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Abstract

For us, categories are locally small, i.e. the Hom-sets are sets (not proper
classes).

1 Pre-additive categories

Let C be a categories. We say C is preadditive if each morphism set MorA(x, y)
is endowed with the structure of an abelian group such that the compositions

Mor(x, y)×Mor(y, z) −→ Mor(x, z)

are bilinear.
In particular for every x, y there exists at least one morphism x → y,

namely the zero map.
Eg. The category of modules over a ring.
Eg. Not the category of schemes.
A functor between pre-additive categories is called additive if it is an

abelian group hom on each hom-set.

2 Limits and colimits

2.1 Definitions

2.1.1 Cones

Let S be a category (the shape category). Let C be another category.
A diagram of shape S is a functor f : S → C.
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A cone over a diagram f : S → C is an object N ∈ ObC together with
C-morphisms ns : N → f(s) for all s ∈ S, such that for all ϕ : s→ t ∈ S we
have

nt = f(ϕ) ◦ ns.

A morphism of cones (N, (ns)S)→ (M, (ms)S) is a C-morphism ψ : N →
M such that for all s ∈ S we have

ns = ms ◦Ψ.

The Category of cones over a diagram f of shape S has cones over f as
objects and morphisms of cones as morphisms!

A cone under a diagram f : S → C is an object N ∈ ObC together with
C-morphisms ns : f(s)→ N for all s ∈ S, such that for all ϕ : s→ t ∈ S we
have

ns = nt ◦ f(ϕ).

We define a morphism of cones under a diagram, and the category of such
cones, in an analogous way.

2.1.2 Limits and colimits

Let f be a diagram of shape S to a category C.
A limit of f is a terminal object of the category of cones over f .
A colimit of f is an initial object of the category of cones under f .
Limits and colimits are unique up to unique isomorphism, if they exist.

2.2 Examples

2.2.1 Products and coproducts

Let S be a category with two objects s and t, where the only morphisms are
identities.

Let f : S → C be a diagram. The limit of f is the product of f(s) and
f(t). The colimit is the coproduct of f(s) and f(t).

2.2.2 Fibred Products

Let S be a category with 3 objects s, t, u, with identities and also morphisms
s → t and u → t. A limit over a diagram of shape S is the fibre product of
f(s) with f(u) over f(t).

2



2.2.3 Fibred Coproducts

Let S be a category with 3 objects s, t, u, with identities and also morphisms
t→ s and t→ u. A colimit over a diagram of shape S is the cofibred product
of f(s) with f(u) under f(t).

2.2.4 Equalisers and coequalisers

Let S be a category with 2 objects s and t, and two morphisms a, b : s→ t.
Let f be a diagram of shape S. The limit of f is the equaliser of a and b. The
colimit is the co-equaliser. This generalises kernels and cokernels: suppose
now that C is pre-additive. let f be as above, but assume also that f(a) is
the zero map. Then the colimit is the cokernel of f(b), and the limit is the
kernel of f(b).

2.2.5 Stalks

Let (X,O) be a RTS, and x ∈ X. Let S denote the category of open
neighbourhoods of x, with morphisms the inclusions. Let f : S → Rng be
the restriction of O to S. The stalk Ox is the colimit of f .

3 Adjoint functors

Let C and D be two categories, let f : C → D and g : D → C be functors.
We say f and g are adjoint (f is right adjoint to g, and g is left adjoint to
f) if there exists a natural isomorphism between the two functors

homC(g−,−) : Dop × C → Set

and
homD(−, f−) : Dop × C → Set .

In particular, such a natural isomorphism specifies a bijection

homC(g(d), c) ∼= homD(d, f(c))

for all c ∈ C and d ∈ D. [Possible aid to memory: the functor which is right
adjoint appears on the right inside the hom, and conversely].
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3.1 Examples

3.1.1 Free abelian groups

Let f : Ab→ Set be the forgetful functor. This has a left adjoint g : Set→
Ab; it is the functor taking a set to the free abelian group generated by that
set.

