Determine whether the sets in Exercises 1–8 are bases for \mathbb{R}^3 . Of the sets that are not bases, determine which ones are linearly independent and which ones span \mathbb{R}^3 . Justify your answers.

1.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 2.
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

2.
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -4 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$$
 4.
$$\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} -8 \\ 5 \\ 4 \end{bmatrix}$$

4.
$$\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -8 \\ 5 \\ 4 \end{bmatrix}$

11. Find a basis for the set of vectors in \mathbb{R}^3 in the plane x - 3y + 2z = 0. [Hint: Think of the equation as a "system" of homogeneous equations.]

In Exercises 13 and 14, assume that A is row equivalent to B. Find bases for Nul A and Col A.

13.
$$A = \begin{bmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 6 & 5 \\ 0 & 2 & 5 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

In Exercises 15–18, find a basis for the space spanned by the given vectors, $\mathbf{v}_1, \dots, \mathbf{v}_5$.

15.
$$\begin{bmatrix} 1 \\ 0 \\ -2 \\ 3 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -2 \\ -8 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ 10 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 3 \\ -1 \\ -6 \\ 9 \end{bmatrix}$

True or false:

- **22.** a. A linearly independent set in a subspace *H* is a basis for *H*.
 - b. If a finite set S of nonzero vectors spans a vector space V, then some subset of S is a basis for V.
 - A basis is a linearly independent set that is as large as possible.
 - e. If B is an echelon form of a matrix A, then the pivot columns of B form a basis for Col A.
- **23.** Suppose $\mathbb{R}^4 = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_4\}$. Explain why $\{\mathbf{v}_1, \dots, \mathbf{v}_4\}$ is a basis for \mathbb{R}^4 .
- **26.** In the vector space of all real-valued functions, find a basis for the subspace spanned by $\{\sin t, \sin 2t, \sin t \cos t\}$.

Exercises 31 and 32 reveal an important connection between linear independence and linear transformations and provide practice using the definition of linear dependence. Let V and W be vector spaces, let $T: V \to W$ be a linear transformation, and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ be a subset of V.

- 31. Show that if $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly dependent in V, then the set of images, $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)\}$, is linearly dependent in W. This fact shows that if a linear transformation maps a set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ onto a linearly *independent* set $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)\}$, then the original set is linearly independent, too (because it cannot be linearly dependent).
- 32. Suppose that T is a one-to-one transformation, so that an equation $T(\mathbf{u}) = T(\mathbf{v})$ always implies $\mathbf{u} = \mathbf{v}$. Show that if the set of images $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)\}$ is linearly dependent, then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly dependent. This fact shows that a one-to-one linear transformation maps a linearly independent set onto a linearly independent set (because in this case the set of images cannot be linearly dependent).

In Exercises 1–4, find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ and the given basis \mathcal{B} .

1.
$$\mathcal{B} = \left\{ \begin{bmatrix} 3 \\ -5 \end{bmatrix}, \begin{bmatrix} -4 \\ 6 \end{bmatrix} \right\}, \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

2.
$$\mathcal{B} = \left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} -4 \\ 1 \end{bmatrix} \right\}, \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$$

3.
$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} 4 \\ -3 \\ 0 \end{bmatrix} \right\}, \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$

In Exercises 5–8, find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of \mathbf{x} relative to the given basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$.

5.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

6.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -1 \\ -6 \end{bmatrix}$$

In Exercises 9 and 10, find the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^n .

$$9. \ \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \end{bmatrix} \right\}$$

In Exercises 11 and 12, use an inverse matrix to find $[\mathbf{x}]_{\mathcal{B}}$ for the given \mathbf{x} and \mathcal{B} .

11.
$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -3 \\ 5 \end{bmatrix} \right\}, \mathbf{x} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$

14. The set $\mathcal{B} = \{1 - t^2, t - t^2, 2 - t + t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector of $\mathbf{p}(t) = 1 + 3t - 6t^2$ relative to \mathcal{B} .

In Exercises 15 and 16, mark each statement True or False. Justify each answer. Unless stated otherwise, \mathcal{B} is a basis for a vector space V.

- **15.** a. If **x** is in *V* and if \mathcal{B} contains *n* vectors, then the \mathcal{B} -coordinate vector of **x** is in \mathbb{R}^n .
 - b. If $P_{\mathcal{B}}$ is the change-of-coordinates matrix, then $[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}\mathbf{x}$, for \mathbf{x} in V.
 - c. The vector spaces \mathbb{P}_3 and \mathbb{R}^3 are isomorphic.

17. The vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 7 \end{bmatrix}$ span \mathbb{R}^2 but do not form a basis. Find two different ways to express $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .

Exercises 23–26 concern a vector space V, a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, and the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$.

- 23. Show that the coordinate mapping is one-to-one. (*Hint:* Suppose $[\mathbf{u}]_{\mathcal{B}} = [\mathbf{w}]_{\mathcal{B}}$ for some \mathbf{u} and \mathbf{w} in V, and show that $\mathbf{u} = \mathbf{w}$.)
- **24.** Show that the coordinate mapping is *onto* \mathbb{R}^n . That is, given any \mathbf{y} in \mathbb{R}^n , with entries y_1, \ldots, y_n , produce \mathbf{u} in V such that $[\mathbf{u}]_{\mathcal{B}} = \mathbf{y}$.
- 25. Show that a subset $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in V is linearly independent if and only if the set of coordinate vectors $\{[\mathbf{u}_1]_{\mathcal{B}}, \dots, [\mathbf{u}_p]_{\mathcal{B}}\}$ is linearly independent in \mathbb{R}^n . Hint: Since the coordinate mapping is one-to-one, the following equations have the same solutions, c_1, \dots, c_p .

$$c_1\mathbf{u}_1 + \cdots + c_p\mathbf{u}_p = \mathbf{0}$$
 The zero vector in V [$c_1\mathbf{u}_1 + \cdots + c_p\mathbf{u}_p$] _{\mathcal{B}} = [$\mathbf{0}$] _{\mathcal{B}} The zero vector in \mathbb{R}^n

26. Given vectors $\mathbf{u}_1, \dots, \mathbf{u}_p$, and \mathbf{w} in V, show that \mathbf{w} is a linear combination of $\mathbf{u}_1, \dots, \mathbf{u}_p$ if and only if $[\mathbf{w}]_{\mathcal{B}}$ is a linear combination of the coordinate vectors $[\mathbf{u}_1]_{\mathcal{B}}, \dots, [\mathbf{u}_p]_{\mathcal{B}}$.

In Exercises 27–30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

27.
$$1+2t^3$$
, $2+t-3t^2$, $-t+2t^2-t^3$