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Abstract. We construct the logarithmic and tropical Picard groups of a family of loga-
rithmic curves and realize the latter as the quotient of the former by the algebraic Jacobian.
We show that the logarithmic Jacobian is a proper family of logarithmic abelian varieties
over the moduli space of Deligne–Mumford stable curves, but does not possess an underlying
algebraic stack. However, the logarithmic Picard group does have logarithmic modifications
that are representable by logarithmic schemes, all of which are obtained by pullback from
subdivisions of the tropical Picard group.

Contents

1. Introduction 1
2. Monoids, logarithmic structures, and tropical geometry 6
3. The tropical Picard group and the tropical Jacobian 22
4. The logarithmic Picard group 38
5. Examples 63
References 66

1. Introduction

Our concern in this paper is the extension of the universal Picard group to the boundary
of the Deligne–Mumford moduli space of stable curves. Over the interior, the Picard group
of a smooth, proper, connected curve is well-known to be an extension of the integers by a
smooth, proper, connected, commutative group scheme, the Jacobian. These properties do
not persist over the boundary, and natural variants sacrifice one or another of them to obtain
others.

The Deligne–Mumford compactification of the moduli space of curves admits curves with
nodal singularities. As long as the dual graph of the curve is a tree, the Picard group remains
an extension of a discrete, free abelian group — the group of multidegrees — by an abelian
variety, but it becomes nonseparated in families because the multidegrees do. One can focus
here on the component of multidegree zero, which is an abelian variety and is well-behaved
in families.

Should a curve degenerate so that its dual graph contains nontrivial loops, the multidegree 0
component of the Picard group remains separated, but fails to be universally closed. The
construction of compactifications of this group is the subject of a vast literature [Ish78, D’S79,
OS79, AK80, AK79, Kaj93, Cap94, Pan96, Jar00, Est01, Cap08a, Cap08b, Mel11, Chi15], of
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which the above references are only a sample. We must direct the reader to the references
for a history of the subject.

While we do not attempt to summarize all of the different approaches to compactifying the
Picard group, we emphasize that all operate in the category of schemes, and none produces
a proper group scheme. Indeed, it is not possible to produce a proper group scheme, for the
multidegree 0 component of the Picard group of a maximally degenerate curve is a torus,
and there is no way of completing a torus to a proper group scheme.

On the other hand, K. Kato observed that the multiplicative group does have natural
compactifications — with group structure — in the category of logarithmic schemes [Kat,
Section 2.1]. This gives reason to hope that the Picard group might also find a natural
compactification in the category of logarithmic schemes, as Kato himself anticipated. Kato
proposed a definition for, and then calculated, the logarithmic Picard group of the Tate
curve [Kat, Section 2.2.4]. Illusie advanced the natural generalization of Kato’s calculation
as a definition for the Picard group of an arbitrary logarithmic scheme [Ill94, Section 3.3].

In short, every logarithmic scheme X is equipped with an étale sheaf of groups Mgp
X , and

Kato’s and Illusie’s logarithmic line bundles on X are torsors under this group. Kajiwara
used this definition to construct toroidal compactifications of the Jacobian of a fixed curve.
Olsson also proved that the logarithmic Picard group, as defined by Illusie, is representable
on the category of schemes (as opposed to logarithmic schemes) by an algebraic stack [Ols04,
Theorem 4.4].

In the same work, Illusie also proposed the study of logarithmic abelian varieties [Ill94,
Section 3.3]. Kajiwara, Kato, and Nakayama have pursued this problem in a long pro-
gram [KKN08c, KKN08b, KKN13, KKN15] and constructed a logarithmic Picard variety in
the analytic category using Hodge-theoretic methods [KKN08a]. Significantly, they discov-
ered the need to restrict attention to a subfunctor of the one defined by Illusie in order to
get the logarithmic Picard group, and logarithmic abelian varieties in general, to vary well
geometrically over logarithmic base schemes. In the present work, that condition appears
under the heading of bounded monodromy, first introduced in Section 3.5 to play an essential
role throughout.

In this paper, we define logarithmic line bundles on families of logarithmic curves as tor-
sors under the logarithmic multiplicative group, as Kato and Illusie proposed, that satisfy
the additional bounded monodromy condition. In Section 4.18 we explain why this con-
dition is necessary if infinitesimal deformation of logarithmic line bundles is to have the
expected relationship to formal families of logarithmic line bundles. However, even with this
condition, the logarithmic Picard group is not representable by an algebraic space with a
logarithmic structure, essentially because the logarithmic multiplicative group itself is not
so representable (see Section 2.2.7). However, the logarithmic multiplicative group does have
a logarithmically étale cover by a logarithmic scheme, and we prove that the logarithmic
Picard group of a logarithmic curve is algebraic in the same sense:

Theorem A. Let X be a proper, vertical logarithmic curve over S. The logarithmic Picard
group Log Pic(X/S) has a logarithmically smooth cover by a logarithmic scheme, is logarith-
mically smooth and proper, is a commutative group object, has finite diagonal, and contains
Pic[0](X/S) as a subgroup.

Proof. See Corollary 4.11.5 for the existence of a logarithmically smooth cover, Theorem 4.13.1
for the logarithmic smoothness, Corollary 4.12.5 for the properness, and Theorem 4.12.1 for
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the finiteness of the diagonal. The group structure and inclusion of Pic[0](X/S) are immediate
from the construction in Definition 4.1. �

Corollary B. The logarithmic Jacobian is a logarithmic abelian variety, in the sense of
Kajiwara, Kato, and Nakayama [KKN08c, KKN08b].

Proof. See Theorem 4.15.7. �

Our results for the logarithmic Picard stack, which remembers automorphisms, are similar,
but a bit more technical:

Theorem C. Let X be a proper, vertical logarithmic curve over S. The logarithmic Picard
stack Log Pic(X/S) has a logarithmically smooth cover by a logarithmic scheme and its
diagonal is representable by logarithmic spaces (sheaves with logarithmically smooth covers by
logarithmic schemes). The logarithmic Picard stack is logarithmically smooth and proper, is
a commutative group stack, and receives a canonical homomorphism from the algebraic stack
Pic[0](X/S).

Proof. See Theorem 4.11.2 for the existence of a logarithmically smooth cover and Corol-
lary 4.11.6 for the claim about the diagonal. The logarithmic smoothness is proved in The-
orem 4.13.1 and the properness is Corollary 4.12.5. The group structure and the map from
Pic[0](X/S) are come directly from Definition 4.1. �

The difference between Theorems A and C and Olsson’s result [Ols04, Theorem 4.4] is
that Olsson works with a fixed logarithmic structure on the base while we allow the loga-
rithmic structure to vary. This is necessary for the logarithmic Picard group to be proper.
Our method of proof also differs from Olsson’s: we do not rely on the Artin–Schlessinger
representability criteria (for which there is not yet an analogue in logarithmic geometry) and
instead construct logarithmically smooth covers directly.

Our proofs of the boundedness properties in Theorems A and C make use of the tropical
Picard group, whose relationship to the logarithmic Picard group is the second theme of
this paper. Indeed, Foster, Ranganathan, Talpo, and Ulirsch observed that the geometry of
the logarithmic Picard group is intimately tied up with the geometry of the tropical Picard
group [FRTU16]. The connection can also be seen in Kajiwara’s work [Kaj93], albeit without
explicit mention of tropical geometry.

A tropical curve is simply a metric graph. Baker and Norine introduced the tropical
Jacobian as a quotient of tropical divisors by linear equivalence [BN07]. At first, the tropical
Jacobian of a fixed graph (not yet metrized) was only a finite set, but subdivision of the
graph suggests the presence of a finer geometric structure. This was explained by Gathmann
and Kerber [GK08], who extended Baker and Norine’s results to metric graphs, and Amini
and Caporaso added a vertex weighting [AC13]. Mikhalkin and Zharkov defined tropical line
bundles as torsors under a suitably defined sheaf of linear functions on a tropical curve [MZ08,
Definition 4.5]. They gave a separate definition of the tropical Jacobian as a quotient of a
vector space by a lattice [MZ08, Section 6.1], and proved an analogue of the Abel–Jacobi
theorem, showing that the tropical Jacobian parameterizes tropical line bundles of degree 0.
We will recover this result in Corollary 3.4.7.

In order to relate the tropical Picard group and tropical Jacobian to their logarithmic
analogues, we require a formalism by which tropical data may vary over a logarithmic
base scheme. This formalism is supplied by Cavalieri, Chan, Ulirsch, and the second au-
thor [CCUW17, Section 5], who allow an arbitrary partially ordered abelian group to stand
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in for the real numbers in the definition of a tropical curve as a metric graph. Logarithmic
schemes come equipped with sheaves of partially ordered abelian groups and one can there-
fore speak of tropical curves over logarithmic base schemes. We summarize these ideas in
Sections 2.3.1–2.3.3. In Section 3 we use them to define the tropical Jacobian, Picard group,
and Picard stack over logarithmic bases.

The following theorem summarizes the relationship between the logarithmic Picard group
and its tropical doppelgänger:

Theorem D. Let X be a proper, vertical logarithmic curve over S and let X be its tropical-
ization. There is an exact sequence:

0→ Pic[0](X/S)→ Log Pic(X/S)→ Tro Pic(X/S)→ 0

There is also an exact sequence of group stacks:

0→ Pic[0](X/S)→ Log Pic(X/S)→ Tro Pic(X/S)→ 0

The tropicalization morphism Log Pic(X/S)→ Tro Pic(X/S) allows us to to identify com-
binatorial data associated with Tro Pic(X/S) necessary to construct proper, schematic com-
pactifications of the Picard group, following Kajiwara, Kato, and Nakayama [Kaj93, KKN15],
in Section 4.17.

Theorem E. Let X be a proper, vertical logarithmic curve over S with tropicalization X.
Polyhedral subdivisions of Tro Pic(X/S) correspond to toroidal compactifications of Pic[0](X/S).

Recent work of Abreu and Pacini describes polyhedral subdivisions of Tro Pic(X/S) when
X is the universal curve over the moduli space of 1-pointed tropical curves (and, for certain
degrees, over the moduli space of unpointed tropical curves) [AP18]. They show that the
corresponding compactification of the Picard group coincides with Esteves’s compactifica-
tion [Est01].

Section 5 gives a few examples of the logarithmic and tropical Picard groups, and the
reader may find it useful to consult these in parallel with the earlier sections.

The provenance of logarithmic geometry. This section is intended to motivate the
presence of logarithmic geometry in the compactification of the Picard group. Consider a
family of logarithmic curves X over a 1-parameter base S with generic point η and a line
bundle Lη on the general fiber of X. Let i : s→ S denote the inclusion of the closed point and
also write i : Xs → X for the inclusion of the closed fiber; write j : η → S and j : Xη → X
for the inclusion of the generic point and the generic fiber.

Let S denote the ringed space (s, i−1j∗Oη) and let X denote the ringed space (Xs, i
−1j∗OXη).

Then L = i−1j∗Lη is a line bundle on X.
We can describe L by giving local trivializations and transition functions in Gm. However,

these cannot necessarily be restricted to Xs because a unit of i−1j∗O∗Xη may have zeroes or
poles along components of the special fiber.

If the dual graph of Xs is a tree then it is possible to modify the local trivializations to
ensure that the transition functions have no zeroes or poles, but in general such a modification
may not exist.

The degeneration of transition functions suggests we might compactify the Picard group
by allowing ‘line bundles’ whose transition functions are sometimes allowed to vanish or have
poles. If transition functions are thus permitted not to take values in a group then the objects
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assembled from them will no longer have a group structure. However, this leads naturally to
the consideration of rank 1, torsion-free sheaves.

Logarithmic geometry takes a different approach to the same idea. Instead of keeping track
of only the zeroes and poles of the transition functions, we instead keep track of their orders
of vanishing and leading coefficients. Together, order of vanishing and leading coefficient
have the structure of a group and therefore the objects glued with transition functions in
this group can be organized into a group as well.

The way this is actually done is to take the image of a transition function f ∈ i−1j∗O∗Xη ,
not in OXs ∪ {∞}, but instead in Mgp

Xs
:

Mgp
Xs

= i−1j∗O∗Xη/ ker(i−1O∗X → O∗Xs)

That is, we obtain a natural limit Mgp
Xs

-torsor P for Lη, whose isomorphism class lies in
H1(Xs,M

gp
Xs

).
Taking transition functions in MXs has an added benefit, even when the dual graph of

the special fiber is a tree. Indeed, if Lη extends to L with limit Ls, one can always produce
another limit L(D)s by twisting Ls by a component D of the special fiber. But the effect of
twisting by D on L is to modify the local trivializations of L by units of OXη . This changes
the local trivializations of P by elements of Mgp

Xs
, but that only affects a cocycle representative

by a coboundary. In other words, the class of P in H1(Xs,M
gp
Xs

) is independent of twisting
by components of Xs.

Future work. The Picard group (and even the Picard stack) is equipped with a canonical
principal polarization. We are mute about the logarithmic analogue in this paper, but we
will construct it in a subsequent one.

Our results are limited to relative dimension 1 because we do not have the means yet
to study families of tropical varieties of higher dimension over logarithmic bases. We are
developing methods towards that end in ongoing work with Gillam [GW].

Neither have we addressed any algebraicity properties of the tropical Picard group in a sys-
tematic way. It follows from our results that the tropical Picard group has a logarithmically
étale cover by a Kato fan, but it is less clear how one should characterize its diagonal (we
prove only that it is quasicompact here), or whether one should demand further properties
of a purely tropical cover.

In Section 4.17, we indicate how the tropical Picard group can be used to construct proper
schematic models of the logarithmic Picard group over a local base. We are pursuing a global
construction over the moduli space of stable curves in collaboration with Melo, Ulirsch, and
Viviani.

Conventions. Let X be a curve over S. We use the term ‘Picard group’ to refer to the sheaf
on S of isomorphism classes of line bundles on X, up to isomorphism and denote it Pic(X/S).
The stack of Gm-torsors on X is denoted in boldface: Pic(X/S). We use a superscript to
denote a restriction on degree, and we refer to Pic0(X/S) as the Jacobian of X. We apply
similar terminology when X is a logarithmic curve or tropical curve over a logarithmic base
S.

Throughout, we consider a logarithmic curve X over S. We regularly use π : X → S to
denote the projection.
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2. Monoids, logarithmic structures, and tropical geometry

2.1. Monoids. In this paper, all monoids will be commutative, unital, integral, and satu-
rated, although some results in this section are valid without those assumptions. The monoid
operation will be notated additively, unless indicated otherwise. Homomorphisms of monoids
are assumed to preserve the unit.

2.1.1. Partially ordered groups.

Definition 2.1.1.1. A homomorphism of monoids f : M → N is called sharp if each
invertible element of N has a unique preimage under f . A monoid M is called sharp if the
unique homomorphism 0→M is sharp.

We write M∗ for the subgroup of invertible elements of M and M for the quotient M/M∗,
which we call the sharpening of M . Even when they do not arise as sharpenings of other
monoids, we often notate sharp monoids with a bar above them.

Remark 2.1.1.2. A homomorphism f : M → N of sharp monoids is sharp if and only if
f−1{0} = {0}. Note that f gp need not necessarily be injective.

In this situation, sharp homomorphisms are analogous to local homomorphisms of local
rings, and some authors prefer to call sharp homomorphisms between sharp monoids local.
We will favor sharp in order not to create a conflict with connections to topology to be
explored in [GW]. Some indications about those connections are given in Section 3.11.

Every monoid M is contained in a smallest associated group Mgp, and M determines a
partial semiorder on Mgp in which M is the subset of elements that are ≥ 0. If M is sharp
then the semiorder is a partial order. As M can be recovered from the induced partial order
on Mgp, we are free to think of monoids as partially (semi)ordered groups, and we frequently
shall.

2.1.2. Valuative monoids.

Definition 2.1.2.1. A valuative monoid is an integral1 monoid M such that, for all x ∈Mgp,
either x ∈M or −x ∈M .

If M is an integral monoid, and x, y ∈Mgp, we say that x ≤ y if y − x ∈M . We say that
x and y are comparable if x ≤ y or y ≤ x.

1Despite our convention that all monoids are saturated, we allow valuative monoids not to be saturated a
priori, since they are so posteriori.
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Lemma 2.1.2.2. All valuative monoids are saturated.

Proof. Suppose that M is valuative, x ∈Mgp, and nx ∈M . If x 6∈M then −x ∈M . But as
nx ∈M this means −x is a unit of M , which means that x ∈M . �

Corollary 2.1.2.3. All sharp valuative monoids are torsion free.

Proof. A valuative monoid is integral and saturated, and a sharp, integral, saturated monoid
is torsion free. �

Lemma 2.1.2.4. Suppose that f : M → N is a sharp homomorphism of monoids and M is
valuative. Then f is injective.

Proof. Suppose that x ∈ Mgp and f(x) = 0. Either x ∈ M or −x ∈ M . We assume the
former without loss of generality. But 0 ∈ N has a unique preimage in M by sharpness, so
x = 0 and f gp is injective. �

Remark 2.1.2.5. This property is similar to one enjoyed by fields in commutative algebra.

Lemma 2.1.2.6. Suppose that f : N →M is a sharp homomorphism of valuative monoids.
Then f is an isomorphism if and only if it induces an isomorphism on associated groups.

Proof. By Lemma 2.1.2.4, we know f is injective, so we replace N by its image and assume
f is the inclusion of a submonoid with the same associated group. If α ∈ M then either α
or −α is in N . In the former case we are done, and in the latter, α is an invertible element
of M , so α ∈ N since the inclusion is sharp. �

Definition 2.1.2.7. A homomorphism of monoids % : N → M is called relatively valuative
or an infinitesimal extension if, whenever α ∈ Ngp and %(α) ∈M either α ∈ N or −α ∈ N .

Lemma 2.1.2.8. If % : N →M is relatively valuative and M is valuative then N is valuative.

Proof. Suppose that α ∈ Ngp. Either %(α) ∈ M or −%(α) ∈ M . In either case, either α or
−α is in N , by definition. �

Lemma 2.1.2.9. Any partial order on an abelian group can be extended to a total order.

Proof. By Zorn’s lemma, every partial order on an abelian group has a maximal extension.
Assume therefore that Mgp is a maximal partially ordered abelian group and let M ⊂ Mgp

be the submonoid of elements ≥ 0. Let x be an element of Mgp that is not in M . Then
M [x]sat is the monoid of elements ≥ 0 in a semiorder on Mgp strictly extending the one
corresponding to M . This semiorder cannot be a partial order because M was maximal, so
M [x]sat cannot be sharp. Therefore there is some y, z ∈ M and some positive integer n and
m such that (y + nx) + (z + mx) = 0. That is y + z = −(n + m)x. As M is saturated (by
its maximality), this implies that −x ∈M , which shows that every x ∈Mgp is either ≥ 0 or
≤ 0. �

2.1.3. Bounded elements of monoids.

Definition 2.1.3.1. Suppose that α and δ are elements of a partially ordered abelian group,
with δ ≥ 0. We will say that α is bounded by δ if there are integers m and n such that
mδ ≤ α ≤ nδ. We write α ≺ δ to indicate that α is bounded by δ.

We say that α is dominated by δ, and write α� δ, if nα ≤ δ for all integers n.
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Lemma 2.1.3.2. Let M be a saturated monoid, let δ ∈ M , and let α ∈ Mgp. Then α ≺ δ
in M if and only if α ≺ δ in QM .

Proof. If mδ ≤ α ≤ nδ in QM then there is a positive integer k such that k(α −mδ) and
k(nδ−α) are both in M . But M is saturated, so this implies mδ ≤ α ≤ nδ, as required. �

Lemma 2.1.3.3. Let M be a monoid. Suppose δ ∈ M . The elements of Mgp that are
bounded by δ is precisely M [−δ]∗.

Proof. If kδ ≤ α ≤ `δ then 0 ≤ α ≤ 0 in the sharpening M [−δ] of M [−δ] and therefore
α ∈M [−δ]∗. Conversely, if α ∈Mgp is a unit of M [−δ] then there is some β ∈M such that
α+β ∈ Zδ — in other words, α ≤ `δ for some integer `. Applying the same reasoning to −α
supplies an integer k such that −α ≤ kδ ∈M . Therefore −kδ ≤ α ≤ `δ, as required. �

Definition 2.1.3.4. An archimedean group is a totally ordered abelian group Mgp such that
if x, y ∈Mgp with x > 0 then y is bounded by x.

Remark 2.1.3.5. A totally ordered abelian group Mgp is archimedean if and only M it has
no ≺-closed submonoids other than 0 and Mgp.

Theorem 2.1.3.6 (Hölder). Every archimedean group can be embedded by an order preserv-
ing homomorphism into the real numbers. The homomorphism is unique up to scaling.

Proof. This is trivial for the zero group, so assume M is a nonzero archimedean group.
Choose a nonzero element x of M . It will be equivalent to show that there is a unique
order-preserving homomorphism M → R sending x to 1.

For any y ∈ M , let S be the set of rational numbers p/q such that px ≤ qy in M . Let T
be the set of rationals p/q such that px ≥ qy. Then S and T are a Dedekind cut of Q, hence
define a unique real number f(y). This proves the uniqueness part.

All that remains is to show that f is a homomorphism. This amounts to the assertion
that if px ≤ qy and p′x ≤ q′y′ then (pq′ + p′q)x ≤ qq′(y + y′), which is an immediate
verification. �

Lemma 2.1.3.7. If x and y are positive elements of a totally ordered abelian group then
x ≺ y or y � x.

Proof. Suppose that y does not bound x. As x ≥ 0, this means there is no integer such that
x ≤ ny. But the group is totally ordered, so we must therefore have x ≥ ny for all n. That
is x� y. �

Proposition 2.1.3.8. Let M be a valuative monoid. The collection of subsets N of M
closed under ≺ are submonoids and are totally ordered by inclusion. The graded pieces of
this filtration are archimedean.

Proof. Lemma 2.1.3.3 implies that these subsets are submonoids. Suppose that N and P are
≺-closed subgroups and there is some x ∈ N that is not contained in P . If y ∈ P then either
y ≺ x or x ≺ y by Lemma 2.1.3.7, but P is ≺-closed so it must be the former. Thus P ≺ x
so P ⊂ N since N is ≺-closed.

Now suppose that N ⊂ P and there are no intermediate ≺-closed submonoids. The image
of P in P gp/Ngp therefore has no ≺-closed submonoids other than 0 and itself, so it is
archimedean. �

2.2. Logarithmic structures. We recall some of the basics of logarithmic geometry. The
canonical reference is Kato’s original paper [Kat89].
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2.2.1. Systems of invertible sheaves. We recall a perspective on logarithmic structures favored
by Borne and Vistoli [BV12, Definition 3.1].

Definition 2.2.1.1. Let X be a scheme. A logarithmic structure on X is an integral, sat-
urated étale sheaf of monoids MX on X and a sharp homomorphism ε : MX → OX , the
target given its multiplicative monoid structure. The quotient MX/ε

−1O∗X is known as the
characteristic monoid of MX and is denoted MX .

A morphism of logarithmic structures MX → NX is a homomorphism of monoids com-
muting with the homomorphisms ε.

Let X be a logarithmic scheme. For each local section α of Mgp
X , we denote the fiber of

MX over MX by O∗X(−α). This is a O∗X-torsor because Mgp
X is an O∗X-torsor over Mgp

X . We
write OX(−α) for the associated invertible sheaf, obtained by contracting O∗X(−α) with OX
using the action of O∗X .

We can think of the assignment α 7→ OX(−α) as a map Mgp
X → BGm. We have canonical

isomorphisms OX(α + β) ' OX(α) ⊗ OX(β) making the morphism Mgp
X → BGm into a

homomorphism of group stacks.
Moreover, if α ∈MX then the restriction of ε gives a O∗X-equivariant map O∗X(−α)→ OX ,

hence a morphism of invertible sheaves OX(−α) → OX . If β ≥ α then α − β ≤ 0 and we
obtain OX(α− β)→ OX ; twisting by OX(β), we get OX(α)→ OX(β).

If we regard Mgp
X as a sheaf of categories over X, with a unique morphism α→ β whenever

α ≤ β, then the logarithmic structure induces a monoidal functor Mgp
X → LX where LX is

the stack of invertible sheaves on X. It is clearly possible to recover the original logarithmic
structure on X from this monoidal functor, so we often think of logarithmic strutures in these
terms.

2.2.2. Coherent logarithmic structures. Let X be a scheme with a logarithmic structure MX .
If N is an integral, saturated monoid and e : N → Γ(X,MX) is a homomorphism, there is
an initial logarithmic structure M ′

X and morphism M ′
X → MX such that e factors through

Γ(X,M ′
X) → Γ(X,MX). If M ′

X → MX is an isomorphism then N and e are called a chart
of MX .

Definition 2.2.2.1. A logarithmic scheme is a scheme equipped with a logarithmic structure
that has étale-local charts by integral, saturated monoids. It is said to be locally of finite
type if the underlying scheme is locally of finite type and the charts can be chosen to come
from finitely generated monoids.

A logarithmic scheme that is locally of finite type comes equipped with a stratification,
defined as follows. Assume that MX has a global chart by a finitely generated monoid N . For
each of the finitely many generators α of N , the image of the homomorphism OX(−α)→ OX
is an ideal, which determines a closed subset of X. All combinations of intersections and
complements of these closed subsets stratify X.

