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The sieve method as an alternative to dollar-unit sampling: the mathematical

background

by

R.D. Gill

ABSTRACT

This note describes the mathematical background to sieve sampling, a
new method for audit sampling developed by C. Rietveld of Klynveld, Kraayen-
hof & Co, Accountants. This work has been done as part of a long term con-

sultation project with KKC.
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1. TECHNIQUES FOR DOLLAR-UNIT SAMPLING AND DOLLAR~VALUE SAMPLING

1.1. Introduction

The sieve method is an alternative way of takinga dollar-unit sample in which
full advantage is taken of the physical composition of an accounting population
in order to make sample selection more efficient and flexible than in clas-—
sical random sampling. In fact the method is so simple that it is easy to
implement with a programmable pocket calculator or a microcomputer. At the
same time, evaluation of a sieve sample is exactly the same as for a clas-
sical random sample, using the well known simple tables based on the Poisson
distribution.

The total amount of an accounting population is generally made up of a
number of sub-totals, themselves again divided and sub-divided at several
levels. At the bottom level one arrives at items of various monetary values.
The classical method of dollar-unit sampling completely ignores this struc-
ture. A $ 1,000,000 population is considered simply as 1,000,000 units of
I dollar each, of which a few are bad or in error. The random sample is ob-
tained by selecting, completely at random and independently of one another,
a number of dollars from this population. These dollars are investigated
and an upper error limit (a confidence upper bound for the population error
rate) at the desired B-risk (one minus the confidence level) is computed
from the usual Poisson tables on the basis of sample size, desired R-risk,
and the number of bad dollars actually found in the sample.

We assume that this classical procedure is familiar to the reader, and that it
is understood how the Poisson tables (see Appendix) are tailor made to the
way the sample is chosen. We give a resumé of the background theory in the
rest of this paragraph. The fact that the dollars are chosen at random and
independently of one another means that the (random) number of bad dollars
(errors) found in the sample has the hypergeometric sampling distribution
with parameters N (population size), n (sample size) and K (number of bad
dollars in the population). This sampling distribution is very close to the
binomial distribution with parameters n and p = K/N (error rate). In fact
we would have had exactly a binomial distribution if the sample had been
taken with replacement. This distribution in turn is very close to the
Poisson distribution with parameter A = np (at least, for small values of p

as are met with in practice). The tables for a standard dollar-unit sample



evaluation are derived from the Poisson distribution. The tables give, for
various values of risk B and number of errors found in the sample k, the
value of A = np such that the chance of finding k or less errors (in a sam-
ple of size n from a population with error rate p) equals B. Of course p is
not known. However, if for a chosen value of risk B one adheres to the fol-
lowing behaviour rule: "if k bad dollars are found in the sample then state
that np is less than the value found in the table under k errors and risk
B" then the chance is at most B that one will obtain a sample with so few
errors that the statement made by following the rule is untrue, whatever
the actual value of p may be. Note that the upper error limit is influenced
by chance through its dependence on the number of errors which chance puts
in the sample, while the actual population error rate P is some unknown,
fixed number. One runs a risk of B or less that the upper error limit will
be lower than p, whatever p may be. For more information see any basic pro-
bability and statistics text; for auditing applications see any of the books
in the reference list. Lower error limits are sometimes required too and are
calculated similarly.

We shall describe sieve sampling in Subsection 1.4. However, we empha-
size now that the number of errors found in a sieve sample does not
generally have a hypergeometric, binomial, or Poisson distribution; not even

by approximation. We shall in fact show an example in which every sieve

sample from a certain population contains exactly the same number of errors;
whereas for a Poisson distribution any number of errors has a chance

of being found. Yet the ordinary Poisson based evaluation is valid

for sieve sampling too. (At least, with the proviso that it may be conser-
vative: one may run a lower risk than the chosen risk B of making an untrue
statement about the true error rate. But one never runs a larger risk.) As
we mentioned before, sie&esamplingtakesfulladvantage of the physical compo-
sition of an accounting population so that the selection of the random
sample is much more easily made than in classical random sampling.

We shall start then by describing classical random sampling in a little
more detail, pinpointing its practical difficulties. Then we will describe
systematic sampling, a popular but very dangerous way of getting a sample
more easily. Then we move to cell sampling, a technique which superficially

resembles systematic sampling quite strongly, but which does, as we shall



explain, allow the usual evaluation to be made validly. One more easy step
brings us to sieve sampling. Rather than considering the accounting population
as a collection of dollar-units, each of which has an equal chance of being
selected, we now consider the population as a collection of Ztems, each of
which has a different chance (propotional to its value) of being selected.
Thus the method could also be called "dollar-value sampling'. We only describe
the mathematical essentials of the method. The various ways in which it can
be applied, making it an extremely versatile and efficient tool for auditing,
are described in Rietveld (1978, 1979, 1984).

