that the larger the sample size, the smaller is the difference, in order to obtain an

illuminating comparison. The asymptotics are not supposed to imply that in the

real world, as we gather more data, effects actually get smaller in such a peculiar

fashion. They simply serve to obtain informative approximations in the situation

that sample sizes are large, so asymptotic approximations are good, but effects are

relatively small, so there is an appreciable difference between the powers of more

or less sensible test statistics.

Suppose that as N →∞, the qi are fixed but pi depends on N via the restric-

tion

ρ = 1+ δ/
√

N . (5)

(More generally, for each i , both pi and qi depend on N , but are related to one

another through the odds ratio ρ; and they converge to some limit as N → ∞).

Suppose that as N →∞

mi

Ni

→ αi ,
ni

Ni

→ βi ,
Ni

N
→ µi . (6)

Note that
∑

i µi = 1 and αi + βi = 1 for all i . Note also that

p

1− p
= (1+ δ)

q

1− q

=⇒ p(1− q) = (1+ δ)q(1− p)

=⇒ p(1− q + q + δq) = (1+ δ)q

=⇒ p =
(1+ δ)q

1+ δq
= q + q(1− q)δ + O(δ2).

(7)

Using the Bernoulli-de Moivre normal limit to the binomial, one discovers

that, in distribution,

TMH → N

(∑
µiαiβiqi (1− qi ) δ,

∑
µiαiβiqi (1− qi )

)
. (8)

The quality of the test is measured by
∑
µiαiβiqi (1− qi ) (the larger, the better).

The form of the limiting distribution comes from its likelihood derivation and the

fact that, given S independent N (σ 2
i δ, σ

2
i ) observations, the optimal test of δ = 0

is based on their sum.
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Suppose that all qi are equal, and hence (because of proportional odds) all pi

are equal. In that situation one could merge the S strata into one. The Mantel-

Haenszel test with a single stratum is asymptotically the same as the one-sided

chi-square test, or the Fisher exact test for one 2×2 table (for more details on this,

see the next section). One finds that the asymptotic distribution of the pooled-data

statistic is N (αβq(1− q)δ, αβq(1− q)), and the quality of the test is measured

by αβq(1 − q), where α =
∑

i µiαi , β =
∑

i µiβi , and q = qi for all i . When

both are legitimate, the stratified Mantel-Haenszel test has lower power than the

pooled one-stratum test except when αi = α, βi = β for all i . In this case, and

only then, αβq(1− q) = αβq(1− q) where αβ =
∑

i µiαiβi . Thus, if merging

is legitimate, the Mantel-Haenszel test loses power, except when the design is

“balanced”: the treatment is applied to the same proportion of experimental units

in each stratum.

If Lucia de Berk is a full time nurse at all different wards/time-periods, one can

expect the balance condition, αi independent of i , to hold, i.e., she will be on duty

on the same proportion of shifts in all strata, since she will work on average the

same number of hours per year in each ward/time-period. Thus we can expect not

to lose power by proper stratification properly, even if it is unncessary. However

the qi might well be different if we are pooling different kinds of wards, or if due

to changing situations in the hospital, the incident rate varies over time. In that

case the “all-strata-pooled” statistic is illegitimate. We investigate what can go

wrong in this situation, in the next section.

On the other hand, if we stratify very finely by time period, because we suspect

strong time variation in the rate of incidents, and if Lucia de Berk works strongly

different proportions of time in different time periods (because of holidays, leave

for following a course, sick leave) and if we are wrong in our suspicion of time-

variation in the incident rate, then we will lose power compared to the test which

we could have used.

Finally, the asymptotic theory we give here depends on the sample size per

stratum growing large, and it does not give a good picture in the case of very

many small strata, when a different kind of asymptotics should be followed.

3 Comparison with competing testing methods

In the previous section I compared Mantel-Haenzel to pooled chi-square in the

situation that the pooled statistic is legitimate. We saw that asymptotic power

was lost, except in the case of a “balanced design”, all αi equal. That is actually

good news since the balance condition will often be at least approximately true.

Now I allow for different qi over the strata. I compare (1) the Fisher combination

method, (2) the standard chi-square test for stratified 2 × 2 tables, (3) quick and
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dirty pooling by adding, even if the qi are different.

In the usual chi-squared test for a 2 × 2 table, the quantity “observed minus

expected”, O− E , in each of the four cells of the table is equal, up to a sign, since

row and column sums are reproduced exactly by the “expected” counts. On the

other hand,

p̂ − q̂ =
X

m
−

Y

n

=
X

m
+

X

n
−

X + Y

m + n

m + n

n

=
m + n

mn
X −

m + n

mn

m

m + n
(X + Y )

=
m + n

mn
(O − E).

(9)

We see that both Mantel-Haenszel test and the various chi-quare tests are built up

from exactly the same quanties p̂ − q̂, in some cases based on the pooled data, in

other cases per stratum. The difference lies in at what stage, and how the strata

are pooled.