To patch this construction into a global one, we must argue that the stratification defined
above does not depend on the choice of chart. To see this, it is sufficient to work locally, and
therefore to assume X is the spectrum of a henselian local ring with closed point x. Then
the strata correspond to the ideals of the characteristic monoid MX,x.

On each stratum, the characteristic monoid of X is locally constant.
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Definition 2.2.2.2. A logarithmic scheme X of finite type is called atomic if Γ(X,MX)→
MX,x is a bijection for all geometric points of the closed stratum and the closed stratum is
connected.

Lemma 2.2.2.3. The closed stratum of an atomic logarithmic scheme X is connected and
MX is constant on it.

Proof. Assume that X is an atomic logarithmic scheme. It is immediate that MX is con-
stant on the closed stratum, for we have a global isomorphism to a constant sheaf there, by
definition. �

Proposition 2.2.2.4. Suppose that X is a logarithmic scheme of finite type. Then X has
an étale cover by atomic logarithmic schemes.

Proof. For each point geometric x of X, choose an étale neighborhood U of x such that
Γ(U,MX) → MX,x admits a section. This is possible because MX,x is finitely generated
(because of the existence of charts by finitely generated monoids), hence finitely presented
by Rédei’s theorem [Gri17, Proposition 9.2]. As Γ(U,MX) is finitely generated, Γ(U,Mgp

X ) is
a finitely generated abelian group, and therefore the kernel of (2.2.2.4.1)

(2.2.2.4.1) Γ(U,Mgp
X )→Mgp

X,x

is a finitely generated abelian group. By shrinking U , we can therefore ensure it is an
isomorphism. Finally, we delete any closed strata of U other than the one containing x. �

2.2.3. Finite type and finite presentation. Because we admit logarithmic structures whose
underlying monoids are not locally finitely generated, we must adapt the definitions of finite
type and finite presentation.

Definition 2.2.3.1. A morphism of logarithmic schemes f : X → Y is said to be locally of
finite type if, locally in X and Y , it is possible to construct X relative to Y by adjoining
finitely many elements to OY and MY , imposing some relations, and then passing to the
associated saturated logarithmic structure. It is said to be locally of finite presentation if the
relations can also be taken to be finite in number.

We say X is of finite type over Y if, in addition to being locally of finite type over Y , it is
quasicompact over Y . For finite presentation, we require local finite presentation, quasicom-
pactness, and quasiseparatedness.

Lemma 2.2.3.2. (1) A logarithmic scheme of finite type is of finite presentation.
(2) A logarithmic scheme of finite type over a logarithmic scheme of finite type is itself

of finite type.

Remark 2.2.3.3. Because we insist on saturated monoids, some unexpected phenomena can
occur when working over bases that are not finitely generated. For example, let Y be a
punctual logarithmic scheme whose characteristic monoid is the submonoid of R2

≥0 consisting
of all (a, b) such that a+b ∈ Z. LetX be the logarithmic scheme obtained from Y by adjoining
(1,−1) to the characteristic monoid. This can be effected by adjoining an element γ to MY

and imposing the relation βγ = α, where α and β are elements of MY whose images in MY

are (1, 0) and (0, 1), respectively. This requires adjoining ε(γ) to OY . In the category of not-
necessarily-saturated logarithmic schemes, this would suffice to construct X with underlying
scheme A1 × Y .
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The monoid MY [(1,−1)] is not saturated, and the saturation MX involves the adjunction
of infinitely many additional elements. Each of these elements requires an image in OX , and
therefore neither the characteristic monoid nor the underlying scheme of X — when working
with saturated logarithmic schemes — is finitely generated over Y . However, as an saturated
logarithmic scheme, X is finitely generated over Y and therfore deserves to be characterized
as of finite type.

For further evidence that X should be considered of finite type over Y , consider that
Y admits a morphism to Y ′ that is an isomorphism on underlying schemes and such that
MY ′ = N2 ⊂ R2. Then X is the base change of X ′, which is representable by a logarithic
structure A1×Y (the construction from the first paragraph produces a saturated logarithmic
structure when executed over Y ′). The morphism X ′ → Y ′ must certainly be considered of
finite type. If finite type is to be a property stable under base change to logarithmic schemes
whose logarithmic structures are not necessarily locally finitely generated then we must admit
that X → Y be of finite type as well.

Lemma 2.2.3.4. A morphism of logarithmic schemes f : X → Y is locally of finite presen-
tation if and only if, for every cofiltered system of affine logarithmic schemes Si over Y , the
map (2.2.3.4.1) is a bijection:

(2.2.3.4.1) lim−→HomY (Si, X)→ HomS(lim←−Si, X)

Proof. First we prove that local finite presentation guarantees that (2.2.3.4.1) is a bijection.
We demonstrate only the surjectivity, with the injectivity being similar. Let S = lim←−Si and
let f : S → X be a Y -morphism. Choose covers of X and Y by Uk and Vk such that Uk
can be presented with finitely many data and finitely many relations relative to Vk. Since S
is affine, it is quasicompact, so finitely many of the Uk suffice to cover the image of S. Let
{Wk} be a cover S by open affines such that Wk ⊂ f−1Uk (repeat some of the Uk if f−1Uk is
not affine).

The open sets Wk are pulled back from open sets Wik ⊂ Si for i sufficiently large, and
Si =

⋃
Wik for i potentially larger. Since Uk can be presented with finitely many data and

finitely many relations, the Vk-map Wk → Uk descends to Wik → Uk for i sufficiently large.
The maps Wik and Wi` may not agree on their common domain of definition, but we can cover
it with finitely many affines (since Si is quasiseparated) and therefore arrange for agreement
when i is sufficiently large. This descends f to Si.

Now we consider the converse. Working locally in Y and in X, we can assume that
X may be presented over Y by finitely many data and finitely many relations. We argue
first that OX and MX are generated, up to saturation, relative to OY and MY by finitely
many elements. Indeed, we can write the pair (OX ,MX) as a union of finitely generated
sub-logarithmic structures (OSi ,MSi). These correspond to maps Si → Y and their limit
is X → Y . By (2.2.3.4.1), Si → Y lifts to X for all sufficiently large i and therefore
(OX ,MX) = (OSi ,MSi) for all sufficiently large i. This proves that X is locally of finite type
over Y .

Now we check that X is locally of finite presentation over Y . Let (OS0 ,MS0) be freely
generated over (OY ,MY ) by the finitely many generators of (OX ,MX). Every finite subset
of the relations among those generators determines a quotient (OSi ,MSi) and a map Si → Y .
For all sufficiently large i, we get a lift to X by (2.2.3.4.1), which means that Si = X for all
sufficiently large i. This completes the proof. �

2.2.4. Universal surjectivity.
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Definition 2.2.4.1. Let S be a logarithmic scheme. By a valuative geometric point of S
we will mean a point of S valued in a logarithmic scheme whose underlying scheme is the
spectrum of an algebraically closed field and whose characteristic monoid is valuative.

Proposition 2.2.4.2 (Gillam). A morphism of logarithmic schemes is universally surjective
if and only if it is surjective on valuative geometric points.

Proof. Certainly if f is universally surjective then it is surjective on valuative geometric
points. Suppose that f : X → Y is surjective on valuative geometric points. Then this is
also true universally, so it is sufficient to prove that f is surjective and therefore to assume
Y is the spectrum of an algebraically closed field. But any monoid can be embedded in a
valuative monoid by Lemma 2.1.2.9, so after embedding MY in a valuative monoid N we
can construct a morphism Y ′ → Y , with MY ′ = N valuative, that is an isomorphism on the
underlying schemes. Then X ′ = X ×Y Y ′ surjects onto Y ′ by assumption. As Y ′ → Y is
surjective, this implies that X → Y is surjective, as required. �

2.2.5. Valuative criteria.

Lemma 2.2.5.1. Let S be the spectrum of a valuation ring with generic point η and assume
that Mη is a logarithmic structure on η. Then there is a maximal logarithmic structure M
on S extending Mη such that Mgp = Mgp

η . The map % : M →Mη is relatively valuative.

Proof. Let ε : Mη → Oη be the structure morphism of Mη. Define M = ε−1OS.
Note that ε restricts to a bijection on ε−1O∗η, so it also restricts to a bijection on ε−1O∗S.

Therefore ε : M → OS is a logarithmic structure. In fact, it is the direct image logarithmic
structure defined more generally by Kato [Kat89, (1.4)].

The maximality of M is the universal property of the direct image logarithmic structure,
which we verify explicitly. If M ′ also extends Mη then we have a commutative diagram

M ′ //

��

M ′
η

��
OS // Oη

from which we obtain M ′ →M by the universal property of the fiber product.
We argue M → Mη is relatively valuative. Suppose α ∈ Mgp and %(α) ∈ Mη. As OS is a

valuation ring, either ε(%(α)) ∈ OS or ε(%(α)) ∈ O∗η and ε(%(α))−1 ∈ OS. In the first case

α ∈ ε−1OS and in the latter case, %(−α) ∈M and −α ∈ ε−1OS so −α ∈M . �

Theorem 2.2.5.2. The morphism of schemes underlying a morphism of logarithmic schemes
X → Y satisfies the valuative criterion for properness if and only if it has the unique right
lifting property with respect to inclusions S ⊂ S where S is the spectrum of a valuation ring, S
is its generic point, S has a valuative logarithmic structure MS, and the logarithmic structure
of S is the maximal extension of MS.

Proof. Let S = SpecK and S = SpecR, and let j : S → S be the inclusion. Let MK be a
logarithmic structure on S and let MR be the maximal logarithmic structure extending MK

to R. Let M ′
K be a valuative logarithmic structure on K extending MK and contained in

Mgp
K (whose existence is guaranteed by Lemma 2.1.2.9), and let M ′

R be its maximal extension
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to R, which is valuative. We consider a lifting problem (2.2.5.2.1) with MS pulled back from
X:

(2.2.5.2.1)

S ′ //

��

S //

��

X

��
S ′ //

f

77

S
h //

g

??

Y

Note that the valuative criterion for properness for the underlying schemes of X over Y is
equivalent to the existence of a unique arrow lifting the square on the right and that the
assertion of the theorem is therefore that lifts of the square on the right are in bijection with
lifts of the outer rectangle. Let us assume f has been specified and show that there is a
unique choice of g.

We draw the maps of monoids and rings implied by (2.2.5.2.1):

K

A

j∗M
′
K

B

oo j∗MK
oo f ∗MX

oo

uu zz
R

OO

M ′
R

oo

OO

MR

OO

oo h∗MY

OO

oo

By definition of the maximal extension of a logarithmic structure, the rectangles A and A∪B
are cartesian. Therefore B is cartesian and we get a unique dashed arrow by the universal
property of fiber product. �

2.2.6. Logarithmic modifications and root stacks.

Definition 2.2.6.1. Let X be a logarithmic scheme. A logarithmic modification is a mor-
phism Y → X that is, locally in X, the base change of a toric modification of toric varieties.

More generally, we say that a morphism of presheaves G→ F on the category of logarith-
mic schemes is a logarithmic modification if, for every logarithmic scheme X and morphism
X → F , the base change X ×F G→ X is a logarithmic modification.

Let X be a logarithmic scheme and let γ and δ be two sections of Mgp
X . We say that γ and

δ are locally comparable on X if, for each geometric point x of X, we have γ ≤ δ or δ ≤ γ at
x — that is, δ − γ ∈MX,x or γ − δ ∈MX,x.

Given X, γ, and δ, as above, but not necessarily locally comparable, the property of local
comparability defines a subfunctor of the one represented by X. That is, we can make the
following definition:

Y (W ) = {f : W → X
∣∣ f ∗γ and f ∗δ are locally comparable}

Then Y is representable by a logarithmic modification of X. Indeed, locally in X, we can
find a morphism X → A2, with the target given its standard logarithmic structure. Then Y
is the pullback of the blowup of A2 at the origin.

Definition 2.2.6.2. Let X be a logarithmic scheme and let N be a locally finitely generated
extension of MX such that Ngp/Mgp

X is torsion (a Kummer morphism). Define Y to be the
following subfunctor of the one represented by X:

Y (U) = {f : W → X
∣∣ f ∗MX →MW factors through f ∗N}

An algebraic stack with a logarithmic structure that represents Y is called the root stack of
X along N .
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2.2.7. The logarithmic multiplicative group.

Definition 2.2.7.1. Define functors LogSchop → Sets by the following formulas:

Glog
m (S) = Γ(S,Mgp

S )

Glog
m (S) = Γ(S,Mgp

S )

We call the first of these the logarithmic multiplicative group.

Proposition 2.2.7.2. Neither Glog
m nor Glog

m is representable by an algebraic stack with a
logarithmic structure.

Proof. We will treat Glog
m . The argument is essentially the same with Glog

m .
Suppose that there is an algebraic stack X with a logarithmic structure representing Glog

m .
Let S0 be the spectrum of a field k, equipped with a logarithmic structure k∗× (Ne1 + Ne2).
The element e2 gives a map f : S0 → X, hence f ∗MX →MS0 .

Now, for each t ∈ Z, let St have the same underlying scheme as S0, with the logarithmic
structure k∗ × (Ne1 + N(e2 + te1)). Then Mgp

St
= Mgp

S0
for all t, so the map S0 → X factors

through S0 ⊂ St for all t ≥ 0. Therefore the map f ∗MX →MS0 factors through MSt for all
t ≥ 0. Thus MX → MS0 factors throught

⋂
tMSt = Ne1. But the element e2 ∈ Γ(S0,M

gp
S0

)
is clearly not induced from an element of Ze1. �

Lemma 2.2.7.3. Let P be the subfunctor of Glog
m whose S points consist of those α ∈ Glog

m (S)
that are locally (in S) comparable to 0.

(1) P is isomorphic to P1 with its toric logarithmic structure.
(2) P is a logarithmic modification of Glog

m .

Proof. Note that the logarithmic structure MA2 has two tautological sections, α and β,
coming from the two projections to A1. The difference of these sections determines a map
A2 → Glog

m . The open subset A2−{0} may be presented as the union of the loci where α ≥ 0
and where β ≥ 0, which coincide, respectively, with the loci where α − β ≤ 0 or α − β ≥ 0.
We note that adjusting α and β simultaneously by the same unit leaves α−β unchanged, so
that we have constructed a map P1 → P.

To see that this is an isomorphism, consider the open subfunctors of P where α ≥ 0 and
where α ≤ 0. These are each isomorphic to A1 and their preimages under P1 → P are the
two standard charts of P1.

Finally, we verify that P→ Glog
m is a logarithmic modification. We need to show that if Z

is a logarithmic scheme and Z → Glog
m is any morphism then Z ×Glog

m
P→ Z is a logarithmic

modification. This is a local assertion in Z, and section in Mgp
Z is locally pulled back from a

logarithmic map to an affine toric variety, so we can assume Z is an affine toric variety with
cone σ.

Let α be the image of α in Mgp
Z . We can regard sections of Mgp

Z as linear functions with
integer slope on the ambient vector space of σ. Then Z ×Glog

m
P is representable by the

subdivision of σ along the hyperplane where α vanishes. �

Corollary 2.2.7.4. Both Glog
m and Glog

m have logarithmically smooth covers by logarithmic
schemes.

Proof. We have just seen that Glog
m has a logarithmically étale cover by P1, and therefore

Glog
m = Glog

m /Gm has a logarithmically étale cover by [P1/Gm]. �
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Proposition 2.2.7.5. The inclusion of the origin in Glog
m is representable by affine logarith-

mic schemes of finite type.

Proof. Suppose that S is a logarithmic scheme and S → Glog
m is a morphism corresponding

to a section α ∈ Γ(S,Mgp
S ). Let N be the image of MS in Ngp = Mgp

S /Zα. Each choice of
α̃ ∈ O∗S(α) induces an extension Mgp

S /Zα̃ of Ngp by O∗S. Let T be the total space of O∗S(α),
so that it has a universal α̃, and define N to be preimage of N in Mgp

S /Zα̃ on T .
Let q : T → S denote the projection. In order to make N into a logarithmic structure,

we must factor the map q∗MS → OT through N . The condition to do so is that if β and
γ are local sections of N that differ by a multiple of α then ε(β) − ε(γ) = 0 in OT . These
differences generate an ideal, which defines a universal closed subscheme i : U → T over which
the factorization exists. Then ε : i∗N → OU is sharp because N is the image of i∗q∗MS and
i∗q∗MS → OU is sharp. This makes U into a (not necessarly saturated) logarithmic scheme
over S that represents the pullback of the origin of Glog

m , by construction. Passing to the
saturation completes the proof. �

2.3. Tropical geometry.

2.3.1. Tropical moduli problems. We summarize [CCUW17]. For the purposes of this pa-
per, a tropical moduli problem is a covariant functor on, or category covariantly fibered in
groupoids over, the category of integral, saturated, sharp, commutative monoids. Such a
moduli problem extends automatically, in a canonical fashion, to one defined on all integral,
saturated, sharp, commutative monoidal spaces, and even all such monoidal topoi. In partic-
ular, it extends to logarithmic schemes, by regarding logarithmic schemes as monoidal topoi
by way of the characteristic monoid.

There are two ways to produce this extension of the moduli problem. The first, and
perhaps simpler, of the two is to extend a moduli problem F on commutative monoids to one
defined on monoidal spaces (or topoi) by setting F (S) = F (Γ(S,MS)) and then sheafifying
(or stackifying) the result.

An equivalent construction, when working over logarithmic schemes with coherent loga-
rithmic structures, is to define F (S) to be the set of systems of data ξs ∈ F (MS,s), one for
each geometric point s of S, such that ξt 7→ ξs under the morphism F (MS,t) → F (MS,s)
associated to a geometric specialization s  t. This has the effect of building stackification
into the definition, but either construction is adequate for our needs.

In practice, when formulating a tropical moduli problem, the difficult part seems to tend to
lie in describing the functoriality with respect to monoid homomorphisms. More specifically,
any homomorphism of commutative monoids can be factored into a localization homomor-
phism followed by a sharp homomorphism. Functoriality with respect to sharp homomor-
phisms is straightforward, but localizations tend to involve changes of topology that are
more difficult to control. For the tropical Picard group and tropical Jacobian, the notion
that makes this work is called bounded monodromy, and is first discussed in Section 3.5.

The principal concern of [CCUW17] was the question of algebraicity of tropical moduli
problems, meaning possession of a well-behaved cover by rational polyhedral cones. None
of the moduli problems we consider here is algebraic in this sense, although they often do
have logarithmically smooth covers by logarithmic schemes. This suggests the subject of
algebraicity should be revisited with a more inclusive perspective. To do so will require
a less chaotic topology than the one introduced in [CCUW17], such as is currently under



16 SAMOUIL MOLCHO AND JONATHAN WISE

development by Gillam and the second author [GW], which appears implicitly in Section 3.1,
and a bit more explicitly in Section 3.11 of this paper.

2.3.2. Tropical topology. We introduce a tropical topology that does not appear in [CCUW17].
This material will be needed in Section 3.11 and nowhere else, so we develop only the few
facts we will need there. A thorough treatment will be taken up elsewhere.

Definition 2.3.2.1. Let M be an integral, saturated monoid. A sharp valuation of M is an
isomorphism class of surjective homomorphisms from Mgp to totally ordered abelian groups
that preserve the strict order of Mgp.

Remark 2.3.2.2. Equivalently, a sharp valuation of M is an isomorphism class of sharp ho-
momorphisms M → V where V is a valuative monoid such that Mgp → V gp is surjective.

Proposition 2.3.2.3. Let M be a sharp (integral, commutative, unital) monoid and let
Cone◦(M) be its set of sharp valuations. Give Cone◦(M) the coarsest topology in which
a subset defined by a finite set of strict inequalities among elements of Mgp is open. Then
Cone◦(M) is quasicompact.

Proof. Consider a descending sequence of closed subsets Cone◦(M) = Z0 ⊃ Z1 ⊃ Z2 ⊃ · · · ,
with Zi defined relative to Zi−1 by an inequality αi ≥ 0, with αi ∈ Mgp. Then Zi is
represented by the monoid M [α1, . . . , αi] in the sense that a valuation of M with valuation
monoid V lies in Zi if and only if the homomorphism M → V factors (not necessarily
sharply) through M [α1, . . . , αi]. By Lemma 2.1.2.9, the condition that

⋂
Zi = ∅ means that

M [α1, α2, . . .] contains the inverse −β of some element β ∈ M . But then −β is a finite
combination of the αi and elements of M and lies therefore in M [α1, . . . , αi] for some i. We
conclude that Zi = ∅. �

Remark 2.3.2.4. The basic open subsets of Cone◦(M) are the subsets representable as
Cone◦(N) where N ⊂Mgp is a finitely generated extension.

Remark 2.3.2.5. Suppose that δ ∈ QM . Then there is some positive integer n such that
nδ ∈M and the inequality nδ > 0 determines an open subset of Cone◦(M). Since valuative
monoids are always saturated, this open subset does not depend on the choice of n. We can
therefore construct open subsets of Cone◦(M) from inequalities in QM .

2.3.3. Tropical curves. The main example in [CCUW17] is the moduli space of tropical
curves. We recall the main definition here, with small modifications, one of which is sig-
nificant: first, we have no use for marked points here (which appear as unbounded legs in
the graphs of tropical curves), so we omit them below; second, we allow unrooted edges that
are not attached at any vertex. This second modification is essential for the definition of the
topology in Section 3.1.

Definition 2.3.3.1. Let M be a commutative monoid. A tropical curve metrized by M is a
tuple X = (G, r, i, `) where

(1) G is a set,
(2) r : G→ G is a partially defined idempotent function,
(3) i : G→ G is an involution, and
(4) ` : G→M is a function

such that
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Figure 1. Graphical representations of tropical curves. Filled circles are ver-
tices while open circles are endpoints of edges with absent vertices.

(5) `(i(x)) = `(x) for all x, and
(6) r(x) = x if and only if i(x) = x if and only if `(x) = 0.

We often abuse notation and write x ∈ X to mean that x ∈ G.
If x ∈ X then `(x) is called its length. The elements of X of length 0 are called vertices. The

remaining elements are called flags or oriented edges. An unordered pair of flags exchanged
by i is called an edge. We call X compact if r is defined on all of G.

Remark 2.3.3.2. It is customary to include a weighting by non-negative integers on the ver-
tices in the definition of a tropical curve, standing for the genus of a component of a stable
curve. Such a weighting could be added to Definition 2.3.3.1 with no significant change to
the rest of the paper. As the weighting has no effect on the definition of the tropical Picard
group, we have omitted it to keep the notation as light as possible.

The work of Amini and Caporaso on the Riemann–Roch for tropical curves with vertex
weights [AC13] suggests that a vertex with positive weight g can be imagined as a vertex
of weight 0 with g phantom loops attached, all of length 0. They prove Riemann–Roch by
endowing these loops with positive length ε and then allowing ε to shrink to zero. The most
naive application of the same approach would yield a different tropical Picard group than the
one we consider, and would not have the same relationship to the logarithmic Picard group.

If f : M → N is a homomorphism of commutative monoids, and X is a tropical curve
metrized by M , and r is defined on every flag x of X such that f(`(x)) = 0, then f induces
an edge contraction of X. Let Y be the quotient of X in which a flag x is identified with r(x)
if f(`(x)) = 0. Note that if f(`(x)) = 0, this identification also identifies r(x) ∼ r(i(x)) since
i2(r(x)) = x. Then ` descends to a well-defined function on Y, valued in N and makes Y
into a tropical curve.

Following the procedure outlined in Section 2.3.1, we can now think of tropical curves as
a tropical moduli problem: for any sharp monoid P , we define Mtrop(P ) to be the groupoid
of tropical curves metrized by P . Note, however, that Definition 2.3.3.1 is slightly different
from the one considered in [CCUW17].

Definition 2.3.3.3. Let S be a logarithmic scheme. A tropical curve over S is the choice
of a tropical curve Xs for each geometric point s of S and an edge contraction Xs → Xt for
each geometric specialization t s such that the edges of Xs contracted in Xt are precisely
the ones whose lengths lie in the kernel of Mgp

s →Mgp
t .

Definition 2.3.3.4. Let X be tropical curve metrized by a monoid M with vertex set V . We
define P(X) to be the set of functions λ = (α, µ) : GX → Mgp × Z satisfying the following
conditions:
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(1) if x is a vertex then µ(x) = 0,
(2) we have α(r(x)) = α(x) for all x on which r is defined, and
(3) we have α(i(x)) = α(x) + µ(x)`(x).

Note that the third condition implies that µ(x) = −µ(i(x)) since

α(x) = α(i2(x)) = α(i(x))) + µ(i(x))`(x)

and `(x) is nonzero. We define L(X) to be the subset of P(X) where the following additional
condition is satisfied:

(4) (balancing) for each vertex x of X, we have
∑

r(y)=x µ(y) = 0.

Elements of P(X) are called piecewise linear functions on X and elements of L(X) are called
linear functions.

If X is a tropical curve metrized by M and M → N is a monoid homomorphism inducing a
tropical curve Y metrized by N then there are natural homomorphisms P(X)→ P(Y) and
L(X) → L(Y). Thus tropical curves equipped with piecewise linear functions are a tropical
moduli problem. See Proposition 3.7.3 for further details.

