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Preface

These are lecture notes for the course M1: Algebraic Geometry 1 offered in Mastermath in Fall 2016.
Students taking the course M1: Algebraic Geometry 1 are encouraged to also follow the course M1:

Commutative Algebra, which is offered simultaneously in Mastermath. The present course M1: Algebraic
Geometry 1 should provide sufficient background and motivation for the course M2: Algebraic Geome-
try 2, offered in Mastermath in Spring 2017.

The present lecture notes are based on the lecture notes of a Mastermath course in algebraic geometry
given during the Spring of 2009 at the UvA by Bas Edixhoven and Lenny Taelman. Those notes were
typed, as the course went on, by Michiel Kosters. Later versions incorporated additions, corrections and
suggestions by Michiel Vermeulen, Remke Kloosterman, Ariyan Javanpeykar, Samuele Anni, Jan Rozen-
daal and Robin de Jong. David Holmes has written Lectures 9 and 10 which focus on aspects of algebraic
geometry over the field of complex numbers. We thank all those who have contributed.

The reader will see that the present lecture notes do not give a systematic introduction to algebraic
geometry. Instead, we have chosen a clear goal, namely André Weil’s proof of the Riemann Hypothesis for
curves over finite fields using intersection theory on surfaces. Our approach has the advantage that it gets
somewhere, but also the disadvantage that there will be gaps in the exposition, that the reader will have to
accept or fill. Nevertheless, we think that this text is a good introduction to algebraic geometry. A student
who will not continue in this matter will have seen beautiful mathematics and learned useful material. A
student who will continue in this area will be motivated for reading the tougher treatments (like [EGA] or
the Stacks project [Stacks]), and will have a bigger chance of not getting stuck in technicalities.

This syllabus is divided into 14 lectures. First the theory of algebraic varieties over algebraically closed
fields is developed, up to the Riemann-Roch theorem and Serre duality for curves. Lectures 9 and 10 deal
with aspects of varieties when the base field is that of the complex numbers: now, also topological and
analytical tools become available. Lectures 12–14 deal with varieties over finite fields (note however that
finite fields are not algebraically closed!) and lead up to the promised proof of the Riemann hypothesis.
We need one “black box”: Hodge’s Index Theorem. Lecture 11 treats intersection theory on surfaces.
Lecture 12 introduces the notion of a variety over a finite field. Lecture 13 establishes the rationality and
the functional equation of the zeta function of curves over finite fields. In Lecture 14 intersection theory
on surfaces is used to prove the Riemann hypothesis for zeta functions for curves over finite fields. The
Appendix is meant to provide more background and motivation on zeta functions.

The prerequisites for this course are the standard undergraduate algebra courses on groups, rings and
fields (see for example the syllabi [Stev] (in Dutch), or [Lang]), and some basic topology.

No prior knowledge of algebraic geometry is necessary. We will occasionally refer to the basic textbook
[Hart] on Algebraic Geometry. It is recommended to get hold of this book. The reader is also encouraged
to compare this text with the other algebraic geometry syllabi [Moo] and [Looij].
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Lecture 1

Affine space and its algebraic sets

In this lecture we will basically treat Section I.1 of [Hart], i.e. we discuss the most basic notions of algebraic
geometry.

Let k be an algebraically closed field. Note that k is not a finite field.

1.1 The Zariski topology

Definition 1.1.1 For n in N we define affine n-space, denoted by An, as kn. Elements of An will be called
points. Furthermore, A1 is called the affine line and A2 is called the affine plane.

Let A = k[x1, . . . , xn]. We can view an element f of A as a function from An to k by evaluating f at
points of An.

Definition 1.1.2 We define the zero set of an f in A to be Z(f) = {p ∈ An : f(p) = 0}. For S ⊂ A we
define Z(S) = {p ∈ An : ∀f ∈ S, f(p) = 0}.

Example 1.1.3 Let S be the subset {x2
1 + x2

2 − 1, x1} of k[x1, x2]. Then Z(S) = {(0, 1), (0,−1)} ⊂ A2.

