1. Let V be the first quadrant in the xy-plane; that is, let

$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0, y \ge 0 \right\}$$

- a. If **u** and **v** are in V, is $\mathbf{u} + \mathbf{v}$ in V? Why?
- b. Find a specific vector u in V and a specific scalar c such that cu is not in V. (This is enough to show that V is not a vector space.)
- 2. Let W be the union of the first and third quadrants in the xy-plane. That is, let $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \right\}$.
 - a. If **u** is in W and c is any scalar, is c**u** in W? Why?
 - b. Find specific vectors **u** and **v** in W such that **u** + **v** is not in W. This is enough to show that W is not a vector space.
- 3. Let H be the set of points inside and on the unit circle in the xy-plane. That is, let $H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}$. Find a specific example—two vectors or a vector and a scalar—to show that H is not a subspace of \mathbb{R}^2 .

In Exercises 5–8, determine if the given set is a subspace of \mathbb{P}_n for an appropriate value of n. Justify your answers.

- **5.** All polynomials of the form $\mathbf{p}(t) = at^2$, where a is in \mathbb{R} .
- **6.** All polynomials of the form $\mathbf{p}(t) = a + t^2$, where a is in \mathbb{R} .
- All polynomials of degree at most 3, with integers as coefficients.
- **8.** All polynomials in \mathbb{P}_n such that $\mathbf{p}(0) = 0$.

- **9.** Let H be the set of all vectors of the form $\begin{bmatrix} -2t \\ 5t \\ 3t \end{bmatrix}$. Find a vector \mathbf{v} in \mathbb{R}^3 such that $H = \operatorname{Span}\{\mathbf{v}\}$. Why does this show that H is a subspace of \mathbb{R}^3 ?
- **10.** Let H be the set of all vectors of the form $\begin{bmatrix} 3t \\ 0 \\ -7t \end{bmatrix}$, where t is any real number. Show that H is a subspace of \mathbb{R}^3 . (Use the method of Exercise 9.)
- 11. Let W be the set of all vectors of the form \[
 \begin{align*}
 2b + 3c \\
 -b \\
 2c
 \end{align*}
 \], where b and c are arbitrary. Find vectors \(\mathbf{u}\) and \(\mathbf{v}\) such that \(W = \text{Span} \{\mathbf{u}, \mathbf{v}\}\). Why does this show that \(W \text{ is a subspace of } \mathbb{R}^3\)?
- 12. Let W be the set of all vectors of the form $\begin{bmatrix} 2s + 4t \\ 2s \\ 2s 3t \\ 5t \end{bmatrix}$. Show that W is a subspace of \mathbb{R}^4 . (Use the method of Exercise 11.)
- 13. Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$.
 - a. Is w in $\{v_1, v_2, v_3\}$? How many vectors are in $\{v_1, v_2, v_3\}$?
 - b. How many vectors are in Span {v₁, v₂, v₃}?
 - c. Is w in the subspace spanned by {v₁, v₂, v₃}? Why?
- 14. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be as in Exercise 13, and let $\mathbf{w} = \begin{bmatrix} 1 \\ 3 \\ 14 \end{bmatrix}$. Is \mathbf{w} in the subspace spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$? Why?

For fixed positive integers m and n, the set $M_{m \times n}$ of all $m \times n$ matrices is a vector space, under the usual operations of addition of matrices and multiplication by real scalars.

- **21.** Determine if the set H of all matrices of the form $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ is a subspace of $M_{2\times 2}$.
- **22.** Let F be a fixed 3×2 matrix, and let H be the set of all matrices A in $M_{2\times 4}$ with the property that FA = 0 (the zero matrix in $M_{3\times 4}$). Determine if H is a subspace of $M_{2\times 4}$.

Now read the list of axioms for a vector space in the book, and answer the following questions:

Exercises 25–29 show how the axioms for a vector space V can be used to prove the elementary properties described after the definition of a vector space. Fill in the blanks with the appropriate axiom numbers. Because of Axiom 2, Axioms 4 and 5 imply, respectively, that $\mathbf{0} + \mathbf{u} = \mathbf{u}$ and $-\mathbf{u} + \mathbf{u} = \mathbf{0}$ for all \mathbf{u} .