2.3.4. Subdivision of tropical curves.

Definition 2.3.4.1. Let Y be a tropical curve metrized by a commutative monoid M . Let
y be a 2-valent vertex of Y. We construct a new tropical curve X by removing y from Y
along with the two flags e and f incident to y and defining

iX(iY(e)) = iY(f)

`X(iY(e)) = `X(iY(f)) = `Y(e) + `Y(f).

We call Y a basic subdivision of X at the edge {iY(e), iY(f)}. If X is obtained from Y by a
sequence of basic subdivisions, we call Y a subdivision of X.

If Y is a subdivision of X then GY contains a copy of GX. An isomorphism of subdivisions
is an isomorphism of tropical curves that respects this copy of the underlying set.

Lemma 2.3.4.2. If X′ is a subdivision of a tropical curve X metrized by M , and M → N is
a localization homomorphism, then the edge contractions Y′ of X′ is naturally a subdivision
of the edge contraction Y of X.

Proof. It is sufficient to assume that X′ is a basic subdivision of X at an edge e into edges e′

and e′′. The main point is that if `(e) maps to 0 in N then `(e′) and `(e′′) do as well, since
0 ≤ `(e′) ≤ `(e) and 0 ≤ `(e′′) ≤ `(e), which implies that e′ and e′′ are both contracted if e
is. �

2.4. Logarithmic curves.

2.4.1. Local structure.

Definition 2.4.1.1. Let S be a logarithmic scheme. A logarithmic curve over S is an integral,
saturated, logarithmically smooth morphism π : X → S of relative dimension 1.

Theorem 2.4.1.2 (F. Kato). Let X be a logarithmic curve over S. Then the underlying
scheme of X is a flat family of nodal curve over S and, for a geometric point x of X lying
above the geometric point s of S, one of the following applies:
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(1) x is a smooth point of its fiber in the underlying schematic curve of X, and MS,s →
MX,x is an isomorphism.

(2) x is a marked point, and there is an isomorphism MS,s+Nα→MX,x where OX(−α)
is the ideal of the marking.

(3) x is a node of its fiber and there is an isomorphism MS,s + Nα+ Nβ/(α+ β = δ)→
MX,x, with δ ∈ MS,s. The invertible sheaf OS(−δ) is the pullback of the ideal sheaf
of the boundary divisor corresponding to the node x from the moduli space of curves,
and OX(−α) and OX(−β) are the pullbacks ideal sheaves of the two branches of the
universal curve at x.

If X is vertical over S then the second possibility does not occur.

We writeMlog
g,n for the moduli space of logarithmic curves of genus g with n marked points.

2.4.2. Logarithmic curves over valuative bases.

Theorem 2.4.2.1. Let S be the spectrum of a valuation ring with generic point η and let
X be a family of nodal curves over S. Assume that Xη and η have been given logarithmic
structures MXη and Mη making Xη into a logarithmic curve over η, with Mη valuative. Let
MX and MS be the maximal extensions, respectively, of MXη and Mη to X and to S. Then
X is a logarithmic curve over S.

Lemma 2.4.2.2. The conclusion of the theorem holds when Mη is the trivial logarithmic
structure.

Proof. Under this assumption, the underlying curve of Xη is smooth over η. Let Uη denote
the complement of the marked points in Xη. The logarithmic structure of Xη is the maximal
extension of the (trivial) logarithmic structure on Uη, so MX is the maximal extension to X
of MUη . Let j : Uη → X denote the inclusion.

By definition, Mgp
X = j∗(O∗Uη)/O

∗
X is the group of Cartier divisors on X whose support

does not meet Uη and MX is the submonoid of effective divisors. To complete the proof,
we must show that this monoid has the local form required by Theorem 2.4.1.2 in an étale
neighborhood of a geometric point x with image s in S. There are three possibilities to
consider:

(1) x is a smooth point of its schematic fiber. Then any Cartier divisor of X supported
at x and not meeting the general fiber must be pulled back from a Cartier divisor of
S not meeting the generic point, and therefore MX,x = MS,s.

(2) x is a marked point of its schematic fiber. Let ξ be the corresponding marked point of
the general fiber. Let γ be a section of MX,x and let u be a local parameter for X along
x with image α ∈MX,x. Then the is an integer n such that γ − nα is not supported
at ξ. This recovers the situation of the previous case and we find Mgp

X,x = Zα+Mgp
S,s.

It is immediate that the submonoid of effective elements is Nα + MS,s, which is the
required local form.

(3) x is a node of its schematic fiber. Let y and z be the two distinct generizations of x
in its fiber.

We have étale-local parameters uv = t at the node, with t ∈ OS ∩O∗η. Let α and β

be the elements of MX,x corresponding to u and v, and let δ be the element sof MS,s

corresponding to t. Inverting u corresponds to generization to y, and we have already
computed MX,y = MS,s. Therefore Mgp

X,x = Zα +Mgp
S,s.
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Since generization to y sends α to 0, the effective elements must be contained in
Zα + MS,s. On the other hand, generizing the other way sends α to δ, which means
that for nα + γ to be effective, we must have nδ + γ ∈ MS,s. That is, MX,x is
contained in the submonoid of Zα+Mgp

S,s generated by MS,s, by α, and by β = δ−α.

Since all such elements are easily seen to be effective, we conclude that MX,x =
MS,s + Nα + Nβ/(α + β = δ), as required by Theorem 2.4.1.2 (3).

�

Proof of Theorem 2.4.2.1. We will reduce to the special case of the lemma. Let A be a
henselian valuation ring with residue field Oη and valuation monoid Mη. Let B = A×Oη OS.
Then B is a valuation ring. Indeed, B is a subring of A, so it is an integral domain, and if
x is contained in the fraction field of B then either x or x−1 is contained in A. If x is not a
unit of A then it reduces to 0 in Oη, so it is contained in OS and hence is contained in B. If
x is a unit of A then both x and x−1 reduce to nonzero elements of Oη and at least one of
them is contained in OS since OS is a valuation ring. Assuming it is x we then have x ∈ B,
as required for B to be a valuation ring.

Let T = SpecB. Since deformations of logarithmic curves are unobstructed, we can
extend X to a logarithmic curve Y over T . By Lemma 2.4.2.2, the maximal extensions of
the (trivial) logarithmic structure from the generic fiber to Y is a logarithmic curve over T .
This restricts to a logarithmic structure M ′

X on X making X into a logarithmic curve over
S. By the universal property of the maximal extension, we have a morphism of logarithmic
structures MX → M ′

X giving a morphism of logarithmic schemes (X,M ′
X) → (X,MX) over

S. By consideration of the local structure of M ′
Xη

guaranteed by Lemma 2.4.2.2 and of MXη

required by Theorem 2.4.1.2, we deduce that MXη → M ′
Xη

is an isomorphism. Now, by the
universal property of the maximal extension from η to S, we obtain a morphism M ′

X →MX .
The composition MX → M ′

X → MX must be the identity by the universal property of the
maximal extension, and the composition M ′

X →MX →M ′
X must be the identity because the

logarithmic structure of a logarithmic curve admits no non-identity maps to itself commuting
with the projection to the base.

We conclude that MX = M ′
X . But M ′

X was the restriction of the maximal extension of
the trivial logarithmic structure from the generic fiber of Y and therefore makes X into a
logarithmic curve over S, by Lemma 2.4.2.2. �

2.4.3. Tropicalizing logarithmic curves. Theorem 2.4.1.2 allows us to construct a family of
tropical curves over S from a family X of logarithmic curves over S. For each geometric
point s of S, let Xs be the dual graph of Xs, metrized by MS,s with `(e) = δ when e is the
edge associated to the node x in the notation of Theorem 2.4.1.2 (3).

If s t is a geometric specialization, then Xs is obtained from Xt by contracting the edges
of Xt that correspond to nodes of Xt smoothed in Xs. Therefore the association Xs 7→ Xs

commutes with the geometric generization maps and defines a morphismMlog
g,n →Mtrop from

the moduli space of logarithmic curves to the moduli space of tropical curves. See [CCUW17,
Section 5] for further details.

The essence of the following lemma comes from Gross and Siebert [GS13, Section 1.4].
It allows us to relate the characteristic monoid of a logarithmic curve to piecewise linear
functions on the tropicalization.
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Lemma 2.4.3.1. Let M be a commutative monoid. Then

M + Nα + Nβ/(α + β = δ)
∼−→ {(a, b) ∈M ×M

∣∣ a− b ∈ Zδ}

where α 7→ (0, δ), β 7→ (δ, 0), and γ 7→ (γ, γ) for all γ ∈M .

Proof. The map is well-defined by the universal property of the pushout. The following
formula gives the inverse:

(a, b) 7→

{
a+ b−a

δ
α b ≥ a

b+ a−b
δ
β a ≥ b

�

Corollary 2.4.3.2. Let S be a the spectrum of an algebraically closed field and let X be a
logarithmic curve over S with tropicalization X. Then Γ(X,Mgp

X ) and Γ(X,P) are naturally
identified.

Proof. Lemma 2.4.3.1 identifies the stalk of Mgp
X at a node of X with the linear functions

of integer slope on the corresponding edge of X. Generizing to one branch or the other of
the node corresponds to evaluating the function at one endpoint or the other of the edge.
Therefore a global section of Mgp

X amounts to a function on X taking values in Mgp
S that is

linear along the edges with integer slopes. �

We give a more local version of this corollary.
Let S be a logarithmic scheme whose underlying scheme is the spectrum of an algebraically

closed field, let X be a logarithmic curve over S, and let X be its tropicalization. Suppose
that p : U → X is a tropical local isomorphism. Each v vertex of X corresponds to a
component Xv of the normalization of X and each edge v of X corresponds to a node Xv of
X. Let U = lim−→u∈U Xp(u). Effectively, U is the union of components of the normalization of

X indexed by the vertices of U, joined along nodes indexed by the edges of U, together with
some disjoint nodes corresponding to unattached edges of U.

There is a canonical projection U → X that is étale except at the points corresponding to
0- and 1-sided edges. We give U the logarithmic structure pulled back from X.

Remark 2.4.3.3. This construction extends to families with locally constant dual graph, but
no further. Should U be a covering space of X then U will be étale over X and therefore this
construction extends infinitesimally, but no further. If U is in addition finite over X then the
construction can be extended to an aribtrary base.

The construction described above gives a functor t−1 from the category of local isomor-
phisms U → X to the category of finite strict X-schemes. We refer to this as an anticon-
tinuous morphism from X to X, but we make no attempt to develop a general theory of
anticontinuous maps here.

Lemma 2.4.3.4. We have t∗M
gp
X = PX. That is, for any open subset U of X, we have

Γ(U,P) = Γ(t−1U,Mgp
X ).

2.4.4. Subdivision of logarithmic curves. Let X be a logarithmic curve over S and let X
be its tropicalization. Suppose that Y → X is a subdivision. We construct an associated
logarithmic modification Y → X such that the tropicalization of Y is X.

We may make this construction étale-locally on S, provided we do so in a manner com-
patible with further localization. Every subdivision of tropical curves is locally an iterate of
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basic subdivisions, so we may assume that Y is a basic subdivision of X. We now describe
Y → X locally in X.

Suppose that e is the edge of X subdivided in Y, and that Z is the corresponding node of
X. Note that Z is a closed subset of X, not necessarily a point unless S is a point. Over the
complement of Z, we take the map Y → X to be an isomorphism. It remains to describe Y
on an étale neighborhood of Z.

We may work étale-locally in X, again provided that our construction is compatible with
further étale localization. We can therefore work in an étale neighborhood U of a geometric
point x ∈ Z and an étale neighborhood T of its image in S, and we can assume that

(1) MX,x = MS,s + Nα + Nβ/(α + β = δ) for some δ ∈MS,s,
(2) α and β come from global sections of MX over U , and
(3) δ comes from a global section of MS over T .

Now, recall we may think of α and β as barycentric coordinates on the edge e of X that
was subdivided in Y. Suppose that this edge was subdivided at the point where α = γ (and
therefore β = δ − γ) for some γ ∈ Γ(T,MS). We ask V to represent the subfunctor of the
functor represented by U where α and γ are locally comparable. Then V is a logarithmic
modification of U .

We leave it to the reader to verify that this construction is compatible with further étale
localizations in the places where we used them and that the logarithmic modifications V → U
therefore patch to a logarithmic modification Y → X.

Remark 2.4.4.1. It is possible to understand Y → X as the pullback of Y → X along the
tropicalization map t : X → X. This point of view will be developed in [GW].

3. The tropical Picard group and the tropical Jacobian

3.1. The topology of a tropical curve.

Definition 3.1.1. Let X be a tropical curve and let x be a vertex of X. The star of x is the
set of all y ∈ X such that r(y) = x.

Definition 3.1.2. Let Y and X be tropical curves metrized by the same monoid M . A
function f : Y→ X is called a local isomorphism if it commutes with all of the functions r,
`, and i and it restricts to a bijection on the star of each vertex.

A local isomorphism is called an open embedding if it is also injective. The image of an
open embedding of tropical curves is called an open subcurve.

In Figure 1, there are 6 distinct local isomorphisms from the curve on the right to the
curve on the left, assuming that all edges have the same length.

Lemma 3.1.3. An open subcurve of X is a subset of X that is stable under i and r−1.

Proof. This is immediate. �

Example 3.1.4. Let X be a tropical curve with one vertex, x, and one edge {e, i(e)}, of length
δ, connecting that vertex to itself. Let Y by a tropical curve with one vertex, y, and two
edges {f, i(f)} and {g, i(g)}, both of length δ, with r(e) = r(f) = y and with r(i(e)) and
r(i(f)) both undefined. There is a local isomorphism Y→ X sending y to x, sending f to e,
and sending g to i(e). This local isomorphism does not restrict to open embeddings on any
open cover of Y.
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Lemma 3.1.5. Any logarithmic curve X has a minimal cover by a local isomorphism Y→ X.
That is, for any cover Z→ X, there is a (not necessarily unique) factorization Y→ Z of the
projection from Y to X.

Proof. Let X be a tropical curve and let Y0 be the disjoint union of the stars of the vertices.
Construct Y by adjoining a new flag i(x) for each non-vertex flag x of Y0. �

Definition 3.1.6. A collection of local isomorphisms pi : Ui → X of a tropical curve X is
called a cover if X =

⋃
pi(Ui). We call this the tropical topology of X.

Let Y be a subdivision of X. We construct an associated morphism of sites ρ : Y → X.
Let τ : U → X be a local isomorphism. For each edge e of U, the restriction of τ to e is a
bijection. Form ρ−1U by subdividing e in precisely the same way τ(e) is subdivided in Y.
Then we have an evident local isomorphism ρ−1U→ Y.

Proposition 3.1.7. The construction outlined above determines a morphism of sites ρ from
that Y to that of X.

Proof. One must verify that the construction respects covers and fiber products of local
isomorphisms. Both are immediate. �

Suppose that X is a tropical curve over a logarithmic scheme S. This construction makes
it possible to organize the sites of the fibers of X over S into a fibered site [?, 7.2.1] over
ét(S)op, the opposite of the étale site of S.

3.2. The sheaves of linear and piecewise linear functions. If U→ X is a local isomor-
phism then we have maps P(X) → P(U) and L(X) → L(U) by restriction. This makes P
and L into presheaves on the category of tropical curves with local isomorphisms to X.

Proposition 3.2.1. The presheaves L and P are sheaves in the tropical topology.

Proof. Since piecewise linear functions are functions defined on the underlying set of a tropical
curve, and tropical covers are set-theoretic covers, it is immediate that P forms a sheaf. The
subpresheaf L is defined by the balancing condition at each vertex of the underlying graph,
which depends only on the star of that vertex. By definition, a tropical cover induces a
bijection on the star of each vertex, and therefore the balancing condition is visible locally
in a tropical cover. �

Proposition 3.2.2. Let ρ : Y → X be a subdivision of tropical curves. Then LX → Rρ∗LY

is an isomorphism.

Proof. By induction, we can also assume that Y is a basic subdivision of X. The assertion
is local on X so we can assume that X is a bare edge with no vertices. In that case, Y is a
vertex with two edges. The claim is now a straightforward calculation. �

Suppose that X is a tropical curve over S. On each stratum Z of S, the tropical curve
X is locally constant, so the cohomology H∗(XZ ,L) can be represented by a complex of
locally constant abelian groups. If s  t is a geometric generization of S there is a map
L(Xt) → L(Xs), but there is no guarantee of a generization map H1(Xt,L) → H1(Xs,L)
if s and t are in different strata. To get the generization map, we will need to impose the
bounded monodromy condition in Section 3.5.



24 SAMOUIL MOLCHO AND JONATHAN WISE

Proposition 3.2.3. Let X be a logarithmic curve metrized by M , let M → N be a homomor-
phism such that Mgp = Ngp, and let Y be the induced tropical curve metrized by N . Then
BLX → BLY is an isomorphism of stacks on X.

Proof. Since Mgp = Ngp, the sheaves LX and LY are the same when we identify the underlying
graphs of X and Y. �

3.3. The intersection pairing on a tropical curve.

Definition 3.3.1. Let X be a tropical curve metrized by a monoid M , and let `(e) ∈ M
denote the length of an edge e of X. If e and f are oriented edges of X, we define

e.f =


`(e) f = e

−`(e) f = e′

0 else

and extend by linearity to an intersection pairing on the free abelian group generated by the
oriented edges of X. By restriction it also gives a pairing on the first homology of X.

Lemma 3.3.2. Suppose that X is a tropical curve metrized by a monoid M and u : M → N
is a homomorphism inducing an edge contraction Y of X. Then the intersection pairing is
compatible with u, in the sense that diagram (3.3.2.1) commutes:

(3.3.2.1)

H1(X)×H1(Y) ⊂ ZE(X) × ZE(X)

��

//

��

Mgp

��

H1(Y)×H1(Y) ⊂ ZE(Y) × ZE(Y) // Ngp

Proof. The proof is immediate. �

3.4. The tropical degree. Let V denote the quotient P/L. Then V (U) is the free abelian
group generated by the vertices of U.

Let X be a tropical curve metrized by M . There is an embedding of the constant sheaf
Mgp inside LX as the constant functions. We write H for the quotient of L by Mgp and E
for the quotient of P by Mgp. This yields a commutative diagram (3.4.1) with exact rows
and columns:

(3.4.1)

0

��

0

��
0 // Mgp // L //

��

H //

��

0

0 // Mgp // P //

��

E //

��

0

V

��

V

��
0 0
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We note that E is the sheaf freely generated by the edges and that E → V is the coboundary
map in homology. Therefore H is the sheaf whose value on U is the first Borel–Moore
homology of U. Note that because X can have 1-sided or even 0-sided edges, the Borel–
Moore homology is not locally trivial.

Lemma 3.4.2. Let X be a tropical curve. Then Hp(X,E ) = 0 for all p > 0 and Hp(X,V ) = 0
for all p > 0.

Proof. Note first that V is the pushforward along the closed embedding of the vertices of X
of the constant sheaf Z. Therefore Hp(X,V ) = Hp(V (X),Z) = 0 for all p > 0.

Next, note that E is the direct sum of sheaves Ei supported on each of the edges of X.
Then Ei is the pushforward along the closed embedding of either an interval or a circle. We
can therefore assume that X is either an interval or a circle.

If X is an interval then its topology is generated by open subsets and E is flasque, hence
has no higher cohomology. If X is a circle then its universal cover Y has no self-loops, so E is
flasque on Y. Therefore Hp(X,E ) can be identified with the group cohomology Hp(Z,E (Y)).
The group cohomology of Z vanishes for p > 1 and for p = 1 it coincides with the coinvariants
of E (Y). We identify E (Y) with a countable product of copies of Z, with Z acting by shift.
The coinvariants are therefore zero and the lemma is proved. �

Corollary 3.4.3. If X is a compact tropical curve then H0(X,H ) = H1(X) and H1(X,H ) =
H0(X).

Proof. This is immediate, as E (X) is the free abelian group generated by the edges of X and
V (X) is the free abelian group generated by the vertices, and the map between them is the
boundary map. �

Lemma 3.4.4. If X is a compact tropical curve then H0(X,Mgp)→ H0(X,L) is an isomor-
phism.

Proof. We want to show that on a compact tropical curve, every globally defined linear
function is locally constant. Let Z be a maximal connected subgraph where f takes its
minimum value. Then if e is a flag of X exiting Z, the slope of f along e must be positive.
But by the balancing condition,

∑
e µ(e) = 0, when the sum is taken over all edges exiting Z.

The only way a sum of positive numbers can be zero is if it is empty, so we conclude Z = X
and that f is constant. �

Using Corollary 3.4.3 and Lemma 3.4.4, we write down the long exact sequence in coho-
mology associated to the short exact sequence in the first row two rows of (3.4.1):

0→ H1(X)→ H1(X,Mgp)→ H1(X,L)
deg−−→ H0(X)→ 0(3.4.5)

0→ E (X)→ H1(X,Mgp)→ H1(X,P)→ 0

The homomorphismH1(X,L)→ H0(X) is called the degree. We can also identifyH1(X,Mgp) =
Hom(H1(X),Mgp).

Lemma 3.4.6. The homomorphisms (3.4.6.1)

H1(X) = H0(X,H )→ H1(X,Mgp) = Hom(H1(X),Mgp)(3.4.6.1)

E (X) = H0(X,E )→ H1(X,Mgp) = Hom(H1(X),Mgp)

in the exact sequences (3.4.5) are the intersection pairing on X.
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Proof. The first homomorphism is induced from the second by restriction to H1(X) ⊂ E (X),
so it suffices to consider the second. Suppose that α ∈ H0(X,E ). We can regard α as a
section of E , and therefore as an integer-valued function on the edges of X. The class of its
coboundary in H1(X,Mgp) is the Mgp-torsor on X of piecewise linear functions having slopes
α along the edges.

Such a torsor is classified by its failure to be representable by a well-defined, piecewise
linear function, in the form of its monodromy around the loops of X. In other words, we may
make the identification (3.4.6.2):

(3.4.6.2) H1(X,Mgp) = Hom(H1(X),Mgp)

Given α ∈ H0(X,E ) and a γ ∈ H1(X), represented as a sum of oriented edges of X, the
monodromy of α around γ is ∑

e∈γ

α(e)

which is exactly the same as α.γ. �

We summarize our results in the following corollary, which may be viewed as a tropical
Abel theorem:

Corollary 3.4.7. Let X be a compact tropical curve metrized by M . Then there are exact
sequences (3.4.7.1), where ∂ is the intersection pairing:

0→ H1(X)
∂−→ Hom(H1(X),Mgp)→ H1(X,L)

deg−−→ H0(X)→ 0(3.4.7.1)

0→ E (X)
∂−→ Hom(H1(X),Mgp)→ H1(X,P)→ 0

3.5. Monodromy. Let X be a tropical curve metrized by M . Let Q be a P-torsor on X.
By Corollary 3.4.7, there is an α ∈ Hom(H1(X),Mgp) inducing Q, uniquely determined by
Q up to addition of ∂(e), for an edge e of X. We refer to α as a monodromy representative
of Q.

Proposition 3.5.1. Let X be a compact, connected tropical curve metrized by a valuative
monoid M . The following conditions are equivalent of Q ∈ H1(X,Mgp

X ):

(1) There exists a subdivision Y of X such that the restriction of Q to Y is trivial.
(2) For any monodromy representative α of Q and any γ ∈ H1(X), the monodromy of α

around γ is bounded by the length of γ.

Before we begin the proof, we note that to verify the monodromy condition, it is sufficient
to consider a single monodromy representative:

Lemma 3.5.2. Suppose that α and β are monodromy representatives of the same P-torsor
on a tropical curve X, and let γ ∈ H1(X). The monodromy of α around γ is bounded by the
length of γ if and only if the monodromy of β around γ is bounded by the length of γ.

Proof. Since α and β differ by a linear combination of ∂(e), for e among the edges of X,
it is sufficient by Lemma 2.1.3.3 to show that ∂(e) has bounded monodromy around each
γ ∈ H1(X). But the monodromy of ∂(e) around γ is e.γ. If e is not contained in γ then
e.γ = 0, which is obviously bounded by `(γ). If e is contained in γ then e.γ = ±`(e), and
`(e) is bounded by γ because e is contained in γ. �
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Lemma 3.5.3. Suppose that τ : Y → X is a subdivision of tropical curves. Let α be an
element of H1(X,Mgp). The monodromy of α around the loops of X is bounded by their
lengths if and only if same holds of the monodromy of τ ∗α around the loops of Y.

Proof. The lengths of the loops of Y is the same as the length of the loops in X and the
monodromy around them is the same as the monodromy around the loops in X. �

Proof of Proposition 3.5.1. Suppose first that Q can be trivialized on a subdivision τ : Y→
X. Let µ : H1(X) → Mgp be a monodromy representative of Q. Then µ lies in the image
of ∂ : E (Y) → Hom(H1(Y),Mgp) = Hom(H1(X),Mgp), so by Lemma 3.5.2, its monodromy
around the loops of Y is certainly bounded by the lengths of the loops. But by Lemma 3.5.3,
this implies that µ has the same property.

Now assume that the monodromy of µ around the loops of X is bounded by their lengths.
We construct a subdivision τ : Y → X such that τ ∗µ is in the image of ∂ : E (Y) →
Hom(H1(Y),Mgp

S ).
The proof will be by induction on the rank of the image of the monodromy homomor-

phism (3.5.3.1):

(3.5.3.1) µ : H1(X)→Mgp

Our strategy will be to subdivide X so that E (Y) enlarges and adjust µ by the addition of
elements in its image so that the rank of the image of µ decreases. We therefore permit
ourselves to adjust µ as necessary by elements of the image of ∂.