1.2. True random sampling

An accounting population from which samples are drawn consists of a
large number of monetary units, say dollars, a few of which are bad and
many good. The aim is to make a statement or to come to a decision concern-
ing the fraction of bad dollars in the population. Generally the dollars in
the population are not physically present as separate elements, but are
grouped together in <tems of various sizes. These items are often present
in some physical sequence. After investigation of an item one can determine
that a certain number of dollars in the item is good and the rest is bad.
One can use some convention as to which dollars are which: we shall say that

the lowest numbered dollars in each item are the bad ones, see figure 1.

bad
« N

good % good ° e 2 o o o o
____________ /
item 1 item 2 jtem M

monetary units of population arranged in sequence

according to sequence of items

Figure 1. Random sampling

In true random sampling one proceeds as follows. Suppose there are N
dollars in the population and one wants to take a sample of size n. Then by
means of random number tables, a computer or pocket calculator programmed
random number generator one selects n random numbers independently of one
another between 1 and N inclusive. Next one sorts these n numbers into as-—
cending order. Then one starts adding the values of the items in the popu-

lation together till the cumulative total first exceeds the lowest random



number. One knows then that the first random number falls in the last se—
lected item and by a simple computation one can determine the rank number

of the selected dollar within the item. Similarly the item number and within
the item the rank number of the following n-1 selections can be determined.
One proceeds to investigate the items selected. Completely good items yield
zero errors, completely bad items yield one error each, and for partially
bad items it depends on whether a low or a high dollar in the item has

been selected. (The so-called tainting evaluation in which each dollar in a
partially bad item is considered partially bad is described in Subsection
2.5). When the procedure has to be carried out without the use of a compu-
ter, several of the steps are rather time consuming. The sorting of n random
numbers into sequence especially is rather tedious when n is of the order

of several hundreds, as will often be the case. Can this be avoided?

We mention several alternatives:

(1) One can construct a random number generator which produces the num-
bers in sequence. So the first number must have the sampling distribution
of the smallest of n independent random numbers: given the first, the second
must have the sampling distribution of the second conditional on the value
of the first, etc. This reduces to the following quite simple technique:

Let VioYgs «o- denote a stream of (unordered) random numbers (strictly) be-

tween zero and one. Define So = 0. Then n ordered random numbers between

zero and one, X, <...<x , are defined recursively for i = 1,..., n by:
1 -
S; =85t v loge(yi), x, = 1 exp(si). (One can also replace 1oge(.)

and exp(.) by log,,(.) and 10 to the power (.) respectively). However man
10 y

users may find this too sophisticated.

(2) Systematic sampling. A very common approach is to select a dollar
at random from the first g dollars, and then to select every gth dollar
from then on. This is certainly very easy. But is it appropriate? Certain-
ly, each dollar has an equal chance of being selected. But we do not have
the independence between the numbers of different selected dollars which
was of crucial importance right at the beginning of our chain of reasoning
from the hypergeometric or binomial distribution to statistical procedures

based on the Poisson.

Recall it was important that the number of bad errors found has



approximately a Poisson distribution with parameter np, where p is the pop-
ulation fraction of bad dollars. It is easy to conceive of populations for
which the Poisson distribution is a very bad approximation. For instance, if
each Ztem is of size g-and each has the same fraction p of bad errors, then
with probability p one will find a bad dollar in every item and with proba-
bility 1-p one will find no bad dollars at all. As a consequence, using a
standard evaluation based on the Poisson distribution can lead to acceptance
of a very bad population with a very large probability. Basically, the sample
of n dollars gives no more information than a sample of 1 dollar.

This is a rather farfetched example but it is clear that accounting
populations will often show regularities and recurring patterns of errors,
which will make systematic sampling give less information about the popula-
tion than true random sampling. Since this loss of information is not taken
into account by a standard evaluation, one can run far higher risks than
one wishes.

It is often claimed that if the items can be considered to be in random
order, then systematic sampling does lead to valid evaluation. This is cer-
tainly true if each item is of size 1, so that the dollars themselves are in
random order (and if probability statements refer not only to the random
starting point of the procedure but also to the random order). However in

general this claim has not yet been mathematically proven.

1.3. Cell sampling

By taking just a little more trouble than in systematic sampling one
can still save all the time consuming sorting of random numbers without
jeopardizing the statistical validiy of the evaluation. However, we will
need a new mathematical result in order to justify the procedure. The idea
is quite simply to select a new random number for each cell of g-dollar-

units. We consider the dollar-units as forming n cells of equal size:

item M
tems .
+\ ————————————————— )
——————————————— = - — === ——n r
R : : :
| 1 ® o e e o o e o o
77/ | 7/ S /- L ! N // /— !
cell 1 cell 2 cell n

Figure 2. Cell sampling

We draw n random numbers independently from 1 to N/n inclusive; and

these numbers indicate which dollar has been selected in each cell. We then



g0 on to make the usual evaluation.

