In Exercises 1-6, determine which sets of vectors are orthogonal.
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In Exercises 7-10, show that {u,,u;} or {u;, u,, us} is an orthog-
onal basis for R? or R?, respectively. Then express x as a linear
combination of the u’s.
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12. Compute the orthogonal projection of {_: J onto the line

through [ _; ] and the origin.



14. Lety = [g] and u = I:Z] Write y as the sum of a vector

in Span {u} and a vector orthogonal to u.

15. Lety = [?] and u = [g] Compute the distance from y

to the line through u and the origin.

In Exercises 17-22, determine which sets of vectors are orthonor-
mal. If a set is only orthogonal, normalize the vectors to produce
an orthonormal set.
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True false (plus justification):

24. a. Notevery orthogonal set in R” is linearly independent.

b. IfasetS = {u,,...,u,} has the property thatu; - u; = 0
whenever i # j, then S is an orthonormal set.

c. Ifthecolumns of an m x n matrix A are orthonormal, then
the linear mapping x +> Ax preserves lengths.

d. The orthogonal projection of y onto v is the same as the
orthogonal projection of y onto ¢v whenever ¢ # 0.

e. An orthogonal matrix is invertible.

26. Suppose W is a subspace of R" spanned by n nonzero
orthogonal vectors. Explain why W = R".



30. Let U be an orthogonal matrix, and construct V' by inter-
changing some of the columns of U. Explain why V is an
orthogonal matrix.

In Exercises 1 and 2, you may assume that {u,,...,us} is an
orthogonal basis for R
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Span Eu, , u-z, u;3} and the other in Span {u,}.

In Exercises 3-6, verify that {u,, u, } is an orthogonal set, and then
find the orthogonal projection of y onto Span {u,, u,}.
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In Exercises 7-10, let W be the subspace spanned by the u’s, and
write y as the sum of a vector in W and a vector orthogonal to W.
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In Exercises 11 and 12, find the closest point to y in the subspace
W spanned by v, and v,.
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In Exercises 13 and 14, find the best approximation to z by vectors
of the form ¢,v, + ¢, v,.
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distance from y to the plane in R* spanned by u, and u,.



In Exercises 21 and 22, all vectors and subspaces are in R". Mark
each statement True or False. Justify each answer.

21. a. If z is orthogonal to u; and to w; and if W =
Span {u,,u,}, then z must be in W+,

b. For each y and each subspace W, the vector y — proj,, ¥
is orthogonal to W.

c. The orthogonal projection ¥ of y onto a subspace W can
sometimes depend on the orthogonal basis for W used to
compute ¥.

d. Ifyisin asubspace W, then the orthogonal projection of
y onto W is y itself.

In Exercises 1-6, the given set is a basis for a subspace W. Use
the Gram-Schmidt process to produce an orthogonal basis for W.

3. | =5 1|,| -1




7. Find an orthonormal basis of the subspace spanned by the
vectors in Exercise 3.

Find an orthogonal basis for the column space of each matrix in
Exercises 9-12.
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