Remark 1.1.4 Let S ⊂ A and I ⊂ A be the ideal generated by S. Then Z(I) = Z(S), by the following
argument. Since S ⊂ I , we obviously have Z(I) ⊂ Z(S). On the other hand, let p ∈ Z(S) and f ∈ I .
Write f as a finite sum f =

∑
s∈S fss with fs in A. Then f(p) =

∑
s fs(p)s(p) = 0. Hence p is in Z(I).

Therefore we also have the other inclusion Z(I) ⊃ Z(S).

Definition 1.1.5 A subset Y ⊂ An is called algebraic if there exists some S ⊂ A such that Y = Z(S). By
the previous remark we can replace “some S ⊂ A” by “some ideal I ⊂ A” without changing the meaning.

Example 1.1.6 We consider the case n = 1. Since A = k[x] is a principal ideal domain (every non-zero
ideal is generated by its monic element of smallest degree; use division with remainder), the algebraic
subsets are of the form Z((f)) = Z(f) for some f in A. If f = 0 we get Z(0) = A1. If f 6= 0 then f has
only a finite number of zeros, hence Z(f) is a finite set. On the other hand for every finite subset Y of A1

we have Y = Z(
∏
p∈Y (x− p)). This shows that the algebraic subsets of A1 are A1 itself together with the

finite subsets of A1.

Proposition 1.1.7 Let n be in N.

i. Let Y1, Y2 ⊂ An be algebraic sets. Then Y1 ∪ Y2 is an algebraic set.

ii. If {Yα}α is a collection of algebraic subsets of An, then ∩αYα ⊂ An is algebraic.

9



10 LECTURE 1. AFFINE SPACE AND ITS ALGEBRAIC SETS

iii. An is algebraic.

iv. ∅ is algebraic.

Proof i. We claim that for S1 and S2 subsets of A we have

Z(S1) ∪ Z(S2) = Z(S1S2), where S1S2 = {fg : f ∈ S1, g ∈ S2}.

Obviously we have Z(S1) ∪ Z(S2) ⊂ Z(S1S2). For the other inclusion, assume that p ∈ Z(S1S2)

and p 6∈ Z(S1). Then there is an f in S1 such that f(p) 6= 0. But we have for all g in S2 that
0 = (fg)(p) = f(p)g(p). Since f(p) 6= 0, we get that g(p) = 0 for all g ∈ S2, and hence p ∈ Z(S2).

ii. We obviously have Z(∪αSα) = ∩αZ(Sα).
iii. Note that Z(∅) = Z(0) = A1.
iv. Note that Z(1) = ∅. �

Corollary 1.1.8 The algebraic subsets of An are the closed subsets of a topology on An. We will call this
topology the Zariski topology.

Remark 1.1.9 By Example 1.1.6 the Zariski topology on A1 is equal to the co-finite topology on A1.

Definition 1.1.10 On a subset Y ⊂ An we define the Zariski topology as the induced topology from the
Zariski topology on An.

Definition 1.1.11 A topological space X is irreducible if (1) X 6= ∅ and (2) if X = Z1 ∪ Z2 with Z1 and
Z2 closed subsets of X then Z1 = X or Z2 = X .

Examples 1.1.12 The affine line A1 is irreducible, since A1 is infinite. The real line R with its usual
topology is not irreducible, because R = (−∞, 0] ∪ [0,∞).

Remark 1.1.13 Let Y be a non-empty subset of An. Then Y is irreducible if and only if for all closed
subsets Z1 and Z2 of An with Y ⊂ Z1 ∪ Z2 one has Y ⊂ Z1 or Y ⊂ Z2.

1.2 The Nullstellensatz

Let n be in N and A = k[x1, . . . , xn]. Recall that k is an algebraically closed field. In the previous
subsection we defined a map:

Z : {subsets of A} → {closed subsets of An}.