By Proposition 2.1.3.8, there is a filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂Mgp
S

of ordered subgroups such that each Vn/Vn−1 may be embedded in R, preserving the ordering.
Let n be the largest index such that the image of µ is contained in Vn. If n = 0 we are done.
Otherwise, choose an embedding of Vn/Vn−1 in R.

This induces a metric on X with lengths in R. We write X for the tropical curve obtained
by collapsing those edges in X whose lengths in R are zero. Note that there is a well-defined
monodromy function

µ : H1(X)→ R

precisely because the monodromy around γ ∈ H1(X,Z) is bounded by the length of γ.
Indeed, γ ∈ H1(X) has length δ, and the image of δ in R is zero then the boundedness of the
mondromy around γ implies that µ(γ) = 0 as well.

Choose a spanning tree of X and let E be a set of edges of X not in the spanning tree.
Each of these edges corresponds uniquely to an edge of X, so we will also think of E as a set
of edges of X.

For each e ∈ E, let γe be the corresponding basis element of H1(X). Let δe be the length
of γe and let µe = µ(γe) be the monodromy around it, both valued in R. Since δe 6= 0, there
is some integer k such that kδe ≤ µe ≤ (k+ 1)δe. We replace µ by µ− k∂(e) so that we may
assume that 0 ≤ µe ≤ δe. Let τ : Y→ X be the subdivision of X that divides the edge e into
edges e′ and e′′ of lengths µe and δe − µe, respectively. Then τ ∗µ− ∂(e′) has no monodromy
around γe.

Repeating this procedure for all e in E, we arrive at a representative for the monodromy
of Q such that the image of µ in Vn/Vn−1 is zero. Now we repeat the process with n replaced
by n− 1 until we have replaced µ by 0. �
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Definition 3.5.4. We say that a homomorphism H1(X) → Mgp on X has bounded mon-
odromy if it satisfies the equivalent conditions of Proposition 3.5.1. We indicate a subgroup
of bounded monodromy by decoration with a dagger (†).

3.6. The tropical Jacobian. Let X be a tropical curve metrized by a monoid M . We
construct the tropical Jacobian of X in a manner covariantly functorial in M . This effectively
constructs the tropical Jacobian relative to the moduli space of tropical curves.

Definition 3.6.1. We define the tropical Jacobian by (3.6.1.1), where the dagger (†) indicates
the subgroup of elements with bounded monodromy (Definition 3.5.4):

(3.6.1.1) Tro Jac(X) = Hom(H1(X),Mgp)†/H1(X)

Now suppose that we have a monoid homomorphism M → N . This induces an edge
contraction Y of X. We wish to produce a morphism (3.6.2):

(3.6.2) Tro Jac(X)→ Tro Jac(Y)

The edge contraction X → Y induces a homomorphism H1(X) → H1(Y). Note that if
µ ∈ Tro Jac(X) has bounded monodromy then, by definition, the composition (3.6.3)

(3.6.3) H1(X)→Mgp → Ngp

takes the value zero on all loops of X contracted in Y. Therefore the homomorphism factors
through H1(Y), and does so uniquely because H1(X)→ H1(Y) is surjective. The factoriza-
tion still has bounded monodromy, since if α is bounded by δ in Mgp then its image in Ngp

is bounded by the image of δ. We obtain the desired morphism 3.6.2.
It is clear from the construction that it respects compositions of monoid homomorphisms.

Following the procedure described in Section 2.3.1, we may extend the definition of Tro Jac(X)
to families. That is, given a family of tropical curves X over a logarithmic scheme S we
obtain an étale sheaf on the category of logarithmic schemes over S by either of the following
equivalent procedures:

(1) If T is an atomic neighborhood of a geometric point t, then we define Tro Jac(X/S)(T ) =
Tro Jac(Xt) and sheafify the resulting presheaf.

(2) If T is a logarithmic scheme over S of finite type then an object of Tro Jac(X/S)(T )
consists of objects of Tro Jac(Xt) for each geometric point t that are compatible along
geometric generizations. We extend from logarithmic schemes that are of finite type
to all logarithmic schemes by the approximation procedure of [GD67, IV.8].

If X is a logarithmic proper, vertical logarithmic curve over S with tropicalization X then
we pose Tro Jac(X/S) = Tro Jac(X/S).

Proposition 3.6.4. Tro Jac(X) is unchanged by replacing S with a logarithmic modification
and X with a different logarithmic model.

Proof. This follows from Lemma 3.5.3, Proposition 3.2.3, and the fact that Mgp
S is unchanged

by a logarithmic modification. �

3.7. The tropical Picard group.

Definition 3.7.1. Let X be a tropical curve metrized by a monoid M . We say that an
element of H1(X,L) has bounded monodromy if its image in H1(X,P) has bounded mon-
odromy (which means that it is the image of a class of bounded monodromy in H1(X,Mgp) =
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Hom(H1(X),Mgp)). For each d ∈ H0(X), we write Tro Picd(X) for the preimage of d under

the degree homomorphism Tro Pic(X) ⊂ H1(X,L)
deg−−→ H0(X) from Corollary 3.4.7.

We define Tro Pic(X) to be category of L-torsors whose classes in H1(X,L) have bounded
monodromy, and we define Tro Pic(X) to be the set of isomorphism classes of Tro Pic(X).
Objects of Tro Pic(X) are called tropical line bundles on X.

The main task of this section is to describe the functoriality of Tro Pic(X) in the monoid M .

Lemma 3.7.2. A class in H1(X,L) has bounded monodromy if and only if it is the sum
of a class in the image of H0(X,V ) and a class of bounded monodromy in H1(X,Mgp) =
Hom(H1(X),Mgp) (under the maps induced from diagram (3.4.1)).

Proof. This follows from the commutativity of the diagram (3.7.4.3), below, and its exact-
ness in the second row (which is the long exact sequence associated to the middle column
of (3.4.1)):

(3.7.2.1)

H1(X,Mgp)

��

H1(X,Mgp)

��
H0(X,V ) // H1(X,L) // H1(X,P)

�

We will obtain the functoriality of Tro Pic(X) from naturally defined functorial operations
on P and V . We begin by summarizing these.

Proposition 3.7.3. Let X be a tropical curve metrized by M , let u : M → N be a homo-
morphism of monoids, and let σ : X→ Y be the induced edge contraction.

(i) There is a unique homomorphism P(X) → P(Y), sending f ∈ P(X) to f ∈ P(Y)
such that f(σ(x)) = f(x) whenever x is not contracted in Y.

(ii) There is a unique homomorphism V (X) → V (Y) by sending the basis vector [x] to
[σ(x)].

(iii) The homomorphisms above commute with the quotient map P→ V .

Proof.

(i) The uniqueness is evident, since every y ∈ Y is the image of some x ∈ X that is not
contracted. To check the existence, assume that x is a flag of X that is contracted in
Y and f(x) = (α, µ). Then α(i(x)) − α(x) ∈ Z`(x) and `(x) lies in the kernel of u
(because x is contracted), so u(α(i(x)) = u(α(x)). Therefore u ◦ f is constant on the
regions contracted by σ and descends to Y.

(ii) Immediate.
(iii) We argue that the diagram (3.7.3.1) commutes:

(3.7.3.1)

P(X) //

��

V (X)

��
P(Y) // V (Y)

Let f = (α, µ) be a piecewise linear function on X. The coefficient of v in the image
of f in V (X) is

∑
r(e)=v µ(e). Therefore the image of f in V (Y), going around the top
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and right of (3.7.3.1), is
∑

f(v)=w

∑
r(e)=v µ(e). In this sum, each edge of the contracted

locus appears twice, with opposite orientations, and each edge exiting the contracted
locus appears once, oriented out. The sum therefore reduces to

∑
r(e)=w µ(e), which

is what we get from following f around the bottom and left of the diagram.

�

Proposition 3.7.4. Let M → N be a homomorphism of commutative monoids inducing an
edge contraction X→ Y of tropical curves. Then the maps (3.7.4.1)

H0(X,V )→ H0(Y,V )(3.7.4.1)

H1(X,M)† → H0(Y, N)†

agree on their common domain of definition and define a map (3.7.4.2):

(3.7.4.2) H1(X,L)† → H1(Y,L)†

Proof. Diagram (3.4.1) induces a commutative square (3.7.4.3), below:

(3.7.4.3)

H0(X,E ) //

��

H1(X,Mgp)†

��

// H1(X,P)†

H0(X,P) // H0(X,V ) // H1(X,L)† // H1(X,P)†

Suppose that u ∈ H1(X,L) is the image of some v ∈ H1(X,Mgp)† and w ∈ H0(X,V ). Then
the image of u in H1(X,P) must vanish. This is also the image of v, so that v is the image
of some x ∈ H0(X,E ). The difference between w and the image of x maps to 0 in H1(X,L),
hence is the image of some y ∈ H0(X,P). Replacing w by w − y we discover that we must
show the two maps in question agree on H0(X,E ).

We can define a map (3.7.4.4) sending an edge x to itself if it is not contracted in Y and
to 0 if it is contracted.

(3.7.4.4) H0(X,E )→ H0(Y,E )

This commutes with the maps to H0(X,V ) and H1(X,Mgp) = Hom(H1(X),Mgp). �

3.8. The tropical Picard stack. The construction in Proposition 3.7.4 can be categorified
to operate on L-torsors with bounded monodromy, and not merely their isomorphism classes.
Given an edge contraction σ : X → Y associated to a homomorphism of monoids M → N
and an L-torsor Q on X with bounded monodromy, we wish to produce an L-torsor on Y in
a canonical way.

Using the following lemma, we may promote σ to be a morphism of sites.

Lemma 3.8.1. Let σ : X→ Y be an edge contraction induced from a homomorphism M →
N . Let V → Y be a local isomorphism. Then the set-theoretic fiber product U = V×Y X is
naturally equipped with the structure of a tropical curve and the projection U → X is a local
isomorphism.

Proof. The involution i and the partially defined function r on U are induced from those on
X, Y, and V and their compatibility. The metric ` is induced from the projection to X. We
must verify that r(u) = u if and only if i(u) = u if and only if `(u) = 0 for all u ∈ U. Indeed,
because σ : X→ Y is surjective, each of these conditions is equivalent to the corresponding
condition in X, which is a tropical curve by assumption.
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To see that U → X is a local isomorphism, let u be a vertex of U and denote by x, y,
and v its images in X, Y, and V. Let Sx, Sy, Su, and Sv denote their stars. Then Sv

bijects onto Sy, by the assumption that V → Y is a local isomorphism. Therefore σ−1Sv

maps isomoprhically onto σ−1Sy. But Su ⊂ σ−1Sv and Sx ⊂ σ−1Sy, so that Su maps
isomorphically onto Sx, as required. �

The lemma shows that if V → Y is a local isomorphism, then σ−1V → X is also a local
isomorphism. It is immediate that σ−1 respects fiber products and covers so we obtain a
morphism of sites σ : X→ Y.

We construct the desired functor Tro Pic(X)→ Tro Pic(Y) by working locally. We write

σ∗BL†X for the substack of those Q ∈ σ∗BLX(V) such that Q has bounded monodromy on
σ−1U for each local isomorphism U→ Y.

Proposition 3.8.2. There is a morphism (3.8.2.1)

(3.8.2.1) σ∗BL†X → BL†Y

inducing the morphisms in Proposition 3.7.4.

Proof. Provided we do so compatibly with restriction, it is sufficient to work locally in Y.
We can therefore assume that Y is either a single edge or has a single vertex with a number
of edges attached to it at only one side. In the former case, X is also a single edge and
σ : X→ Y is an isomorphism, because σ is an edge contraction. We therefore assume that Y
is a single vertex with edges radiating from it. We note that in this case, Y has no nontrivial
covers, so that we only need to construct (3.8.2.1) on global sections:

(3.8.2.2) Tro Pic(X)→ Tro Pic(Y)

Let us write L′ for the sheaf of N -valued linear functions on X and Tro Pic(X)′ for the
category of L′-torsors on X of bounded monodromy. Since every edge of X that is contracted
by σ has length 0 in N (by definition), L′ = σ∗LY. In particular, L′ is constant with value
Ngp on the preimage of the vertex of Y. The quotient L′/Ngp is a constant Z on the edges
of X not contracted by σ and therefore has vanishing H1. We may therefore make the
identifications (3.8.2.3):

(3.8.2.3) H1(X,L′) = H1(X, Ngp) = Hom(H1(X), Ngp)

But every loop of X has length 0 when measured inN , so that a homomorphismH1(X)→ Ngp

of bounded monodromy must be 0. Therefore H1(X,L′)† = 0 and Tro Pic(X)′ = BΓ(X,L′).
Observing now that L′(X) = L(Y), we conclude that Tro Pic(X)′ = Tro Pic(Y). The sought
after morphism (3.8.2.2) now arises as the composition (3.8.2.4):

(3.8.2.4)
Tro Pic(X) // Tro Pic(X)′ Tro Pic(Y)

∼oo

Γ(X,BL)† // Γ(X,Bσ∗L)† Γ(Y,BL)†oo

�

We leave it to the reader to verify that the morphism of Proposition 3.8.2 is compatible
with composition of homomorphisms of monoids. We can now define the tropical Picard
group in families, using the process described in Section 2.3.1. If X is a family of tropical
curves over a logarithmic scheme S, we obtain a stack Tro Pic(X/S) on the large étale site
of S characterized by either of the following two descriptions:
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(1) If T is an atomic neighborhood of a geometric point t, then Tro Pic(X/S)(T ) =
Tro Pic(Xt).

(2) If T is a logarithmic scheme over S and T is of finite type then an object of Tro Pic(X/S)(T )
consists of a tropical line bundle Qt on Xt for each geometric point t such that, for
any geometric specialization t t′, the line bundle Qt′ induces Qt by way of the edge
contraction Xt′ → Xt and Proposition 3.8.2.

3.9. Prorepresentability and subdivisions. Let X be a tropical curve metrized by a
monoid M . We saw in Section 3.6 that the tropical Jacobian can be regarded as a functor
of pairs (N, u) where u : M → N is a homomorphism of monoids. This functor is not
representable, as we saw in Section 2.2.7. However, it is not that far from being representable:
it is the quotient of a prorepresentable functor by a discrete group.

Lemma 3.9.1. The functor Hom(H1(X),P)† is prorepresentable on M/Mon by the system
of all submonoids P of Mgp +H1(X) (direct sum) with the following properties:

(1) P is finitely generated over M ;
(2) for each γ ∈ H1(X) we have γ ≺ `(γ) in P .

Proof. Note that the second property implies that P generates Mgp + H1(X) as a group.
Indeed, if γ ≺ `(γ) then γ − n`(γ) ∈ P for some integer n; as `(γ) ∈ M ⊂ P , this implies
γ ∈ P .

Let I be the diagram of all P with the indicated properties. Let F = “ lim←− ”P∈I Hom(P ,−)

be the pro-object they represent. Certainly, if P ∈ I then a homomorphism P → N com-
muting with the morphisms from M induces an object of Hom(H1(X), N)† by passing to the
associated group. This gives us a morphism F → Hom(H1(X),P)† that we would like to
show is an isomorphism.

Suppose that µ : H1(X)→ Ngp is a homomorphism with bounded monodromy. Combining
this with the structural homomorphism M → N we get a homomorphism of monoids ν :
M +H1(X)→ Ngp. Choose a basis e1, . . . , eg of H1(X). For each i, there are integers n and
m such that nν(`(ei)) ≤ ν(ei) ≤ mν(`(ei)) in Ngp. That is ei − n`(ei) and m`(ei)− ei both
lie in the preimage of N under ν. We take P to be the submonoid of M +H1(X) generated
by M and the ei−n`(ei) and m`(ei)− ei. Then, by construction, P is finitely generated over
M , generates M +H1(X) as a group, has bounded monodromy, and induces µ via ν.

This shows that F → Hom(H1(X),P)† is surjective. To see that it is also injective, consider
a second map Q → N inducing µ as above, with Q ∈ I. Then Q ∩ P is also in I and the
map Q ∩ P → N induced from either Q→ N or P → N — they must be the same because
the induced maps on associated groups is the same — represents the same object of F (N).
This proves the injectivity and completes the proof. �

Let us now assume that M is finitely generated. There is no loss of generality in doing so,
since we only care about the set of lengths of the edges of X, which is in any case a finitely
generated submonoid.

It is then dual to a rational polyhedral cone σ, and the category of monoids that are
finitely generated relative to M is contravariantly equivalent to the category RPC/σ of
rational polyhedral cones over σ. These observations permit us to reinterpret Lemma 3.9.1
dually, to the effect that Hom(H1(X),P)† is representable by an ind-object of RPC/σ.

Rational polyhedral cones are finitely generated, saturated, convex regions in lattices, so we
can interpret ind-rational polyhedral cones as not-necessarily-finitely generated, saturated,
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convex regions in torsion-free abelian groups. Actually, Lemma 3.9.1 gives a pro-object of
M/Mon whose associated group is constant, so that it is represented dually by a saturated,
convex region in the lattice Hom(Mgp,Z)×H1(X). The following corollary specifies which:

Corollary 3.9.2. The functor Hom(H1(X),P)† is ind-representable by the collection τ of
pairs (u, v) ∈ Hom(Mgp,Z)×Hom(H1(X),Z) such that u(M) ≥ 0 and whenever u(`(γ)) = 0
for some γ ∈ H1(X), we also have v(γ) = 0.

Proof. Let I denote the pro-M -monoid consisting of all P ⊂ Mgp × H1(X) such that P is
finitely generated over M and γ ≺ `(γ) in P for all γ ∈ H1(X) (as in Lemma 3.9.1). Let
J denote the ind-rational polyhedral cone consisting of all (u, v) such that u(M) ≥ 0 and
u(`(γ)) = 0 implies v(γ) = 0. We wish to show that I and J are dual.

Since I is closed under finite intersections and J is closed under finite unions, it is sufficient
to demonstrate the duality on the level of rays in Hom(Mgp×H1(X),Z) and the corresponding
half-spaces in Mgp ×H1(X). That is, we need to show that (u, v) ∈ Hom(Mgp ×H1(X),Z)
has the properties u(M) ≥ 0 and u(`(γ)) = 0 implies v(γ) = 0 if and only if M ⊂ (u, v)∨

and γ ≺ `(γ) in (u, v)∨. But this is immediate: u(M) ≥ 0 means precisely that M ⊂ (u, v)∨;
likewise, γ ≺ `(γ) in the half-space (u, v)∨ means either that u(`(γ)) = v(γ) = 0 or that
u(`(γ)) > 0, which is equivalent to the property that u(`(γ)) = 0 implies v(γ) = 0. �

The advantage of working with cones instead of monoids is that we can see subdivisions
rather explicitly.

Corollary 3.9.3. Subdivisions of Hom(H1(X),P)† by representable functors are in bijection
with subdivisions of the cone τ defined in Corollary 3.9.2.

Proof. This is entirely a matter of unwinding definitions. Suppose first that T is a subdivision
of τ by rational polyhedral cones. Then for every rational polyhedral cone σ and morphism
σ → τ , the fiber product T ×τ σ is a subdivision of σ. But τ represents Hom(H1(X),P)†, so
that if hT is the functor represented by T then hT → Hom(H1(X),P)† is representable by
subdivisions.

Suppose conversely that hT → Hom(H1(X),P)† is representable by subdivisions, where T
is a cone complex. For any finitely generated subcone σ of τ , the fiber product hσ×hτ hT
is representable by a subdivision of σ. It is immediate from this that T is a subdivision of
τ . �

Corollary 3.9.4. Subdivisions of Tro Jac(X) by cone spaces [CCUW17] correspond to H1(X)-
equivariant subdivisions of the cone τ of Corollary 3.9.2.

Proof. This is immediate, since subdivisions of Tro Jac(X) are the same as H1(X)-equivariant
subdivisions of Hom(H1(X),P)†. �

3.10. Boundedness of moduli. Our definition of boundedness is a natural adaptation to
logarithmic schemes of the schematic notion [Gro95, Définition 1.1].

Definition 3.10.1. A moduli problem F over logarithmic schemes over S is said to be
bounded if, locally in S, there is a logarithmic scheme T of finite type over S and a morphism
T → F that is surjective on valuative geometric points.

Theorem 3.10.2. If X is a compact tropical curve over S then Tro Jac(X/S) is bounded
over S.



34 SAMOUIL MOLCHO AND JONATHAN WISE

Proof. Let X be the tropicalization of X. The assertion is local to the constructible topology
and to the étale topology on S, so we can assume that the logarithmic structure on S has
constant characteristic monoid and that the dual graph of X is also constant. After these
restrictions, we have the exact sequence (3.10.2.1) by definition of the tropical Jacobian:

(3.10.2.1) 0→ H1(X)
∂−→ Hom(H1(X),Glog

m )† → Tro Jac(X/S)→ 0

Since ∂ requires only a finite number of elements of MS to describe, we may assume that Mgp
S

is a finitely generated abelian group. We identify a bounded subfunctor of Hom(H1(X),Glog
m )†

that surjects onto Tro Jac(X).
Choose a basis e1, . . . , eg for H1(X). Let `(ei) = ∂(ei).ei denote the length of ei. Take

Z ⊂ Hom(H1(X),Glog
m )† to be the locus of those µ where (3.10.2.2) holds

(3.10.2.2) − r(g + 1)`(ei) ≤ µ(ei) ≤ r(g + 1)`(ei)

for all i, with r denoting the rank of Mgp
S .

Lemma 3.10.2.3. Z is bounded.

Proof. Let W be the base change of the toric map A2g → Ag : (x1, . . . , xg, y1, . . . , yg) 7→
(x1y1, . . . , xgyg) along a map f : S → Ag such that f ∗ε−1ti represents 2r(g + 1)`(ei) in MS.
Let µ ∈ Hom(H1(X),Γ(W,Mgp

W )) be the homomorphism such that µ(ei) = ε−1(xi) − r(g +
1)`(ei). This gives a map W → Z over S.

To see that W → Z is surjective on valuative geometric points, suppose that µ : T →
Hom(H1(X),Glog

m ) be a valuative geometric point of Z. Then let xi be a section of MT such
that xi = µ(ei) + r(g+ 1)`(ei) (where xi is the image of xi in MT ). Let yi = tix

−1
i , which lies

a priori in Mgp
T , but in fact in MT because xi ≤ 2r(g + 1)`(ei) by the choice of f : S → Ag.

This lifts T → S → Ag to A2g and therefore lifts T → Z to T → W , by definition of the
fiber product. �

To complete the proof, we need to show that the valuative geometric points of Z surject
onto those of Tro Jac(X/S) under the projection Hom(H1(X),Glog

m )† → Tro Jac(X/S). We
shall therefore assume that MS is valuative. Note that passing to a valuation of MS does
not change Mgp

S , so Mgp
S is still finitely generated. Let

0 = N0 ⊂ N1 ⊂ · · · ⊂ Nk = MS

be the filtration guaranteed by Proposition 2.1.3.8. It is finite because Lemma 2.1.2.6 implies
that each N i is determined by its associated subgroup of Mgp

S , and Mgp
S is a finitely generated

abelian group, hence noetherian. In fact, the length, k, of this filtration is bounded by the
rank, r, of Mgp

S .
We now proceed by induction on the length of this filtration. We argue that if µ is an

element of Hom(H1(X), Ngp
i ) with bounded monodromy then there is some γ ∈ H1(X) and

some ζ such that −(g+ 1)`(ej) ≤ ζ(ej) ≤ (g+ 1)`(ej) for all j and µ− ζ − ∂(γ) takes values
in N i−1.

By composition with the homomorphism q : N i → N i/N i−1, we obtain a map

(3.10.2.4) Hom(H1(X), Ngp
i )† → Hom(H1(X), Ngp

i /N
gp
i−1)†.

The important point here is that if µ ∈ Hom(H1(X), Ngp
i ) has bounded monodromy then qµ

also has bounded monodromy, in the sense that qµ(α) ≺ q`(α) where `(α) ∈ MS denotes
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the length of α. Let us write µ for the image of µ in Ngp
i /N

gp
i−1 and ` for the length function

taking values in Ngp
i /N

gp
i−1.

By Proposition 2.1.3.8, the totally ordered abelian group Ngp
i /N

gp
i−1 is archimedean, hence

admits an order preserving inclusion in R by Theorem 2.1.3.6. Since µ ∈ Hom(H1(X),R), it
can be written µ = α + ∂(γ) for some γ ∈ H1(X) and some α =

∑
ai∂(ei) with 0 ≤ ai ≤ 1

for all i. Now, evaluating α on ej, we get (3.10.2.5):

(3.10.2.5) α(ej) =

g∑
i=1

ai∂(ei).ej

But we have −`(ej) ≤ ∂(ei).ej ≤ `(ej) for all i and j, so we obtain

(3.10.2.6) − g`(ej) ≤ α(ej) ≤ g`(ej)

for all j.
Note now that α = µ − ∂(γ), which is in Hom(H1(X),R) by construction, is actually

in the image of Hom(H1(X), Ngp
i /N

gp
i−1). We can lift α to some ζ ∈ Hom(H1(X), Ngp

i ) ⊂
Hom(H1(X),Mgp

S ). In fact, we can arrange for ζ to lie in Hom(H1(X), Ngp
i )† by defining

ζ(ej) = 0 if `(ej) lies in N i−1; if `(ej) does not lie in Ngp
i−1 then all of Ngp

i is bounded by `(ej)
and there is nothing to check.

