1. Let V be the first quadrant in the $x y$-plane; that is, let

$$
V=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: x \geq 0, y \geq 0\right\}
$$

a. If \mathbf{u} and \mathbf{v} are in V, is $\mathbf{u}+\mathbf{v}$ in V ? Why?
b. Find a specific vector \mathbf{u} in V and a specific scalar c such that $c \mathbf{u}$ is not in V. (This is enough to show that V is not a vector space.)
2. Let W be the union of the first and third quadrants in the $x y$ plane. That is, let $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x y \geq 0\right\}$.
a. If \mathbf{u} is in W and c is any scalar, is $c \mathbf{u}$ in W ? Why?
b. Find specific vectors \mathbf{u} and \mathbf{v} in W such that $\mathbf{u}+\mathbf{v}$ is not in W. This is enough to show that W is not a vector space.
3. Let H be the set of points inside and on the unit circle in the $x y$-plane. That is, let $H=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x^{2}+y^{2} \leq 1\right\}$. Find a specific example-two vectors or a vector and a scalar-to show that H is not a subspace of \mathbb{R}^{2}.

In Exercises 5-8, determine if the given set is a subspace of \mathbb{P}_{n} for an appropriate value of n. Justify your answers.
5. All polynomials of the form $\mathbf{p}(t)=a t^{2}$, where a is in \mathbb{R}.
6. All polynomials of the form $\mathbf{p}(t)=a+t^{2}$, where a is in \mathbb{R}.
7. All polynomials of degree at most 3 , with integers as coefficients.
8. All polynomials in \mathbb{P}_{n} such that $\mathbf{p}(0)=0$.
9. Let H be the set of all vectors of the form $\left[\begin{array}{r}-2 t \\ 5 t \\ 3 t\end{array}\right]$. Find a vector \mathbf{v} in \mathbb{R}^{3} such that $H=\operatorname{Span}\{\mathbf{v}\}$. Why does this show that H is a subspace of \mathbb{R}^{3} ?
10. Let H be the set of all vectors of the form $\left[\begin{array}{c}3 t \\ 0 \\ -7 t\end{array}\right]$, where t is any real number. Show that H is a subspace of \mathbb{R}^{3}. (Use the method of Exercise 9.)
11. Let W be the set of all vectors of the form $\left[\begin{array}{c}2 b+3 c \\ -b \\ 2 c\end{array}\right]$, where b and c are arbitrary. Find vectors \mathbf{u} and \mathbf{v} such that $W=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$. Why does this show that W is a subspace of \mathbb{R}^{3} ?
12. Let W be the set of all vectors of the form $\left[\begin{array}{c}2 s+4 t \\ 2 s \\ 2 s-3 t \\ 5 t\end{array}\right]$. Show that W is a subspace of \mathbb{R}^{4}. (Use the method of Exercise 11.)
13. Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}4 \\ 2 \\ 6\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$.
a. Is \mathbf{w} in $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$? How many vectors are in $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
b. How many vectors are in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
c. Is \mathbf{w} in the subspace spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$? Why?
14. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be as in Exercise 13, and let $\mathbf{w}=\left[\begin{array}{r}1 \\ 3 \\ 14\end{array}\right]$. Is \mathbf{w} in the subspace spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$? Why?

For fixed positive integers m and n, the set $M_{m \times n}$ of all $m \times n$ matrices is a vector space, under the usual operations of addition of matrices and multiplication by real scalars.
21. Determine if the set H of all matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ is a subspace of $M_{2 \times 2}$.
22. Let F be a fixed 3×2 matrix, and let H be the set of all matrices A in $M_{2 \times 4}$ with the property that $F A=0$ (the zero matrix in $M_{3 \times 4}$). Determine if H is a subspace of $M_{2 \times 4}$.

Now read the list of axioms for a vector space in the book, and answer the following questions:

