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Abstract. These are notes for a talk given to the number the-
ory seminar at the University of Hamburg on 2nd of May 2012.
The talk was the second of a pair, in the first of which I described
Néron-Tate heights, and the computational difficulties surrounding
them as the dimension of the Abelian variety increases. I talked
about an algorithm to compute the height of a point to arbitrary
precision using Arakelov theory, as described in my JNT paper.
In this talk, I will describe more recent work showing how to con-
struct a näıve height using Arakelov theory, and apply it to the
problem of saturation. This was work carried out at the Univer-
sity of Warwick, and forms part of my PhD thesis.

1. Introduction

2. Last time

Last time we gave the definition of the Néron-Tate height of a point
on an abelian variety, and we noted two key problems which we want
to solve:

1) given a point p on an abelian variety A, compute the canonical

height ĥp to any required precision.
2) given a bound B > 0, compute the finite set

(1) MA(B) = {p ∈ A(Q) : ĥ(p) ≤ B}.

Recall that solutions to these problems have a variety of interesting
applications:

- computing generators for the Mordell-Weil group A(Q)
- testing cases of the BSD conjectures up to rational squares with

(1), or more precisely with (2) as well.
- computing integral points on hyperelliptic curves
- computing analytic ranks using Manin’s algorithm.
Last week we described the classical techniques which are effective

for solving both these problems in dimensions 1 and 2, and we also
showed how Arakelov theory can be used to provide effective solutions
in much higher dimensions, at least if we restrict to the Jacobians of
hyperelliptic curves. this used the following theorem:
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Theorem 1 (Faltings, Hriljac, 1984). Let C / Spec(Z) denote a proper
regular model of the curve C, and let p ∈ J(C)(Q) be a rational point
represented by a divisor D of degree 0 on C. Let D denote the Zariski
closure of D on C , and let Φ(D) be a vertical divisor on C such that
for all vertical Y , we have ι(D + Φ(D), Y ) = 0. Then

(2) ĥ(p) = −
〈
D + Φ(D), D + Φ(D)

〉
.

The key point is that this turns computing the canonical height from
a problem on the Jacobian (which is computationally inaccessible in
high dimension) to a problem on a regular model of the curve, which
is (comparatively) easy to compute.

Last week we saw how this can be used to give an algorithm for
the first problem (computing ĥ) which is effective for curves of high
genus. The aim of this talk is to describe how we can use this Arakelov-
theoretic approach to solve the harder problem (2), that of finding sets
of points of bounded height.

3. Strategy

The basic idea is to define another height H on points of J , with
the following properties:

1) there exists a constant c such that for all p ∈ A(Q), we have

|ĥ(p)−H (p)| ≤ c
2) can compute the finite sets

(3) MA(B) = {p ∈ A(Q) : H (p) ≤ B}.

It is easy to see how these can be combined to solve problem (2).
In this talk I will define H , and will outline how the constant c

can be computed, and how we can go about computing the finite sets
MA(B).

4. Hyperelliptic curves

Tis week I will again restrict attention to Abelian varieties which
are the Jacobians of hyperelliptic curves, indeed curves of odd degree.
This is to make the problem easier; a lot of what we will do will depend
greatly on the exact geometry of the curve we study, and so it makes
sense to fix one class of curves. Recall that an odd- degree hyperelliptic
curve is given on an affine patch by an equation y2 = f(x), where f is
a polynomial of degree 2g+1 with no repeated roots over the algebraic
closure.

However, we really want to look at the global geometry of the curve,
so we should choose a projective embedding. For this, we will embed
our curve in a weighted projective space P(1, 1, g + 1) with variables
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x, s, y. As such, our curve is given by a (weighted) homogeneous equa-
tion looking something like

(4) y2 = sx7 + 4s3x5 − 6s6x2 + 14s8

(a curve of genus 3).
How much of a restriction is it to only look at the Jacobians of

hyperelliptic curves? As we noted last week, in genera 1 and 2 it
is no restriction. In dimension g, the space of Abelian varieties has
dimension g(g + 1)/2, whereas the moduli space of curves of genus g
has dimension 3g− 3, and the moduli space of hyperelliptic curves has
dimension 2g − 1.