The inequalities (3.10.2.6) lift to (3.10.2.7)

(3.10.2.7) − g`(ej)− u ≤ ζ(ej) ≤ g`(ej) + v

for some u, v ∈ N i−1. Now, `(ej) is a positive element of Ngp
i /N

gp
i−1 and both u and v lie in

N i−1, so u and v are both dominated by `(ej) by Lemma 2.1.3.7. In particular, u ≤ `(ej)
and v ≤ `(ej). Substituting this into (3.10.2.7), we obtain (3.10.2.8),

(3.10.2.8) − (g + 1)`(ej) ≤ ζ(ej) ≤ (g + 1)`(ej)

as desired.
We have now shown that µ− ∂(γ)− ζ takes values in Ngp

i−1. Repeating this process once

for each of the k steps of the filtration 3.10.2.4, we obtain µ−
∑
∂(γi)−

∑k
i=1 ζi = 0. Thus

ζ =
∑
ζi represents µ in Tro Jac(X/S) and, as each ζi satisfies (3.10.2.8) and k ≤ r, their

sum satisfies (3.10.2.2), so ζ ∈ Z(S). �

Corollary 3.10.3. Let X be a compact tropical curve over S. Then Tro Picd(X/S) is quasi-
compact over S for all d ∈ H0(X).

Proof. As Tro Picd(X/S) is a torsor under Tro Pic0(X/S) by Corollary 3.4.7, it is sufficient
to assume d = 0. But Tro Pic0(X/S) = Tro Jac(X/S) by Corollary 3.10.3, so the conclusion
follows from Theorem 3.10.2. �

3.11. Boundedness of the diagonal. The main point of this section is to demonstrate
that the lattice defined by a positive definite matrix of real numbers is discrete and that this
is also valid as the lattice varies in a tropical family. We make use of the tropical topology
defined in Section 2.3.2.

These results are also demonstrated method as part of the proof of [KKN08b, Proposi-
tion 4.5]. The proof appears in [KKN08c, Lemma 5.2.7] and [KKN08b, Section 9.4]. Unlike
the present proof, that proof does not rely on the tropical topology, but it ultimately comes
down to a compactness argument, as this one does.



36 SAMOUIL MOLCHO AND JONATHAN WISE

Definition 3.11.1. Let ∂ : A → Hom(A,Mgp) be a pairing on a finitely generated free
abelian group A, valued in a partially ordered abelian group Mgp. We say that ∂ is positive
definite if, for all γ, γ′ ∈ A, we have ∂(γ).γ′ ≺ ∂(γ).γ.

Lemma 3.11.2. Let A be a finitely generated free abelian group, let V be an totally ordered
abelian group, and let ∂ : A → Hom(A, V ) be a positive definite pairing. Then there is a
basis e1, . . . , eg of A, a positive δ ∈ QV and a cover of RA by rational polyhedral cones σi
and −σi such that, for each i, we have ∂(ei).γ > δ for all nonzero γ ∈ σi ∩ A.

Proof. We assume first that V is archimedean, so that it admits an order prereserving em-
bedding in R. Then ∂ defines a positive definite pairing on A valued in R. The image
of (3.11.2.1) is a discrete lattice.

(3.11.2.1) ∂ : A→ Hom(A,R)

We choose ε ∈ R such that, for every γ ∈ A, we have |∂(γ).ei| > ε for some index i. We may
find a positive δ ∈ QV such that δ < ε.

Now we consider the possibility that V is merely totally ordered. If necessary, we may
replace V by the subgroup generated by the image of the pairing A×A→ V , and thus assume
that V is finitely generated. It therefore has a finite filtration (3.11.2.2) with archimedean
quotients Vp/Vp+1.

(3.11.2.2) V = V0 ⊃ V1 ⊃ · · · ⊃ Vn ⊃ Vn+1 = 0

For each p, let Ap be the subgroup of γ ∈ A such that ∂(γ).γ ∈ Vp. Since ∂ is positive
definite, this implies that ∂(γ).γ′ ∈ Vp for all γ′ ∈ A. Therefore ∂ descends to a positive
definite pairing ∂p on Ap/Ap+1, valued in the archimedean group Vp/Vp+1, for each p:

(3.11.2.3) ∂p : Ap/Ap+1 × Ap/Ap+1 → Vp/Vp+1

Choose a basis e1, . . . , eg of A such that the ei in Ap − Ap+1 induce a basis of Ap/Ap+1 for
each p. For each p, choose a δp ∈ Vp − Vp+1 such that, for every γ ∈ Ap − Ap+1, there is
an ei ∈ Ap − Ap+1 such that |∂p(γ).ei| > δp (mod Vp+1). This implies that, for any nonzero
γ ∈ Ap, there is some ei such that

∂(γ).ei > δp − ε

for some ε ∈ Vp+1. But both δp+1 and ε lie in Vp+1, so δp+1 + ε < δp. Therefore ∂(γ).ei > δp+1

as well. By induction, we find that there is some i such that ∂(γ).ei > δn. We take δ = δn.

We construct the σi by induction, beginning with σ
(0)
i = 0 for all i. We construct σ

(k+1)
i

from σ
(k)
i by selecting a vector γ ∈ A that is not in the interior of any ±σ(k)

i and adding

γ to σ
(k)
i for some i such that |∂(γ).ei| > δ (replacing γ with −γ if necessary). Then

the real projective space P = (RA − {0})/R∗ is the union of the interiors of the subsets(
(σ

(k)
i r {0}) ∪ (−σ(k)

i r {0})
)
/R∗. But P is quasicompact, so finitely many of these σ

(k)
i

suffice and therefore A is the union of the lattice points in the interiors of the ±σ(k)
i , for any

sufficiently large k. �

Suppose that ∂ : A → Hom(A,Mgp). If M → N is a monoid homomorphism, we denote
by ∂N the induced pairing valued in Ngp. Likewise, if φ : A → Mgp is a homomorphism,
we denote by φN the induced homomorphism valued in Ngp. when V = Ngp, we also write
∂V = ∂N and φV = φN .



THE LOGARITHMIC PICARD GROUP AND ITS TROPICALIZATION 37

Corollary 3.11.3. Let A be a finitely generated abelian group, let M be a sharp monoid, let
∂ : A → Hom(A,Mgp) be a positive definite pairing, and let φ : A → Mgp be a homomor-
phism. Let V be a valuation of M such that φV = 0. Then there is an open neighborhood U
of V in Cone◦(M) such that if φW = ∂W (γ) for some W ∈ U then γ = 0.

Proof. We apply Lemma 3.11.2 to obtain a basis e1, . . . , eg of A, a positive δ ∈ QV = QMgp,
and rational polyhedral cones σi ⊂ RA such that ∂(γ).ei > δ for all nonzero γ ∈ σi∩A. Note
that, for each i, the monoid σi ∩A is finitely generated. We choose a finite set of generators
Bi. Then we define U by the inequalities (3.11.3.1) and (3.11.3.2):

δ > 0(3.11.3.1)

∂(β).ei < δ for all β ∈ Bi(3.11.3.2)

By definition, these inequalities hold in V . Moreover, if W ∈ U and γ ∈ A is nonzero then
±γ lies in some σi. We assume that γ ∈ σi, the other possibility being similar. Then γ
is a finite, nonnegative linear combination of the elements of Bi, with at least one positive
coefficient (since γ 6= 0), say of β. Therefore ∂(γ).ei ≥ ∂(β).ei > δ. We conclude that the
only solution over W is γ = 0, as required. �

Corollary 3.11.4. Let M be a sharp monoid, let A be a finitely generated free abelian
group, let ∂ : A → Hom(A,Mgp) be a positive definite pairing, and let φ : A → Mgp be
a homomorphism. Suppose that V is the value group of a valuation of M such that φV is
not in the image of ∂V : A → Hom(A, V ). Then there is an open neighborhood U of V in
Cone◦(M) such that ∂−1(U) = ∅ (that is, there is no W ∈ U such that φW is in the image
of ∂W ).

Proof. Choose a finite set of generators Bi for each of the N finitely generated semigroups
σi ∩ A guaranteed by Lemma 3.11.2. For notational convenience, set σN+i = −σi and
BN+i = −Bi so that the σi cover A. Choose a partition of RA into regions τi, and an
ε ∈ QV = QM , with the following properties:

(1) ε > 0;
(2) for each i, there is a finite subset Ci ⊂ τi ∩ A such that every element of τi ∩ A can

be written as a sum of an element of Ci and a finite number of elements of Bi;
(3) for all γ ∈ τi ∩ A, we have |∂V (γ).ei − φV (ei)| > ε.

These data may be constructed by the same inductive procedure used in the proof of
Lemma 3.11.2 to construct the σi.

As γ ranges over Ci, we obtain finitely many inequalities |∂(γ).ei − φ(ei)| > ε. These,
together with ε > 0, determine an open neighborhood U of V in Cone◦(M).

Moreover, if W ∈ U , and γ ∈ A, then γ lies in some τi ∩ A, by definition. Therefore
γ = c+

∑
bj for some c ∈ Ci and bj ∈ Bi. In particular,

|∂W (γ).ei − φW (ei)| ≥ |∂W (c).ei − φW (ei)| > ε

so ∂W (γ) 6= φW . This holds for all γ ∈ A and all W ∈ U . �

Corollary 3.11.5. Let A be a finitely generated abelian group, let M be a sharp monoid,
and let ∂ : A → Hom(A,Mgp) be a positive definite pairing. Then A → Hom(A,Glog

m ) is of
finite type.

Proof. The assertion is, in other words, that for any logarithmic scheme of finite type and
any morphism φ : S → Hom(A,Glog

m ), the fiber product A×Hom(A,Glog
m ) S is quasicompact.
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This assertion is local in the constructible and étale topologies on S, so we can assume S is
connected and has a constant logarithmic structure, the stalk of whose characteristic monoid
is M . We therefore regard φ as a homomorphism A→Mgp.

Let V be a sharp valuation of M . By Corollary 3.11.4, there is a maximal open subset U
of Cone◦(M) such that φW is not in ∂W (A) for any W ∈ U . By Corollary 3.11.3, there is,
for each γ ∈ A, an open subset Uγ such that, for all W ∈ Uγ, if φW is in the image of ∂ then
φW = ∂(γ). Since Cone◦(M) is quasicompact, finitely many of the open subsets Uγ and U
suffice to cover it. We label these Ui. Refining them if necessary, we can assume they are all
basic open sets, meaning they are defined by finitely many strict inequalities.

Each open set Ui determines a subfunctor of the functor represented by M on logarithmic
schemes, and this subfunctor is representable by a logarithmic S-scheme T of finite type. In
fact, the underlying scheme of T is isomorphic to that of S. Letting N ⊂Mgp be the finitely
generated extension of M that represents U , we may construct MT = N × O∗T and define
ε(α, λ) = 0 for α 6= 0.

Since the disjoint union of the logarithmic schemes T covers S and is quasicompact, it
is sufficient to demonstrate the corollary after replacing S by one of the T . We can there-
fore assume that Cone◦(M) = U or that Cone◦(M) = Uγ for some γ. In the first case,
S×Hom(A,Glog

m ) A = ∅, which is certainly bounded.

In the second case, S×Hom(A,Glog
m ) A is defined as a subfunctor of S by the finitely many

conditions φ(ei) − ∂(γ).ei = 0, as the ei run over a basis of A. By Proposition 2.2.7.5, each
of these finitely many conditions is satisfied on a universal S-scheme of finite type. �

Corollary 3.11.6. Let X be a tropical curve metrized by M . Then the intersection pair-
ing (3.11.6.1) is bounded.

(3.11.6.1) ∂ : H1(X)→ Hom(H1(X),Glog
m )

Proof. The intersection pairing is positive definite. �

4. The logarithmic Picard group

Suppose that X is a proper, vertical logarithmic curve over S where the underlying scheme
of S is the spectrum of an algebraically closed field, and let X be the tropicalization of
X. Then H1(X,Glog

m ) = H1(X,Mgp
X ) = H1(X,P) because Mgp

X is a sheaf of torsion-free
abelian groups. If Q is an Mgp

X -torsor on X then we say Q has bounded monodromy if the
corresponding P-torsor on X does. If Q is an Glog

m -torsor on X then we say Q has bounded
monodromy if its induced Mgp

X -torsor has bounded monodromy.

Definition 4.1. Let X be a proper, vertical logarithmic curve over S. A logarithmic line
bundle on X is a Glog

m -torsor on X in the strict étale topology whose fibers have bounded
monodromy. Let Log Pic(X/S) be the category fibered in groupoids on logarithmic schemes
over S whose T -points are the logarithmic line bundles on XT . We write Log Pic(X/S) for
its associated sheaf of isomorphism classes.

4.2. Local finite presentation.

Definition 4.2.1. A category fibered in groupoids F over logarithmic schemes is said to be
locally of finite presentation if, for any cofiltered system of affine logarithmic schemes Si, the
map

lim−→F (Si)→ F (lim←−Si)
is an equvialence of categories.
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Local finite presentation is important because it allows us to limit our attention to loga-
rithmic schemes of finite type.

Proposition 4.2.2. Suppose X is a proper, vertical logarithmic curve over S. Then Log Pic(X/S)
is locally of finite presentation over S.

Proof. We begin by proving the essential surjectivity part of Definition 4.2.1 for the functor
π∗BGlog

m . The full faithfulness is similar but easier, and we omit it. Then we prove that
the bounded monodromy condition defining Log Pic(X/S) inside π∗BGlog

m is locally of finite
presentation.

The assertion is local in S, so we assume S is quasicompact and quasiseparated. Consider
a cofiltered inverse system of affine logarithmic schemes Si over S. Let Xi be the base change
of X to Si. Let L be a logarithmic line bundle over Y = lim←−Xi. Then there is an étale cover
Uj of Y over which L can be trivialized. We can assume that the Uj are all quasicompact and
quasiseparated. We note that Y is quasicompact and quasiseparted because all the Xi were.
In particular, we can arrange for the Uj to be finite in number. By [GD67, Théorème IV.8.8.2],
they are induced by maps Uij → Xi for some index i. These maps can be assumed étale by
[GD67, Proposition IV.17.7.8] and surjective by [GD67, Théorème IV.8.10.5].

The transition functions defining L come from Γ(Ujk,M
gp
Y ) = lim−→i

Γ(Uijk,M
gp
Xi

), so are
induced from transition functions over Uijk for some sufficiently large i. Likewise, the co-
cycle condition is checked in Γ(Ujk`,M

gp
Y ) = lim−→i

Γ(Uijk`,M
gp
Xi

) and is therefore valid for a
sufficiently large i. Then L is induced from Xi.

It remains to verify that the bounded monodromy condition is locally of finite presentation.
That is, we assume that we have a cofiltered inverse system of affine logarithmic schemes Si
over S, as before, and that αi ∈ H1(Xi,M

gp
Xi

). We assume that their limit β ∈ H1(Y,Mgp
Y )

has bounded monodromy and we prove the same for a sufficiently large αi.
There is a finite stratification of S into locally closed subschemes such that MS is locally

constant on each stratum. Since the bounded monodromy condition is checked on geometric
points, we can replace S with one of its strata and assume MS is constant. Now replacing S
by an étale cover, we can assume MS is constant and that the dual graph X of X is constant
as well.

Using the exact sequence (4.2.2.1)

(4.2.2.1) R1π∗π
∗Mgp

S → R1π∗MX → R1π∗MX/S = 0

we can lift α to α̃ ∈ H1(X, π∗Mgp
S ) = Hom(H1(X),Mgp

S ). The bounded monodromy condition
for α̃ can be checked by evaluating it on each of the finitely many generators of H1(X), and
for any one γ in H1(X), we can see that α̃(γ) is bounded by `(γ) in lim−→Γ(Si,M

gp
Si

) if and

only if it is bounded in Γ(Si,M
gp
Si

) at some finite stage. This completes the proof. �

Corollary 4.2.3. Suppose X is a proper, vertical logarithmic curve over S. Then the sheaf
Log Pic(X/S) is locally of finite presentation over S.

Proof. We can assume without loss of generality that X has connected fibers over S. Then
Log Pic(X/S) is a gerbe over Log Pic(X/S) banded by Glog

m . Locally in S, this gerbe admits
a section, making Log Pic(X/S) into a Glog

m -torsor over Log Pic(X/S). But Glog
m is certainly

locally of finite presentation and Log Pic(X/S) is locally of finite presentation over S by
Proposition 4.2.2, so Log Pic(X/S) is locally of finite presentation over S, as required. �
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4.3. Line bundles on subdivisions. The following statement is a corollary of Proposi-
tion 3.5.1. It says, effectively, that logarithmic line bundles can be represented by line
bundles locally in the logarithmic étale topology.

Corollary 4.3.1. Let X be a proper, vertical logarithmic curve over a logarithmic scheme
S. A class α ∈ H1(X,Mgp

X ) has bounded monodromy in the geometric fibers if and only if,

étale-locally in S, we can find a logarithmic modification S̃ → S and a model X̃ of X over S̃
such that α

∣∣
X̃

= 0.

Proof. Replacing S by an étale cover, we can assume S is affine. We can then assume S is of
finite type because the moduli space of logarithmic curves is locally of finite presentation and
Log Pic(X/S) is locally of finite presentation (Proposition 4.2.2). Passing to a finer étale
cover if necessary, we can arrange for S to be atomic (Proposition 2.2.2.4) and for the dual
graph of X to be constant over the closed stratum. In particular, S is quasicompact.

Let Sval be the limit over all logarithmic modifications of S. This is a locally ringed space
and its logarithmic structure is valuative. By Proposition 3.5.1, for each point s of Sval,
we can find a subdivision Ys of Xs to which the restriction of α is zero. If Ys denotes the
corresponding logarithmic modification of Xs then α restricts to 0 on Ys.

The subdivision Ys only requires a finite number of elements of MSval,s that are not already

in MS,s, so it is possible to recover Ys and Ys as pulled back from a logarithmic modification
Y1 of X over a logarithmic modification S1 of S. Moreover, there is an open neighborhood
U1 of s in S1 where α

∣∣
Y1×S1 U1

= 0.

Since Sval is quasicompact, the preimages of finitely many of these open neighborhoods Ui
suffice to cover Sval. Let T be the fiber product of the finitely many logarithmic modifica-
tions Si of S. Let Z and Z be the common subdivision of the Yi

∣∣
T

and the corresponding
logarithmic modification of X over T , respectively. Then the Ui pull back to an open cover
of T , from which it follows that α

∣∣
Z

= 0. �

Proposition 4.3.2. Let X be a logarithmic curve over S. The following conditions are
equivalent for a Glog

m -torsor P on X:

(1) P has bounded monodromy.
(2) In each valuative geometric fiber of S, there is a model Y of X where P is induced

from a O∗Y -torsor.

(3) Étale-locally in S there is a logarithmic modification S̃ → S and a model X̃ of X over
S̃ such that the restriction of P to X̃ is representable by a O∗X-torsor.

Proof. From the exact sequence (4.3.2.1),

(4.3.2.1) H1(X,O∗X)→ H1(X,Mgp
X )→ H1(X,Mgp

X )

to find a Y → X where P is representable by a O∗Y -torsor is equivalent to finding a cover
where the class of P in H1(X,Mgp

X ) is trivial. With this observation, the equivalence of the
first two conditions is Proposition 3.5.1 and the equivalence of the first and last conditions
is Corollary 4.3.1. �

4.4. Logarithmic étale descent. By definition, Log Pic(X/S) is a stack in the étale topol-
ogy. We show here that it is in fact a stack in the logarithmic étale topology. As the loga-
rithmic étale topology is generated by étale covers, logarithmic modifications, and root stack
constructions we still need to check descent along logarithmic modifications and root stacks.
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The following theorem was proved for logarithmic modifications of elliptic curves by K. Kato
[Kat, Section 2.2.4]:

Theorem 4.4.1. Suppose that τ : Y → X is a logarithmic modification or a root stack of a
logarithmic scheme. Then the maps

τ ∗ : H i(X,Mgp
X )→ H i(Y,Mgp

Y )

are isomorphisms for i = 0, 1.

Proof of Theorem 4.4.1 for logarithmic modifications. We will show that Mgp
X → Rτ∗M

gp
Y is

an isomorphism. The theorem will follow from the Leray spectral sequence. The claim is
local in the étale topology on X, so we may assume that X has a global chart by an affine
toric variety with cone σ and Y is the base change of a subdivision of σ with fan Σ.

If ρ : Z → Y is another logarithmic modification such that we can prove the theorem for
ρτ and ρ then we will have

R≤1τ∗M
gp
Y = R≤1τ∗R

≤1ρ∗M
gp
Z = R≤1(τρ)∗M

gp
Z = Mgp

X .

Every subdivision τ has a refinement by subdividing along hyperplanes such that τρ is also a
subdivision along hyperplanes: given a subdivision of σ, one refines it by subdividing along
all hyperplanes spanned by codimension 1 faces of σ. Therefore it is sufficient to prove the
theorem for subdivisions along hyperplanes. By induction, we can then assume that Σ is the
subdivision of σ along a single hyperplane. In other words, there is some α ∈ Γ(X,Mgp

X )
such that Y is the union of the subfunctors where α ≥ 0 and α ≤ 0. Phrased still another
way, Y is the base change of P1 along α : X → Glog

m (see Lemma 2.2.7.3).
We use the commutative diagram of exact sequences (4.4.1.1) on X:

(4.4.1.1)

0 // O∗X //

��

Mgp
X

��

// Mgp
X

//

��

0

��
0 // τ∗O∗Y // τ∗M

gp
Y

// τ∗M
gp
Y

// R1τ∗O∗Y // R1τ∗M
gp
Y

// R1τ∗M
gp
Y

The vertical arrows are clearly injections. Taking quotients along the vertical arrows and
using the snake lemma, we get the exact sequence (4.4.1.2):

(4.4.1.2) 0→ τ∗M
gp
Y /M

gp
X → τ∗M

gp
Y /M

gp
X → R1τ∗O∗Y → R1τ∗M

gp
Y → R1τ∗M

gp
Y → · · ·

We argue first that R1τ∗M
gp
Y = 0. By proper base change for étale cohomology, which

implies that the base change map is injective for H1 [Art73, Théorème 5.1 (ii)], it is sufficient
to prove that

H1(τ−1p,Mgp
Y ) = 0

for all geometric points p of X. The fiber Z = τ−1p is either a point (in which case the
assertion is trivial) or it is isomorphic to P1, in which case we use the exact sequence (4.4.1.3):

(4.4.1.3) 0→ π−1Mgp
s →Mgp

Z →Mgp
Z/s → 0

We have H1(Z, π−1Mgp
s ) = 0 since π−1Mgp

s is constant and Z is simply connected. We have
H1(Z,Mgp

Z/s) = 0 since MZ/s is concentrated in dimension 0. Combined with proper base

change, this gives R1τ∗M
gp
Y = 0.

Now we compute R1τ∗O∗Y . It vanishes except at those points p where τ−1p is 1-dimensional.
At such a point, we have H1(τ−1p,O∗Y ) = Z. As H1(τ−1p,OY ) = H2(τ−1p,OY ) = 0, there
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is no obstruction to extending a class in H1(τ−1p,O∗Y ) infinitesimally, and such infinitesimal
extensions are unique. By Grothendieck’s existence theorem, we can extend all the way to a
formal neighborhood of p. It therefore follows that the stalk ofR1τ∗O∗Y at p isH1(τ−1p,O∗Y ) =
Z.

Next we compute τ∗M
gp
Y . The stalk at a geometric point p can be identified with the

piecewise linear Mgp
s -valued functions on the dual graph of τ−1p, which is the toric fan of

P1. Such a function can be described by a value at the central point, along with integers
representing the slopes along the two incident edges. For convenience, we give these two
edges the same orientation, so a function is linear if the two slopes are the same. The stalk
of τ∗M

gp
Y at p is therefore Mgp

s × Z2 where s is the image of p in S.
We can likewise identify the stalk of Mgp

X with the linear functions on the same graph.
Under the identification of τ∗M

gp
Y with Mgp

s × Z2, the subgroup Mgp
X ⊂ τ∗M

gp
Y goes over to

Mgp
s ×∆Z. The map

Mgp
s × Z2 → Z

sends (λ, c1, c2) to c2 − c1. This induces a bijection

Z2/∆Z→ Z

which implies that τ∗(M
gp
Y )/Mgp

X → R1τ∗O∗Y is an isomorphism. We deduce that τ∗(M
∗
Y )/M∗

X =
R1τ∗M

∗
Y = 0, as required. �

Proof of Theorem 4.4.1 for root stacks. As in the proof for subdivisions, it is sufficient to
demonstrate that Mgp

X → τ∗M
gp
Y is an isomorphism and R1τ∗M

gp
Y = 0. We again consider

the diagram (4.4.1.1) and the exact sequence (4.4.1.2). By proper base change [ACV03,
Proposition A.0.1], we are reduced to the case where X is a geometric point.

