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We will restrict to the case of principal polarisations and level 1, because
it will ease notation and the ideas are generally all there.

1 What and why?

Recall that last time Diane defined

Hg = {τ ∈Mg×g(C)|τ = τT and =(τ) > 0}, (1)

and gave an action of Sp2g(Z) by

Sp2g(Z) y Hg(
A B
C D

)
· τ 7→ (Aτ +B)(Cτ +D)−1

(2)

Then define
Ag = Sp2g(Z)�Hg. (3)

Note:
- this is not compact as a topological space
- it is in fact an algebraic variety, but this is a subtle fact. Probably the
easiest proof in this context is to use modular forms, which I will define
later. However, for now let us take it for granted. Then:

Definition 1. A compactification of Ag is a complex projective variety with
a dense open subset isomorphic as algebraic varieties to Ag.

Why?
- if you want to talk about the fundamental group, canonical class etc it will
help.
- compactifications and their moduli interpretations are (essentially the same
as) the study of dengenerations of abelian varieties in families, which has
loads of applications. See later for more discussion of this.
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2 The dimension 1 case

Recall from Diane’s talk that we have the j function, an isomorphism

j : A1 → C. (4)

In the notes it is referred to as an iso of algebraic varieties, but in an attempt
to be self contained (i.e. avoid the language of representable functors) I will
use this as the definition of the algebraic structure on A1.

Re-writing as j : A1 → A1
C, we see an obvious compactification as P1C,

and indeed this is the unique smooth compactification (in fact, it is the
Satake compactification).

2.1 A topological viewpoint on the Satake compactification

To obtain the Satake compactification, we just added a single point (outside
level 1, we would add a finite collection of points). From a topological point
of view this seems pretty simple. Can we construct the compact topological
space directly? More precisely:

Definition 2. We define a partial compactification of Hg to be a topological
space Hg which contains Hg as a dense open subset, and to which the action
of Sp2g(Z) extends in such a way that the quotient

Sp2g(Z)�Hg (5)

is a compact Hausdorf topological space (in which Ag is dense open - is this
automatic?)

In dimension 1, a set H1 is easy to construct, but the topology is a bit
more subtle. In general g, both become harder.

2.1.1 The set H1

Define the Cayley Transform

φ : Hg → C

τ 7→ τ − i
τ + i

(6)

which sends the upper half space to the disk. Then as a set, H1 is φ(H ∪
Q) ∪ {1}.
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2.2 The topology on H1

First, note that the wrong thing to do is to give H1 the subspace topology
from C; the resulting quotient will not be Hausdorff, since any neighbour-
hood of any point on the boundary will contain entire translates of the
fundamental domain.

Instead, use the Satake/horocycle topology, for which a basis of open
neighbourhoods of p on the boundary is {Dε ∪ p : ε > 0}, where Dε is an
open disk of radius ε touching the boundary of φ(H1) at p.

With this topology, the quotient Sp2(Z)�H1 is Hausdorff, and has dense
open subset isomorphic to A1.

Notes:
- from this point of view, it is far from clear what algebraic structure to give
this compactification. In fact, the answer comes from modular forms.
- this compactification is in fact the same as that obtained above using
modular forms.

3 Modular forms (g > 1)

Definition 3. A modular form of weight k and level 1 is a holomorphic
function

F : Hg → C (7)

such that for all M =

(
A B
C D

)
∈ Sp2g(Z) we have

F (Mτ) = det(Cτ +D)kF (τ). (8)

(if g = 1, we would also need growth condition at cusps. )

Fact:
- elements of Sp2g(Z) which have fixed points are torsion.
- the order of all torsion elements in Sp2g(Z) is bounded.
Thus:

Fix k ≥ 1. Then for some n > 0, the space M(nk) of modular forms of
weight nk is equal to the set of global sections of a very-ample line bundle,
so we obtain an immersion

Ag → P(M(nk))v. (9)

(This is a little unsatisfactory, since we would like to use the modular
forms to prove that Ag has an algebraic structure. However, this is eas-
ily amended).

Definition 4. The Satake compactification Ag of Ag is the closure of Ag in
P(M(nk))v for any nk as above. It is independent of n and k; this is not so
hard to see, since any two pairs n1k1 and n2k2 yield the same immersions
after composition with appropriate Segre embeddings.
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Facts:
- Ag is normal, but in general it is (very) singular.
- As sets, Ag = tn≤gAn.

