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An area on a chromosome is a locus.

The DNA composition, i.e. a particular sequence of the four bases,
represented by the letters A, C, G and T, on a given locus is an
allele.

A locus thus corresponds to a (random) variable and an allele to
its realised state.

A DNA marker is a known locus where the alleles can be identified
in the laboratory.

A genotype of an individual at a locus is an unordered pair of
alleles. One allele comes from the father and one from the mother,
but one cannot easily distinguish which is which.
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Short Tandem Repeats (STR) are markers with alleles given by
integers. If an STR allele is 5, a certain word (e.g. CAGGTG) is
repeated exactly 5 times at that locus:

...CAGGTGCAGGTGCAGGTGCAGGTGCAGGTG...

A DNA profile is typically a list of genotypes at 10-11 known STR
markers.
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The homologous chromosome pairs are inherited through the
process of forming gametes, known as meiosis:

Maternal
Paternal

A 10 8 11

B 8 6 14

Gamete 2
Gamete 1

A

10 8

11

B

8 6

14
A child receives one randomly chosen gamete from each parent to
form a new homologous pair.

For forensic markers, we can assume independence of alleles within

and across markers, as they are located on different chromosomes.
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Two-person DNA Mixture profile

Marker vWA with allele repeat number {15, 17, 18}, peak area and
peak height.
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DNA profile on 10 markers + Amelogenin
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Data from a 1:1 mixture of two individuals p1 and p2

.
Marker Alleles Peak area Rel. Weight p1 gt p2 gt

D2 17 37624 0.573 17 17

23 9742 0.148 23

25 18316 0.279 25

D3 14 56692 0.344 14

15 55256 0.335 15

16 52793 0.321 16

D8 8 43569 0.412 8

9 17423 0.165 9

13 16227 0.154 13

14 28488 0.269 14

A DNA profile gives information on: allele repeat number and
corresponding peak area.

The peak weight Wa is the peak area at allele a multiplied by its
allele number, the latter to correct for preferential amplification.
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Evidential calculation

Population gene frequencies are assumed to be known. The
evidence is for example:

E = {sgt, vgt, mixture profile},

where sgt,vgt are genotypes of a suspect and a victim.

The hypotheses are for example

H0 : s&v , H1 : U&v .

The weight of the evidence is the likelihood ratio:

LR =
Pr(E |H0)

Pr(E |H1)
=

Pr(H0 | E)

Pr(H1 | E)

Pr(H1)

Pr(H0)
.

Choose uniform prior to make calculation simple.
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Separation of DNA profiles

Identifying the genotype of each of the possibly unknown
contributors to the mixture.

Calculate either
P{sgt | vgt,mixture}

or
P{p1gt, p2gt |mixture}

and find most probable combination.

Important in investigative phase.

So is evidential calculation which can be used to decide whether it
is worthwhile to search for supporting evidence against a suspect.
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Gamma Model for total weight
Dirichlet model for relative weights

Consider a mixture made up from individuals i ∈ I .

� The (pre-amplification) proportions of DNA θ = {θi , i ∈ I}
are assumed constant across markers,

� the weight Wia roughly proportional to the amount of DNA of
type a possessed by individual i ;

� Wa is the sum of the allele a weights of all contributors.
� Wia, are independent for fixed θ and Gamma distributed:

Wia ∼ Γ(ργinia, η), where

� γi = γθi is the amount of DNA from individual i in mixture;
� θi is the proportion of DNA (fraction) from individual i ;
� nia is the number of alleles of type a carried by individual i ;
� η determines scale and ρ is the amplification factor.
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Gamma Model for total weight
Dirichlet model for relative weights

Motivation for gamma distribution

There are several reasons for using gamma distributions.

� The pure logic of having additive total effects and using
relative areas as observations

� Scale invariance of relative areas

� Relative areas become Dirichlet and give simple likelihoods

� Data analysis suggests variances proportional to means

� PCR reaction is fundamentally a branching process. Simplest
such has gamma distributed final population size

� Simulation model produces data indistinguishable from a
gamma when number of initial molecules is ≥ 5
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Gamma Model for total weight
Dirichlet model for relative weights

Ra denotes relative weights Ra = W+a/W++ so

{Ra, a ∈ A} ∼ Dir(ρBa, a ∈ A),

where Ba = γ
�

i θinia is the weighted allele number and
B+ =

�
a Ba = 2γ is twice the total amount of DNA γ.

Note η disappears and

E(Ra) = µa = Ba/B+ =
�

i

θinia/2

and
V(Ra) = µa(1− µa)/(ρB+ + 1) = σ2µa(1− µa).

We used σ2 = 0.01 which conforms with values of a minor/major
peak area ratio reported in the literature.
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Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

Bayesian network is

� Directed Acyclic Graph (DAG)

� Nodes V represent (random) variables Xv , v ∈ V

� Specify conditional distributions of children given parents:
p(xv | xpa(v))

� Joint distribution is then p(x) =
�

v∈V p(xv | xpa(v))

� Algorithm transforms network into junction tree so p(xv | xA)
can be efficiently computed for all v ∈ V and A ⊆ V by
probability propagation.