First we should note that this is definitely not the same as true ran-
dom sampling. Each dollar in the population has the same chance of being
selected, but they are not selected independently: given one dollar has
been selected, all other dollars in the same cell now have chance zero of
being selected (as in systematic sampling!). Again, the sampling distribu-
tion of the number of errors found is not generally the same as in true ran-
dom sampling. But whereas in systematic sampling there is an increased risk
of not finding errors, in cell sampling there is a decreased risk. Let us
consider two extreme situations. In situation 1) there is an equal number
of bad dollars in each cell. A bad dollar is found in different cells inde-~
pendently of one another. Hence the sampling distribution of the number of
bad dollars found is quite simply the binomial distribution of the number
of successes in n independent Bernoulli trials, each with success chance p-
This sampling distribution is exactly the same as in a true random sample
with replacement from the whole population and corresponds therefore to the
chosen form of evaluation. The opposite situation 2) is when all bad dollars
are concentrated in one or more cells. We are now certain to find a bad dol-
lar in each "bad" cell and none in the good ones so we have a completely
different sampling distribution of number of errors found. But note: in
the sample we find the same fraction of errors as in the population. For the
usual confidence levels the usual (Poisson-based) computed upper error limit
is larger than the observed sample fraction. (In subsection 2.4 we show that
the precise bound on B is 37%. For a lower limit another bound applies; see
subsection 2.5). Therefore for such a population the usual evaluation leads
to a confidence interval for p which is always correct, hence has a risk less
than the stated or nominal level B.

For populations intermediate between these two extremes one can show
(Hoeffding's theorem, a proof is given in Section 3) that the sampling dis-
tribution of number of errors found is in a certain sense also intermediate
between what it is in these two extreme situations. One can use this fact
to go on and prove that the usual evaluation applied to a sample got by
cell sampling is, if anything, comservative; i.e. overstates the actual B-

risk. An upper error limit exceeds the true error rate p with a chance of



more than 1-B (this is proved in Section 2). This is in complete contrast
to systematic sampling which if anything is anti-conservative; the upper
error limit can have an appreciably larger chance than B of being lower than
the true value of p.

The mathematical proof of these statements about cell sampling in inter-
mediate populations is surprisingly hard even though the intuitive idea is
so clear (we hope!). Hoeffding (1956) gives a complete description of the
sampling distribution of number of errors found in intermediate populations
and Anderson & Samuels (1967) apply these results to upper error limits. In
Sections 2 and 3 we give precise mathematical statements and simplified

proofs of these results.

1.4. Sieve method

We have now cleared up the difficulty of getting our random numbers in
order, but still we have the complications of referring dollars in the popu-
lation to dollars in the items. Can we orientate the whole sampling method
better to the physical collection of items? The answer is yes, using a tech-
nique discovered in 1955 and further developed in the seventies by C. Rietveld
of Klynveld Kraayenhof & Co. (see Rietveld 1978, 1979, 1984).

This technique has many possibilities for extension and elaboration
which make it a very powerful and versatile method, but here we just concentrate
on the bare bones. Suppose an item is of total book value a. The
chance that a dollar is selected in this item (in cell sampling) is
precisely a/(N/n) = na/N, the number of dollars in the item divided by
the number of dollars in the cell. (We suppose for the moment that a < N/n
and that the item falls completely in one cell.) One could achieve the same
probability of selection if one drew a random number from 1 to N/n for this
specific item alone, and selected the item if the random number, say X, is
less than or equal to a. Looking for bad dollars in a selected item, we
would add 1 to our total of errors found if the Xth dollar is one of the bad
ones. We can do this for each item Zndependently. One could say that we are consid-
ering cells each of size g-, one for each item, and generally largely con-
sisting of imaginary dollars. We draw a random dollar from each cell, and,
if it is not imaginary, see if it is a good or a bad dollar. (Alternatively

a tainting evaluation could be used; see subsection 2.5).
An alternative way of visualizing this process is as follows. We discard

completely the idea that the items consist of individual dollars. Rather,

we imagine the item in its entirety as being laid on a sieve with random mesh



size, uniformly and continously distributed between zero and N/n. If the

item is of size a, then the chance that it remains lying on the sieve is
a/(N/n). In a second round we imagine just the error in the item as lying on
the same sieve, so if the error amount is e then the chance it remains and is
hence discovered is e/(N/n). This sieve-idea turns out to be extremely
fruitful since it naturally leads to various important extensions and

modifications of the method.

u{bad bad
W T == A :"+ ______________ a r _______________ ":
:m good | imaginary l% good | imaginary o o o ! |
wod ) /S J wa J
item 1 item 2 item M
—TT T~ — —— o~~~
cell 1 cell 2 cell M

Figure 3. Sieve sampling

The question is now: what can we say about the sampling distribution
of the number of errors found? Suppose the population consists of M > n
items each of size less than or equal to N/n: population size divided by
"sample size" (the procedure must be modified if larger items are present.
These are generally subjected to complete investigation, or split into smal-
ler items). Again we consider two extreme situations. (1) The bad dollars
are evenly distributed through the population. If the fraction of bad dollars
is p, there are pN bad dollars in total and %? bad dollars per item. For each
of the items, the chance a bad dollar is found equals %g-/§-= %?u There
are M items. So the number of bad dollars found is binomially distributed
with parameters M and %?; so nearly Poisson distributed with parameter
M x %?-= pn. We get the same sampling distribution of number of errors
found as in the "true random sampling case", for which our evaluation is
tailor made. So the evaluation is correct.