In that case, Y is the quotient of a finite, connected (possibly nonreduced) scheme Z over
X by the action of a finite group G, the Cartier dual of Mgp

Y /M
gp
X , with order prime to the

characteristic. Now, Z is finite over a geometric point, so it has trivial Picard group. The
Picard group of Y is therefore Hom(G,O∗Z). Let I denote the quotient of O∗Z by O∗Y . Then
we have an exact sequence (4.4.1.4):

(4.4.1.4) 0→ Hom(G,O∗Y )→ Hom(G,O∗Z)→ Hom(G, I)

But G is torsion of order prime to the characteristic and I has no torsion prime to the
characteristic. Thus the Picard group of Y is the Cartier dual of G, which is of course
τ∗(M

gp
Y )/Mgp

X .
Now consider the exact sequence (4.4.1.2). We have just seen that the map τ∗(M

gp
Y )/Mgp

X →
R1τ∗O∗Y is an isomorphism. The map O∗X → τ∗O∗Y is easily seen to be an isomorphism, and
R1τ∗M

gp
Y vanishes because H1(Z,Mgp

Y ) = 0 (since Z is finite) and Hom(G,Mgp
Y ) = 0 (since G

is finite and Mgp
Y is torsion free). We conclude from the diagram (4.4.1.1) that MX → τ∗M

gp
Y

is an isomorphism and R1τ∗M
gp
Y = 0, as required. �

Corollary 4.4.2. Let X be a family of logarithmic curves over S. Then Log Pic(X/S) is a
stack in the logarithmic étale topology over S.

Proof. We show that logarithmic line bundles descend in the logarithmic étale topology and
that boundedness of monodromy is a local property in the logarithmic étale topology. We
address the second point first: by Proposition 4.3.2, boundedness of monodromy can be
verified at the valuative geometric points of S, so we are free to assume S is a valuative
geometric point. Any logarithmic étale cover of S can therefore be refined by an étale cover
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of a root stack. But by Lemma 2.1.3.2, boundedness is a local property with respect to root
stacks.

Now we consider descent. Suppose that R → S is a logarithmically étale cover and
that we have a descent datum over R for a logarithmic line bundle. Since Glog

m -torsors
descend from étale covers, logarithmic modifications, and root stacks, we can replace S by
any of these constructions, as necessary; we can also replace R by a finer cover. By [Nak17,
Lemma 3.11], the map R → S can be factored locally as an étale map, followed by a
logarithmic modification, followed by a root stack, followed by another étale map. We can
assume S is quasicompact because it is so étale-locally, and we can then replace R by a finer
cover by

∐
Ri, where each Ri → S factors as

Ri → Ui → Vi → S

where Ri → Ui is étale, Ui → Vi is a logarithmic modification, Vi → S is a root stack. The
fiber product of all the Vi is also a root stack of S, and pulling back to this root stack, we
can assume all Vi are the same V . Similarly, we can assume that all Ui are the same U .
Now, Ri = Ri×S U since U → S is a monomorphism (in the category of fine, saturated
logarithmic schemes). Therefore the Ri are an étale cover of U . We can now descend
a descent datum from R =

∐
Ri to U by étale descent, then to V by invariance along

logarithmic modifications (Theorem 4.4.1 and Lemma 3.5.3), and finally to S by invariance
along root stacks (Theorem 4.4.1 and Lemma 3.5.3). �

The following corollary complements Theorem 2.4.2.1. It also appeared in [MW17], but
we give a proof here for the sake of a self-contained treatment.

Corollary 4.4.3. With notation as in Theorem 2.4.2.1, let j : Xη → X be the inclusion of
the generic fiber. Then R1j∗M

gp
Xη

= 0.

Proof. We wish to show that any Mgp
Xη

-torsor can be trivializated étale-locally on X. As in
the proof of Theorem 2.4.2.1, we let Y be an extension of X to a valuative base T with
smooth general fiber. Since obstructions to deforming Mgp

X -torsors lie in H2(X,OX), there
is no obstruction to extending an Mgp

X -torsor from X to Y . We can therefore replace X by
Y and assume that the generic fiber of X is smooth.

An Mgp
Xη

-torsor is therefore a line bundle Lη on Xη. It can be represented by a divisor

Dη on Xη. There is a semistable model X̃ → X such that the closure D of Dη in X̃ lies

in the smooth locus. Then OX̃(D) extends Lη to a line bundle L̃ on X̃. In particular, Lη
extends to an Mgp

X̃
-torsor on X̃. But H1(X,Mgp

X ) = H1(X̃,Mgp

X̃
) by Theorem 4.4.1, so Lη

also extends to an Mgp
X -torsor L on X. This torsor can certainly be trivialized locally in X,

so in particular Lη can be trivialized locally in X, and R1j∗M
gp
Xη

= 0. �

4.5. Degree. Let X be a proper, vertical logarithmic curve over S, whose underlying scheme
is the spectrum of an algebraically closed field. We construct a dashed arrow making dia-
gram (4.5.1) commute:

(4.5.1)

H0(X,Mgp
X ) //

''

H1(X,O∗X) //

��

Log Pic(X)

deg

��
ZV Σ // Z
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Here, V is the set of vertices of the dual graph of X and the solid vertical arrow is the
multidegree. The map Σ : ZV → Z is the sum. We regard a section of Mgp

X as a piecewise
linear, Mgp

S -valued function on the dual graph of X, with integer slopes along the edges.
The diagonal map to ZV sends such a function to tuple whose each component is the sum
of the outgoing slopes from the corresponding vertex of the dual graph. The composed map
to Z therefore takes the sum of the outgoing slopes from every vertex; since each edge gets
counted twice with opposite orientations (X is vertical, so its dual graph is compact) the
composition is zero. This gives the vertical arrow on the image of H1(X,O∗X). However, it
is easily seen that if we replace S by a logarithmic modification, subdivide the dual graph of
X, and replace X with the corresponding semistable model, the total degree homomorphism
remains unchanged. By Proposition 3.5.1, every P ∈ Log Pic(X) is represented in the image
of H1(X̃,O∗

X̃
) for some semistable model X̃ of X, and we therefore obtain a well-defined

degree homomorphism on all of Log Pic(X).

Proposition 4.5.2. The degree of a Glog
m -torsor is locally constant in families.

Proof. The total degree of a family of line bundles is constant in families. �

Definition 4.5.3. We write Log Picd(X/S) for the open and closed substack of Log Pic(X/S)
parameterizing isomorphism classes of Glog

m -torsors with bounded monodromy and degree d.

4.6. Quotient presentation. We construct a quotient presentation of Log Pic0(X/S). Over
the strata of S, this produces a logarithmic abelian variety with constant degeneration, in the
terminology of Kajiwara, Kato, and Nakayama [KKN08c, KKN08b, KKN13, KKN15] (see
Section 4.7). Our presentation is inspired by Kajiwara’s [Kaj93].

Let X be a proper, vertical logarithmic curve over S, with connected geometric fibers.
Write Pic[0](X/S) for the multidegree zero part of Pic0(X/S).

Lemma 4.6.1. Let X be a proper, vertical logarithmic curve over S with connected geometric
fibers. Then the natural map Mgp

S → π∗M
gp
X is an isomorphism.

Proof. This assertion is étale-local in S. We can therefore assume that S is atomic and that
the dual graph of X is constant on the closed stratum. We denote it X. Now H0(X,Mgp

X ) is
the group of piecewise linear function on X having integer slopes along the edges and taking
values in Mgp

S . Since sections of Mgp
X correspond generically on X to rational functions, the

associated piecewise linear function on X of such a section will be linear. That is, the sum
of the outgoing slopes along the edges incident to any vertex of X will be zero.

On the other hand X is compact so every linear function on X is constant by Lemma 3.4.4.
Therefore the section of Mgp

X induced from any section of Mgp
X lies in the image Mgp

S , which
is to say that there is a diagonal arrow as shown in the commutative diagram of exact
sequences (4.6.1.1):

(4.6.1.1)

0 // O∗S //

��

Mgp
S

//

��

Mgp
S

//

��

0

0 // π∗O∗X // π∗M
gp
X

//

::

π∗M
gp
X

// R1π∗O∗X
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As X is proper and reduced with connected fibers, the map O∗S → π∗O∗X is an isomorphism.
We may therefore conclude by the 5-lemma, applied to the induced diagram (4.6.1.2):

(4.6.1.2)

0 // O∗S //

o
��

Mgp
S

//

��

Mgp
S

// 0

0 // π∗O∗X // π∗M
gp
X

// Mgp
S

// 0

�

Proposition 4.6.2. The map R1π∗π
∗Mgp

S → R1π∗M
gp
X induces a surjection from the multi-

degree 0 part onto the degree 0 part, with kernel H1(X).

Proof. We use the exact sequence (4.6.2.1)

(4.6.2.1) 0→ π∗Mgp
S →Mgp

X →Mgp
X/S → 0

and its associated long exact sequence in the top row of (4.6.2.2):

(4.6.2.2)

0 // π∗M
gp
X/S

//

o
��

R1π∗π
∗Mgp

S
//

��

R1π∗M
gp
X

//

��

0

ZE // ZV // Z // 0

Here ZV is the sheaf of abelian groups freely generated by the irreducible components of the
fibers, and ZE is the sheaf whose stalks are freely generated by the nodes. When a node
is smoothed in X, the corresponding generator of the stalk of ZE maps to zero under the
generization map.

Note that the first map in the first row of (4.6.2.1) is injective because MS → π∗M
gp
X is an

isomorphism by Lemma 4.6.1. A section of R1π∗π
∗Mgp

S induces isomorphism classes of line
bundles on the components of X and therefore has a well-defined multidegree. This gives
the vertical homomorphism in the middle term of diagram (4.6.2.2).

By an explicit calculation, the map π∗M
gp
X/S → R1π∗π

∗Mgp
S commutes with the boundary

map ZE → ZV computing the homology of the dual graph of X. Therefore we recover the
degree homomorphism by passing to cokernels, as indicated by the dashed arrow in (4.6.2.2).

We writeR1π∗(π
∗Mgp

S )[0] for the multidegree 0 part ofR1π∗(π
∗Mgp

S ) andR1π∗(M
gp
X )0 for the

degree zero part of R1π∗M
gp
X . As ZE surjects on to the kernel of ZV → Z, the map (4.6.2.3)

(4.6.2.3) R1π∗(π
∗Mgp

S )[0] → R1π∗(M
gp
X )0

is surjective with kernel H1(X). �

Corollary 4.6.3. Let X be a proper, vertical logarithmic curve over S. Let R1π∗(π
∗Glog

m )
denote the sheaf on logarithmic schemes over S whose value on a logarithmic scheme T over S
is R1π∗π

∗Mgp
T where π abusively denotes the projection XT → T . There is an exact sequence

0→ H1(X)→ R1π∗(π
∗Glog

m )[0]† → Log Pic0(X/S)→ 0

where R1π∗(π
∗Glog

m )[0]† is the bounded monodromy, multidegree 0 subsheaf of R1π∗(π
∗Glog

m ).
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4.7. Stratumwise description of the homology action. We assume that X is a family
of logarithmic curves over S with constant degeneracy. That is, the characteristic monoid of
S is constant, as is the dual graph of X. Let Xν be the normalization of the nodes of X. We
have an exact sequence (4.7.1)

(4.7.1) 0→ T → Pic[0](X/S)→ Pic[0](Xν/S)→ 0

where T is the torus Hom(H1(X),Gm) and X is the dual graph of X.
We obtain a similar sequence with π∗Mgp

S in place of O∗X . The short exact sequence (4.7.2)

(4.7.2) 0→ O∗Xν → ν∗π∗Mgp
S → ν∗π∗Mgp

S → 0

yields the long exact sequence (4.7.3):
(4.7.3)
π∗ν∗ν

∗π∗Mgp
S → π∗ν∗ν

∗π∗Mgp
S → R1(π∗ν∗)O∗Xν → R1(π∗ν∗)ν

∗π∗Mgp
S → R1(π∗ν∗)ν

∗π∗Mgp
S

As Mgp
S → Mgp

S is surjective, so is π∗ν∗ν
∗π∗Mgp

S → π∗ν∗ν
∗π∗Mgp

S . Furthermore, the com-
ponents of Xν are irreducible curves over S, so they have no first cohomology valued in
Mgp

S because it is torsion-free and constant on the fibers. The sequence therefore reduces
to an isomorphism between R1(π∗ν∗)O∗Xν an R1(π∗ν∗)ν

∗π∗Mgp
S . That is, we have an iso-

morphism between Pic(Xν/S) and the functor T 7→ Γ(T,R1π∗ν∗ν
∗π∗Mgp

T ) on logarithmic
schemes over S

By pullback, we therefore obtain a morphism (4.7.4):

(4.7.4) R1π∗π
∗Mgp

S → R1π∗ν∗ν
∗π∗Mgp

S ' Pic(Xν/S)

The kernel of this morphism consists of those Mgp
S -torsors on X that are trivial when re-

stricted to Xν . Such a torsor is specified by transition functions in Mgp
S along the nodes of

X and the kernel may therefore be identified with T log = Hom(H1(X),Glog
m ).

Passing to the multidegree 0 parts of R1π∗π
∗Mgp

S and Pic(Xν/S), we get an exact se-
quence (4.7.5):

(4.7.5) 0→ Hom(H1(X),Glog
m )→ R1π∗(π

∗Mgp
S )[0] → Pic[0](Xν/S)→ 0

4.8. Local description of the homology action. We retain the assumptions of Section 4.7
and permit further étale localization in S.

Because we have assumed the logarithmic structure of S is constant, Mgp
S is a constant

sheaf of finitely generated free abelian groups. Working locally in S, we can assume that
Mgp

S →Mgp
S is split, and therefore that Mgp

S ' O∗S×M
gp
S . This implies π∗Mgp

S = O∗X×π∗M
gp
S ,

and therefore gives a splitting (4.8.1):

(4.8.1) R1π∗π
∗Glog

m ' Pic(X/S)× Hom(H1(X),Glog
m )

We have used the canonical identification R1π∗π
∗Glog

m ' Hom(H1(X),Glog
m ).

Our goal in this section is to explain the map H1(X) → R1π∗π
∗(Glog

m )[0] from Corol-
lary 4.6.3, which is induced from ZE → R1π∗π

∗Glog
m , in terms of this splitting. Given

α ∈ Γ(X,Mgp
X/S) = ZE, we write π∗MS(α) for its image in R1π∗π

∗Glog
m .

We work out the pullback of π∗MS(α) to the normalization Xν of X along its nodes. We
let Xν be the union of the stars of X. In a sense that we do not make precise here, this is
the tropicalization of Xν when Xν is given the logarithmic structure pulled back from X.
Every section α of ZE = Γ(X,Mgp

X/S) can be lifted to a section α̃ of Mgp
Xν , which can also be

regarded as a piecewise linear function on Xν . Then ν∗π∗Mgp
S (α) is represented by the line

bundle OXν (α̃). Note that the isomorphism class of OXν (α̃) depends only on α because α̃ is



THE LOGARITHMIC PICARD GROUP AND ITS TROPICALIZATION 47

uniquely determined up to the addition of a constant from Mgp
S on each component, and the

addition of a constant only changes OXν (α̃) by a line bundle pulled back from S.
Suppose that X0 ⊂ Xν is a component and X0 is the corresponding component of Xν .

Then (4.8.2) computes OX0(α̃):

(4.8.2) OX0(α̃) = OX0(
∑

αeDe)

The sum is taken over the edges e of X0, with De denoting the node of X corresponding to
e, and αe denoting the slope of α along e when e is oriented away from the central vertex of
X0. In order to understand π∗MS(α), we will need to see how the line bundles OXi(α̃) on
the components of Xν are glued to one another.

For each δ ∈Mgp
S , we write mδ : OX → OX(δ) for map sending λ ∈ OX to λm(δ) ∈ OX(δ).

Suppose that D is a node of X joining components X0 and X1 and let e be the corresponding
edge of X. Recall that we have (4.8.3),

OX0(α̃)
∣∣
D

= OD(α̃(0))⊗OX0(αeD)
∣∣
D

(4.8.3)

OX1(α̃)
∣∣
D

= OD(α̃(1))⊗OX1(−αeD)
∣∣
D

where αe is the slope of α along the edge e of X corresponding to D, oriented from 0 to 1,
and α̃(i) ∈Mgp

S is the value of α̃ on the vertex i of X. Using the trivializations m, we obtain
an isomorphism:

(4.8.4) mα̃(1)−α̃(0) : OX0(αeD)
∣∣
D
→ OX1(−αeD)

∣∣
D

If α̃ is actually well-defined on X01 = X0 ∪D X1 then α̃(1) − α̃(0) = αeδe, where δe is the
length of e. Then mα̃(1)−α̃(0) = mαeδe . Note that this depends only on α and m, and not on
α̃. We glue OX0(α̃) to OX1(α̃) along D by m−αeδe and repeat the same process for each edge
of X to produce a line bundle L(α,m) on X.

Proposition 4.8.5. The isomorphism (4.8.1) sends π∗MS(α) to (L(α,m), ∂(α).γ).

Proof. The second component of the formula is implied by Lemma 3.4.6. It can also be
deduced from the argument below.

Let X̃ be the universal cover of X and let ρ : X̃ → X be the corresponding étale cover.
The fundamental group of X acts by deck transformations on X̃. Since H1(X̃) = 0, we can
find a lift of α̃ to M X̃ . Without loss of generality, we can assume that the function on Xν

constructed before the statement of the proposition is induced from this α̃ by restriction
along some embedding Xν ⊂ X̃.

By construction ρ∗L(α,m) induces ρ∗π∗MS(α). We will prove that π∗MS(α) = (L(α,m), ∂(α).γ)
by comparing their transition data on the cover X̃.

If γ ∈ π1(X) then γ acts by deck transformations on X̃ and γ∗OX̃(α̃) = OX̃(α̃) ⊗
OX(∂(α).γ), canonically. By definition, we have an inclusion O∗X(∂(α).γ) inside π∗Mgp

S as
the fiber over ∂(α).γ ∈ π∗Mgp

S . This gives us a canonical identification γ∗ρ∗π∗MS(α̃) =

ρ∗π∗MS(α̃) that serves as a descent datum for ρ∗π∗MS(α̃) from X̃ to π∗MS(α̃) on X.
In terms of the splitting m, the map from O∗X(∂(α).γ) to π∗Mgp

S is given by (4.8.5.1):

(4.8.5.1) (m−∂(α).γ, ∂(α).γ) : O∗X(∂(α).γ)→ O∗X × π∗M
gp
S

The second component of this formula gives the homomorphism H1(X) → Mgp
S that makes

up the second component of (4.8.1).
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The transition function for L(α,m) around the loop γ is given by (4.8.5.2):

(4.8.5.2)
∏
e

(m−δeαe)γe = m−
∑
αeγeδe

By definition of the intersection pairing,
∑
αeγeδe = ∂(α).γ, so (4.8.5.2) agrees with the first

component of (4.8.5.1). �

4.9. Tropicalizing the logarithmic Jacobian. For any proper, vertical logarithmic curve
X over S, we construct a morphism (4.9.1)

(4.9.1) Log Pic0(X/S)→ Tro Jac(X/S)

over S. For each logarithmic scheme T and object of Log Pic0(X/S), we must produce a
section of Tro Jac(X/S). By Corollary 4.2.3, it is sufficient to do this when T is of finite type.
Under this assumption, the T -points of Tro Jac(X/S) are generization-compatible objects of
Tro Jac(Xt), for each geometric point t of T . We therefore describe the morphism first under
the assumption that X has constant dual graph over S and S has constant characteristic
monoid (which covers the case of a geometric point) and then discuss generization.

If X has constant dual graph and S has constant characteristic monoid, we use the com-
mutative diagram of exact sequences (4.9.2):

(4.9.2)

0 // H1(X) // H1(X, π∗Glog
m )[0]† //

��

Log Pic0(X/S) //

��

0

H1(X, π∗Glog
m )†

0 // H1(X) // Hom(H1(X),Glog
m )† // Tro Jac(X/S) // 0

The first row of the diagram comes from Corollary 4.6.3 and the bottom row is the definition
of the tropical Jacobian from Section 3.6. The identification between H1(X, π∗Glog

m ) and
Hom(H1(X),Glog

m ) comes from the fact that Mgp
S is a torsion-free sheaf: since a smooth,

proper curve has no nontrivial torsors under such a sheaf, any such torsor on a nodal curve
can be trivialized on its normalization, and torsors under Mgp

S on X are determined uniquely
by monodromy around the loops of the dual graph. A unique dashed arrow exists by the
universal property of the cokernel.

We show now that this morphism is compatible with generizations. Any specialization
s  t in Log Pic0(X/S) can be represented by a map T → Log Pic0(X/S) where T is a
strictly henselian valuation ring with some logarithmic structure, s is its generic point, and
t is its closed point. This map gives a logarithmic curve XT = X ×S T over T and an Mgp

XT
-

torsor P on T with bounded monodromy and degree 0. Since Log Pic0(X/S) is the quotient
of H1(X, π∗Glog

m ) by a discrete group, we can lift P to a π∗Mgp
T -torsor, Q, on XT .
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We now have a commutative diagram (4.9.3):

(4.9.3)

H1(Xt, π
∗Mgp

t )†

��

H1(XT , π
∗Mgp

T )† //

��

{{

oo H1(Xs, π
∗Mgp

s )†

��

H1(Xt, π
∗Mgp

t )† H1(XT , π
∗Mgp

T )†oo // H1(Xs, π
∗Mgp

s )†

Hom(H1(Xt),M
gp
t )† // Hom(H1(Xs),M

gp
s )†

The commutativity of the trapezoid rendered in dotted arrows is precisely the compatibility
of our map with generization.

Theorem 4.9.4. Let X be a proper, vertical logarithmic curve over S. There is an exact
sequence:

(4.9.4.1) 0→ Pic[0](X/S)→ Log Pic0(X/S)→ Tro Jac(X/S)→ 0

Proof. Applying the snake lemma to (4.9.2), and identifyingH1(X, π∗Glog
m ) = Hom(H1(X),Glog

m ),
we see that the exactness of (4.9.4.1) is equivalent to that of (4.9.4.2):

(4.9.4.2) 0→ Pic[0](X/S)→ R1π∗(π
∗Glog

m )[0]† → R1π∗(π
∗Glog

m )† → 0

We note that the bounded monodromy subgroup of R1π∗(π
∗Glog

m )[0] is simply the preimage of
that in Hom(H1(X),Glog

m ), and that the multidegree 0 subgroup of Pic(X/S) is the preimage
of the multidegree 0 subgroup of R1π∗(π

∗Glog
m ). Therefore it will be sufficient to demonstrate

the exactness of (4.9.4.3):

(4.9.4.3) 0→ Pic(X/S)→ R1π∗(π
∗Glog

m )→ Hom(H1(X),Glog
m )→ 0

This amounts to showing that, for each logarithmic scheme T over S, the sequence (4.9.4.4)
is exact, where Y = X ×S T :

(4.9.4.4) 0→ R1π∗O∗Y → R1π∗π
∗Mgp

T → R1π∗π
∗Mgp

T → 0

The exact sequence (4.9.4.4) arises from the long exact sequence (4.9.4.6) associated with
the short exact sequence (4.9.4.5):

0→ O∗Y → π∗Mgp
T → π∗Mgp

T → 0(4.9.4.5)

π∗π
∗Mgp

T → π∗π
∗Mgp

T → R1π∗O∗Y → R1π∗π
∗Mgp

T → R1π∗π
∗Mgp

T → R2π∗O∗Y(4.9.4.6)

We have R2π∗O∗Y = 0 by Tsen’s theorem. As π∗Mgp
T is a constant sheaf on the fibers and

Mgp
T →Mgp

T is surjective, the map π∗π
∗Mgp

T → π∗π
∗Mgp

T is surjective as well. This gives the
exactness of (4.9.4.4) and completes the proof. �

Corollary 4.9.5. Let X be a proper, vertical logarithmic curve over S. For each degree d,
the sheaf Log Picd(X/S) and the stack Log Picd(X/S) are bounded.

Proof. As Log Picd(X/S) is a torsor under Log Pic0(X/S), it is sufficient to prove the corollary

for d = 0. By the exact sequence (4.9.4.1), Log Pic0(X/S) is a Pic[0](X/S)-torsor over

Tro Jac(X/S). As both Pic[0](X/S) and Tro Jac(X/S) are bounded — in the latter case by
Theorem 3.10.2 — it follows that Log Pic0(X/S) is also bounded.



50 SAMOUIL MOLCHO AND JONATHAN WISE

Finally, we note that Log Picd(X/S) is isomorphic, locally in S, to Log Picd(X/S)×BGlog
m ,

so the conclusion follows from the boundedness of BGlog
m . �

4.10. The valuative criterion for properness.

Theorem 4.10.1. Let X be a proper, vertical logarithmic curve over S. Then Log Pic(X/S)→
S satisfies the valuative criterion for properness (Theorem 2.2.5.2) over S.

