1. Is
$$\lambda = 2$$
 an eigenvalue of $\begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix}$? Why or why not?

2. Is
$$\lambda = -3$$
 an eigenvalue of $\begin{bmatrix} -1 & 4 \\ 6 & 9 \end{bmatrix}$? Why or why not?

3. Is
$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 1 & -1 \\ 6 & -4 \end{bmatrix}$? If so, find the eigenvalue.

4. Is
$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 5 & 2 \\ 3 & 6 \end{bmatrix}$? If so, find the eigenvalue.

5. Is
$$\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} -4 & 3 & 3 \\ 2 & -3 & -2 \\ -1 & 0 & -2 \end{bmatrix}$? If so, find the eigenvalue.

In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.

9.
$$A = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}, \lambda = 1, 3$$

13.
$$A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \lambda = 1, 2, 3$$

Find the eigenvalues of the matrices in Exercises 17 and 18.

17.
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -2 \end{bmatrix}$$

$$\begin{bmatrix}
5 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 3
\end{bmatrix}$$

In Exercises 21 and 22, A is an $n \times n$ matrix. Mark each statement True or False. Justify each answer

.

- 21. a. If $A\mathbf{x} = \lambda \mathbf{x}$ for some vector \mathbf{x} , then λ is an eigenvalue of A.
 - A matrix A is not invertible if and only if 0 is an eigenvalue of A.
 - c. A number c is an eigenvalue of A if and only if the equation $(A cI)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
 - d. Finding an eigenvector of A may be difficult, but checking whether a given vector is in fact an eigenvector is easy.
 - e. To find the eigenvalues of A, reduce A to echelon form.

- 24. Construct an example of a 2 × 2 matrix with only one distinct eigenvalue.
- **25.** Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} . [*Hint*: Suppose a nonzero \mathbf{x} satisfies $A\mathbf{x} = \lambda \mathbf{x}$.]
- **26.** Show that if A^2 is the zero matrix, then the only eigenvalue of A is 0.
- **27.** Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^T . [Hint: Find out how $A \lambda I$ and $A^T \lambda I$ are related.]

Find the characteristic polynomial and the real eigenvalues of the matrices in Exercises 1–8.

1.
$$\begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$$

2.
$$\begin{bmatrix} -4 & -1 \\ 6 & 1 \end{bmatrix}$$

Compute the characteristic polynomials of the following matrices:

For the matrices in Exercises 15–17, list the real eigenvalues, repeated according to their multiplicities.

15.
$$\begin{bmatrix} 5 & 5 & 0 & 2 \\ 0 & 2 & -3 & 6 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$
 16.
$$\begin{bmatrix} 3 & 0 & 0 & 0 \\ 6 & 2 & 0 & 0 \\ 0 & 3 & 6 & 0 \\ 2 & 3 & 3 & -5 \end{bmatrix}$$

19. Let A be an $n \times n$ matrix, and suppose A has n real eigenvalues, $\lambda_1, \ldots, \lambda_n$, repeated according to multiplicities, so that

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$

Explain why $\det A$ is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)

24. Show that if A and B are similar, then $\det A = \det B$.

In Exercises 21 and 22, A and B are $n \times n$ matrices. Mark each statement True or False. Justify each answer.

- **21.** a. The determinant of A is the product of the diagonal entries in A.
 - An elementary row operation on A does not change the determinant.
 - c. $(\det A)(\det B) = \det AB$
 - d. If λ + 5 is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.