In the other extreme (2) the bad dollars are concentrated in a few
items. Supposing again a fraction p of bad dollars, the most extreme case
is th;t pN bad dollars are contained in ﬁ%%-= pn completely bad items of
size o each. We find then precisely pn bad dollars in our sample. Since our
evaluation is based on a sample size n, the fraction of bad dollars with
respect to this sample size is p. At the usual confidence levels (precisely,
at confidence levels larger then 63%) our computed upper error limit is with

probability one larger than P

Thus we have exactly the same extremes as in cell sampling. Since math-



ematically the sieve method 7s a form of cell sampling exactly the same
result holds: intermediate situations lead to intermediate (in a certain
sense) sampling distributions of the number of errors found, and the
upper error limit based on the usual Poisson method and sample size n has

probability B or less of being less than the true value of p (at least, for
B less than 377. For lower limits a slightly different rule applies, see

2.5).

2. APPLICATION OF HOEFFDING'S THEOREM TO THE STATISTICAL EVALUATION OF A
SIEVE SAMPLE OR CELL SAMPLE

2.1. Introduction

In this section we give a precise statement of part of Hoeffding's
theorem in the context of the sieve method and show how it can be applied
to confidence intervals and hypothesis tests. As we said in Section 1, the
validity of the method depends on the fact that concentration of errors in
a small number of large items leads to a large chance of discovery of errors.
Conversely, if the errors are evenly spread throughout the population, one
will not discover many errors. Thus the "evenly spread" case is the most
dangerous one; but in this case the usual Poisson based evaluation of ordi-
nary dollar unit sampling is appropriate. In other cases with increased
chance of error detection the usual evaluation is conservative. We will only
consider the part of Hoeffding's theorem which is relevant to upper limits.
For lower limits and two-sided limits the other part is needed, which is dis-—

cussed briefly in subsection 2.5.

2.2. Statement of Hoeffding's theorem.

We use the same notation as in Section 1, supplemented by some further

symbols.

M Number of items

a, Size of itemi, i =1, ..., M

e Amount of error in item i, i =1, ..., M
M . .

N = z a; Population size
i=1

K = E e Total error amount

ko)
n
~
S~
2

Error rate
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n Nominal sample size

C = N/n Effective cell size

p;= ei/C Probability of error detection in itemi, i =1, ..., M
M

A= Xi=1 p; = K/C = np Expected number of errors found

To avoid unnecessary complications, we suppose that all items are smal-
ler than the effective cell size (larger items are set apart and evaluated
separately) 0 < e, < a, < C and 0 < p; < 1. In the sieve method, indepen-
dently of one another, in each item i
— with probability ei/C =p; a bad dollar (error) is found
- with probability (ai—ei)/C a good dollar is found
- with probability (C—ai)/C the item is discarded.

Let X, be the random variable (random quantities are underlined) which
takes the value | if an error is found in item i, zero otherwise. So
54"'.’§M are indepgndent Bernoulli variablif with
Pr [§i= 11=1- PrLEi =0] = p;- Let x = Zi=1 x; denote the total number
of errors found.

Hoeffding's theorem states that the sampling distribution of X lies,in
a certain sense, between the distributions it has in the two extreme cases
(1) evenly spread errors: e = ... = ey
(2) maximal concentration of errors: all nonzero e, 's (except possibly one)

equal to the maximal value C.
Let [A] and {A} denote the whole part (entier) and fractional part of A res-
pectively; so [A] is a whole number, 0 < {A} < 1, and A = [A] + {A}. Then if
we keep the total error K and total number of items M fixed, the two extreme

cases are
(D P, = «+. =P, = A/M

) PrT o TP T B Py T ey e =gy =0

Let x be a whole number, 0 < x < A - 1 or equivalently 0 < x < [A]. Write

Pr [x < x |p1, cees pM:] for the probability that the random number of er-

rors found x takes on a value less than or equal to the fixed number



X when P s+ =Py are the probabilities of finding an error in each item.
We have in case (1)

X A A

lymo (Y@=

Pr [x < x|A/M ,...,x/M]

R

X Yy A,
Zy=0 A e Tyl

In case (2) we have
Prix <x|1l,...,1, {a}, 0,...,01 =0
since we will find [A] errors with probability 1 -{A} and [A] + 1 errors with
probability {A}, but never x or less errors since x < [A]. Hoeffding's
theorem states exactly that, for any pl,...,pM with Z?=] p; = A and any

x < [A],

0 Prix=x|p.pd s Dy GO@Ya-p"7

y=0
X A
= Ey=0 A oe /y!
The two "<" signs are in fact "<" unless p,,...,p correspond to case (1)
g 1

or case (2). Moreover one can use Hoeffding's theorem itself to show that
the last "= " can also be replaced by " <" (see subsection 2.5). We prove
the theorem in Section 3. But now we show how it applies to the testing
problem and the confidence interval problem. Except in subsection 2.5, we
only consider one-sided upper testing and estimation. In each case B will
denote the risk (1-B is the confidence level). In view of the condition

x < [A] it turns out that B cannot be arbitrarily chosen; one must require

8 -1

e = 0.3679. However this is no restriction in practice.

