The Hammersley-Clifford theorem

Richard D. Gill

Mathematical Institute, University of Leiden, Netherlands http://www.math.leidenuniv.nl/~gill

October 4, 2011

Suppose $X_v, v \in \mathcal{V}$ is a finite collection of discrete random variables with strictly positive joint probability mass function p. Choose a fixed reference value x^* and define for all $A \subseteq \mathcal{V}$

$$\psi_A(x_A) = \log p(x_A, x_{A^c}^*),
onumber \ \phi_A(x_A) = \sum_{B:B\subseteq A} (-1)^{|A\setminus B|} \psi_B(x_B).$$

By the Möbius inversion lemma (please prove it yourself!), we can invert the relationship between the ϕ and the ψ functions evaluated at x to obtain for all B

$$\psi_B(x_B) = \sum_{A \subseteq B} \phi_A(x_A),$$

and in particular,

$$\log p(x) = \psi_{\mathcal{V}}(x) = \sum_{A \subseteq \mathcal{V}} \phi_A(x_A).$$

We will show that under the pairwise local Markov property, $\phi_A = 0$ if A is not a complete subset of \mathcal{V} . If A is not complete, there exist points α , β in A such that $\alpha \not\sim \beta$. Recall that $\phi_A(x_A) = \sum_{B:B \subset A} (-1)^{|A \setminus B|} \psi_B(x_B)$. Define $C = A \setminus \{\alpha, \beta\}$. We can now write

$$\phi_A(x_A) = \sum_{B:B\subseteq C} (-1)^{|A\setminus B|} \Big(\psi_B(x_B) - \psi_{B\cup\{\alpha\}}(x_{B\cup\{\alpha\}}) - \psi_{B\cup\{\beta\}}(x_{B\cup\{\beta\}}) + \psi_{B\cup\{\alpha,\beta\}}(x_{B\cup\{\alpha,\beta\}})\Big).$$

Now, for given B define $D = \mathcal{V} \setminus (B \cup \{\alpha, \beta\})$. It follows that

$$\begin{split} \psi_B(x_B) &- \psi_{B \cup \{\alpha\}}(x_{B \cup \{\alpha\}}) - \psi_{B \cup \{\beta\}}(x_{B \cup \{\beta\}}) + \psi_{B \cup \{\alpha,\beta\}}(x_{B \cup \{\alpha,\beta\}}) \\ &= \log\Big(\frac{p(x_B, x_\alpha, x_\beta, x_D^*)p(x_B, x_\alpha^*, x_\beta^*, x_D^*)}{p(x_B, x_\alpha^*, x_\beta, x_D^*)p(x_B, x_\alpha, x_\beta^*, x_D^*)}\Big) \\ &= \log\Big(\frac{p(x_B, x_\alpha, x_\beta, x_D^*)/p(x_B, x_\alpha^*, x_\beta, x_D^*)}{p(x_B, x_\alpha, x_\beta^*, x_D^*)/p(x_B, x_\alpha^*, x_\beta^*, x_D^*)}\Big). \end{split}$$

Now the last expression is the logarithm of the ratio of the conditional odds on $X_{\alpha} = x_{\alpha}$ against $X_{\alpha} = x_{\alpha}^{*}$, under the conditions $X_{B} = x_{B}$, $X_{D} = x_{D}^{*}$ and $X_{\beta} = x_{\beta}$ and under the conditions $X_{B} = x_{B}$, $X_{D} = x_{D}^{*}$ and $X_{\beta} = x_{\beta}^{*}$. Thus if X_{α} is independent of X_{β} conditional on $X_{B\cup D}$, this log odds ratio is zero.