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Abstract

We discuss fibred products, projective spaces, and the proof that
projective space is proper. There is probably too much material here
to cover in the lecture - part of the homework is to read and understand
these notes. The other part is to do the exercises.

Large parts of this are copied verbatim from the stacks project
(though the errors are all mine). In particular, if there is something
you do not understand, the stacks project is very likely to be a good
reference (they give a lot more details than I have time to include).
The only exception to this is the proof that projective space is proper
- for this we follow Liu’s book, another useful reference.
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1 Fibred products

Definition 1.1. Write Sch for the category of schemes. Let S be a scheme.
Write SchS for the category whose objects are morphisms X → S in Sch,
and where

MorSchS(X → S, Y → S)

is the set of commutative diagrams X //

  

Y

��
S.

We call objects of SchS ‘S-schemes’. Note that SchZ is equivalent to Sch.

Definition 1.2. Let C be a category. Let x, y, z ∈ Ob(C), f ∈ MorC(x, y)
and g ∈ MorC(z, y). A fibre product of f and g is an object x ×y z ∈ Ob(C)
together with morphisms p ∈ MorC(x×y z, x) and q ∈ MorC(x×y z, z) making
the diagram

x×y z q
//

p

��

z

g

��
x

f // y

commute, and such that the following universal property holds: for any w ∈
Ob(C) and morphisms α ∈ MorC(w, x) and β ∈ MorC(w, z) with f ◦α = g ◦β
there is a unique γ ∈ MorC(w, x×z y) making the diagram

w
β

**
γ

((

α

  

x×y z
p

��

q
// z

g

��
x

f // y

commute.
A diagram satisfying this universal property is called a ‘cartesian dia-

gram’.

If a fibre product exists it is unique up to unique isomorphism. This follows
from the Yoneda lemma.
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Definition 1.3. We say the category C has fibre products if the fibre product
exists for any f ∈ MorC(x, z) and g ∈ MorC(y, z).

Lemma 1.4. The category of affine schemes has fibre products.

Proof. Set SpecA×SpecC SpecC = Spec(A⊗C B).

Lemma 1.5. Let S be a scheme. Then SchS has fibres products.

Proof. Glue from the affine case. Details omitted.

Given X/S ∈ SchS and a morphism of schemes f : T → S, we often write
f ∗X for the T -scheme X ×S T → T .

2 Open and closed immersions

Definition 2.1. Let (f : X → Y, ϕ : OY → OX) be a morphism of locally
ringed spaces. We say that f is a closed (open) immersion if f is a home-
omorphism of X onto a closed (open) subset of Y (i.e. a topological closed
(open) immersion) and for every x ∈ X, the map

ϕx : OY,f(x) → OX,x

is surjective (is an isomorphism).

Lemma 2.2. Let f : Z → X be a morphism of locally ringed spaces. In
order for f to be a closed immersion it suffices if there exists an open covering
X =

⋃
Ui such that each f : f−1Ui → Ui is a closed immersion.

Proof. Omitted.

Exercise 2.3.

1. Let R a ring and I / R an ideal. Then the natural map SpecR/I →
SpecR is a closed immersion.

2. Let R a ring and f ∈ R. Then SpecR[1/f ] → SpecR is an open
immersion.

Definition 2.4. Let X be a scheme.

1. A morphism of schemes is called an open immersion if it is an open
immersion of locally ringed spaces (see Definition 2.1).
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2. A morphism of schemes is called a closed immersion if it is a closed
immersion of locally ringed spaces (see Definition 2.1).

3. A morphism of schemes f : X → Y is called an immersion, or a
locally closed immersion if it can be factored as j ◦ i where i is a closed
immersion and j is an open immersion.

Any open (resp. closed) immersion of schemes is isomorphic to the inclusion
of an open (resp. closed) subscheme of the target [proof omitted].

Exercise 2.5. A composite of open (closed) immersions is an open (closed)
immersion.

3 Separated morphisms

A topological space X is Hausdorff if and only if the diagonal ∆ ⊂ X × X
is a closed subset. The analogue in algebraic geometry is, given a scheme X
over a base scheme S, to consider the diagonal morphism

∆X/S : X −→ X ×S X.

This is the unique morphism of schemes such that pr1 ◦ ∆X/S = idX and
pr2 ◦∆X/S = idX (it exists in any category with fibre products).