3.1.2 Schemes

Let f : LRS → Rngop be the functor sending (X,O) to O(X). Then f has a
right adjoint Spec : Rngop → LRS - see Lecture 1. [Homs from a scheme to
an affine scheme are the same as homs from the global sections to the ring.
If you get confused, consider the case of P1 over spec of a field. ]

4 Commuting of adjoints and (co)limits

Let f : C → D be a functor, and g : D → C be a right adjoint to f . Let S
be a category, and ϕ : S → C, ψ : S → D functors. Then

f(colimϕ) = colim(f ◦ ϕ)

and
g(limψ) = colim(g ◦ ψ).

Proof. We do only the first one.
We will show that every cone under f ◦ ϕ admits a unique map from

f(colimϕ), in other words f(colimϕ) is initial in the category of cones over
f ◦ ϕ, which is what we wanted.

Consider a cone N under f ◦ ϕ, so for all s ∈ S we get maps f(ϕ(s)) →
N (such that a bunch of diagrams commute). Apply adjunction, this is
equivalent to a bunch of maps ϕ(s)→ g(N), with more diagrams commuting.
This makes g(N) a cone under ϕ, so since colimϕ is initial we find that the
maps above factor as

ϕ(s)→ colimϕ→ g(N).

Applying adjunction again, we get canonical maps f(colinϕ)→ N .

Exercise 4.1 (Good idea if you’ve not seen these things before). Do the
right adjoints/ limits version.

Maps from a colimit are just the same as maps from each object in the
image of the diagram, plus commuting maps. Maps to a limit have a similarly
easy description. Hence:
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Table 1: Easy to characterise

maps out of maps into
colimits limits

tensor products products
cokernels kernels

stalks
left adjoint right adjoint

sheafification

Moreover, two things from the same side of the diagram tend to commute
with one another.

Nb. the things at the bottom are not (co)limits, so it seems a bit silly to
put them there. However:
- it is still easy to characterise maps from/to them;
-more generally, it is possible to define colimits as left adjoints to a certain
functor, and similarly limits as right adjoints. Hence the columns do fit
together.

5 Additive and abelian categories, exact func-

tors

We defined a pre-additive category above. A category is called additive if it
is pre-additive and finite products exist (finite product = limit of a diagram
from a shape cat with finitely many objects and all morphisms identities).

We defined kernels and cokernels above using (co)-limits. A coimage of
f : X → Y is a cokernel of the canonical map ker f → X. An image of f is
a kernel of the canonical map Y → coker f .
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Lemma 5.1. Let f : x → y be a morphism in a preadditive category such
that the kernel, cokernel, image and coimage all exist. Then f can be factored
uniquely as x→ Coim(f)→ Im(f)→ y.

Exercise 5.2 (Basic, reccomended). Prove the lemma.

Definition 5.3. A category A is abelian if it is additive, if all kernels and
cokernels exist, and if the natural map Coim(f)→ Im(f) is an isomorphism
for all morphisms f of A.

Exercise 5.4 (Basic, recommended). Show that the category of modules over
a (commutative) ring is abelian. In particular, Ab is abelian.

Let
A

f→ B
g→ C

be a sequence of maps in an abelian cat. Assume g ◦ f = 0.
Exercise: show that there is a canonical map image f → ker g.

Definition 5.5. A sequence of maps as above is exact at B if g ◦ f = 0 and
the canonical map image f → ker g is an isomorphism.

Definition 5.6. A functor between abelian cats is called exact if it is additive
and sends exact sequences to exact sequences. (There is a more general notion
of exact functor for cats that are not abelian).

=== End of category definitions for now ===

=== Beginning of schemes ===

6 Kernels and cokernels for AbX, take 1

Let X a top space.

Exercise 6.1 (First part basic and essential). Kernels and cokernels exist
in PAbX. Further, PAbX is an abelian category.

Let f : F → G be a morphism of presheaves of abelian groups on X .

Lemma 6.2. Suppose F and G are sheaves. Then the presheaf Ker f is a
sheaf.