We would like to “invert” this map Z. Note that Z is surjective, but not injective, not even when we restrict
to the set of ideals: for example Z((x)) = Z((x2)) ⊂ A1. The problem comes from the fact that if
fm(p) = 0 for some f ∈ A and m ≥ 1 then f(p) = 0 as well.

Definition 1.2.1 We define the following map:

I : {subsets of An} → {ideals of A}
Y 7→ I(Y ) := {f ∈ A : ∀p ∈ Y, f(p) = 0}

Definition 1.2.2 A ring R is reduced if its only nilpotent element is 0 (examples: integral domain, fields,
products of integral domains, subrings of reduced rings). An ideal I in a ring R is radical if for all a in R
and m in Z≥1 such that am ∈ I , a is in I .
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Remark 1.2.3 Let R be a ring and I an ideal in R. Then I is radical if and only if R/I is reduced.

Example 1.2.4 In the ring k[x] the ideal (x) is radical but (x2) is not.

For any subset Y of An the ideal I(Y ) is radical. Hence the image of the map I in Definition 1.2.1 is
contained in the set of radical ideals. Hilbert’s famous Nullstellensatz says that when we restrict to this set
of ideals, the maps Z and I are inverses of each other.

Theorem 1.2.5 (Nullstellensatz, Hilbert, 1893) Let n be in N. The maps Z and I above, when restricted
to the set of radical ideals in k[x1, . . . , xn] and the set of closed subsets of An are inverses of each other.
They reverse the partial orderings on these sets given by inclusion: for I and J radical ideals in A we have
I ⊂ J ⇔ Z(I) ⊃ Z(J).

We encourage the reader to see [Eis], Chapter 4, Theorem 1.6, or see [Looij] for a proof.

Definition 1.2.6 An integral domain is a ring R such that (1) 1 6= 0 in R and (2) for a 6= 0 and b 6= 0 in R,
ab 6= 0. A prime ideal of a ring R is an ideal I of R such that R/I is an integral domain.

Remark 1.2.7 Let I be an ideal in a ringR. The following two properties are each equivalent with I being
prime:

i. I 6= R and for all x, y ∈ R we have that xy ∈ I =⇒ x ∈ I or y ∈ I;

ii. I 6= R and for all ideals J,K ⊂ R we have that JK ⊂ I =⇒ J ⊂ I or K ⊂ I .

We let the reader verify that maximal ideals are prime, and prime ideals are radical, and show by examples
that the converse statements are not true.

Proposition 1.2.8 Let Y ⊂ An be closed. Then:

i. I(Y ) is a maximal ideal if and only if Y consists of a single point;

ii. I(Y ) is a prime ideal if and only if Y is irreducible.

Proof We start with i. Assume that I(Y ) is a maximal ideal. Then Y 6= ∅, since the radical ideal that
corresponds to the empty set under the bijection from the Nullstellensatz is A. So by the Nullstellensatz Y
is a minimal non-empty algebraic set. Since points are closed, Y is a point.

Now assume that Y is a point, say Y = {p}. The evaluation map A→ k, f 7→ f(p) is surjective, and
its kernel is I(Y ), by definition. Hence A/I(Y ) = k and I(Y ) is a maximal ideal.

Now we prove ii. Assume that I(Y ) is a prime ideal of A. Then Y 6= ∅ because I(Y ) 6= A. Suppose
that Y ⊂ Z1 ∪ Z2 with Z1 and Z2 ⊂ An closed. Then

I(Z1)I(Z2) ⊂ I(Z1) ∩ I(Z2) = I(Z1 ∪ Z2) ⊂ I(Y ).

Hence by Remark 1.2.7 I(Z1) ⊂ I(Y ) or I(Z2) ⊂ I(Y ). So Y ⊂ Z1 or Y ⊂ Z2. So, Y is irreducible.
On the other hand suppose that Y is irreducible, we show that I(Y ) is a prime ideal. First of all

I(Y ) 6= A because Y 6= ∅. Suppose that fg ∈ I(Y ). Then Y ⊂ Z(fg) = Z(f)∪Z(g). Hence Y ⊂ Z(f)

or Y ⊂ Z(g) by the irreducibility of Y . So we have that f ∈ I(Y ) or g ∈ I(Y ). So, I(Y ) is a prime ideal.
�

Corollary 1.2.9 An is irreducible.