Exercise 3.1. The diagonal morphism of a morphism between affines is a
closed immersion. Hint: use Exercise 2.3.

Definition 3.2. Let f : X → S be a morphism of schemes.

1. We say f is separated if the diagonal morphism ∆X/S is a closed im-
mersion.

2. We say a scheme Y is separated if the morphism Y → Spec(Z) is
separated.

Example 3.3 (Affine line (with origin doubled)). Let A1
Z := SpecZ[x], the

affine line over Z. Let S be a scheme with structure morphism f : S →
SpecZ, and let A1

S = f ∗A1
Z, the affine line over S.

Take two copies SpecZ[x] and SpecZ[y] of the affine line over Z. Let
Ux = SpecZ[x, 1/x] and Uy = SpecZ[y, 1/y]. Let f : Ux → Uy be the
isomorphism sending x to y. Consider the scheme obtained by glueing the
two copies of A1

Z along f (see the exercises for a definition of this). This is
the ‘affine line with origin doubled’, a non-separated scheme. Base change
yields an example of a non-separated scheme over any S.

Note that if you glued along the isomorphism Ux → Uy sending x to 1/y
instead, you would obtain P1

Z - see below.
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4 Proj of a graded ring

A graded ring is ring S endowed with a direct sum decomposition S =⊕
d≥0 Sd such that Sd ·Se ⊂ Sd+e. Note that we do not allow nonzero elements

in negative degrees. The irrelevant ideal is the ideal S+ =
⊕

d>0 Sd.
Let S be a graded ring. An element s ∈ S is called homogeneous if there

exists d ≥ 0 such that s ∈ Sd. A homogeneous ideal is an ideal generated by
homogeneous elements.

Definition 4.1. Let S be a graded ring. We define Proj(S) to be the set of
homogeneous, prime ideals p of S such that S+ 6⊂ p. As Proj(S) is a subset
of Spec(S) and we endow it with the induced topology. The topological space
Proj(S) is called the homogeneous spectrum of the graded ring S.

Note that by construction there is a continuous map

Proj(S) −→ Spec(S0)

Let f ∈ S homogeneous of degree > 0.

• We define S(f) to be the subring of Sf consisting of elements of the
form r/fn with r homogeneous and deg(r) = nd.

• We define standard open sets

D+(f) = {p ∈ Proj(S) | f 6∈ p}.

For a homogeneous ideal I ⊂ S we define

V+(I) = {p ∈ Proj(S) | I ⊂ p}.

Lemma 4.2 (Topology on Proj). Let S = ⊕d≥0Sd be a graded ring.

1. The sets D+(f) are open in Proj(S).

2. We have D+(ff ′) = D+(f) ∩D+(f ′).

3. The open sets D+(f) form a basis for the topology of Proj(S).

4. Let f ∈ S be homogeneous of positive degree. The ring Sf has a natural
Z-grading. The ring maps S → Sf ← S(f) induce homeomorphisms

D+(f)← {Z-graded primes of Sf} → Spec(S(f)).

5. The sets V+(I) are closed.
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6. Any closed subset T ⊂ Proj(S) is of the form V+(I) for some homoge-
neous ideal I ⊂ S.

7. For any graded ideal I ⊂ S we have V+(I) = ∅ if and only if S+ ⊂
√
I.

Proof. Since D+(f) = Proj(S) ∩D(f), these sets are open. For the rest see
[3, Tag 00JP].

By (3) and (4) of Lemma 4.2, the open sets D+(f) give an open cover
of the topological space ProjS by spaces homeomorphic to the underlying
topological spaces of affine schemes. Hopefully this makes it reasonable that
we can glue together these affine schemes to put a scheme structure on ProjS.
Read [3, Tag 01M3] for details.

4.1 Base change for projective schemes

Let A be a ring, and B a graded A-algebra - that is, B is a graded ring and
multiplication by elements of A preserves the graded pieces of B. In partic-
ular, B0 is naturally an A-algebra, and so we have natural maps ProjB →
SpecB0 → SpecA.

Given another A-algebra C, we have

B ×A C =
⊕
d≥0

(Bd ⊗A C),

so that B ×A C has a natural grading.

Lemma 4.3. Let A, B, C as above. Then we have a canonical isomorphism

Proj(B ⊗A C) = ProjB ⊗SpecA SpecC.