IN

2.3. The testing problem

Suppose we wish to test the null hypothesis A > AO against the alter-

native A < AO at confidence level 1-B for some given AO.

C, the effective cell size, is known, this corresponds to the null hypothesis

Since A = K/C and
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that the total error K exceeds the amount CAO (materiality). Using the stan-
dard Poisson evaluation means that we will reject the null hypothesis (and
accept the population) if x takes on some value less than or equal to X5

where X, is determined by

X =\
0 y 0, v+ _
We must show that if in fact X > AO’ then the chance of rejecting the null
hypothesis is less than or equal to B, whatever the actual values of

PrseesPye Now note that for the usual values of B we always have x. < A_. — 1

0~ "0
(see the standard Poisson table in the appendix). The largest admissable
value of B is B = e_l = 0.3679, corresponding to the case Xy = 0, AO = 1.
. _ M - -
Suppose indeed that X = zi=l P > AO. Then X, < AO I < A -1 and hence
%0 -
Prix<x|p ,e..,p 1< z A oe /y! (Hoeffding)
= 071 M -
y=0
X =A
0 y 0, 1
< =0 AO e /y! (because ) 2 AO)
=B (by definition of xo)

and the required result has been proved. At the second step we used the well
known fact that if y has the Poisson (A) distribution, then Pr ly < xO]

decreases as A increases.

2.4. The estimation problem

In the usual evaluation, if we observe X = x then the upper confidence

limit XA for A takes the value X = A which satisfies
~u —u u

Z§=O (}\u)y e_ku/y! =B

where 1-8 is the chosen confidence level. We then make the statement

"< Au". We must prove that

Pr[iu < k[pl,...,pM] < B;
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i.e. the chance of making a false statement about A = Z?;] P; is less than

or equal to B, whatever the values of p],...,pM. (Again, an upper bound for
A is equivalent to an upper bound for the total error K since the effective
cell size C is known). Now we have: Aﬂ < X if and only if x takes on a value

less than or equal to Xy where X, satisfies

X x. +1
0 .y =\, , 0 Yy A, ,
zy=0 e T/yl £ B but zy=0 Xe T/yl > B.

(If we observe x = x, or less then the true value ) gives a very small

0
chance of finding such a small number of errors, and our upper limit Au

. . . -1

is set lower than 1). Notice again that for the usual values of B (B<e ')
we have X, < A =1 (see the Poisson table in the appendix). So

Pr[lu < A pl,...,pM] = Pg[g_s xol p],...pM]

A

%0 -\
2y=0 2V e /y! (Hoeffding)

IA
™

(by definition of xO).

Again the required result has been proved.

2.5. Extensions of the sieve method; lower and two-sided limits; tainting;

conservatism of the Binomial-Poisson approximation

We have only treated the simplest version of the sieve method here.
Variants of the method, such as level-wise subselection and adjustable sample
size using sieve boundaries (see Rietveld, 1978, 1979, 1984) and its application
when some items are larger than C and when the population size N is unknown
prior to sampling, reduce mathematically to the simple case treated here.
Note too that cell-sampling corresponds, mathematically, to sieve sampling
withM = n; i.e. each cell of size C is considered as a separate item.

So far we have only considered upper error limits. For lower and two-
sided limits one needs the second part of Hoeffding's theorem, which con-
cerns x larger than A. Referring back to subsection 2.2 note that if

x 22X (sox 2 [2]if {A} =0, x =2 [A] + 1 if {X} > 0) then in case (1)
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: 4 TX My Ay AM-y ~ vx y =\, ,

Pr[x<x [A/M,...,\/M] = 2y=0 (y)(M) (1- §y=0 Ve Myt
while in case (2) we now have

Prlx < x|1,...,1, {A}, 0,...,0] = 1.

The second part of Hoeffding's theorem states precisely that for x > A, and
; M _ < .

for any p],...,pM with Zi=1 p; A, Prlx < x ’pl""’pM] lies betwen these

two extremes. Since the event x > x is the complement of the event x < x -1

one can state the theorem also as: for any x > A + 1 and any p]""’pM with

M

i=1 P{ T As

MM Ay oA
o T (-3

0 <Prlx=2x Ipl,...,pM] < 2 M-y

~ 1- x-1 A e_x/y!

