Publications





Biomathematics and (Markov) semigroups

Papers:
  1. Czapla, D., S.C. Hille, K. Horbacz and H. Wojewodka-Sciazko (2020). Continuous dependence of an invariant measure on the jump rate of a piecewise-deterministic Markov process Math. BioSciences and Engineering 12 (5): 1059-1073. (DOI:10.3934/mbe.2020056).
  2. Gwiazda, P., S.C. Hille, K. Lyczek and A. Swierczewska-Gwiazda (2019). Differentiability in perturbation parameter of measure solutions to perturbed transport equation, Kinetic and Related Models 17 (2): 1093-1108. (DOI:10.3934/krm.2019041).
  3. Gulgowksi, J., S.C. Hille, T. Szarek and M.A. Ziemlanska (2019). Central limit theorem for some non-stationary Markov chains. Studia Math. 246 (2): 109-131. (DOI: 10.4064/sm170325-8-9).
  4. Hille, S.C., M. Akhmanova, M. Glanc, A. Johnson, J. Friml (2018). Relative contribution of PIN-containing secretory vesicles and plasma membrane PINs to directed auxin transport: theoretical estimation. Int. J. Mol. Sci. 19: 3566-3586. (DOI: 10.3390/ijms19113566).
  5. Hille, S.C., T. Szarek and M.A. Ziemlanska (2017). Equicontinuous families of Markov operators in view of asymptotic stability. C.R. Acad. SCi. Paris, Ser. I. 355: 1247-1251.
  6. Hille, S.C., T. Szarek, D.T.H. Worm and M.A. Ziemlanska (2017). On a Schur-like property for spaces of measures, Submitted. http://arxiv.org/abs/1703.00677
  7. Evers, J., S.C. Hille and A. Muntean (2016). Measure-valued mass evolution problems with flux boundary conditions and solution-dependent velocities, SIAM J. Math. Anal. 48 (3): 1929-1953.
  8. Hille S.C., Horbacz, K. and T. Szarek (2016). Existence of a unique invariant measure for a class of equicontinuous Markov operators with application to a stochastic model for an autoregulated gene, Annales Mathématiques Blaise Pascal 23 (2): 171-217.
  9. Hille S.C., K. Horbacz, T. Szarek and H. Wodjewodka (2016). Law of the iterated logarithm for some Markov operators. Asymptotic Analysis 97: 91-112. (DOI: 10.3233/ASY-151344).
  10. Hille S.C., K. Horbacz, T. Szarek and H. Wodjewodka (2016). Limit theorems for some Markov operators. J. Math. Anal. Appl. 443: 385-408.
  11. Boot, K.J.M., S.C. Hille, K.R. Libbenga, L.A. Pelletier, P.C. van Spronsen, B. van Duijn and R. Offinga, (2016). Modelling the dynamics of polar auxin transport in inflorescence stems of Arabidopsis thalianaJ. Exp. Botany 67 (3): 649-666. (DOI:10.1093/jxb/erv471).
  12. Bertens L.M.F., Kleijn J., Hille S.C., Heiner M., Koutny M. and Verbeek F.J. (2016). Modeling biological gradient formation: combining partial differential equations and Petri nets, Natural computing. 154:665-675. (DOI 10.1007/s11047-015-9531-4).
  13. Evers, J., S.C. Hille and A. Muntean (2015). Mild solutions to a measure-valued mass evolution problem with flux boundary conditions. J. Diff. Equ. 259: 1068-1097
  14. Alkurdi, T., S.C. Hille and O. van Gaans (2015). Persistence of stability for equilibria of map iterations in Banach spaces under small perturbations. Potential Analysis 42(1): 175-201.
  15. Evers, J., S.C. Hille and A. Muntean (2015). Modelling with measures: Approximation of a mass-emitting object by a point source. Mathematical Biosciences and Engineering 12(2): 357-373 (DOI: 10.3934/mbe.2015.12.357)
  16. Evers, J., S.C. Hille and A. Muntean (2014). Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions. Comptes Rendus Math. 352(1): 51-54 (DOI: 10.1016/j.crma.2013.11.012)
  17. Alkurdi, T., S.C. Hille and O. van Gaans (2013). Ergodicity and stability of a dynamical system perturbed by impulsive random interventions. J. Math. An. Appl. 63: 480-494 (DOI: 10.1016/j.jmaa.2013.05.047)
  18. Boot, K.J.M., K.R. Libbenga, S.C. Hille, R. Offinga, and B. van Duijn (2012). Polar auxin transport: an early invention. J. Exp. Botany 63: 4213-4218 (DOI:10.1093/jxb/ers106)
  19. Alkurdi, T., S.C. Hille and O. van Gaans (2012). On metrization of unions of function spaces on different intervals. J. Australian Math. Soc. 92, 281-297. (DOI: 10.1017/s1446788712000365)
  20. Worm, D.T.H. and S.C. Hille (2011). An ergodic decomposition defined by regular jointly measurable Markov semigroups on polish spaces, Acta Appl. Math. 116: 27-53. (DOI: 10.1007/s10440-011-9626-6)