Proof. [2, 3.1.9].

5 Projective space

Fix n ≥ 0 an integer. Let R = Z[x0, . . . , xn], graded by degree of the polyno-
mial (setting deg xi = 1 for all i). We define n-dimensional projective space
over Z by PnZ = ProjR.

Let S ∈ Sch. Define PnS = PnZ ×SpecZ S.
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6 Universally closed morphisms

Definition 6.1. Let f : X → Y be a morphism of schemes. We say f is
universally closed if for all morphisms T → Y , the map X×Y T → T induced
by the fibre product is a closed morphism of the underlying topological spaces.

The base change of a universally closed morphism is closed. A composite
of universally closed morphisms is universally closed. Being universally closed
is local on the target (not the source!)

7 Projective space is universally closed

Lemma 7.1. Let S a scheme and n ∈ Z≥0. The S-morphism PnS → S is
universally closed.

Proof. (Following [2, 3.3.30]). From the definition and because being univer-
sally closed is local on the target, it is enough to show that for any affine
scheme Y = SpecA, the morphism π : PnY → Y is closed.

Write B = A[x0, . . . , xn]. Let V +(I) be a closed subset of PnY . We need
to show that Y \ π(V +(I)) is open. Let y ∈ Y . By Lemma 4.3 we have

V +(I) ∩ π−1(y) = V +(I ⊗A k(y)),

(where k(y) is the residue field at y). Hence y ∈ Y \ π(V +(I)) if and only if
(B ⊗A k(y))+ ⊂

√
I ⊗A k(y) (by Lemma 4.2). Since B is finitely generated

as an A-algebra (by the xi, this is equivalent to

Bm ⊗A k(y) ⊂ I ⊗A k(y)

for some integer m. This is in turn equivalent to

(B/I)m ⊗A k(y) = 0.

Note that we have a surjective A-module map Bm → (B/I)m. Easy to
see Bm is fin bern as A-module, so the same holds for (B/I)m.

Let us now take y ∈ Y \ π(V +(I)). Let m ≥ 1 such that ((B/I) ⊗A
k(y))m = 0. Since (B/I)m is finitely generated as an A-module [exercise:
why?], it follows from Nakayama’s lemma that

(B/I)m ⊗A OY,y = 0.

Hence there exists f ∈ A such that y ∈ D(f) and f · (B/I)m = 0, and hence
(B/I)m ⊗A Af = 0. From this we see

y ∈ D(f) ⊂ Y \ π(V +(I)),

and we are done.
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8 Proper morphisms

Definition 8.1. Let f : X → Y be a morphism of schemes. We say f is

• quasi-compact if the inverse image of any affine open of Y is compact
(as a topological space).

• locally of finite type if for every affine open V ⊂ Y and every affine
open U ⊂ f−1V , the canonical map OY (V ) → OX(U) makes OX(U)
into a finitely generated OY (V )-algebra.

• of finite type if it is quasi-compact and locally of finite type.

• proper if is is separated, of finite type and universally closed.

===
In the old version of these notes, there was a proof that projective space

was proper. The proof of separateness was incorrect, and was done correctly
in Bas’ lecture.

9 Exercises

A few exercises are distributed in the text. Some more are below.

Exercise 9.1. Let A be a ring. Show that SpecA is compact as a topological
space.

Exercise 9.2. Show that every closed immersion of schemes is proper.

Exercise 9.3 (Hartshorne II.4.3). Let S be an affine scheme and let X → S
be separated. Let U and V be affine open subsets of X. Show that U ∩ V is
also affine. Give an example to show that this fails without the assumption
that X/S is separated.

Exercise 9.4. Let X a scheme, and U , V ⊂ X affine opens. Then there
exists a cover Y = {Yi} of U ∩V such that every Yi is a principal open subset
in U and is a principal open subset in V .

Hints:

1 Fix p ∈ U ∩ V .

2 Show there exists f ∈ O(U) with p ∈ D+
U (f) ⊂ U ∩ V .

3 Show there exists g ∈ O(V ) such that p ∈ D+
V (g) ⊂ D+

U (f).

4 Show there exists n ∈ Z≥0 such that fng ∈ O(U).

5 Show D+
V (g) = D+

U (fn+1g).
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