In Exercises 1 and 2, let $A = PDP^{-1}$ and compute A^4 .

1.
$$P = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

In Exercises 3 and 4, use the factorization $A = PDP^{-1}$ to compute A^k , where k represents an arbitrary positive integer.

3.
$$\begin{bmatrix} a & 0 \\ 2(a-b) & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

Diagonalize the matrices in Exercises 7–20, if possible. The real eigenvalues for Exercises 11–16 and 18 are included below the matrix.

7.
$$\begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$$

8.
$$\begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$$

17.
$$\begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{bmatrix}$$

18.
$$\begin{bmatrix} 2 & -2 & -2 \\ 3 & -3 & -2 \\ 2 & -2 & -2 \end{bmatrix}$$
$$\lambda = -2, -1, 0$$

In Exercises 21 and 22, A, B, P, and D are $n \times n$ matrices. Mark each statement True or False. Justify each answer. (Study Theorems 5 and 6 and the examples in this section carefully before you try these exercises.)

- **21.** a. A is diagonalizable if $A = PDP^{-1}$ for some matrix D and some invertible matrix P.
 - b. If \mathbb{R}^n has a basis of eigenvectors of A, then A is diagonalizable.
 - c. A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
 - d. If A is diagonalizable, then A is invertible.

- 25. A is a 4 × 4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two-dimensional. Is it possible that A is not diagonalizable? Justify your answer.
- 26. A is a 7 × 7 matrix with three eigenvalues. One eigenspace is two-dimensional, and one of the other eigenspaces is threedimensional. Is it possible that A is not diagonalizable? Justify your answer.
- **27.** Show that if A is both diagonalizable and invertible, then so is A^{-1} .

Compute the quantities in Exercises 1-8 using the vectors

$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$$

1.
$$\mathbf{u} \cdot \mathbf{u}, \mathbf{v} \cdot \mathbf{u}, \text{ and } \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$$

2.
$$\mathbf{w} \cdot \mathbf{w}, \mathbf{x} \cdot \mathbf{w}, \text{ and } \frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$$

3.
$$\frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$$

4.
$$\frac{1}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

5.
$$\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$$

6.
$$\left(\frac{\mathbf{x}\cdot\mathbf{w}}{\mathbf{x}\cdot\mathbf{x}}\right)\mathbf{x}$$

In Exercises 9–12, find a unit vector in the direction of the given vector.

9.
$$\begin{bmatrix} -30 \\ 40 \end{bmatrix}$$

10.
$$\begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix}$$

13. Find the distance between
$$\mathbf{x} = \begin{bmatrix} 10 \\ -3 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} -1 \\ -5 \end{bmatrix}$.

Determine which pairs of vectors in Exercises 15–18 are orthogonal.

15.
$$\mathbf{a} = \begin{bmatrix} 8 \\ -5 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$ 16. $\mathbf{u} = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}$

In Exercises 19 and 20, all vectors are in \mathbb{R}^n . Mark each statement True or False. Justify each answer.

- 19. a. $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$.
 - b. For any scalar c, $\mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$.
 - c. If the distance from u to v equals the distance from u to -v, then u and v are orthogonal.
 - d. For a square matrix A, vectors in Col A are orthogonal to vectors in Nul A.
 - e. If vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ span a subspace W and if \mathbf{x} is orthogonal to each \mathbf{v}_j for $j = 1, \dots, p$, then \mathbf{x} is in W^{\perp} .

24. Verify the *parallelogram law* for vectors **u** and **v** in \mathbb{R}^n :

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$

- **25.** Let $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$. Describe the set H of vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ that are orthogonal to \mathbf{v} . [Hint: Consider $\mathbf{v} = \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$.]
- **30.** Let W be a subspace of \mathbb{R}^n , and let W^{\perp} be the set of all vectors orthogonal to W. Show that W^{\perp} is a subspace of \mathbb{R}^n using the following steps.
 - a. Take \mathbf{z} in W^{\perp} , and let \mathbf{u} represent any element of W. Then $\mathbf{z} \cdot \mathbf{u} = 0$. Take any scalar c and show that $c\mathbf{z}$ is orthogonal to \mathbf{u} . (Since \mathbf{u} was an arbitrary element of W, this will show that $c\mathbf{z}$ is in W^{\perp} .)
 - b. Take \mathbf{z}_1 and \mathbf{z}_2 in W^{\perp} , and let \mathbf{u} be any element of W. Show that $\mathbf{z}_1 + \mathbf{z}_2$ is orthogonal to \mathbf{u} . What can you conclude about $\mathbf{z}_1 + \mathbf{z}_2$? Why?
 - c. Finish the proof that W^{\perp} is a subspace of \mathbb{R}^n .
- 31. Show that if x is in both W and W^{\perp} , then x = 0.