Proof. Let R be a valuation ring with a valuative logarithmic structure and with field of
fractions K. We consider a lifting problem (4.10.1.1) and show it has a unique solution:

(4.10.1.1)

SpecK //

��

Log Pic(X/S)

��
SpecR //

77

S

These data give us a logarithmic curve XR over R and a Mgp
XK

-torsor P on XK with
bounded monodromy. Let j : XK → XR denote the inclusion. By Theorem 2.4.2.1 and
Corollary 4.4.3, we have R1j∗O∗XK = 0 and Mgp

XR
→ j∗M

gp
XK

is an isomorphism. These imply
that the morphism of group stacks BMgp

XR
→ j∗BM

gp
XK

induces isomorphisms on sheaves of
isomorphism classes and sheaves of automorphisms, hence is an equivalence. Pushing forward
to S gives (4.10.1.2):

(4.10.1.2) π∗BM
gp
XR

= j∗π∗BM
gp
XK

But a section of j∗π∗BM
gp
XK

is a commutative square (4.10.1.1), and a section of π∗BM
gp
XR

is
a diagonal arrow lifting it. This completes the proof. �

Corollary 4.10.2. The projection Log Pic(X/S) → S satisfies the valuative criterion for
properness.

Proof. Locally in S the projection Log Pic(X/S) → Log Pic(X/S) has a section making
Log Pic(X/S) into a Glog

m -torsor over S. But Glog
m satisfies the valuative criterion for proper-

ness, so Log Pic(X/S) does as well. �

Once we have demonstrated the algebraicity of Log Picd, we will be able to conclude that
it is proper in Corollary 4.12.5.

4.11. Existence of a smooth cover.

Definition 4.11.1. We call a presheaf X on logarithmic schemes a logarithmic space if there
is a logarithmic scheme U and a morphism U → X that is surjective on valuative geometric
points and representable by logarithmically smooth logarithmic schemes.

Theorem 4.11.2. Let X be a proper logarithmic curve over S. Then there is a logarith-
mic scheme and a logarithmically smooth morphism to Log Pic(X) that is representable by
logarithmic spaces.

Proof. We consider a map T → S that is a composition of étale maps and logarithmic mod-
ifications. Let Y be a logarithmic model of X ×S T over T . Then Pic(Y/T ) is representable
by an algebraic stack over T . When equipped with the logarithmic structure pulled back
from T , we have a morphism to Log Pic(X/S):

(4.11.2.1) Pic(Y/T )→ Log Pic(Y/T )→ Log Pic(XT/T )→ Log Pic(X/S)
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We will argue that these maps are a logarithmically étale cover of Log Pic(X/S) using the
following two lemmas.

Lemma 4.11.3. For any logarithmic curve Y over T , the map Pic(Y/T )→ Log Pic(Y/T )
is representable by logarithmic schemes and is logarithmically étale.

Lemma 4.11.4. Every valuative geometric point of Log Pic(X/S) lifts to some Pic(Y/T )
for some logarithmic model Y of X over some étale-local logarithmic modification T of S, as
described above.

Granting these lemmas, we complete the proof of Theorem 4.11.2. We show first of all that
Pic(Y/T ) → Log Pic(X/S) is representable by logarithmic schemes and is logarithmically
étale. The first arrow in the sequence (4.11.2.1) has these properties by Lemma 4.11.3, the
second is an isomorphism by Theorem 4.4.1 and Lemma 3.5.3, and the last arrow is the base
change of the logarithmically étale morphism T → S, by definition. Their composition is
therefore representable by logarithmic schemes and is logarithmically étale.

The second lemma shows that the family of maps Pic(Y/T ) → Log Pic(X/S) is univer-
sally surjective, and therefore completes the proof. �

Proof of Lemma 4.11.3. Let K be the kernel of Pic(Y/T ) → Log Pic(Y/T ). As the base
change of Pic(Y/T ) → Log Pic(Y/T ) to any logarithmic T -scheme is a K-torsor, it will
suffice to show that K is an algebraic space that is étale over T .

For any logarithmic scheme U over T , we have an exact sequence of commutative group
stacks:

0→Mgp
Y → BO∗Y → BMgp

Y → 0

This sequence corresponds to an exact sequence on the big étale site of Y :

0→ Glog
m → BGm → BGlog

m → 0

Using the left exactness of pushforward to T , we get the exact sequence (4.11.4.1),

(4.11.4.1) 0→ π∗G
log
m → Pic(Y/T )→ Log Pic(Y/T )

which implies that K = π∗G
log
m . We have therefore to show that π∗G

log
m has a logarithmically

smooth cover by a logarithmic scheme that is logarithmically étale over T .
We check first that π∗G

log
m satisfies the infinitesimal criterion for being logarithmically

étale. Indeed, if U ⊂ U ′ is a strict infinitesimal extension of logarithmic schemes over T then
YU and YU ′ have isomorphic étale sites and MYU = MYU′

when the étale sites are identified.
Therefore we have the requirement of the infinitesimal criterion:

(4.11.4.2) π∗G
log
m (U) = Γ(Y,MYU ) = Γ(Y,MYU′

) = π∗G
log
m (U ′)

Now we address the existence of a logarithmically smooth cover. There is an exact se-
quence (4.11.4.3) of sheaves on the small étale site of Y ,

(4.11.4.3) 0→ π∗Mgp
T →Mgp

Y → Q→ 0

where the formations of Q = Mgp
Y/T commutes with pullback along an arbitrary logarithmic

base change T ′ → T . Pushing forward to T , we obtain a map π∗G
log
m → π∗Q. As the

formation of π∗Q commutes with arbitrary base change, it is representable by a strict étale
morphism from an algebraic space to T . We can now work locally in π∗Q and show that the
preimage of π∗G

log
m has a logarithmically étale cover by a logarithmic scheme.
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Recall that sections of Glog
m over Y correspond to piecewise linear functions on the fibers

of the tropicalization, Y, that are linear along the edges with integer slopes. Working locally
in π∗Q amounts to fixing these slopes. We write π∗(G

log
m )α to be the subsheaf of π∗G

log
m with

fixed slopes α.
It is sufficient to work étale-locally in T , so we assume that T is an atomic neighborhood

of a geometric point t. We may also assume that the dual graph Y of Y on the closed
stratum of T is constant. Let V be the set of vertices of Yt and let E be its set of edges with
orientations chosen arbitrarily. Note that a vertex v ∈ V induces a vertex of Yu for every
geometric point u of every logarithmic scheme U over T .

A piecewise linear function f on Y has a value f(v) at each vertex v ∈ V . This gives a
morphism:

π∗G
log
m → Hom(V,Glog

m )

Then π∗G
log
m is determined by the condition that f(v)−f(w) = αe`(e) whenever e is an edge

directed from v to w in Yt and ` is its length. In particular, we can recover π∗(G
log
m )α as a

fiber product T ×Hom(E,Glog
m ) Hom(V,Glog

m ) where the map T → Hom(E,Glog
m ) is e 7→ αe`(e)

and the map Hom(V,Glog
m )→ Hom(E,Glog

m ) sends f to e 7→ f(v)− f(w).
We now conclude by noting that Hom(V,Glog

m ) and Hom(E,Glog
m ) are both isomorphic to

products of copies of Glog
m , which has a logarithmically smooth cover by a logarithmic scheme

by Corollary 2.2.7.4. �

Proof of Lemma 4.11.4. Let P be valuative geometric point and let L be a P -point of Log Pic(X/S).
Then by Proposition 3.5.1, there is a logarithmic modification Z of XP over which L lies in
the image of Pic(Z/P ). But the construction of Z only involves finitely many values from the
characteristic monoid MP . Therefore there is a submonoid of Mgp

P containing the pullback
of MS and over which L can be defined. This modification can be extended to a logarithmic
modification Y of X ×S T in some étale neighborhood T of P in S. We conclude that L lies
in the image of Pic(Y/T ), as required. �

Corollary 4.11.5. There is a cover of Log Pic(X/S) by a logarithmic scheme that is repre-
sentable by logarithmic spaces and is logarithmically smooth.

Proof. Locally in S, we can identify Log Pic(X/S) = Log Pic(X/S) × BGlog
m by identify-

ing Log Pic(X/S) with the sheaf of logarithmic line bundles on X trivialized over a sec-
tion. A section Log Pic(X/S) → Log Pic(X/S) makes Log Pic(X/S) into a Glog

m -bundle
over Log Pic(X/S). If U → Log Pic(X/S) is a logarithmically smooth cover by a logarith-
mic scheme, then its pullback is a logarithmically smooth cover W → Log Pic(X/S), and W
is a Glog

m -torsor over the logarithmic schcme U , hence a logarithmic space. �

Corollary 4.11.6. The diagonals of Log Pic(X/S) and Log Pic(X/S) are representable by
logarithmic spaces.

Proof. Let Z be Log Pic(X/S) or Log Pic(X/S). We have a logarithmically smooth cover
U → Z that is representable by logarithmic spaces. We wish to show that W = V ×Z×Z Z
is representable by logarithmic spaces whenever V is a logarithmic scheme. But

W ×
Z×Z

(U × U) = (V ×
Z×Z

(U × U)) ×
U×U

(U ×
Z
U)

is the fiber product of the logarithmic space U ×Z U with the logarithmic space V ×Z×Z(U ×
U) over the logarithmic scheme U × U , hence is a logarithmic space. �



THE LOGARITHMIC PICARD GROUP AND ITS TROPICALIZATION 53

4.12. Representability of the diagonal. Our algebraicity result is slightly stronger for
Log Pic.

Theorem 4.12.1. The diagonal of Log Pic(X/S) over S is representable by finite morphisms
of logarithmic schemes.

In other words, we are to show that if X is a proper, vertical logarithmic curve over S with
two logarithmic line bundles L and L′ then there is a universal logarithmic scheme T over S
such that LT ' L′T and, moreover, the underlying scheme of T is finite over that of S. This
assertion only depends on the difference between L and L′ in the group structure of Log Pic,
so we can assume L′ is trivial. The assertion is also local in the strict étale topology on S,
so we freely replace S by an étale cover. By Corollary 4.10.2, the diagonal of Log Picd(X/S)
satisfies the valuative criterion for properness, so it will suffice to prove that the diagonal is
schematic, quasicompact, and locally quasifinite. In fact, morphisms of algebraic spaces that
are separated and locally quasifinite are schematic [Sta18, Tag 03XX], so we only need to
show the diagonal is representable by algebraic spaces, locally quasifinite, and quasicompact.

Lemma 4.12.2. The relative diagonal of Log Pic(X/S) over S is quasicompact.

Proof. It is sufficient to demonstrate that Log Pic0(X/S) has quasicompact diagonal over
S. This assertion is local in the constructible topology on S, so we assume that the dual
graph of X is constant over S and that MS is a constant sheaf on S. In this situation,

Corollary 4.6.3 gives an étale cover of Log Pic0(X/S) by V = R1π∗(π
∗Glog

m )[0]†. By étale
descent, it is sufficient to show that V ×Log Pic0(X/S) V → V × V is quasicompact.

Applying the change of coordinates (v, w) 7→ (v, w − v) to V × V , we can recognize this
map as the base change to V of the inclusion H1(X) = ker(V → Log Pic0(X/S)) → V . It
therefore suffices to demonstrate that H1(X)→ V is quasicompact.

By the compatibility commutative square on the left side of (4.9.2), it suffices to demon-
strate that H1(X) → Hom(H1(X),Glog

m )† is quasicompact. But this is precisely Corol-
lary 3.11.6. �

Lemma 4.12.3. Let S be a logarithmic scheme, let X be a compact logarithmic curve over
S. Then the zero section of Tro Jac(X/S) is representable by affine logarithmic schemes of
finite type.

Proof. Suppose we are given a section S → Tro Jac(X/S). Let Z be the pullback of the
zero section of Tro Jac(X/S) to S. We wish to show Z is representable by a finite type,
affine logarithmic scheme over S. This is an étale-local assertion on S, so we can work
locally in S and find a lift S → Hom(H1(X),Glog

m ). We can realize Z as the pullback of
∂ : H1(X)→ Hom(H1(X),Glog

m ) to S. We therefore have (4.12.3.1):

(4.12.3.1) Z = S ×
Hom(H1(X),Glog

m )

H1(X) =
∐

α∈H1(X)

S ×
Hom(H1(X),Glog

m )

{∂(α)}

But ∂ is quasicompact by Corollary 3.11.6, so we only need to consider finitely many of the
α ∈ H1(X). We can therefore assume there is a single α. We write Zα for the component of
Z that corresponds.

Locally in S, we can choose a surjection from a finitely generated free abelian group A onto
H1(X). This induces an embedding Hom(H1(X),Glog

m ) → Hom(A,Glog
m ), which is a product

of copies of Glog
m . Applying Proposition 2.2.7.5 on each copy, we get the result. �

http://stacks.math.columbia.edu/tag/03XX
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Corollary 4.12.4. Let S be a logarithmic scheme and let X be a proper, vertical logarithmic
curve over S. Then the zero section of Log Pic(X/S) is representable by affine logarithmic
schemes of finite type.

Proof. We use the exact sequence from Theorem 4.9.4. By Lemma 4.12.3, the map from
Pic[0](X/S) to Log Pic0(X/S) is representable by affine logarithmic schemes of finite type.

But the zero section of Pic[0](X/S) is a closed embedding because Pic[0](X/S) is separated
and schematic over S; in particular, it is affine and of finite type. We deduce that the zero
section of Log Pic(X/S) is affine and of finite type. �

Proof of Theorem 4.12.1. The diagonal of Log Pic(X/S) is the base change of the embedding
of the zero section, so it is sufficient to demonstrate that the embedding of the zero section
is finite. We have seen that it is affine and of finite type in Corollary 4.12.4. On the other
hand, it also satisfies the valuative criterion for properness by Corollary 4.10.2. We conclude
that it is finite, as requried. �

Corollary 4.12.5. For each integer d, the sheaf Log Picd(X/S) and the stack Log Picd(X/S)
are proper over S.

Proof. We have shown that Log Picd(X/S) has finite diagonal by Theorem 4.12.1, is bounded
by Corollary 4.9.5, and satisfies the valuative criterion by Theorem 4.10.1. The proper-
ness of Log Picd(X/S) follows because it is a gerbe banded by the proper group Glog

m over
Log Picd(X/S). �

4.13. Smoothness.

Theorem 4.13.1. Let X be a logarithmic curve over S. Then Log Pic(X/S) is logarithmi-
cally smooth.

There are two parts to smoothness: the infinitesimal criterion and local finite presentation.
Local finite presentation was addressed in Proposition 4.2.2.

Lemma 4.13.2. Log Pic(X/S) satisfies the infinitesimal criterion for smoothness over S.
Its logarithmic tangent stack is π∗BGa, meaning isomorphism classes of deformations are a
torsor under H1(X,OX) and automorphisms are in bijection with H0(X,OX).

Proof. Consider a lifting problem (4.13.2.1)

(4.13.2.1)

S //

��

Log Pic(X/S)

��
S ′

88

// S

in which S ′ is a strict infinitesimal square-zero extension of S. The lower horizontal arrow
gives a logarithmic curve X ′ over S ′ with fiber X over S, and the upper horizontal arrow
gives a logarithmic line bundle L on X. We wish to extend this to S. It is sufficient to
assume that S ′ is a square-zero extension with ideal J .

Let L be the Mgp
X -torsor induced from L. As this is a torsor under an étale sheaf, and

the étale sites of X and X ′ are identical, L extends uniquely to L′. We therefore assume
L′ is fixed. We note that the bounded monodromy condition for a putative L′ extending L
depends only on L′, and is equivalent to that for L, hence is automatically satisfied.

We wish to show that L′ can be lifted to anMgp
X′-torsor. Locally inX there is no obstruction

to extending L to L′. If we take any two local extensions of L, their difference L′ ⊗ L′′∨ is
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a Mgp
X′-torsor whose restriction to X is trivialized, as is its induced Mgp

X′-torsor. Therefore
L′⊗L′′∨ is induced from a uniquely determined O∗X′-torsor exending the trivial one from X.

It follows that extensions of L form a gerbe on X banded by OX ⊗ J . Obstructions to
producing a lift — that is, a section of this gerbe — lie in H2(X,OX ⊗ J), which vanishes
locally in S because X is a curve over S. By the cohomological classification of banded
gerbes, deformations form a torsor under H1(X,OX⊗J) and automorphisms are in bijection
with H0(X,OX ⊗ J).

To get the logarithmic tangent space, we take a trivial extension S ′ of S by J = OS. �

4.14. Tropicalizing the logarithmic Picard group. Let X be a proper, vertical logarith-
mic curve over S and let X denote the tropicalization of X. We construct a tropicalization
map (4.14.1):

(4.14.1) Log Pic(X/S)→ Tro Pic(X/S)

Since Tro Pic(X/S) is locally constant on the logarithmic strata of S, our strategy will be
to construct (4.14.1) stratumwise and then show its compatibility with generization.

Assume first that S has constant characteristic monoid and that the dual graph of X is
constant over S. Under these assumptions, we have an anticontinuous tropicalization map
t : X → X.

Suppose that Q is a Mgp
X -torsor on X. Let U→ X be a local isomorphism and let U = t−1U.

Let NS(U) denote the Néron–Severi group of U . Then NS is a functor on finite X-schemes
and we observe that the sheaf V on X (whose sections are members of the free abelian group
generated by the vertices) is isomorphic to t∗NS. Combined with Lemma 2.4.3.4 and the
exact sequence in the middle column of (3.4.1), this proves Proposition 4.14.2:

Proposition 4.14.2. Let X be a logarithmic curve over S, where S has constant character-
istic monoid and X has constant dual graph. Let X be the tropicalization of X. Then the
sheaf of linear functions L on X is quasi-isomorphic to t∗[M

gp
X → NS].

Suppose that L is a logarithmic line bundle on X, continuing to assume that the character-
istic monoid of S and the dual graph of X are constant over S. Then L induces an Mgp

X -torsor
L on X with a trivialization of its induced BO∗X-torsor, which we denote BO∗X(L). This triv-
ialization implies that π∗BO∗X(L) is a trivialized torsor under π∗BO∗X = Pic(X/S). Passing
to the Néron–Severi group, we acquire a trivialized NS(X)-torsor.

Remark 4.14.3. In what may be more concrete terms, the trivialization of BO∗X(L)-torsor
amounts to the specification of a O∗X-torsor L(γ) for each local section γ of L, along with
isomorphisms L(α + γ) ' OX(α) ⊗ L(γ) for each local section α of Mgp

X , subject to a
compatibility condition concerning the two isomorphisms L(α+ β + γ) ' OX(α)⊗OX(β)⊗
L(γ), that we leave to the reader to make explicit. In this case, the trivialization arises by
taking L(γ) to be the fiber of L over γ ∈ L.

If γ ∈ Γ(U,L), then let [L(γ)] denote the class of L(γ) in NS(U). Then we have [L(α+γ)] =
[O∗X(α)] + [L(γ)].

The logarithmic line bundle L therefore induces a P-torsor on X with a trivialization of
its induced V-torsor. By the quasi-isomorphism L ' [P → V], we obtain a L-torsor on X.
This gives the map (4.14.1) in the case of a constant characteristic monoid and constant dual
graph.

In order to extend this construction to one valid over a general base, we will need to prove
its compatibility with the generization maps for Tro Pic(X/S), given by Proposition 3.8.2.
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Proposition 4.14.4. Let X be a proper logarithmic curve over S and let s be a geometric
point of S. Then π∗(BM

gp
X )s → Γ(Xs,BM

gp
Xs

) is injective and restricts to an isomorphism
on the bounded monodromy subgroups.

Proof. Injectivity follows from proper base change for étale cohomology [Art73, Théorème 5.1 (i)
and (ii)], so the point is to prove surjectivity on the bounded monodromy subgroup. The
assertion is étale-local in S, so we may assume that S is an atomic neighborhood of s and
that the dual graph of X is constant on the closed stratum of S.

Suppose that Ls is an Mgp
X -torsor on Xs with bounded monodromy. We extend Ls to an

Mgp
X -torsor on X inductively over the strata of S. By induction, we can assume that LZ has

already been constructed on a closed union of strata Z containing s and that the complement
of Z in S is an open subset U on which MS is constant. Let j denote the inclusion of U in S.

The homomorphism Mgp
S → j∗M

gp
U induces a homomorphism Mgp

X → Ngp
X by pushout. Let

KZ be the Ngp
X -torsor on XZ induced along this homomorphism.

Let XU denote the dual graph of a geometric fiber of X over U and let VU be its universal
cover. Pulling back along the projection Xξ → XU we obtain an étale cover Vξ of Xξ, which
corresponds to an étale cover of Xξ. By construction, this cover extends to an étale cover
ρ : V → X of all of X.

We also use ρ to denote the restriction of ρ to the preimage of Z. The pullback ρ∗KZ

is trivial. Indeed, it suffices to trivialize ρ∗Kξ, and Kξ has trivial monodromy around all
loops Vξ, by its construction and the assumption of bounded monodromy in L. Then ρ∗KZ

extends trivially to an Ngp
X -torsor K ′ on V and the action of deck transformations extends

as well. By descent, we obtain an NX-torsor K on X extending KZ .
We may now define L = K ×i∗KZ

i∗LZ where i is the inclusion of XZ in X. This is a torsor

under N ×i∗NXZ
i∗MXZ , which is isomorphic to MX by the canonical map. �

Suppose now that S is a strictly henselian valuation ring with special point ξ and generic
point η. We have a commutative diagram with exact columns:

0

��

0

��

0

��
Γ(Xξ,BM

gp
Xξ

)

��

Γ(X,BMgp
X )

��

//oo Γ(Xη,BM
gp
Xη

)

��

Γ(Xξ,BM
gp
Xξ

)

��

Γ(X,BMgp
X )

��

//oo Γ(Xη,BM
gp
Xη

)

��
Γ(Xξ,B

2O∗Xξ) Γ(X,B2O∗Xξ) //oo Γ(Xη,B
2O∗Xξ)
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Upon passage to the bounded monodromy subgroups and composing with the projection
from the Picard group to the Néron–Severi group, we obtain (4.14.5):

(4.14.5)

Log Pic(X/S)(ξ)

��

Log Pic(X/S)(S)

��

//oo Log Pic(X/S)(η)

��

Γ(Xξ,BM
gp
Xξ

)†

��

Γ(X,BMgp
X )†

∼oo //

��

Γ(Xη,BMXη)
†

��
B NS(Xξ) (B NS(X/S))(S) //∼oo B NS(Xη)

The isomorphism in the second row is Proposition 4.14.4 and we get the isomorphism
(B NS(X/S))(S) ' B NS(Xξ) from the knowledge that NS(X/S) is an étale sheaf over S.

The vertical compositions in diagram (4.14.5) are canonically trivialized, as was dis-
cussed earlier. Proposition 4.14.2 implies that Tro Pic(Xξ) is the kernel of Γ(Xξ,BM

gp
Xξ

)† →
B NS(Xξ) (and similarly over η) so we obtain a commutative diagram (4.14.6) :

(4.14.6)

Log Pic(X/S)(ξ)

��

Log Pic(X/S)(S) //oo

uu

Log Pic(X/S)(η)

��
Tro Pic(Xξ) // Tro Pic(Xη)

We leave it to the reader to verify that the construction in the proof of Proposition 4.14.4 is
the same as the one used in the proof of Proposition 3.8.2 so that the map Tro Pic(Xξ) →
Tro Pic(Xη) displayed above is indeed the same as the one guaranteed by Proposition 3.8.2.
The commutativity of the inner trapezoid gives the compatibility of the tropicalization map
with generization.

Theorem 4.14.7. Let X be a proper, vertical logarithmic curve over S and let X be its
tropicalization. Then there are exact sequences (in the étale topology):

0→ Pic[0](X/S)→ Log Pic(X/S)→ Tro Pic(X/S)→ 0

0→ Pic[0](X/S)→ Log Pic(X/S)→ Tro Pic(X/S)→ 0

Proof. The second exact sequence is obtained from the first by dividing, term by term, by
the exact sequence (4.14.7.1):

(4.14.7.1) 0→ BGm → BGlog
m → BGlog

m → 0

We have exact sequences (4.14.7.2):

0→ O∗X →Mgp
X →Mgp

X → 0 (on X)(4.14.7.2)

0→ L→ P→ V→ 0 (on X)

Rotating these sequences, pushing forward to S, and restricting to bounded monodromy,
we get a commutative diagram of exact sequences (with ρ∗BP denoting the stack on S of
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P-torsors on X):

0 // Pic(X/S) //

��

Log Pic(X/S) //

��

π∗BM
gp
X

// 0

0 // NS(X/S) // Tro Pic(X/S) // ρ∗BP // 0

The kernel of Log Pic(X/S)→ Tro Pic(X/S) therefore coincides with the kernel of the map

Pic(X/S) → NS(X/S), which is Pic[0](X/S). Likewise, Pic(X/S) surjects onto NS(X/S)
is surjective so Log Pic(X/S)→ Tro Pic(X/S) is surjective as well. �

4.15. Logarithmic abelian variety structure. In this section, we explain how the loga-
rithmic Jacobian carries the structure of a log abelian variety, in the sense of [KKN15]. For
the convenience of the reader, we recall briefly the necessary definitions. For details and
proofs, we refer the reader to [KKN15]. We try to keep the notations of [KKN15] as much as
possible, but some changes will be necessary in order to avoid conflicts with notation already
introduced here. We fix a base log scheme S, and form the site fs/S, whose objects are fine
and saturated log schemes over S and whose coverings are strict étale maps.