Variant calculates revised probabilities p
∗(xv ) after likelihood

evidence

p
∗(x) ∝

�

v∈V

p(xv | xpa(v))
�

a∈A

La(xa).

Steffen Lauritzen University of Oxford Bayesian Networks for the Analysis of DNA Mixtures
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Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

a, b and c (graph) parents of d ; f (graph) child of d and e.

p(x) = p(xa)p(xb)p(xc)p(xd | x{a,b,c})p(xe)p(xf | x{d ,e}).
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Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

� O-O networks have a hierarchical structure where a node can
represents a network

� Objects are instances of BNs of certain class

� Objects have input and output nodes, and also ordinary nodes

� Instances of a given class have identical conditional probability
tables for non-input nodes

� Objects are connected by arrows from output nodes to input
nodes. These arrows represent identity links whereas arrows
between ordinary nodes represent probabilistic dependence.

Steffen Lauritzen University of Oxford Bayesian Networks for the Analysis of DNA Mixtures



Outline
DNA mixtures

Model for peak weights
Bayesian networks

Results
Incorporating artifacts

Discussion and further work
References

Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

� O-O networks have a hierarchical structure where a node can
represents a network

� Objects are instances of BNs of certain class

� Objects have input and output nodes, and also ordinary nodes

� Instances of a given class have identical conditional probability
tables for non-input nodes

� Objects are connected by arrows from output nodes to input
nodes. These arrows represent identity links whereas arrows
between ordinary nodes represent probabilistic dependence.

Steffen Lauritzen University of Oxford Bayesian Networks for the Analysis of DNA Mixtures



Outline
DNA mixtures

Model for peak weights
Bayesian networks

Results
Incorporating artifacts

Discussion and further work
References

Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

� O-O networks have a hierarchical structure where a node can
represents a network

� Objects are instances of BNs of certain class

� Objects have input and output nodes, and also ordinary nodes

� Instances of a given class have identical conditional probability
tables for non-input nodes

� Objects are connected by arrows from output nodes to input
nodes. These arrows represent identity links whereas arrows
between ordinary nodes represent probabilistic dependence.

Steffen Lauritzen University of Oxford Bayesian Networks for the Analysis of DNA Mixtures



Outline
DNA mixtures

Model for peak weights
Bayesian networks

Results
Incorporating artifacts

Discussion and further work
References

Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

� O-O networks have a hierarchical structure where a node can
represents a network

� Objects are instances of BNs of certain class

� Objects have input and output nodes, and also ordinary nodes

� Instances of a given class have identical conditional probability
tables for non-input nodes

� Objects are connected by arrows from output nodes to input
nodes. These arrows represent identity links whereas arrows
between ordinary nodes represent probabilistic dependence.

Steffen Lauritzen University of Oxford Bayesian Networks for the Analysis of DNA Mixtures



Outline
DNA mixtures

Model for peak weights
Bayesian networks

Results
Incorporating artifacts

Discussion and further work
References

Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

� O-O networks have a hierarchical structure where a node can
represents a network

� Objects are instances of BNs of certain class

� Objects have input and output nodes, and also ordinary nodes

� Instances of a given class have identical conditional probability
tables for non-input nodes

� Objects are connected by arrows from output nodes to input
nodes. These arrows represent identity links whereas arrows
between ordinary nodes represent probabilistic dependence.

Steffen Lauritzen University of Oxford Bayesian Networks for the Analysis of DNA Mixtures



Outline
DNA mixtures

Model for peak weights
Bayesian networks

Results
Incorporating artifacts

Discussion and further work
References

Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

OOBN Master network for DNA mixture
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Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

Master network for two DNA traces
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Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

Marker network for two DNA traces
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Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

Representation of evidence in peak areas

Data on peak areas are thus for each marker m of the form

Ra = ra, a ∈ A.

Associated evidence is represented in the form of a likelihood

function on the unknown mean vector µ = (µa, a ∈ A) as

L(µ) = P(R |µ) ∝
�

a∈A

r
2ργµa−1
a

Γ(2ργµa)
∝

�

a∈A

r
µa(σ−2−1)
a

Γ {µa(σ−2 − 1)} =
�

a

La.

where we have used that Ba = 2γµa and σ2 = (ρB+ + 1)−1.

Thus the joint likelihood evidence factorizes into evidence for each

allele a separately.
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Example of Bayesian network
Object Oriented Networks
OOBN for mixtures with peak areas

Representing evidence from peak areas

The following likelihood evidence is inserted in the mean nodes and
propagated throughout the network

La ∝ (rµa(σ−2−1)
a )/Γ

�
µa(σ

−2 − 1)
�
.
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Profile separation: single mixture trace T1
Combining a pair of two-person mixtures
Combining a pair of three-person mixtures

Prepared mixture in 1:1 ratio which is hard to separate. (Effective
fraction θ �= 0.5)? Predicted genotypes of p1 and p2 correct on

all 11 markers (excerpt).

Marker p1 gt p2 gt Prob.