Exercise 6.3 (Basic, essential). Prove the lemma. Note that this does not
follow naturally from the formalities in the first part of the lecture.

6



However, even if F and G are sheaves, the presheaf cokernel is not in
general a sheaf:

Example 6.4. Let X = C with the usual topology.
Define a sheaf of rings ZX on X by ZX(U) = ⊕π0(U)Z. [Maybe you will

see this sheaf again later on...]. Consider the RTS (X,ZX).
Let F denote the sheaf of holomorphic functions X → C (a sheaf of

ZX-modules). Define a presheaf G by

G(U) = {exp(2πi) ◦ f |f ∈ F(U)}.

We have a natural inclusion ZX → F , and composite with exp(2πi) yields
a map F → G.

Exercise: Show that the sequence of presheaves

0→ ZX → F → G → 0

is exact.
Show that G is not a sheaf.

7 Sheafification of a presheaf

To construct a cokernel of a map on sheaves (and for many other purposes)
it is useful to be able to canonically associate a sheaf to a given presheaf. We
do this first for sheaves of sets, and then more generally.

Lemma 7.1. Fix a top space X. Write i : ShX → PShX for the inclu-
sion (‘view a sheaf as a presheaf’). Then i has a left adjoint, which we call
‘sheafification’, and write F 7→ F#. In other words, for all G ∈ ShX we
have

MorPShX(F , i(G)) = MorShX(F#,G).

Once we have proven the Lemma, uniqueness of adjoint functors [Exer-
cise? Useful if you are not familiar with these things. ] allows us to use this
as the definition of the sheafification of a presheaf of sets.

The basic construction is the following. Let F be a presheaf of sets F on
a topological space X. For every open U ⊂ X we define

F#(U) = {(su) ∈
∏

u∈U
Fu such that (∗)}

where (∗) is the property:
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(∗) For every u ∈ U , there exists an open neighbourhood u ∈ V ⊂ U , and
a section σ ∈ F(V ) such that for all v ∈ V we have sv = (V, σ) in Fv.

Proof that F# is a sheaf:

Exercise 7.2 (A little long, but try to do at least the first step). Given a
sheaf G and map of presheaves f : F → i(G), construct a natural map of
sheaves F# → G. Complete the proof of the lemma.

Lemma 7.3. Let X be a topological space. Let F be an abelian presheaf on
X. Write i : AbX → PAbX for the inclusion (‘view an abelian sheaf as an
abelian presheaf ’). Then i has a left adjoint, which we call ‘sheafification’,
and write F 7→ F#. In other words, for all G ∈ AbX we have

MorPAb(X)(F , i(G)) = MorAb(X)(F#,G).

Let fA : AbX → ShX and fP : PAbX → PShX denote the forgetful
functors. Then TFDC:

PAbX //

fP
��

AbX

fA
��

PShX // ShX

Proof. One way is to repeat the construction (given above for sets) in the
category of abelian groups. Then you also have to repeat the proof that it
works, though this will be the same.

The Stacks Project takes a different approach (see [3, Tag 0085]) - they
show that there is a unique abelian group structure on the sheafification of
the underlying presheaf of sets. This is probably a nicer thing to do...

Note that by the adjunction we have a canonical map of presheaves

F → i(F#)
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since
MorSh(F#,F#) = MorPSh(F , i(F#)).

Lemma 7.4. Let F be a sheaf of sets or abelian groups. Then F# = F .

Proof. Adjointness plus Yoneda.

Lemma 7.5. Let F be a presheaf of sets or abelian groups. Then for all
x ∈ X, the canonical map on stalks is an isomorphism. In other words:

Fx = (F#)x.

Proof. Sheafification is a left adjoint. Taking stalk is a colimit. Hence this
should morally be true, but care is needed to set things up right...

8 Kernels and cokernels in Ab, take 2

Let X a top space. Given a map f : F → G in AbX, we considered the
presheaf kernel, and checked that it was in fact a sheaf. This fails for the
cokernel.

