Homework for week 2:

- I am sorry that the end of the lecture was rather rushed. I have written out a detailed explanation of what we were doing (link on the course page next to this one). You can read it yourself, I will also asks the TAs to explain it during the class on Thursday.
- I you have not seen vectors before, read that section of the book.
- Read about the row-vector rule for computing the product of a matrix and a vector.
- Answer the questions below.
- Test during the last 20 minutes of the class on Thursday.

Questions:

True or false? Justify your answer.
22. a. The reduced echelon form of a matrix is unique.
b. If every column of an augmented matrix contains a pivot, then the corresponding system is consistent.
c. The pivot positions in a matrix depend on whether row interchanges are used in the row reduction process.
e. Whenever a system has free variables, the solution set contains many solutions.

Find the general solution of the linear systems with the following augmented coefficient matrices:

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & -3 & 0 & -5 \\
-3 & 7 & 0 & 9
\end{array}\right]} \\
& {\left[\begin{array}{rrrr}
1 & -2 & -1 & 4 \\
-2 & 4 & -5 & 6
\end{array}\right]}
\end{aligned}
$$

$\left[\begin{array}{rrrrr}1 & 0 & -9 & 0 & 4 \\ 0 & 1 & 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & -7 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
24. Suppose a system of linear equations has a 3×5 augmented matrix whose fifth column is not a pivot column. Is the system consistent? Why (or why not)?

In Exercises 9 and 10, write a vector equation that is equivalent to the given system of equations.
9.

$$
\begin{aligned}
& x_{2}+5 x_{3}=0 \\
& 4 x_{1}+6 x_{2}-x_{3}=0 \\
& -x_{1}+3 x_{2}-8 x_{3}=0 \\
& \text { 10. } 3 x_{1}-2 x_{2}+4 x_{3}=3 \\
& -2 x_{1}-7 x_{2}+5 x_{3}=1 \\
& 5 x_{1}+4 x_{2}-3 x_{3}=2
\end{aligned}
$$

In Exercises 11 and 12, determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}.
11. $\mathbf{a}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{r}5 \\ -6 \\ 8\end{array}\right], \mathbf{b}=\left[\begin{array}{r}2 \\ -1 \\ 6\end{array}\right]$
12. $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}-2 \\ 3 \\ -2\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{r}-6 \\ 7 \\ 5\end{array}\right], \mathbf{b}=\left[\begin{array}{r}11 \\ -5 \\ 9\end{array}\right]$
22. Construct a 3×3 matrix A, with nonzero entries, and a vector \mathbf{b} in \mathbb{R}^{3} such that \mathbf{b} is not in the set spanned by the columns of A.
Compute the products in Exercises 1-4 using (a) the definition, as in Example 1, and (b) the row-vector rule for computing $A \mathbf{x}$. If a product is undefined, explain why.

1. $\left[\begin{array}{rr}-4 & 2 \\ 1 & 6 \\ 0 & 1\end{array}\right]\left[\begin{array}{r}3 \\ -2 \\ 7\end{array}\right]$
2. $\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]\left[\begin{array}{r}5 \\ -1\end{array}\right]$

In Exercises 5-8, use the definition of $A \mathbf{x}$ to write the matrix equation as a vector equation, or vice versa.
8. $z_{1}\left[\begin{array}{r}2 \\ -4\end{array}\right]+z_{2}\left[\begin{array}{r}-1 \\ 5\end{array}\right]+z_{3}\left[\begin{array}{r}-4 \\ 3\end{array}\right]+z_{4}\left[\begin{array}{l}0 \\ 2\end{array}\right]=\left[\begin{array}{r}5 \\ 12\end{array}\right]$

Given A and \mathbf{b} in Exercises 11 and 12, write the augmented matrix for the linear system that corresponds to the matrix equation $A \mathbf{x}=\mathbf{b}$. Then solve the system and write the solution as a vector.
11. $A=\left[\begin{array}{rrr}1 & 3 & -4 \\ 1 & 5 & 2 \\ -3 & -7 & 6\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-2 \\ 4 \\ 12\end{array}\right]$
12. $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ -3 & -4 & 2 \\ 5 & 2 & 3\end{array}\right], \mathbf{b}=\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right]$
14. Let $\mathbf{u}=\left[\begin{array}{r}4 \\ -1 \\ 4\end{array}\right]$ and $A=\left[\begin{array}{rrr}2 & 5 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 0\end{array}\right]$. Is \mathbf{u} in the subset of \mathbb{R}^{3} spanned by the columns of A ? Why or why not?