Let G be a semiabelian group scheme, that is, an extension

(4.15.1) 1→ T → G→ A→ 1

of an abelian variety A by a torus T = Spec Z[H]. Here H is a sheaf of lattices over fs/S.
Just as Glog

m extends Gm, there is a sheaf T log = Glog
m ⊗Gm T extending T that can be defined

on fs/S by the folowing formula:

(4.15.2) T log(S ′) = Hom(H,Mgp
S′ )

Equivalently, T log = Hom(H,Glog
m ), where we regard H as a sheaf on fs/S, and Hom

denotes the sheaf of homomorphisms. There is an evident inclusion T → T log, and pushing
out T → G along this map we obtain an exact sequence

(4.15.3) 1→ T log → Glog → A→ 1

where Glog = T log ⊕T G.

Definition 4.15.4 ([KKN08b, Definition 2.2]). A log 1-motif is a map K → Glog, where G
is a semiabelian group scheme and K is locally free sheaf of abelian groups on fs/S.

The map K → Glog naturally defines a subsheaf Glog
(K) ⊂ Glog as follows. The composed map

from K to the quotient Glog/G ∼= T log/T = T log determines a pairing 〈 , 〉 : H ×K → Glog
m ,

and a subsheaf T log
(K), determined by the formula

(4.15.5) T log
(K)(S

′) =
{
φ ∈ T log(S ′)

∣∣∣ ∀ geometric points s ∈ S ′, x ∈ Hs,
∃y, y′ ∈ K s.t 〈x, y〉 ≤ φ(x) ≤ 〈x, y′〉

}
We thus obtain Glog

(K) by simply pulling back T log
(K) under the map G→ T log. A log 1-motif

defines an abelian variety with constant degeneration, by assigning to Y → Glog the quotient
sheaf Glog

(K)/K.

Definition 4.15.6 ([KKN08a, Definition 4.1]). A log abelian variety is a sheaf A on fs/S
such that all of the following properties hold:
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(1) For each geometric point s ∈ S, the pullback of A to fs/s is a log abelian variety with
constant degeneration.

(2) Étale locally on S, there is an exact sequence (4.15.6.1) for some bilinear form H ×
K → Γ(S,Mgp

S ) and T log = Hom(H,Glog
m ):

(4.15.6.1) 0→ G→ A→ T log
(K)/K → 0

(3) Let K denote the image of K in Hom(H,Glog
m ) and H the image of H in Hom(K,Glog

m ).
For each geometric point s ∈ S, there exists a map φ : Ks → Hs with finite cokernel
such that 〈φ(y), z〉 = 〈y, φ(z)〉 for all y, z ∈ Ks, and 〈φ(y), y〉 ∈MS,s.

(4) The diagonal A → A×A is representable by finite morphisms.

We are now ready to indicate how the logarithmic Jacobian fits into this context.

Theorem 4.15.7. Let X be a proper, vertical logarithmic curve over S. Then Log Pic0(X/S)
is a logarithmic abelian variety in the sense of Kajiwara, Kato, and Nakayama [KKN08a].

Proof. We verify the conditions of Definition 4.15.6.
Given a family of logarithmic curves X → S, with dual graph X, we obtain a sheaf of

lattices H1(X). We set H = K = H1(X) for the lattices appearing in the definition above,

and take 〈 , 〉 to be the intersection pairing. We let G = Pic[0](X) denote the multidegree 0
part of Pic(X/S).

The third condition in the definition is immediate in our context: The two lattices X and
Y are H1(X), and we may take φ = id. For any y ∈ H1(Xs), the pairing 〈y, y〉 is a sum of
elements of MS,s by Definition 3.3.1, and therefore is in MS,s.

The last condition is exactly Theorem 4.12.1.
The first and second condition follow from Corollary 4.6.3 and the exact sequence of 4.9.4

respectively, once we observe:

Lemma 4.15.8. For K = H1(X), the subsheaf T log
(K) coincides with the subsheaf of elements

with bounded monodromy (T log)† in T log.

Proof. Since both the bounded monodromy condition and the condition defining T log
(Y ) are

defined pointwise, we may check that the two groups are the same on a logarithmic scheme s
whose underlying scheme is the spectrum of an algebraically closed field. If φ : H1(X)→Mgp

has bounded monodromy then, by definition, there are integers m and n such that m〈x, x〉 ≤
φ(x) ≤ n〈x, x〉. Thus φ ∈ T log

(Y ) as it verifies the definition with y = mx, y′ = nx.

For the converse, suppose that φ : H1(X) → Mgp
s and, for every x ∈ H1(X), there are

y, y′ ∈ H1(X) such that 〈x, y〉 ≤ φ(x) ≤ 〈x, y′〉. For any y ∈ H1(X), we have 〈x, y〉 ≤ n〈x, x〉
for some positive integer n. Indeed, we may take n to be the maximum of the coefficients of
y as a linear combination of edges of X. We likewise have 〈x, y′〉 ≤ m〈x, x〉 for some positive
integer m, and therefore −m〈x, x〉 ≤ φ(x) ≤ n〈x, x〉, as required. �

�

4.16. Prorepresentability. The logarithmic Picard group and logarithmic Jacobian cannot
be represented by schemes, or even by algbraic stacks, with logarithmic structures. This
follows from the nonrepresentability of the logarithmic multiplicative group, which was proved
in Proposition 2.2.7.2. We have already seen in Section 4.11 that it is nearly representable in
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the sense that it has a logarithmically smooth cover by a logarithmic scheme. In this section
we will consider another near-representability property.

Let X be the tropicalization of a logarithmic curve X over S. Theorem 4.9.4 shows that
Log Pic0(X/S) is a torsor under the algebraic group Pic[0](X/S) over Tro Jac(X/S) and The-

orem 4.14.7 shows that Log Pic(X/S) is a Pic[0](X/S)-torsor over Tro Pic(X/S). There-
fore the nonrepresentability of Log Pic(X/S) can be attributed to the nonrepresentability of
Tro Pic(X/S). However, we saw in Section 3.9 that Tro Pic(X/S) is prorepresentable. We
might therefore reasonably expect Tro Pic(X/S) to be similarly prorepresentable.

We saw in Lemma 3.9.1 that Hom(H1(X),Glog
m )† is, locally in S, pro-representable a col-

lection of submonoids of Mgp
S + H1(X). Each of these submonoids represents a functor

on logarithmic schemes that can be represented by an algebraic stack with a logarith-
mic structure (see [CCUW17, Section 6] for further details). Therefore we can think of
Hom(H1(X),Glog

m ) as ind-representable on logarithmic schemes by algebraic stacks with log-
arithmic structure. Since Tro Jac(X/S) is a quotient of Hom(H1(X),Glog

m )† by H1(X), we
conclude that Tro Jac(X/S) is, locally in S, the quotient of an ind-algebraic stack with loga-
rithmic structure by H1(X). The same applies to Tro Picd(X/S) for all d, since it is a torsor
under Tro Pic0(X/S) = Tro Jac(X/S).

Proposition 4.16.1. Therefore Log Pic(X/S) is, locally in S, the quotient of an ind-algebraic
stack with a logarithmic structure by the action of H1(X).

Proof. Log Pic(X/S) is a torsor over Tro Pic(X/S) under the algebraic group Pic[0](X/S). �

For a moduli problem F on logarithmic schemes, one defines a minimal logarithmic struc-
ture on an S-point of F in such a way that when F is representable, minimality corresponds
to strictness of the morphism S → F . We introduce a similar notion that corresponds to
strictness at the level of associated groups.

Definition 4.16.2. Let S be a logarithmic scheme and let F be a covariant functor valued
in sets on logarithmic structures over MS such that F (MS) has one element. We say that
a logarithmic structure N over MS and an object ξ ∈ F (N) is pseudominimal if, for every
η ∈ F (P ), there is a unique morphism u : Ngp → P gp and ξ′ ∈ F (u−1P ∩N) that is sent to
ξ under u−1P ∩N → N and is sent to η under u−1P ∩N → P .

If F is a presheaf on logarithmic schemes then we say ξ ∈ F (T ) is pseudominimal if ξ is
pseudominimal when F is regarded as a functor on logarithmic structures over MT .

Proposition 4.16.3. An T -point of Log Pic0(X/S) over f : T → S is pseudominimal if and
only if the canonical map f ∗Mgp

S +H1(X)→Mgp
T is a bijection.

Proof. Since Log Pic0(X/S)→ Tro Jac(X/S) is strict, a T -point of Log Pic0(X/S) is pseudo-
minimal if and only if the induced T -point of Tro Jac(X/S) is pseudominimal. The proposi-
tion therefore follows from Lemma 3.9.1. �

4.17. Schematic models. We show that the combinatorics of the tropical Picard group can
be used to construct toroidal compactifications of Log Picd(X/S). This section is inspired
directly by Kajiwara, Kato, and Nakayama [Kaj93, KKN15] and is, for the most part, only
a tropical reinterpretation of their results.

Suppose that X is a logarithmic curve over a logarithmic scheme S with tropicalization
X. For simplicitly, we assume that S is atomic, or at least that it has a morphism to hσ
for some rational polyhedral cone σ, dual to M , and that X is pulled back from a tropical
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curve Y over hσ. Then Tro Pic(X/S) is pulled back from Tro Pic(Y). A subdivision Z of
Tro Pic(Y) induces a subdivision of Tro Pic(X/S) and the a subdivision Log Pic(X/S)Z of
Log Pic(X/S) by pullback. Since subdivisions are proper and Log Pic(X/S) is proper, the
subdivision, Log Pic(X/S)Z, is proper as well.

Suppose now that Z is actually representable by a cone space in the sense of [CCUW17].
Then Z×σ S is representable by an algebraic stack over S with a logarithmic structure.
By Theorem 4.14.7, Log Pic(X/S) is a torsor over Tro Pic(X/S) under the group scheme

Pic[0](X/S). Therefore Log Pic(X/S)Z is also a torsor over ZS under the same group scheme.
This implies that Log Pic(X/S)Z is representable by an algebraic stack with a logarithmic
structure.

Lemma 4.17.1. Let L be a logarithmic line bundle on a proper, vertical logarithmic curve
X over S. Assume that the logarithmic structure of S is pseudominimal. Then the automor-
phism group of L, fixing X and S and the minimal logarithmic structure of X, is Γ(S,Mgp

S ).

Proof. Consider the sheaf A on X whose sections over an étale U → X consist of an auto-
morphism φ of π∗MS

∣∣
U

and an isomorphism between L
∣∣
U

and φ∗L
∣∣
U

. Since logaritihmic line

bundles are locally trivial, an isomorphism between L
∣∣
U

and φ∗L
∣∣
U

always exists locally in
X and there is therefore an exact sequence:

0→Mgp
X → A→ Hom(H1(X),Gm)X → 0

Pushing forward to S, we get (4.17.1.1):

(4.17.1.1) 0→ π∗M
gp
X → π∗A→ Hom(H1(X),O∗S)→ R1π∗M

gp
X

The map Hom(H1(X),O∗S) → R1π∗M
gp
X sends a homomorphism φ to the multidegree 0 line

bundle on X obtained by gluing using φ around the loops of X. It is, in other words, the
inclusion of the torus part of Pic[0](X) in Log Pic(X), and in particular is injective. It follows
that π∗M

gp
X → π∗A is bijective. By Lemma 4.6.1, π∗M

gp
X = Mgp

S and the lemma is proved. �

Corollary 4.17.2. Let Log Pic(X/S)Z be a subdivision of Log Pic(X/S) that is representable
by an algebraic stack with a logarithmic structure. Then Log Pic(X/S)Z is representable by
an algebraic space with a logarithmic structure.

Proof. Since objects of Log Pic(X/S)Z are pseudominimal, Lemma 4.17.1 shows that objects
of Log Pic(X/S)Z have no nontrivial automorphisms. Therefore Log Pic(X/S)Z is a sheaf,
and hence an algebraic space. �

4.18. Unintegrable torsors. We will show that a Glog
m -torsor on a logarithmic curve that

deforms to all infinitesimal orders does not necessarily integrate to a Glog
m -torsor over a

complete noetherian local ring. Such objects are excluded from the logarithmic Picard group
by the bounded monodromy condition of Definition 3.5.4, and this section is meant to explain
the reason behind that condition.

In this section, we can take cohomology either in the Zariski topology or the étale topology.
Let P be a Glog

m -torsor on a logarithmic scheme X. By the projection Glog
m → Glog

m , this
induces a Glog

m -torsor P over X. We note that there is an exact sequence:

H1(X,Mgp
X )→ H1(X,Mgp

X )→ H2(X,O∗X)

As H2(X,O∗X) vanishes for a curve over an algebraically closed field (or, more generally,
over an artinian local ring with algebraically closed residue field), every Glog

m -torsor on such
a curve lifts to a Glog

m -torsor. To prove the existence of an unintegrable Glog
m -torsor, it will
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therefore suffice to give an example of an unintegrable Glog
m -torsor on a family of logarithmic

curves over a complete noetherian local ring with algebraically closed residue field.
Let S = Spec C[[t]] and let X be a family of curves with smooth total space such that the

general fiber is smooth and connected, but the special fiber has two irreducible components,
joined to each other at two ordinary double points, but is otherwise smooth. This is essentially
the simplest example where étale cohomology with non-torsion coefficients does not commute
with base change [Art73, §2]. In this example, cohomology in the Zariski topology also fails
to commute with base change.

Let MS be the divisorial logarithmic structure on S and let M ′
S be the trivial extension

of MS by N (the generator of N corresponding to the trivial line bundle and zero section
on S). It is convenient to write S ′ = (S,M ′

S), so that M ′
S = MS′ . If MX is the divisorial

logarithmic structure on X then let X ′ = (X,M ′
X) be the pullback of (X,MX) → (S,MS)

along S ′ → (S,MS). We construct a Mgp
X′-torsor on the special fiber X ′0 that lifts to all finite

orders (this is automatic, by infinitesimal invariance of the étale site) but not to X ′.
We compute H1(X,Mgp

X′) by means of the following exact sequence:

H0(X,Mgp
X′/S′)→ H1(X, π−1Mgp

S′ )→ H1(X,Mgp
X′)→ H1(X,Mgp

X′/S′)

As Mgp
X′/S′ is concentrated in dimension 0 on X, the last term in the sequence vanishes. The

group H1(X, π−1Mgp
S′ ) vanishes because X is normal (see [Art73, §2]). Hence H1(X,Mgp

X′) =
0.

On the other hand, in the exact sequence

H0(X0,M
gp
X′/S′)

∂−→ H1(X0, π
−1Mgp

S′ )→ H1(X0,M
gp
X′)→ H1(X0,M

gp
X′/S′)

we still have H1(X0,M
gp
X′/S′) = 0, for the same reason, but

H1(X0, π
−1Mgp

S′ ) = H1(X0,Z
2) ' Z2

since the fundamental group of X0 is Z in the Zariski topology. (In the étale topology, it is
the non-torsion part of the fundamental group that is Z.)

The sheafMgp
X′/S′ is a skyscraper Z, concentrated at the nodes ofX0. ThereforeH0(X0,M

gp
X′/S′) =

Z2. The map ∂ is the intersection pairing and one can verify directly that its rank is 1. Al-
ternatively, one may observe that it is induced by pushout from the intersection pairing on
X, which certainly has rank at most 1 because H1(X0, π

−1MS) ' Z. In any case, there is a
nonzero element in H1(X0,M

gp
X′) (and one can verify that this group is free of rank 1).

This gives a formal collection of elements of H1(Xn,M
gp
X′), where Xn is the reduction

of X modulo tn+1, for every n ≥ 0, whose image in H1(Xn,M
gp
X′) is nonzero. However,

H1(X,Mgp
X′) = 0, so this formal collection cannot be integrated.

Proposition 4.18.1. Let X ′ and S ′ be as above and let Z be either the category fibered in
groupoids on LogSch/S ′ whose value is the groupoid of Glog

m -torsors on X ′T , or the the sheaf
of isomorphism classes of such. Then Z has no logarithmically smooth cover by a logarithmic
scheme.

Proof. Suppose that U is a logarithmic scheme and U → Z is a logarithmically smooth cover.
Then the formal family of points S ′n → Z constructed above lifts to S ′n → U . Since U is a
logarithmic scheme, this family can be integrated to a map S ′ → U , and therefore the maps
S ′n → Z can be integrated to S ′ → Z. We have just seen no such integration exists. �
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5. Examples

We calculate some examples of LogPic(X/S), over a base S whose underlying scheme
is the spectrum of an algebraically closed field k. We use the quotient presentation of
Corollary 4.6.3, which requires an explicit understanding of H1(Xν ,Glog

m ) and the map
H1(X)→ H1(Xν ,Glog

m ).

5.1. The Tate curve. Let Y → Spec k[[t]] be a family of curves whose generic fiber Yη is
a smooth curve of genus 1 and whose special fiber X consists of n rational curves arranged
in a circle. We give Spec k[[t]] its divisorial logarithmic structure and we take S to be the
closed point of Spec k[[t]], with the logarithmic structure induced by restriction.

Let X be the tropicalization of X. This is a graph with n vertices in a circle, and we
have H0(X) = Z and H1(X) = Z. The intersection pairing Z × Z → Mgp

S sends (a, b) to
abδ where δ is the sum of the lengths of the edges of X. Corollary 3.4.7 then gives exact
sequences (5.1.1) and (5.1.2):

0→ Z
δ−→ Glog

m → Tro Jac(X/S)→ 0(5.1.1)

0→ Tro Jac(X/S)→ Tro Pic(X/S)→ Z→ 0(5.1.2)

That is Tro Jac(X/S) = Glog
m /Zδ. In particular, ifMT = R≥0 then the T -points of Tro Jac(X/S)

may be identified with R/Zδ. By Theorem 4.14.7, Log Pic0(X/S) is an extension of Glog
m

†
/Zδ

by Pic[0](X/S) ' Gm.
In order to understand this extension more explicitly, we will use the quotient presentation

of Corollary 4.6.3. Recall from Equation (4.7.5) that we may identify H1(X, π∗Glog
m )[0] with

Hom(H1(X),Glog
m ). Therefore Corollary 4.6.3 gives us the exact sequence (5.1.3):

(5.1.3) 0→ H1(X)→ Hom(H1(X),Glog
m )† → Log Pic0(X/S)→ 0

The pairing H1(X) × H1(X) → Glog
m lifts the intersection pairing on X, valued in Glog

m .

Substituting H1(X) = Z, we obtain Log Pic0(X/S) = Glog
m
†
/Zδ̃ where Glog

m
†

denotes the

subfunctor of Glog
m that is bounded by δ, and δ̃ is a lift of δ to MS.

The tropicalization sequence from Theorem 4.14.7 now becomes (5.1.4):

(5.1.4) 0→ Gm → Glog
m

†
/Zδ̃ → Glog

m

†
/Zδ → 0

The element δ̃ ∈ Glog
m can be understood as a ‘logarithmic period’, in the following sense.

The map Mgp
X → Ωlog

X/S factors through Mgp
X/S and therefore gives us a logarithmic differential

φ on X. We wish to compute
∫
γ
φ where γ is a basis for H1(X), without attempting to

introduce any general theory of integration.
Let X̃ be the ‘universal cover’ of X, whose tropicalization X̃ has vertices indexed by the

integers, with consecutive vertices connected by an edge. We can recognize X̃ as a subdivision

of Glog
m
†

and we have X = X̃/H1(X) = X̃/Zγ.
Locally in X, there is no obstruction to lifting φ to Mgp

X̃
, so there is a global section Φ of

Mgp

X̃
lifting φ. Then Φ(γ.x) − Φ(x) is a function of x ∈ X̃ valued in π∗Mgp

S . It is therefore

constant and represents the coboundary of γ in H1(X, π∗Mgp
S ) = Mgp

S .

5.2. A curve of genus 2. Let X consist of 2 rational components joined along 3 nodes.
The tropicalization X has 2 vertices, v1 and v2 and 3 edges, e1, e2, and e3, which we choose
to orient from v1 to v2, as shown in Figure 5.2. We write δi for the length of ei in MS.
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v1 v2

e1

e2

e3

Figure 2. A tropical curve of genus 2.

The differences e1 − e2 and e2 − e3 form a basis for H1(X). In this basis, the matrix of the
intersection pairing is (5.2.1):

(5.2.1) A =

(
δ1 + δ2 −δ2

−δ2 δ2 + δ3

)
The presentation Tro Jac(X/S) = Hom(H1(X),Glog

m )†/H1(X) becomes (5.2.2):

(5.2.2) Tro Jac(X/S) = (Glog
m ×Glog

m )†/AZ2

In particular, the real points are R2/AZ2 ' S1 × S1.
The commutative diagram in (3.4.1) gives a morphism (5.2.3):

(5.2.3) H0(X,V )→ Tro Pic(X) ⊂ H1(X,L)

In concrete terms, this sends an integer linear combination of vertices D on X to the torsor
of piecewise linear functions on X that are linear along the edges of X and whose failure of
linearity at each vertex v of X is D(v). We denote this torsor L(D).

The exact sequence in the first row of (3.4.1) shows that lifts of L(D) to H1(X,Mgp
S ) =

Hom(H1(X),Mgp
S ) correspond to the trivializations of the induced H -torsor H (D). This

torsor is the sheaf of assignments of integers to the vertices of X such that the sum of outgoing
slopes at each vertex v is D(v).

The same reasoning applies equally well to any subdivision Y of X. Since Tro Pic(Y) =
Tro Pic(X) and Hom(H1(Y),Mgp

S ) = Hom(H1(X),Mgp
S ), giving D ∈ H0(Y,V ) and a trivial-

ization of H (D) will also produce points in Tro Pic(X) and Hom(H1(X),Mgp
S ). Figure 5.2

shows a piece of Hom(H1(X),R) with horizontal coordinate e1 − e2 and vertical coordinate
e2−e3. For D ∈ H0(X,V ) and trivialization of H (D) chosen according to the following rules,
we have plotted a picture of those data at the corresponding position in Hom(H1(X),R):

(1) D is supported on a quasistable model Y of X, meaning that each edge of X is
subdivided at most once;

(2) if v ∈ Y is a point of subdivision of X then D(v) = 1;
(3) we have 0 ≤ D(v1) ≤ 2 and −2 ≤ D(v2) ≤ 0.

In the picture, each vertex v is labelled by D(v) unless D(v) = 0 and each edge is labelled by
the slope it has been assigned in a choice of trivialization of H (D). The shaded parallelogram
is the fundamental domain (5.2.4) for the quotient by ∂H1(X).

(5.2.4)
{
x∂(e1 − e2) + y∂(e2 − e3)

∣∣ 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1
}
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Figure 3. A fundamental domain for the quotient Hom(H1(X),R)/∂H1(X)
and the subdivision, under an isomorphism to Tro Pic2(X), into regions param-
eterizing balanced tropical divisors on quasistable models of X.

This subdivision is suggested by Caporaso’s compactification of Pic2(X). We originally
computed it with the help of Margarida Melo, Martin Ulirsch, and Filippo Viviani. The
same example also appears in [ABKS14, Figure 1] and [AP18, Figure 4].

5.3. Nonmaximal degeneracy. Let us finally look at an example which is not maximally
degenerate. Suppose X is the union of two curves Y1 and Y2, glued along two points p1, p2; pi
in the first copy is glued to pi in the second copy. The dual graph X of X is again topologically
a circle, with two vertices, v1 and v2, and two edges, e1 and e2, with lengths δ1 and δ2. As in

Section 5.1, we find that Tro Jac(X/S) = Glog
m

†
/Z(δ1 +δ2) and Log Pic0(X/S) is an extension

of this torus by the algebraic Jacobian.
To compute Log Pic0(X/S), we use the quotient presentation from Corollary 4.6.3. Equa-

tion (4.7.5) presents H1(X, π∗Glog
m ) as an extension of H1(Xν ,Gm) = Pic(Y1) × Pic(Y2) by

Hom(H1(X),Glog
m ):

(5.3.1) 0→ Glog
m → H1(X, π∗Glog

m )→ Pic0(Y1)× Pic0(Y2)→ 0

Then Corollary 4.6.3 says that Log Pic0(X/S) is the quotient of H1(X, π∗Glog
m )† by H1(X).
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In general, the composition (5.3.2) is nonzero:

(5.3.2) H1(X)→ H1(X, π∗Glog
m )→ H1(Xν ,Gm) = Pic0(Y1)× Pic0(Y2)

Indeed, recall that the map H1(X)→ H1(X, π∗Glog
m ) is induced from the composition (5.3.3),

(5.3.3) H1(X) ⊂ H0(X,Mgp
X/S)→ H1(X, π∗Mgp

S )

which was itself induced from the short exact sequence (4.6.2.1). Identifying H0(X,Mgp
X/S) =

ZE, where E is the set of edges of X, the basis element e corresponding to the node p is sent to
(OY1(p),OY2(−p)). Therefore the basis e1−e2 of H1(X) is sent to (OY1(p1−p2),OY2(−p1+p2)).

If Y1 or Y2 has positive genus, the map H1(X) → Pic[0](X) is therefore nonzero, and
will even be injective if OYi(p1 − p2) is not a torsion point of the Jacobians of both curves.

This shows that the surjection H1(X, π∗Glog
m )[0]† → Pic[0](Xν/S) does not factor through

Log Pic0(X/S), even though its restriction to Pic[0](X/S) ⊂ H1(X, π∗Glog
m ) does factor

through its image in Log Pic0(X/S). Indeed, the map Pic[0](X/S) → Log Pic0(X/S) is
injective by Theorem 4.14.7.
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