  21. Worm, D.T.H. and S.C. Hille (2011). Ergodic decompositions associated to regular Markov operators on Polish spaces. Ergodic Theory and Dynamical Systems 31 (2): 571-597. (DOI: 10.1017/S0143385710000039)
  22. Hille, S.C. and D.H.T. Worm (2009). Continuity properties of Markov semigroups and their restrictions to invariant L1-spaces. Semigroup Forum 79: 575-600.
  23. Hille, S.C. and D.H.T. Worm (2009). Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures. Integr. Equ. Oper. Theory 63: 351-371.
  24. Hille, S.C. (2008). Local well-posedness of kinetic chemotaxis models, J. Evol. Equ. 8: 423-448.
  25. Hille, S.C. (2005). Continuity of the restriction of  C0-semigroups to invariant Banach subspaces, Integr. Equ. Oper. Theory 53, 597-601.
Reports and proceedings:
  1. Otten, H.J. and S.C. Hille (2019). A novel expected hypervolume improvement algorithm for Lipschitz multi-objective optimisation: Almost Shubert's Algorithm in a special case, Proceedings of LeGO-2018, 14th International Global Optimization Workshop, 18-21 September 2018, Leiden, The Netherlands, AIP Conference Proceedings Vol. 2070: 020031. (DOI: 10.1063/1.5089998).
  2. Budko, N., B. van Duijn, S.C. Hille and F. Vermolen (2018). Modeling oxygen consumption in germinating seeds. In Proceedings of 19th European Conference on Mathematics for Industry, June 13-16 2016, Santiago de Compostella, in 'Progress in Industrial Mathematics at ECMI 2016', P. Quintela et al. (eds.), Springer.
  3. Evers, J.H.M., Hille S.C. and A. Muntean (2014). Modelling with measures: Approximation of a mass-emitting object by a point source, CASA Report 14-03, Dept. Math. and Computer Science, TU Eindhoven.
  4. Bertens L.M.F., J. Kleijn, S.C. Hille, M. Koutny, M. Heiner and F.J. Verbeek (2013). Modelling biological gradient formation: combining partial differential equations and Petri nets. Technical Report Series CS-TR-1379, Newcastle University.
  5. Evers, J.H.M., Hille S.C. and A. Muntean (2012). Solutions to a measure-valued mass evolution problem with flux boundary conditions inspired by crowd dynamics, CASA Report 12-35, Dept. Math. and Computer Science, TU Eindhoven.
  6. Alkurdi, T.S.O. ,van Gaans, O. and S.C. Hille (2012). A dynamical system perturbed by stochastic intervenstions - 2D case, Report MI 2012-18, Leiden University: Mathematical Institute.
  7. Alkurdi, T.S.O., S.C. Hille and O. van Gaans (2011). A dynamical system perturbed by stochastic interventions. Report MI 2011-17, Leiden University: Mathematical Institute [pdf].
  8. Alkurdi, T.S.O., S.C. Hille and O. van Gaans (2010). On metrization of unions of function spaces on different intervals. Report MI 2010-16, Leiden University: Mathematical Institute [pdf].
  9. Worm, D.T.H. and S.C. Hille (2010). Equicontinuous families of Markov operators on complete separable metric spaces with applications to ergodic decompositions and existence, uniqueness and stability of invariant measures. Report MI 2010-03, Leiden University: Mathematical Institute [pdf].
  10. Worm, D.T.H. and S.C. Hille (2010). An ergodic decomposition defined by regular jointly measurable Markov semigroups on Polish spaces. Report MI 2010-02, Leiden University: Mathematical Institute [pdf].
  11. Worm, D.T.H. and S.C. Hille (2009). Ergodic decompositions associated to regular Markov operators on Polish spaces. Report MI 2009-15, Leiden University: Mathematical Institute [pdf].
  12. Hille, S.C. and D.H.T. Worm (2009). Continuity properties of Markov semigroups and their restrictions to invariant L1-spaces. Report MI 2009-04, Leiden University: Mathematical Institute [pdf].
  13. Hille, S.C. and D.H.T. Worm (2007). Global existence of positive mild solutions to a class of kinetic chemotaxis equations.
    Report MI 2007-47, Leiden University: Mathematical Institute [pdf].
  14. Hille, S.C. (2005). Review of Mathematical Modelling in the study of collective movement of Dictyostelium discoideum. In Dumortier, F., Broer, H., Mawhin, J., Venderbauwhede, A. and S.M. Verduyn Lunel (eds.), Equadiff 2003,Proceedings of the International Conference on Differential Equations, Hasselt, Belgium, 22-26 July.Singapore: World Scientific.
Other:
  1. Ackleh A.S., R.S. Colombo, P. Goatin, S.C. Hille and A. Muntean (2019). Modeling with measures, Nieuw Archief voor Wiskunde, 5e serie, deel 20, nr.3 (september).