Write i : AbX → PAbX for the forgetful functor.
If coker f exists in AbX the (since colimits and left adjoints commute)

we see that (coker i(f))# = coker f .

Exercise 8.1. Prove that cokernels exist in AbX.

8.1 Sheafification in CommRng

You can also sheafifiy a presheaf of commutative ring on a topological space.
The definition (left adjoint to ‘view a sheaf as a presheaf’) is the same, and
they can be constructed in the same manner.

Example 8.2 (Constant presheaf). Let X be a top space, and let c be an
element of a category C which is either set, abelian group or commutative
ring. We define the ‘constant presheaf’ of c to be the presheaf which sends
an open of X to the element c. We define the ‘constant sheaf’ of c to be the
sheafification of the constant sheaf c.

Exercise 8.3. Let X be the disjoint union of two copies of R with the usual
topology. Describe the constant sheaf Z of rings (or abelian groups). What
is Z(X)?
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9 Sheaves of modules

Let (X,O) be a ringed topological space (RTS). We wish to define a pre sheaf
of O-modules.

Not straightforward; over U we want a sheaf of modules over O(U), but
this depends on U . As such, we have to define a sheaf of O-modules as a
sheaf of abelian groups plus some extra data.

Definition 9.1. Let X be a topological space, and let O be a presheaf of rings
on X.

1. A presheaf of O-modules is given by an abelian presheaf F together with
a map of presheaves of sets

O ×F −→ F

such that for every open U ⊂ X the map O(U)×F(U)→ F(U) defines
the structure of an O(U)-module structure on the abelian group F(U).

2. A morphism ϕ : F → G of presheaves of O-modules is a morphism of
abelian presheaves ϕ : F → G such that the diagram

O ×F //

id×ϕ
��

F
ϕ

��
O × G // G

commutes.

3. The set of O-module morphisms as above is denoted HomO(F ,G).

4. The category of presheaves of O-modules is denoted PMod(O).

Definition 9.2. Let X be a topological space. Let O be a sheaf of rings on
X.

1. A sheaf of O-modules is a presheaf of O-modules F , see Definition 9.1,
such that the underlying presheaf of abelian groups F is a sheaf.

2. A morphism of sheaves of O-modules is a morphism of presheaves of
O-modules.

3. Given sheaves of O-modules F and G we denote HomO(F ,G) the set
of morphism of sheaves of O-modules.

4. The category of sheaves of O-modules is denoted Mod(O).
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Example 9.3. : Let k be a field, so Spec k = {∗} is a one-point topological
space. Let V be a vector space over k. Two presheaves of modules on Spec k:

F : ∅ 7→ V, {∗} 7→ V

where the map F(∅)→ F({∗}) is zero.

G : ∅ 7→ 0, {∗} 7→ V.

where the map G(∅)→ G({∗}) is zero.
The map O × G → G is the ‘usual’ scalar multiplication (take care with

the zero ring), and the same for F .
Which is a sheaf of modules?

Exercise 9.4 (Basic). Let X a top space. Let Z be the constant sheaf of
rings, so we have a RTS (X,Z). Construct an equivalence of categories
between AbX and Mod(Z).

9.1 Sheafification, kernels and cokernels

Let (X,O) be an RTS. Given a morphism in Mod(O), we wish to form a
kernel and cokernel. By the above exercise, we will have the same problem
with cokernels as we did when considering abelian groups - the obvious thing
(the presheaf cokernel) will fail to be a sheaf. Thus we will need to sheafify
presheaves of modules.

Note that a sheaf of modules is not just a sheaf taking values in some cat
- there is extra data there too. Hence sheafification will not (quite) follow
the model we used before. However, the definition will be similar.

Lemma 9.5. Let i : Mod(O) → PMod(O) be the forgetful functor. Then i
has a left adjoint which we call ‘sheafification’, and write F 7→ F#. In other
words, for all G ∈ ModX we have

MorPMod(O)(F , i(G)) = MorMod(O)(F#,G).