5. Heights and valuations

Do we want this section?
Recall that the arithmetic self-intersection pairing is a sum of a ’fi-

nite’ (non-Archimedean) and an ’infinite’ (Archimedean) part. We
start by noting that the same holds for the ’usual’ height of a point
p = (p0, . . . , pn)in Pn:

(5) ĥ(p) = log max
i
|pi| = log

∏
ν∈MQ

max
i
|pi|ν .

Here MQ is a proper set of absolute values for Q, and the norms |−|ν
are the ν-adic norms.

Note that for the first expression, it is necessary that the pi be co-
prime integers, but for the second expression this is no longer needed;
this can be checked (along with the equivalence of the two formulae)
by using the product formula for valuations.

6. Naive heights

The height H will be again a sum of local contributions. We will
define an infinite family of metrics dν on divisors, indexed by places ν
of Q. We will then make the following definition:

Definition 2. Let p ∈ A(Q), and let D1 and D2 be specified divisors
of degree zero on C such that p = [O(Di)], and such that the supports
of the Di do not meet. We then define

(6) H (p) =
∑
ν∈MQ

log dν(D1, D2)
−1.

Thus to define H it remains to define the metrics dν and to say how
the divisors Di are chosen. In fact, we will not say much about the
latter, since it does not greatly matter which divisors we choose; it is
just important that our choices are consistent and that we choose the
Di to be differences of effective divisors of degree g. For the remainder
of this talk, we will pretend that we can choose the Di to have pointwise
rational support- that is, they are just formal sums of rational points
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on C. This is of course not true in general, but it will simplify the
exposition, and the general case is not much more complicated.

Since the Di are assumed to have disjoint support, we can simply
define our metrics dν on points of C and then extend them to. divisors
in the following manner: say D1 =

∑
j pjnj and D2 =

∑
l qlml , then

set

(7) dν(D1, D2) =
∏
j,l

dν(pj, ql)
njml .

7. Definitions of metrics

The definitions of metrics we will give appear rather complicated, and
so to justify their complexity we point out a few important properties
they must possess:

1) they should be invariant under interchanging the coordinates s
and x.

2) they should induce the ’correct’ topology on C
3) everywhere locally they should be a continuous non-zero scalar

multiple pf the restriction of the standard metric on affine space.
For non-Archimedean places ν we define dν : C(Q)× C(Q)→ R by

dν((xp, sp, yp), (xq, sq, yq))

=

 max
(
|xp/sp − xq/sq|, |yp/sg+1

p − yq/sg+1
q |

)
if |xp| ≤ |sp| and |xq| ≤ |sq|

max
(
|sp/xp − sq/xq|, |yp/xg+1

p − yq/xg+1
q |

)
if |xp| ≥ |sp| and |xq| ≥ |sq|

1 otherwise.

(8)

It is not immediately clear why this defines a metric, but we will
omit the proof here.

Let ν be an Archimedean place of Q. We will define three symmetric
functions on C(Q)×C(Q), each of which satisfies the triangle inequal-
ity, and then define dν to be their sum, which will inherit the triangle
inequality and will be easily seen to be a metric.

Let p = (xp : sp : yp) and q = (xq : sq : yq) ∈ C(Kalg
ν ). Define

d1 : C(Q)× C(Q) by

(9) d1(p, q) =
|xpsq − xqsp|

(|xp|+ |sp|)(|xq|+ |sq|)
,

note that this is continuous, and is well defined since (0 : 0 : 1) /∈
C(Kalg

ν ).
Define d2 : C(Q) × C(Q) by setting d2(p, (0 : 1 : 0)) = 1/(1 +
|yp/xg+1

p |), and otherwise

(10) d2(p, q) =
|ypxg+1

q − yqxg+1
p |

(|xp|g+1 + |yp|)(|xq|g+1 + |yq|)
.
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Define d3 : C(Q) × C(Q) by setting d3(p, (1 : 0 : 0)) = 1/(1 +
|yp/sg+1

p |), and otherwise

(11) d3(p, q) =
|ypsg+1

q − yqsg+1
p |

(|sp|g+1 + |yp|)(|sq|g+1 + |yq|)
.