4 A partial compactification

There is a partial compactification for this general version of the Satake
compactification, generalising the dimension 1 version. We will describe the
set; the topology would take too long.

Step 1) Define the Cayley Transform

φ : Hg → Symg(C) = {τ ∈Mg×g(C)|τ = τT }

τ 7→ τ − i.Ig
τ + i.Ig

(10)

Call the image Dg.
Step 2) A real affine hyperplane H ⊂ Symg(C) is:

- a supporting hyperplane if Dg ∩H = ∅ and Dg ∩H 6= ∅.
- rational if it is spanned by rational vectors.

Let H be a rational supporting hyperplane, and let F = H ∩ Dg. Let L
be the smallest affine subspace of Symg(C containing F , and let F be the
interior if F in L. Then F is a rational boundary component of Dg.

There are countably many rational boundary components.
Step 3) Set Hg to equal Hg union the set of rational boundary compo-

nents (as a set).
Exercise:

check that the rational boundary components of D1 are exactly 1 and the
image of Q under the Cayley transform.

Fact:
again, this compactification coincides with the one obtained using modular
forms!

5 The toroidal compactification

The toroidal compactification is a resolution of singularities of the Satake
compactification. It can be constructed in a manner similar to the ‘partial
compactification’ approach given here. It is not unique, but depends on a
choice of combinatorial data.

6 Compactifications and degenerations

At this point I begin to regret that I restricted myself to level 1, since now
I cannot assume that I have a fine moduli space. However I shall ignore

4



this; perhaps everything the follows should be interpreted on the level of
algebraic stacks.

Universal abelian varieties:
Ag comes (almost) with a universal abelian variety Ug → Ag, universal in
the sense that for ‘any’ family Y → X of abelian varieties, we obtain a
unique cartesian diagram

Y //

��

Ug

��
X // Ag.

(11)

A good compactification Ag should come with a proper map Ug → Ag such
that

Ug ×Ag
Ag = Ug. (12)

(In particular, this holds for the toroidal compactification, whereupon Ug
will be a semi-abelian scheme (see Faltings-Chai). )

By the valuative criterion for properness, this determines how to extend
any family of abelian varieties over A1

C \ {0} to the whole of A1
C (the fibre

over 0 won’t in general be an abelian variety!) If we use the toroidal com-
pactification, we will obtain an extension to a semi-abelian scheme. (For
A1
C read a strictly hensellian local ring of residue characteristic zero, and for
A1
C \ {0} read its generic point).

6.1 How to interpret singularities on the boundary of our
compactification?

6.2 The dimension 1 case

There are no singularities. The only (semistable) thing you can degenerate
to is Gm.; this corresponds to a nodal elliptic curve. If your family appeared
to degenerate to a cusp, you should
1) make sure your total space is regular, and if that doesn’t do it then
2) make a ramified extension.

In level 1 (one marked point), the fibre of the universal abelian variety
over the cusp (point you added in ) witll just be Gm with the unit marked.

In higher level, each cusp will have the same scheme over it (again, Gm),
but the level structure can degenerate to different things...

If in higher level you took the ‘one point compactification’ (equivalently
you glued all the cusps together), then

- you would get something singular (!)
- this would equate to forgetting the level structure on the degenerations.
Posible moral: singularities of compactifications of moduli spaces result

from choosing degenerations which are ’too coase’
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6.3 the higher dimension case

Thanks to Damiano Testa for telling me this example (which didn’t go in
the actual talk, but is here for fun).

Let C/C be a smooth curve of genus g. If we glue together any two
points on C we get a singular curve of arithmetic genus g + 1 Smoothing
out one of these curves gives us a (generically smooth) family whosh smooth
fibres clearly have geometric (and arithmetic) genus g + 1. Thus we obtain
a family of degenerations of curves, parameterised by pairs of points on C.

Take the Jacobian of this picture away from the degenerating locus - this
gives an abelian variety of relative dimension g + 1. The ‘correct’ thing to
do over the whole locus is to take the generalised Jacobian, a semi-abelian
variety. The ‘silly’ thing to do is to take the fibre over a closed point to be
the Jacobian of the normalisation of the fibre over that point. This yields
an ableian variety of dimension 1 less over the degenerate locus, and this
corresponds to the Satake compactification.
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