LINEAR ALGEBRA AND IMAGE PROCESSING SOLUTIONS MID-TERM EXAM - MARCH 2014

Time: 1 hour 30 minutes
Fill in your name and student number on all papers you hand in. In this examination you are only allowed to use a pen and examination paper.
In total there are 5 question, and each question is worth the same number of points. In all questions, justify your answer fully and show all your work.
Good luck!
Question 1: Consider the following system of 4 linear equations in 4 variables.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =1 \\
x_{1}+2 x_{3}+x_{4} & =3 \\
x_{2}+2 x_{3}+3 x_{4} & =4 \\
x_{1}+x_{3} & =1
\end{aligned}
$$

a) Write the general solution of the system in parametric vector form

$$
\underline{p}+t \underline{u} \quad(t \in \mathbb{R}) .
$$

For example, $p=(-1,0,2,0), u=(1,-1,-1,1)$.
b) In this case the parametric vector form of the general solution is not unique (this is not unusual). Find vectors $\underline{q}=\left(0, q_{2}, q_{3}, q_{4}\right) \in \mathbb{R}^{4}$ and $\underline{v}=\left(2, v_{2}, v_{3}, v_{4}\right) \in \mathbb{R}^{4}$ such that the general solution of the linear system above is given in parametric vector form by

$$
\underline{q}+s \underline{v} \quad(s \in \mathbb{R}) .
$$

Unique solution $q=(0,-1,1,1), v=(2,-2,-2,2)$.

Question 2: Consider the 3×3 matrices

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
2 & 0 & 2 \\
1 & 2 & 3
\end{array}\right), \quad B=\left(\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 1 & 0 \\
5 & 5 & 4
\end{array}\right)
$$

a) Is A invertible? If so, find the inverse of A.

No: not row equivalent to identity.
b) Is B invertible? If so, find the inverse of B.

Yes. Inverse is

$$
B=\left(\begin{array}{ccc}
4 & 3 & 1 \\
0 & 1 & 0 \\
-5 & -5 & -1
\end{array}\right)
$$

c) Is the product $A B^{1000}$ invertible?
[Hint: you do not need to compute the matrix $A B^{1000}$.]
No. Suppose $A B^{1000}$ invertible, and let C denote the inverse. Then

$$
C A B^{1000}=I=A B^{1000} C,
$$

so $B^{-1000}=C A$ and hence $B^{1000} C A=I$, so $B^{1000} C$ is an inverse for A.

Question 3: Consider the following network:

a) Write down a linear system describing the flow in the network.
b) Put the augmented matrix of the linear system from (a) in row reduced echelon form.

Solution:

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & -1 & 3 \\
0 & 1 & 0 & -1 & 13 \\
0 & 0 & 1 & -1 & 9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

c) Can you find a solution where all the flows are positive?

Yes.

Question 4: For each of the following 5 statements, say whether the statement is true or false. Justify your answer (either by an example if the statement is false, or a brief proof if it is true).
a) If A, B and C are $n \times n$ matrices such that A is not the zero matrix and such that $A B=A C$, then $B=C$.
False, eg. $n=2, A=(1,0 ; 0,0), B=(0,0 ; 0,0), C=(0,0 ; 0,1)$.
b) The function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ sending (x, y) to $(x+y, x+1)$ is linear.

False, since $T(0,0)=(0,1)$, and any linear function sends $\underline{0}$ to 0.
c) If every column of the augmented matrix of a linear system contains a pivot, then the system is inconsistent.
True: the final column contains a pivot, and hence there is an equation of the form $0=1$ in an equivalent linear system to the one we started with.
d) If every row of the augmented matrix of a linear system contains a pivot, then the system is inconsistent.
False, eg. the system $x_{1}=1, x_{2}=1$.
e) If the function $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ is onto (surjective) and $S: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is onto, then the composite $S T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ is onto.
True: let $x \in \mathbb{R}^{2}$, then choose $y \in \mathbb{R}^{4}$ such that $S(y)=x$, then choose $z \in \mathbb{R}^{5}$ such that $T(z)=y$, then $S T(z)=x$.

Question 5: Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3 x_{1}-x_{2} \\
x_{1}-x_{3} \\
x_{1}+2 x_{2}+x_{3}
\end{array}\right) .
$$

a) Is T onto (surjective)?

Yes, since the standard matrix of T has a pivot in every row.
b) Is T 1-to-1 (injective)?

Yes, since the equation $A x=0$ has only the trivial solution $x=0$ (check by row reduction).
c) Write down the standard matrix for the composite transformation $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ sending x to $T(T(x))$.
The matrix is

$$
\left(\begin{array}{ccc}
8 & -3 & 1 \\
2 & -3 & -1 \\
10 & 1 & -1
\end{array}\right)
$$

-the square of the standard matrix for T.