Harmonic analysis and homogeneous spaces

Papers:
  1. Engliš, M., Hille, S.C., Peetre, J., Rosengren, H. and G. Zhang (2000), A new kind of Hankel-Toeplitz type operator connected with the complementary series, Arab. J. Math. Sci. 6(2), pp. 49-80.
  2. Dijk, G. van, and S.C. Hille (1997), Canonical representations related to hyperbolic spaces, J. Funct. Anal., 147(1), pp. 109-139.
PhD-Thesis:
  1. Hille, S.C. (1999), Canonical Representations, University Leiden (Supervisor: prof.dr. G. van Dijk), June  1999.

Books or book contributions:
  1. Dijk, G. van, and S.C. Hille (1998), Maximal degenerate representations, Berezin kernels and canonical representations. In: Lie groups and Lie algebras, vol. 433 of Math. Appl., Dordrecht: Kluwer Acad. Publ., pp. 285-298.
Reports:
  1. Hille, S.C. (1998), Decomposition of tensor products of scalar unitary holomorphi and anti-holomorphic representations of the universal covering group of SU(1,n), Report W98-12, Leiden: Mathematical Institute. 


Electronic billing and payment; business models

Papers:
  1. Hille, S.C. and F. Biemans (2001), (in Dutch) Elektronische dienstverlening zit vast op betalingsprobleem, Automatisering Gids, nr. 48, 30 November 2001(1), p. 15.
  2. Buuren, R. van, Hille, S.C., and R. van Wetering (2002), (in Dutch) Mobieltje zeer geschikt als betalingsinstrument, Automatisering Gids, nr. 34, 23 August 2002, p. 13.
  3. Faber, E. and S.C. Hille (2003), (in Dutch) Businessmodel voorwaarde voor succes ICT-diensten, Automatisering Gids, nr. 21, 23 May 2003, p. 17.
Books or book contributions:
  1. Hille, S.C. (2002), (in Dutch) Elektronisch betalen op Internet, GigaPort Highlights Series, No. 3, Enschede: Telematica Instituut (ISBN 90-75176-30-9).
Proceedings:
  1. Jonkers, H., Hille, S.C., Tokmakoff, A. and M. Wibbels (2001), A functional architecture to support commercial exploitation of Internet-based services. In: Winiwarter, W., Bressan, S. and I.K. Ibrahim (eds.), Third International Conference on Information Integration and Web-based Applications and Services (iiWAS 2001), Linz, Austria, September 2001, pp. 277-288.
  2. Bouwman, H. and S.C. Hille (eds.) (2002) BITA-B4U Symposium Business Models for Innovative Mobile Services, Ensched: Telematica Instituut.
Reports:
  1. Hille, S.C. and P. van der Stappen (2002), Electronic payment put in context; Bill payment, electronic commerce and content exploitation, Enschede: Telematica Instituut (see http://gigaabp.telin.nl). 




This page was last updated: 6th January 2020