Proof. Omitted. See [3, Tag 0088].

As for abelian groups, the presheaf kernel of a morphism of sheaves of
modules is again a sheaf of modules. Cokernels also exist, with analogous
proof to the case of abelian groups.
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10 Sheaves of modules form an abelian cate-

gory

Proposition 10.1. Let (X,O) be a RTS. The category Mod(O) forms an
abelian category. Moreover a complex

F → G → H

is exact at G if and only if for all x ∈ X the complex

Fx → Gx → Hx

is exact at Gx.

Exercise 10.2. Read [3, Tag 01AF], where this is proven. We have done a
lot of the work - most of the relevant objects exist.

===

11 Quasi-coherent sheaves

Definition 11.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX-
modules. We say that F is a quasi-coherent sheaf of OX-modules if for every
point x ∈ X there exists an open neighbourhood x ∈ U ⊂ X such that F|U is
isomorphic to the cokernel of a map⊕

j∈J
OU −→

⊕
i∈I
OU

The category of quasi-coherent OX-modules is denoted QCoh(OX).

Examples:
The module OX is a quasi-coherent module over itself.
Let (R, C0) denote the LRTS whose top. space is R with the usual topol-

ogy, and with structure sheaf the continuous functions. Let p = 0 ∈ R.
Define a sheaf F ∈ ModO by

F(U) = C0(U) if p /∈ U
F(U) = 0 if p ∈ U

Exercise 11.2. The presheaf F is a sheaf of O-modules, and is not quasi-
coherent.

Note An essential point is that the pullback of a quasi-coherent sheaf is
again quasi-coherent. Bas will define the pullback in the next lecture.
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12 Quasi-coherent sheaves on affine schemes

Quasi-coherent sheaves are great - they correspond to modules over rings:

Definition 12.1. Let R be a ring, and M ∈ ModR. Given f ∈ R, define

M̃(D(f)) = M ⊗R R[1/f ].

Since the open sets D(f) form a basis for the Zariski topology on SpecR, we
know (see Lecture 1) that the given data uniquely defines a sheaf of abelian
groups on X. A similar argument shows that this is in fact a sheaf of O-
modules.

Given a morphism f : M → N in ModR, there is a natural map f̃ :
M̃ → Ñ .

GIven a prime ideal p ∈ SpecR, we have Mp = M̃p.

Lemma 12.2. Let R a ring. Let (X,O) be the associated affine scheme.
The functors M 7→ M̃ and F 7→ F(X) define quasi-inverse equivalences of
categories between QCohO and ModR.

Outline of proof . Exercise: read [3, Tag 01IA] to see the details.
First, we show M̃ is quasi-coherent.

• Write a presentation of M :⊕
j∈J

R→
⊕
i∈I

R→M → 0.

• By definition, we have R̃ = O.

• We have induced maps⊕
j∈J

O →
⊕
i∈I

O → M̃ → 0.

• it remains to show that the above sequence of sheaves is exact. Check
this on stalks.

Certainly F(X) ∈ ModR. It remains to check that M̃(X) = M and
˜F(X) ∼= F . The first is easy. For the second:

• Let f1, . . . fn ∈ R such that (f1, . . . , fn) = R and such that over each
D(fr) we have a presentation⊕

j∈Jr

O →
⊕
i∈Ir

O → F(D(fr))→ 0.
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• For each fr, use the above presentation to construct a module Mr over
R[1/fr]

• On overlapsD(frfs) we get isomorphisms ϕr,s : Mr⊗R[1/fr]R[1/(frfs)]→
Ms ⊗R[1/fs] R[1/(frfs)].

• these morphisms satisfy the cocycle condition ϕr,t = ϕr,s ◦ ϕs,t.

• Exercise: glue these modules to a module M over R (see [3, Tag 00EQ]).

• check that M̃ = F by constructing a map and checking locally that it
is an isomorphism.

13 Example: Jordan canonical form

14 Push forward and inverse image

If time allows
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