Exercises $25-29$ show how the axioms for a vector space V can be used to prove the elementary properties described after the definition of a vector space. Fill in the blanks with the appropriate axiom numbers. Because of Axiom 2, Axioms 4 and 5 imply, respectively, that $\mathbf{0}+\mathbf{u}=\mathbf{u}$ and $-\mathbf{u}+\mathbf{u}=\mathbf{0}$ for all \mathbf{u}.
25. Complete the following proof that the zero vector is unique. Suppose that \mathbf{w} in V has the property that $\mathbf{u}+\mathbf{w}=\mathbf{w}+\mathbf{u}=\mathbf{u}$ for all \mathbf{u} in V. In particular, $\mathbf{0}+\mathbf{w}=\mathbf{0}$. But $\mathbf{0}+\mathbf{w}=\mathbf{w}$, by Axiom \qquad Hence $\mathbf{w}=\mathbf{0}+\mathbf{w}=\mathbf{0}$.
26. Complete the following proof that $-\mathbf{u}$ is the unique vector in V such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$. Suppose that \mathbf{w} satisfies $\mathbf{u}+\mathbf{w}=\mathbf{0}$. Adding $-\mathbf{u}$ to both sides, we have

$$
\begin{align*}
(-\mathbf{u})+[\mathbf{u}+\mathbf{w}] & =(-\mathbf{u})+\mathbf{0} \\
{[(-\mathbf{u})+\mathbf{u}]+\mathbf{w} } & =(-\mathbf{u})+\mathbf{0} \tag{a}\\
\mathbf{0}+\mathbf{w} & =(-\mathbf{u})+\mathbf{0} \\
\mathbf{w} & =-\mathbf{u}
\end{align*}
$$

by Axiom
\qquad
by Axiom \qquad
by Axiom \qquad
27. Fill in the missing axiom numbers in the following proof that $0 \mathbf{u}=\mathbf{0}$ for every \mathbf{u} in V.
$0 \mathbf{u}=(0+0) \mathbf{u}=0 \mathbf{u}+0 \mathbf{u}$
by Axiom
Add the negative of 0 u to both sides:

$$
\begin{align*}
0 \mathbf{u}+(-0 \mathbf{u}) & =[0 \mathbf{u}+0 \mathbf{u}]+(-0 \mathbf{u}) \\
0 \mathbf{u}+(-0 \mathbf{u}) & =0 \mathbf{u}+[0 \mathbf{u}+(-0 \mathbf{u})] \tag{b}\\
\mathbf{0} & =0 \mathbf{u}+\mathbf{0} \tag{c}\\
\mathbf{0} & =0 \mathbf{u} \tag{d}
\end{align*}
$$

by Axiom
by Axiom \qquad
by Axiom \qquad

1. Determine if $\mathbf{w}=\left[\begin{array}{r}1 \\ 3 \\ -4\end{array}\right]$ is in $\operatorname{Nul} A$, where

$$
A=\left[\begin{array}{rrr}
3 & -5 & -3 \\
6 & -2 & 0 \\
-8 & 4 & 1
\end{array}\right] .
$$

In Exercises 3-6, find an explicit description of $\operatorname{Nul} A$, by listing vectors that span the null space.

$$
\text { 3. } A=\left[\begin{array}{rrrr}
1 & 2 & 4 & 0 \\
0 & 1 & 3 & -2
\end{array}\right]
$$

In Exercises 7-14, either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.

$$
\text { 7. }\left\{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]: a+b+c=2\right\} \text { 8. }\left\{\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]: 3 r-2=3 s+t\right\}
$$

In Exercises 25 and 26, A denotes an $m \times n$ matrix. Mark each statement True or False. Justify each answer.
25. a. The null space of A is the solution set of the equation $A \mathbf{x}=\mathbf{0}$.
b. The null space of an $m \times n$ matrix is in \mathbb{R}^{m}.
c. The column space of A is the range of the mapping $\mathbf{x} \mapsto A \mathbf{x}$.
d. If the equation $A \mathbf{x}=\mathbf{b}$ is consistent, then $\operatorname{Col} A$ is \mathbb{R}^{m}.
e. The kernel of a linear transformation is a vector space.
f. $\operatorname{Col} A$ is the set of all vectors that can be written as $A \mathbf{x}$ for some \mathbf{x}.
28. Consider the following two systems of equations:

$$
\begin{array}{rrr}
5 x_{1}+x_{2}-3 x_{3}=0 & 5 x_{1}+x_{2}-3 x_{3}=0 \\
-9 x_{1}+2 x_{2}+5 x_{3}=1 & -9 x_{1}+2 x_{2}+5 x_{3}=5 \\
4 x_{1}+x_{2}-6 x_{3}=9 & 4 x_{1}+x_{2}-6 x_{3}=45
\end{array}
$$

It can be shown that the first system has a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)
35. Let V and W be vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Given a subspace U of V, let $T(U)$ denote the set of all images of the form $T(\mathbf{x})$, where \mathbf{x} is in U. Show that $T(U)$ is a subspace of W.