Both d2 and d3 may be checked to be continuous using the smooth-
ness of C and by studying the behaviour of the functions near Weier-
strass points at (0 : 1 : 0) and (1 : 0 : 0) if such exist.

Set dν = d1 + d2 + d3.

8. Comparing the naive and canonical heights

We have now given a definition of the naive height H , and we wish
to compare it to the canonical height. Using the Arakelov-theoretic
description of the canonical height, we see that both these heights
can be defined locally, and so we will attempt to bound the difference
between them in a local fashion.

In addition, both heights behave well with respect to addition of
divisors, and so it suffices to do the following:

for all places ν of Q, find a bound cν such that for all point p1, p2, q1, q2 ∈
C(Q), we have

(12) |log

(
dν(p1, q2) dν(p2, q1)

dν(p1, q1) dν(p2, q2)

)
− 〈p1 − p2, q1 − q2〉| ≤ cν ,

and such that

(13)
∑
ν∈MQ

cν <∞.

9. Comparing metrics and intersections at
non-Archimedean places

At places ν where the Zariski closure of C in PZ(1, 1, g+1) is smooth,
it is not hard to check that we can take cν = 0. In particular, this shows
that the sum of the cν will necessarily be finite.

At places of bad reduction for C, we have to allow for ’blowing up’,
since the pairing 〈−,−〉 is computed on a regular model of C. The
trick to doing this is to use a result of Hironaka that shows that we can
obtain a resolution of singularities of an arithmetic surface by blowups
at smooth centres only; no normalisations are required. Now since the
smooth locus of such a blowup is etale-localy just a line or a point,
we can compute exactly the effect that blowing up will have on the
intersection pairing, and thus obtain a value for cν .
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10. Comparing metrics and Green’s functions ’away from
the diagonal’

To compare the naive and canonical heights, it remains for us to
bound the difference between them locally at Archimedean places. Re-
call that we defined the Archimedean part of the intersection pairing
to be

(14) 〈p, q〉∞ = gp(q),

where gp is the Green’s function in a certain special metric. As such,
we wish to construct a bound cν such that for all p, q ∈ C(C), we have

(15) |gp(q)− log dν(p, q)
−1| ≤ cν .

Lemma 3. Fix ε > 0. Then there exists a computable constant c such
that for all p, q ∈ C(C) with dν(p, q) ≥ ε, we have

(16) |gp(q)− log dν(p, q)
−1| ≤ c.

The fact that the constant c is computable is essential for our ap-
plications, but makes the result significantly harder to prove. Indeed,
without this requirement the result follows almost immediately from
basic properties of green’s functions, in the following manner:

Recall the follwing important properties of Green’s functions:
Let D be a divisor on C. Then gD is defined as a function on C(C)−

Supp(D). Suppose D is represented by a rational function f on an
open set U . The there exists a smooth function α on U such that for
all p /∈ Supp(D), we have

(17) gD(p) = − log|f(p)|2 + α(p).

This shows that the values of the Green’s function gp(q) are bounded
on compact sets away from p. It is easy to check that the same holds
for the function log dν(p, q)

−1, so we are done.
How do we make the constant effective? We can express the Green’s

function using hyperelliptic integrals and theta functions. The hyper-
elliptic integrals can be bounded using bounds on the coeffisipcients
of our equations for the curve C, and theta functions are given as ab-
solutely convergent power series, so it is possible to bound the values
these will talk.