In fact the last " =" can also be replaced by " <" . The inequalities are

also trivially true in the case x = 0. In the Poisson table (lower limits)

the condition x > A + 1 or x = 0 is always satisfied for the usual confi-
dence levels, except that in the row x = 1 it is always violated. For in
this row A = - log(1-B) > 0, hence x < A + 1. As the risk B increases, the
condition x 2 A + 1 or x = 0 is first violated in the row x = 2 at

A =1, 8= (- '=1e™)) = 1 - 2 x 0.3679 = 0.2642. This leads to the follow-

ing rules ensuring that confidence bounds are valid:

(1) For a confidence upper limit the Poisson evaluation is conservative for
all risks B < e | = 0.3679.

(2) For a confidence lower limit the Poisson evaluation is conservative for
all risks B < 1 - 2¢” ! = 0.2642 provided the lower limit is taken as
zero when one error is observed.

(3) For two-sided, equal-tails limits the Poisson evaluation is conser-
vative for all risks B < 2 x 0.2642 = 0.5284 under the same proviso
for x = 1 as in (2).

Similar rules can be made up for one and two sided testing, but the easiest

rule is: check the condition Xy < KO -1 or Xy 2 KO + 1 (whichever is ap-

propriate).



15

We have not discussed the common "tainting evaluation" of dollar unit
sampling (see e.g. Leslie, Teitlebaum & Anderson, 1980)
which could of course also be applied to sieve sampling. Given that an item
i has been selected, rather than going on to select an individual dollar
(the "my dollar right or wrong" approach) one would instead calculate the
degree of tainting of the item t, = ei/ai and then apply the standard method
to the non-zero taintings found. If E{l) > L., 02 E(x) denote the ordered non-
zero taintings found, and Ku(x) denotes the usual 1-B confidence upper limit
to A when x errors are found, then the tainting evaluation is to state

X
"\ <A (0) + Z;=]£y(Au(y) RENCal DORS

Unfortunately mathematically very little is known about tainting evaluation,
whether for true random sampling,cell-sampling or sieve-sampling. Much empi-
rical evidence exists strongly suggesting that the evaluation is conservative
(see e.g. Fienberg,Neter & Leitch (1977) or Cox & Smell (1979)) but no proof
has as yet been found.

Finally we show how Hoeffding's theorem implies that the usual Poisson
approximation to the binomial distribution is conservative. We need to prove

M)

the following result: suppose x is binomially (M,A/M) distributed and y
is Poisson (XA) distributed. Then for x < A -1, Pr[§‘M) < x] < Prly < x].
We prove this by noting that according to Hoeffding's theorem, for any

M' <M, x and A such that x £ A=1 and A/M' < 1

Prlx < x | A/M',..., A/M',0,...,0] < Prl[x < x | A/M,..., /M].

Thus Pr[gFM') < x] < Pr [§FM) < x]. This shows that the sequence

Pr[EFM) <xJ], M=1[X] + 1, [A] + 2, ... is strictly increasing in M. We know
that the sequence approaches Pr[y < x] as M tends to infinity. Therefore we
must have PrL§(M) < x] < Pr [y < x] for all M.

3. SIMPLIFIED PROOF OF HOEFFDING'S THEOREM

Write S = (p],...,pM) for the vector of M components whose i'th com—

ponent is P; and define
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Mo _ M .
fx(p) = fx(Plg---,PM) = Pr[_?_(_ < le],...,pM].

Here x is the sum of M independent Bernoulli variableszi with

Prﬂ§i =1] = l-PrE§i = 0] = P, . Throughout this section we consider a fixed
value of M, a fixed value of )\ = Z?;l Pi and a fixed value of x < A -1. We
wish to show that for any P with 2?;] p; = A,
M M . M
0 = fX (1,...,1, {a}, 0,...,0) < fx(p) < fx(A/M,...,A/M)
—

[A] components
Since the first equality and inequality are trivially true, we need only

prove the last inequality. Equivalently we must show that fg(ﬁ) is maxi-
mized over all P with z§;1 P, =Aby p = (A/M,...,A/M). We shall do this
in two steps: first we will show that at the maximum value of fg(ﬁ), each
P; equals zero, one, or one other value (at least, we show that P can be so
chosen to give the maximum value). After that we use the condition x < A-1
to show that the values zero and one can be excluded.

One more piece of notation is needed: write ﬁﬁ for the vector obtained

from p by deleting the i'th and j'th components; i.e. when i < j

5ij = (®pseees Po_ps Piggs2Pj > pj+1,---,pM)
and similarly when i > j.

If we distinguish two items i and j we can split up the event "x or
less errors found" according to whether or not errors are found in items i
and j (with probabilities P; and Pj) and correspondingly finding x - 2 errors
or less, x-1 errors or less, or x errors or less, in the remaining M-2

items. This gives us

B = pipy £ 0 ) RTE; ) + (pppy £ 6

_2~
+ (mp) (P £ 72 )

M-2 . M=2 ~ M-2
P;P; (fx_2 (Pij) 2 £ ] (pij) + £ (pij))

[]