- **25.** Complete the following proof that the zero vector is unique. Suppose that \mathbf{w} in V has the property that $\mathbf{u} + \mathbf{w} = \mathbf{w} + \mathbf{u} = \mathbf{u}$ for all \mathbf{u} in V. In particular, $\mathbf{0} + \mathbf{w} = \mathbf{0}$. But $\mathbf{0} + \mathbf{w} = \mathbf{w}$, by Axiom ______. Hence $\mathbf{w} = \mathbf{0} + \mathbf{w} = \mathbf{0}$.
- 26. Complete the following proof that $-\mathbf{u}$ is the *unique vector* in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$. Suppose that \mathbf{w} satisfies $\mathbf{u} + \mathbf{w} = \mathbf{0}$. Adding $-\mathbf{u}$ to both sides, we have

$$(-\mathbf{u}) + [\mathbf{u} + \mathbf{w}] = (-\mathbf{u}) + \mathbf{0}$$

 $[(-\mathbf{u}) + \mathbf{u}] + \mathbf{w} = (-\mathbf{u}) + \mathbf{0}$ by Axiom ______ (a)
 $\mathbf{0} + \mathbf{w} = (-\mathbf{u}) + \mathbf{0}$ by Axiom ______ (b)
 $\mathbf{w} = -\mathbf{u}$ by Axiom ______ (c)

27. Fill in the missing axiom numbers in the following proof that 0u = 0 for every u in V.

$$0\mathbf{u} = (0+0)\mathbf{u} = 0\mathbf{u} + 0\mathbf{u}$$
 by Axiom _____(a)

Add the negative of 0u to both sides:

$$0\mathbf{u} + (-0\mathbf{u}) = [0\mathbf{u} + 0\mathbf{u}] + (-0\mathbf{u})$$

 $0\mathbf{u} + (-0\mathbf{u}) = 0\mathbf{u} + [0\mathbf{u} + (-0\mathbf{u})]$ by Axiom _____ (b)
 $\mathbf{0} = 0\mathbf{u} + \mathbf{0}$ by Axiom _____ (c)
 $\mathbf{0} = 0\mathbf{u}$ by Axiom _____ (d)

1. Determine if
$$\mathbf{w} = \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix}$$
 is in Nul A, where

$$A = \begin{bmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{bmatrix}.$$

In Exercises 3–6, find an explicit description of Nul A, by listing vectors that span the null space.

3.
$$A = \begin{bmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 3 & -2 \end{bmatrix}$$

In Exercises 7–14, either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.

7.
$$\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+c=2 \right\}$$
 8.
$$\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : 3r-2=3s+t \right\}$$

In Exercises 25 and 26, A denotes an $m \times n$ matrix. Mark each statement True or False. Justify each answer.

- **25.** a. The null space of A is the solution set of the equation $A\mathbf{x} = \mathbf{0}$.
 - b. The null space of an $m \times n$ matrix is in \mathbb{R}^m .
 - c. The column space of A is the range of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.
 - d. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then Col A is \mathbb{R}^m .
 - e. The kernel of a linear transformation is a vector space.
 - Col A is the set of all vectors that can be written as Ax for some x.
 - **28.** Consider the following two systems of equations:

$$5x_1 + x_2 - 3x_3 = 0$$
 $5x_1 + x_2 - 3x_3 = 0$
 $-9x_1 + 2x_2 + 5x_3 = 1$ $-9x_1 + 2x_2 + 5x_3 = 5$
 $4x_1 + x_2 - 6x_3 = 9$ $4x_1 + x_2 - 6x_3 = 45$

It can be shown that the first system has a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)

35. Let V and W be vector spaces, and let $T: V \to W$ be a linear transformation. Given a subspace U of V, let T(U) denote the set of all images of the form $T(\mathbf{x})$, where \mathbf{x} is in U. Show that T(U) is a subspace of W.