Proof The ring A = k[x1, . . . , xn] is an integral domain, so (0) ⊂ A is a prime ideal, hence by the
previous proposition An = Z((0)) is irreducible. �
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Definition 1.2.10 Let Y ⊂ An be a subset. We define A(Y ) to be A/I(Y ). We have a natural map
k → A(Y ). This map makes A(Y ) into a k-algebra.

If f and g are elements ofAwith f−g ∈ I(Y ) then f(p) = g(p) for all p ∈ Y . So elements of the quotient
ring A(Y ) can be interpreted as functions from Y to k. We note that if Y is irreducible, then A(Y ) is an
integral domain.

1.3 Decomposition of closed sets in An

Definition 1.3.1 A ring R is called Noetherian if every ideal of R is finitely generated, or equivalently, if
for every chain of ideals I1 ⊂ I2 ⊂ · · · there is an r such that Ir = Ir+1 = · · · .

Theorem 1.3.2 (Hilbert basis theorem) If R is Noetherian, then so is R[x].

See [Eis], Chapter 4, or [Looij] for a proof. The main ingredient of the proof is the “leading term” of a
non-zero element of R[x].

Corollary 1.3.3 The ring A = k[x1, . . . , xn] is Noetherian.

If Y1 ⊃ Y2 ⊃ Y3 ⊃ . . . are closed subsets of An, then there is an r > 0 such that I(Yr) = I(Yr+1) = · · · so
by the Nullstellensatz we conclude that Yr = Yr+1 = · · · . Also, asA = k[x1, . . . , xn] is Noetherian, every
proper ideal I ⊂ A is contained in a maximal ideal. We obtain from the Nullstellensatz that Z(I) ⊂ An is
non-empty, if I ⊂ A is a proper ideal. 1

Proposition 1.3.4 If Y ⊂ An is closed then Y = Y1 ∪ . . . ∪ Yt for a finite collection of closed and
irreducible Yi ⊂ An.

Proof Assume Y is not a finite union of closed irreducibles, in particular Y is not irreducible. So we can
write Y = Z1 ∪ Z2 with Z1 ( Y , Z2 ( Y and Z1, Z2 closed. Hence at least one of Z1, Z2 is not a finite
union of closed irreducibles, say Z1. Put Y1 = Z1 and repeat. This gives us an infinite strictly decreasing
chain, a contradiction. �

Proposition 1.3.5 If Y = Y1 ∪ Y2 ∪ · · · ∪ Yt with Yi closed, irreducible and with the property that
Yi ⊂ Yj =⇒ i = j, then the Yi are uniquely determined by Y up to ordering.

Proof Let Y ⊂ An be closed. Assume Y ′1 ∪ · · · ∪ Y ′s = Y = Y1 ∪ · · · ∪ Yt with Yi and Y ′i irreducible,
closed and Yi ⊂ Yj =⇒ i = j and Y ′i ⊂ Y ′j =⇒ i = j. Assume that the two decompositions are
different. Without loss of generality we may assume that there is an i with Yi 6= Y ′j for all j. Then we have
Yi = Yi ∩ Y = (Yi ∩ Y ′1) ∪ · · · ∪ (Yi ∩ Y ′s ). Since Yi is irreducible we obtain Yi ⊂ (Yi ∩ Y ′j ) for some
j. So Yi ⊂ Y ′j . Now repeat the above argument to find a k such that Y ′j ⊂ Yk. So Yi ⊂ Y ′j ⊂ Yk, hence
Yi = Yk and Yi = Y ′j , contradiction. �

1.4 Dimension

Definition 1.4.1 If Y is an irreducible topological space, then dim(Y ) is the biggest integer m such that
there is a chain Y = