Homework for week 2:

- I am sorry that the end of the lecture was rather rushed. I have written out a detailed explanation of what we were doing (link on the course page next to this one). You can read it yourself, I will also asks the TAs to explain it during the class on Thursday.
- I you have not seen vectors before, read that section of the book.
- Read about the row-vector rule for computing the product of a matrix and a vector.
- Answer the questions below.
- Test during the last 20 minutes of the class on Thursday.

Questions:

True or false? Justify your answer.

- 22. a. The reduced echelon form of a matrix is unique.
 - b. If every column of an augmented matrix contains a pivot, then the corresponding system is consistent.
 - c. The pivot positions in a matrix depend on whether row interchanges are used in the row reduction process.
 - Whenever a system has free variables, the solution set contains many solutions.

Find the general solution of the linear systems with the following augmented coefficient matrices:

			-5 9]
	4	-5		
[1	0	-9	0	4 -1 -7 1
0	1	3	0	-1
0	0	0	1	-7
0	0	0	0	1

24. Suppose a system of linear equations has a 3×5 augmented matrix whose fifth column is not a pivot column. Is the system consistent? Why (or why not)?

In Exercises 9 and 10, write a vector equation that is equivalent to the given system of equations.

9. $x_2 + 5x_3 = 0$ $4x_1 + 6x_2 - x_3 = 0$ $-x_1 + 3x_2 - 8x_3 = 0$ 10. $3x_1 - 2x_2 + 4x_3 = 3$ $-2x_1 - 7x_2 + 5x_3 = 1$ $5x_1 + 4x_2 - 3x_3 = 2$

In Exercises 11 and 12, determine if **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

11.
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \mathbf{a}_3 = \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$$

12. $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} -2 \\ 3 \\ -2 \end{bmatrix}, \mathbf{a}_3 = \begin{bmatrix} -6 \\ 7 \\ 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 11 \\ -5 \\ 9 \end{bmatrix}$

22. Construct a 3 × 3 matrix A, with nonzero entries, and a vector
 b in ℝ³ such that b is *not* in the set spanned by the columns of A.

Compute the products in Exercises 1–4 using (a) the definition, as in Example 1, and (b) the row-vector rule for computing $A\mathbf{x}$. If a product is undefined, explain why.

1.
$$\begin{bmatrix} -4 & 2 \\ 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 7 \end{bmatrix}$$
2.
$$\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

In Exercises 5–8, use the definition of $A\mathbf{x}$ to write the matrix equation as a vector equation, or vice versa.

8.
$$z_1 \begin{bmatrix} 2 \\ -4 \end{bmatrix} + z_2 \begin{bmatrix} -1 \\ 5 \end{bmatrix} + z_3 \begin{bmatrix} -4 \\ 3 \end{bmatrix} + z_4 \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

Given A and **b** in Exercises 11 and 12, write the augmented matrix for the linear system that corresponds to the matrix equation $A\mathbf{x} = \mathbf{b}$. Then solve the system and write the solution as a vector.

11.
$$A = \begin{bmatrix} 1 & 3 & -4 \\ 1 & 5 & 2 \\ -3 & -7 & 6 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ 4 \\ 12 \end{bmatrix}$$

12. $A = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -4 & 2 \\ 5 & 2 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$

14. Let $\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ 4 \end{bmatrix}$ and $A = \begin{bmatrix} 2 & 5 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix}$. Is \mathbf{u} in the subset of \mathbb{R}^3 spanned by the columns of A? Why or why not?