A Néron model of the universal Jacobian

David Holmes University of Leiden

August 12, 2015

Basic setup:

with:

- S regular separated (eg. $\mathbb{A}^2_{\mathbb{C}}$);
- $C \rightarrow S$ a family of nodal curves;
- $U \hookrightarrow S$ dense open;
- $C_U \rightarrow U$ smooth;

We write $J = \operatorname{Jac}(C_U/U)$.

Question

Can we find a 'nice' model for J over S?

Definition

A Néron model for J consists of:

- ► a smooth separated algebraic space N/S
- an isomorphism $N_U \rightarrow J$

satisfying the Néron mapping property: for every smooth morphism $T \rightarrow S$, and for every *U*-morphism $f: T_U \rightarrow N_U$, there is a unique $F: T \rightarrow N$ extending f.

C Can we find a model of J satisfying the Néron mapping property:

for every smooth morphism $\mathcal{T}
ightarrow \mathcal{S}$, and for every \mathcal{U} -morphism

 $U \longrightarrow S$ $f: T_U \rightarrow N_U$, there is a unique $F: T \rightarrow N$ extending f.

Examples

- Let T = S. The restriction map N(S) → N_U(U) = J(U) is bijection.
- Let T = N ×_S N. Then T_U = J ×_U J (via given isomorphism). Multiplication m: J ×_U J → J ↔ N extends uniquely to m_N: T = N ×_S N → N. The Néron model inherits a group structure.

Theorem (Néron, 1965) If dim S = 1 then a Néron model exists.

Can we find a model of J satisfying the Néron mapping

property: for every smooth morphism $T \rightarrow S$, and for every *U*-morphism $U \longrightarrow S$ $f: T_U \to N_U$, there is a unique $F: T \to N$ extending f.

Example

$$S \subseteq \mathbb{A}^1_{\mathbb{C},u}, \ U = S \setminus \{u = 0\}$$

$$C: y^2 = ((x-1)^2 - u)((x+1)^2 - u) \subseteq \mathbb{P}_S(1, 1, 2)$$

- Elliptic curve, so $C_U = J$ (choose section at infinity).
- Not smooth: $C_{\mu=0}: y^2 = (x-1)^2(x+1)^2$ [picture]
- ▶ Néron model $N = C^{sm}$

What happens when dim S > 1?

Example $S \subseteq \mathbb{A}^2_{\mathbb{C},u,v}, \ U = S \setminus \{uv = 0\}$ $C: y^2 = ((x-1)^2 - u)((x+1)^2 - v)$

Is C^{sm} a Néron model of $J = C_U$? [Picture]

- If so, has group structure compatible with that on $J = C_U$.
- Let λ ∈ C^{*}, define a line L_λ : u = λv ⊂ S. Then C_{L_λ} is over a 1-dimensional base. The Néron model is Csm_{L_λ}.
- This gives a group structure on $C_{L_{\lambda}}^{sm}|_{u=v=0} = C^{sm}|_{u=v=0}$.
- Problem: this group structure depends continuously on λ !
- No Néron model exists.

Question (Qing Liu, 2010)

Does there exist an alteration $S' \rightarrow S$ such that a Néron model exists after pullback to S'?

What happens when dim S > 1?

Example $C: y^2 = ((x-1)^2 - u)((x+1)^2 - v)$ - no Néron model exists.

Question (Qing Liu, 2010)

Does there exist an alteration $S' \rightarrow S$ such that a Néron mdoel exists after pullback to S'?

Theorem (H., 2014)

No.

- In fact, give a general classification of when Néron models exist
- Proof via study of failure of flatness of Pic_{C/S} closure of unit section 'blows up'

- No Néron model if dim S > 1
- blowing up or altering the base doesn't help

On the other hand, there are many morphisms $f\colon S'\to S$ such that a Néron model does exist after pullback to S'

Examples

► *S*′ = *U*

► S' a curve (Dedekind scheme)

(should require $f^{-1}U$ dense and S' regular separated).

We call such $f: S' \rightarrow S$ a Néron model admitting (NMA) morphism.

Question

Does there exist a universal Néron model admitting morphism $\tilde{S} \rightarrow S$?

• $f: S' \to S$ is *NMA* if f^*J has a Néron model over S';

Does there exist a universal NMA morphism?

Theorem (H. 2014)

A universal Néron-model admitting morphism does exist if $S = \overline{\mathcal{M}}_{g,n}$ and C is the universal curve.

The universal Néron-model admitting morphism is

- birational
- separated
- locally of finite presentation
- not quasi-compact

[Picture]

Summary

- When dim S = 1, everything is nice
- if dim S > 1, no Néron model in general
- blowing up/altering S doesn't help
- in the universal case, there is a canonical 'infinite chain of blowups' after which a Néron model *does* exist.