11. Comparing metrics and intersection pairings along
the diagonal

Recall that or bounding the difference between the naive and canon-
ical heights, we must bound the difference between log dν(p, q)

−1 and
gp(q) for points p and q which are close together (in the metric dν).
Note that both terms have logarithmic poles as p and q approach each
other, so this is unlikely to be as easy as the case when they are far
apart.
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We begin with an easy lemma:

Lemma 4. Suppose ε > 0. Let D and E be a pair of divisors of degree
0, and let φ be a rational function on C such that for all p appearing
in the support of D − div(φ) and for all q appearing in the support of
E, we have d(p, q) ≥ ε.

Write D − div(φ) = D′ = D′+ − D′− where D′+ and D′− are both
effective, and write E = E+ − E− where again E+ and E− are both
assumed effective. Suppose also that D′− and E− are supported on
Weierstrass points (this is just to improve the constants). Then writing
c(ε) for the constant from the previous section, we have

(18) |gD(E)+log(d(D,E))| ≤ c(ε) deg(D′+) deg(E+)+|log|d(D,E)

φ[E]
||.

How do we use this lemma? We describe an easy case; suppose the
points p and q that interest us are close together, but not close to any
Weieratrass point. Let φ be the rational function

(19)
x− x1
x− x(p)

where x1 is chosen to be far from the x-coordinates of p and q. Then
we can apply the lemma to see that it suffices to bound

(20)
dν(p, q)

φ(q)
,

which can be done by carefully studying the structure of the metric dν .
Much harder is the case when p and q are both close to the same

Weierstrass point. We use the same basic approach, but now the ratio-
nal function φ we construct is rather more complicated, and bounding
the corresponding term

(21)
dν(p, q)

φ(q)
,

takes about 20 pages of my thesis.

12. Conclusion of bounding the difference

A while ago we set out to bound the difference between the naive
and canonical heights for a point on a hyperelliptic Jacobian. We have
shown how to do this by considering local pairings, so we now have an
algorithm to give an explicit bound c such that for all p ∈ A(Q), we
have

(22) |ĥ(p)−H (p)| ≤ c.

Recall that the reason we wanted this was to help us in computing the
finite sets

(23) MA(B) = {p ∈ A(Q) : ĥ(p) ≤ B},
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be computing the finite set

(24) MA(B + c) = {p ∈ A(Q) : ĥ(p) ≤ B + c}.
However, it still remains to compute MA(B+c), and it is not a-priori

obvious that this will be any easier than computing MA(B) directly!
The trick is to introduce a third height:

Definition 5. Given p ∈ A(Q), let D be an effective divisor of degree
g such that p = [O(D−g∞)]. Letting π : C → P1 denote the projection
map, we see that π∗D is an effective divisor of degree g on P1, which is

the same as a rational point in Pg. We set ĥ
♥

(p) to be the usual naive
height of this point in projective space.

Of course, the key is that there exists a computable constant c′ such
that for all p ∈ A(Q), we have

(25) |H (p)− ĥ
♥

(p)| ≤ c′.

The proof of this result is delicate; it is very dependant on the exact
form of the metrics on divisors that we gave at the beginning of this
talk; indeed, the fact that it works is really the justification for those
somewhat weird metrics.

Finally, we note that it is easy to give an algorithm compute the
finite sets

(26) M♥
A (B) = {p ∈ A(Q) : ĥ

♥
(p) ≤ B},

since we just have to list the finite set of points in Pg of height less that
B, then check which of these come from points on A. So we are done.

13. Final remarks

To be able to apply these results to the applications I listed at the
beginning of the talk, it is or course necessary to implement this al-
gorithm. In its current state this will be a lot of work, and more im-
portantly it looks unlikely that the resulting bounds will be sufficiently
small to make the resulting search region practicable especially since
the dimension of the search region increases linearly with the genus.

The places where improvements could most likely be made is in the
bounding of the local Archimedean terms, where we compare metrics
and Greens functions. If a better way could be found to carry out this
bit of the algorithm, it would be great!
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