M-2 M-2 . M-2 .
+ (pi+pj)(fx_1 (pij) £ (pij)) * £ (Pij)
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= pip. A + B.
(Of course A and B both depend on the choice of i and j). Here
M-2 ~ M-2 M-2 .
= - ..) + £ ..
A=f (pij) 2f__4 (le) < (plj)
M2 M-2 2 _ M2
= (£, (p ) £ (Pij)) (£, (p ) x—2(pij))
M-2 , M-2 -
= (pij) 8 1 (pij)
if we define g M-2 (p ) as the probablllty of finding exactly y errors in
y X M 2
the remaining M- 2 1tems, since f (p ) =1I (p )

y=0 By
Note that if pij is held flxed, and we vary P; and pj but keep their

sum fixed, then in the equation
M o~y _
fX (P) - Pin A+B

only pipj varies; A and B remain fixed. Suppose we can replace 1 by p; * €
and pj by pj - € for some small quantity e (if p; or pj equals zero or one,
then this may not be possible at all or only possible for positive or ne-
gative €). Then thezonly change in fz(ﬁ) is that pipj is replaced by

P pJ + € (gj—pi)-e . Suppose to begin with that p; < pj. For € close enough
to zero, €~ is much smaller than e(pj-pi). So if A is positive, taking €
small and positive makes fg(ﬁ)increase; if A is negative taking € small

and negative makes fi{('ﬁ) increase; if A is zero then ffg (P) does not change
at all.

Suppose p maximizes fg (P) (at least one maximizing value does exist,
but there may be several values of P yielding the same maximum). If any two
components of ; exist not equal to one another and not equal to zero or one,
say 0 < P, <P < 1, then the corresponding term A must be zero or we could

. M, ~ . . .
increase fx(p) still further. Since the term A is zero we can replace both

P;

If we repeat this procedure infinitely often, at each step choosing for i

and Py by their average %(pi+pj) without changing the value of fg ).

and j the items w1th (currently) the smallest nonzero P and the largest
nonone pJ, then f (p) stays at the same (maximum)value wh11e all nonzero

and nonone components of P get closer and closer to one another. In
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the limit all these components are equal and fg(p) still has the same maxi-
mum value.

This completes the first step of the proof: we now know that the maxi-
mum value of f (p) is attained by a P whose nonzero and nonone components
are all equal. In fact Hoeffding shows that no other values of P maximize
fﬁ(ﬁ), but that does not concern us.

Now we go on to the second step. Suppose that P maximizes fM(p) and
that p has r components equal to zero, s components equal to one, and there-
fore M-r - s components equal to a = (A-s)/ (M-r-s) where 0 < a < 1 (P must
satisfy Z -1 P; = A). We show first that we must have M- r-s > 0. For sup-
0. Then it must be true that A = [A] = s. For x < A - I

pose that M r-s
this gives fM () = 0, which cannot be the maximum value. So M-r-s = 0
leads to a contradlctlon.

Recall that f (p) pj A + B where A gg—z(le) - (p ) Recall also

that at a maximizing value S, if p; < pJ then A < 0 since otherw1se f (p) can

be increased by moving P and pj towards one another a little.

For the time being suppose that x < A-] (we treat the case x = A-1 later).
We are now going to compute the exact value of A for two choices of P and
RJ, to show that r > 0 and s > 0 each leads to a contradiction. Suppose

pij contains u zeros, v ones and M-2-u-v a s The numbers u and v depend
on r, s and the choice of P and pJ. Since g (p ) is the chance of fin-
ding x errors in the remaining M-2 items, it equals the chance of finding

X-v errors in the M-2-u-v items corresponding to the value a. So we have for

X >v
As g Gy - B IR (S ) a* TV (1-g)MTux2
_ (M-u-v-2) ax—v-—](]_a)M—u—x—l
vox-v-l
(stmamed = e )T )

Note that the second term in large brackets here is positive.

For x = v we have
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and for x < v we have A = 0.

(i) If r > 0 we can choose i and j with p; = 0 and pj = a,
So we can take u =r - 1 and v = s. Because p gives a maximum of fg(ﬁ)
we must have A < 0. If x = v this is immediately a contradiction. If
X < v = s then ff(ﬁ) =0, which is again a contradiction (strictly
positive values of fif(g) are possible). If x > v then A < 0 implies

that
a(M-u-x-1) - (1-a)(x-v) <0
coaM-r+l-x-1) - (1-a)(x-s) <0
a(M-r-x+x-s) < x-s
x-S A—s

. < < = i <
I Vel s a (since x < 1),

a contradiction. So r > 0 is impossible.

(ii) If s> 0 we can choose i and j with p; = a and pj = 1. We now have
u=rand v =s - 1. Again we must have A < 0. If x < v = s-1 then
fg(ﬁ) = 0, which is immediately a contradiction. If x > v then A < 0

implies that
a(M-u-x-1) - (1-a)(x-v) < 0
. a(M-r-x-1) - (l1-a)(x-s+1) <0

o a(M-r-x-1+x-s+l) < x-s +1

D4 < X—s+l A-s
’ - M-r-s M-r-s

= a (since x < X -1),
a contradiction. So s > 0 is impossible.