D2 17 25 17 23 0.458

D3 14 16 15 15 0.815

D8 8 14 9 13 0.647

D16 9 11 11 11 0.608
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Profile separation: single mixture trace T1
Combining a pair of two-person mixtures
Combining a pair of three-person mixtures

Incorrect identifications in red.

T1 only 1:1? T2 only 1:1 T1 & T2

Correct on all 9 out of 11 markers all

D2 0.4582 0.3838 0.6956

D3 0.8152 0.4854 0.8531

D8 0.6471 0.4831 0.7357

D16 0.6078 0.7534 0.7877

Note the increase in probabilities for D3, which was incorrectly

identified when analysing T2 by itself.
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Profile separation: single mixture trace T1
Combining a pair of two-person mixtures
Combining a pair of three-person mixtures

Assuming common contributors, using the profile of one
contributor in all separations.

T1 only 1:1:1 T2 only 1:2:5 T1 & T2

Correct on 3 out of 14 11 out of 14 all

D2 0.178 1.000 1.000

D3 0.285 0.768 0.987

D5 0.432 0.190 0.883

D16 0.171 0.299 0.967

Note the increase in probabilities for the profiles on markers D5

and D16, none of which were correctly identified with a single
mixture analysis.
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Silent alleles
Dropout
Stutter
Results for artifacts

FSS laboratory prepared data (excerpt)

Marker Alleles Peak area Rel. weight p1 p2

AMELO X 4716 0.58388 X X

Y 3361 0.41612 Y

D19 13 3453 0.43969 13

14 4086 0.56031 14 14

FGA 20 2913 0.54983 20 20

23

25 1908 0.45017 25

THO1 6 1497 0.46189 6

7

8 1308 0.53811 8

Alleles and relative weights from a 1:10 mixture of two individuals
p1 and p2.
Two of p1’s alleles have dropped out of the mixture.
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Silent alleles
Dropout
Stutter
Results for artifacts

Types of artifact

We need to deal with possible artifacts such as:

� silent alleles

� dropout

� stutter peaks

which might be present in a DNA mixture. These are handled all
simultaneously in the BN.
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Silent alleles

Accounting for the possibility that an allele is silent can be
incorporated in the network by simply adding to all founder gene
nodes and all other gene nodes an extra state representing a silent
allele, s.
For example for allele D18:

Allele 12 15 16 x s

Frequency 0.305 0.166 0.114 0.414 0.001
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Dropout model

Let n
amp
ia denote the alleles amplified, taking into account dropout

D. Assuming an independent allele dropout model yielding a
binomial P(namp

ia |nia, θi ) depending exponentially on the amount of
DNA:

nia

n
amp
ia 0 1 2

0 1 exp(−ψθi ) exp(−2ψθi )

1 0 1− exp(−ψθi ) 2(1− exp(−ψθi )) exp(−ψθi )

2 0 0 (1− exp(−ψθi ))2

We use the estimate ψ = − log P(D = 1 | θ = 1) = − log 0.01.
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Network for modelling dropout
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Marker network with dropout
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A stutter peak is typically one repeat unit less than the associated

peak. They tend to be about 15% of the size of the associated
allelic peak.
Here we use Pr(Stutter) = 0.01
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Stutter module
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Marker with stutter
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FSS laboratory prepared data (excerpt)

Marker Alleles Peak area Rel. weight p1 p2

AMELO X 4716 0.58388 X X

Y 3361 0.41612 Y

D19 13 3453 0.43969 13

14 4086 0.56031 14 14

FGA 20 2913 0.54983 20 20

23

25 1908 0.45017 25

THO1 6 1497 0.46189 6

7

8 1308 0.53811 8
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Results for evidence calculation

log10 LR

s & v vs. v & u 3.89

s & v vs. 2u 10.66
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Predicted genotypes: one actor known

p1 known p2 known

p1 p2 Prob. Prob. rank

AMELO X X X Y 0.9994 0.5448

D19 14 14 13 14 0.9718 0.3433 2

13 14 13 14 0.4252

FGA 20 23 20 25 0.9793

20 + 20 25 0.8038

THO 7 9,3 6 8 0.9947

+ 6 8 0.9999
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Separation both unknown

Marker p1 p2 Probability rank

AMELO X X X Y 0.5203 1

D19 13 14 13 14 0.3723

14 14 13 14 0.3007 2

D21 28 32.2 30 30 0.7896 1

FGA 20 + 20 25 0.4796

THO + + 6 8 0.8852
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Posterior probability of dropout

p1 p2

D19 0.143130 0.007332

FGA 0.580572 0.001439

THO1 0.999920 3.10E-06
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Posterior probability of stutter

Allele D18 D8 D19

B 0.010821 0.011933 0.131230

C 0.001004
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� Identification and separation problems can be solved in the
same network.

� All uncertainties associated with the analysis are quantified.

� Modularity and flexibility of the OOBN allows easy extension
to similar but different situations.

� Can incorporate artifacts such as stutter peaks, dropouts, and
silent alleles.

� Sensitivity to the scaling factors γ,σ2 used to model variation
in amplification and measurement processes. Similarly several
arbitrary parameters for artifacts. Calibration needed.

� Thresholding needs attention.

� Sensitivity as in Green and Mortera (2009).
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