3.1 Fisher combination method

The Fisher method is based on the sum of the logarithms of the p-values of the

chi-square tests for each table separately (in their one-sided versions). Now the

p-value of a one-sided test based on a statistic Ti ∼ N (σ 2
i δ, σ

2
i ), is distributed as

1−8−1(δσi+Z)where Z is standard normally distributed. Hence asymptotically

the Fisher combination statistic −2
∑

i log(p-value in stratum i), to be compared

with the χ2
2k

distribution, is asymptotically equivalent to−2
∑

i log(1−8−1(Zi+

δiσi )) where the Zi are independent standard normally distributed. Note that mi-

nus twice the logarithm of a uniform distributed random variable is χ2
2 -distributed.

There is not much that can be said about this method, except that it is less power-

ful against the proportional odds alternative than the Mantel-Haenszel test, which

is based on
∑

Ti , and which gives the uniformly most powerful test. The Fisher

combination method combines the wrong function of each statistic, and does this

moreover with the wrong weights. This problem does not go away if we consider

different one-parameter families of alternatives to the proportional odds model.

The strata are combined as if each stratum is equally important, but the relative

weight to be given to each stratum will depend on the stratum parameters and

relative sample sizes.

Essentially, the Fisher combination method is a method of last resort, when

we know nothing at all about the relation between the different statistics on which

the different p-values are to be compared. We just have the p-values and know

nothing else. Then there is not much more that we can do ...
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3.2 Stratified chi-squared test

The usual chi-sqare test based on summing a chi-squared (one degree of freedom)

test statistic for each separate stratum, is asymptotically equivalent to a test of δi =

0 for all i given Ti ∼ N (σ 2
i δi , σ

2
i ). The test is based on the sum of the squares of

the Ti . This is an omnibus test, having some sensitivity to all possible departures

from the null hypothesis. Implicitly it weights the strata so as to maximize the

minimum loss of power against alternatives with equal envelope power function:

it a so-called most stringent test (minimizes the maximum shortcoming, pointwise

over the alternative, relative to the test of maximal power against each point in

the alternative, separately). Clearly it will have severely reduced power against

most alternatives of interest which are at the least “one-sided”( i.e., we are only

interested in δi ≥ 0), if not one-dimensional (all δi equal).

3.3 Chi-squared test based on pooled data

Suppose now we pool the strata, but

pi = q +
θi
√

N
+

q(1− q)
√

N
δ + O(N−1)

and

qi = q +
θi
√

N
+ O(N−1),

where the θi are arbitrary. The mean of
√

N (
∑

X i/
∑

mi −
∑

Yi/
∑

ni ) is

asymptotically∑
miθi∑
mi

+ q(1− q)δ −

∑
niθi∑
ni

= q(1− q)δ +

∑
(mi/Ni )(Ni/N )θi∑
(mi/Ni )(Ni/N )

−

∑
(ni/Ni )(Ni/N )θi∑
(ni/Ni )(Ni/N )

= q(1− q)δ +

∑
αiµiθi∑
αiµi

−

∑
βiµiθi∑
βiµi

+ O(1).

Recall that
∑

i µi = 1, and αi + βi = 1 for all i . Write α =
∑

i µiαi , αθ =∑
i µiαiθi , β =

∑
i µiβi , βθ =

∑
i µiβiθi , θ =

∑
i µiθi . Then we can write the
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asymptotic mean of our test statistic as

q(1− q)δ +
β αθ − α βθ

α β

= q(1− q)δ +

∑
i µi (βαi − αβi )θi

α β

= q(1− q)δ +

∑
i µiθi

(
(1− α)αi − α(1− αi )

)
α β

= q(1− q)δ +

∑
i µi (θi − θ)(αi − α)

α β

Even if δ = 0 we can have an asymptotic mean unequal to 0 and hence an incorrect

test. This is Simpson’s paradox raising its ugly head. If all the αi are equal, the

situation which we call a balanced design, then the asymptotic mean is q(1−q)δ,

independent of the θi . The “dangerous situation” occurs when there is a positive

correlation between the αi and the θi , i.e., the treatment is applied relatively more

often in those strata where the probability of success is larger.

In terms of our nurse: Lucia works relatively more hours on wards/time peri-

ods where the incident rate is higher.

4 Conclusion

The Mantel-Haenszel test has been the work-horse of epidemiological and med-

ical statistical research for 30 years. It is incredibly simple and intuitive and has

wonderful properties. That no single statistician ever thought of using it in the

Lucia de Berk case is a sorry reflection on the amateurism which afflicted the use

not only of statistical but of all scientific evidence in this sorry case, in which the

only evidence was indirect, complex, scientific evidence. The amateurism of the

scientists involved was compounded by the fact that the interdisciplinary combi-

nation of the evidence was a task solely borne by the judges. No single expert

witness took any interest whatsoever, in observing how his or her expertise was

used by the judges. In fact they all took pride in delegating this task entirely to

the wise judges. Those judges became convinced by amateur psychology and am-

ateur statistics that Lucia de Berk was a monster and an evil killer. The scientific

experts willingly supplied the legal facts necessary in order to put her away.
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