This shows that when x < A - 1 we must have r = s = 0. Thus for
X < A=, fg (p) is maximized by p = (A/M,...,A\/M). By letting A approach
arbitrarily close to x+1 from above, the same is also true in the limit
when x = A - 1; and this concludes the proof of the theorem.

The second part of Hoeffding's theorem, namely that for x > A and for
any p with Z?=1 p; = A we have fg(ﬁ) > fg (A/M,...,A/M), can be proved by

reversing the role of x and M - x. In more detail, note that
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M o
fX 6] Prix < x l pl,...,pM] = 1 -Prlx2>x+l Ipl,...,pM]

1-Pr[M-x < M-x-1 ]pl,...,pMj

I-Prlx < M-x~1] I-p,..., 1-p,]

v

> 1-Prlx < M-x-1| 1-A/M,..., 1-2A/M]

ifM-x-1< )"

i=1 (l_pi) - L

This condition is equivalent to x > ZI\'f:] P, - Running back through the chain

of equalities with P; replaced by A/M gives the required result.

4. APPENDIX: POISSON TABLES

Upper limits for A = np

Products of sample size n and error rate p when:

- X errors are found

- B equals the accepted risk of making an incorrect statement

8 10,001 | 0.01 | 0.05 | 0.371 0.50

X N
o | 6.91| 4.60 | 3.00 |[00] |[0.69
1 9.23| 6.64 | 4.74 | 2.15 1.68
2 | 11.23| 8.41 | 6.30 | 3.26 2.67
3 | 13.06{10.05 | 7.75 | 4.35 3.67
4 | 14.79(11.60 | 9.15 | 5.43 4.67
5 | 16.45[13.11 |10.51 | 6.51 5.67
6 | 18.06|14.57 |11.84 | 7.58 6.67
7 | 19.63716.00 [13.15 | 8.64 7.67
8 | 21.16117.40 [14.43 | 9.70 8.67
9 | 22.66{18.78 [15.71 |10.75 9.67
10 | 24.13|20.14 116.96 |11.81 10.67
11 | 25.59121.49 |18.21 [12.86 11.67
112 | 27.03{22.82 [19.44 [13.90 12.67
13 | 28.45{24.14 |20.67 |14.95 13.67
14 | 29.85(25.45 [21.89 |16.00 14.67
15 | 31.24126.74 [23.10 |17.04 15.67
(16 | 32.62/28.03 [24.30 [18.08 16.67
17 | 33.99{29.31 |25.50 |19.12 17.67
18 | 35.35[30.58 [26.69 |20.16 18.67
19 | 36.80[31.85 [27.88 [21.20 19.67
20 | 38.04(33.10 [29.06 |22.24 20.67
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The value of XA given in the table is the solution to the equation

X Y—A|=
zy=0 A e T/yl = B.

Boxed values violate the requirement x < A - 1, or satisfy x = A - 1.

For two-sided limits add the risks corresponding to lower and upper limits.
(x) e ! = 0.3679.

Lower limits for A = np.

Products of sample size n and error rate p when:

- x errors are found

- B equals the accepted risk of making an incorrect statement

;\E\ 0.001 | 0.01 | 0.05 | 0.26(*)| 0.50
0 |0.00 | 0.00 | 0.00 | 0.00 0.00

1 [oco0] |[0.01] | [0.05] |[@.31] |[0.69

2 |0.05 | 0.15 | 0.36 |[OI-00) 1.68

3 |0.19 | 0.44 | 0.82 | 1.78 2.67

4 10.43 | 0.82 | 1.37 | 2.60 3.67

5 |0.74 1.28 | 1.97 | 3.45 4.67

6 (1.11 1.79 | 2.61 | 4.31 5.67

7 |1.52 | 2.33 | 3.29 | 5.18 6.67

8 11.97 | 2.91 | 3.98 | 6.06 7.67

9 |2.45 | 3.51 | 4.70 | 6.95 8.67

10 12.96 | 4.13 | 5.43 | 7.84 9.67
11 [3.49 | 4.77 | 6.17 | 8.74 10.67
12 |4.06 | 5.43 | 6.92 | 9.65 11.67
13 ]4.61 | 6.10 | 7.69 |10.56  [12.67
| 14 |5.20 | 6.78 | 8.46 [11.47  |[13.67
|15 |5.79 | 7.48 | 9.25 [12.39 14.67
16 |6.41 | 8.18 [10.04 [13.31 15.67
| 17 |7.03 | 8.89 |10.83 [14.23 16.67
18 [7.66 | 9.62 |11.63 |15.15  |[17.67
19 {8.31 [10.35 [12.44 [16.08  |/18.67
20 [8.96 |11.08 [13.25 |17.01 19.67

The value of A given in the table is the solution to the equation
_ vl y -A
1 Zy=0 Ae Tyl =8 (x=1,2,...);
A is exactly zero in the row x = 0.

Boxed values violate the requirement A + 1 < x or x = 0, or satisfy A + 1 = x.

For two-sided limits add the risks corresponding to lower and upper limits.

() 1 - 271 = 0.2642.
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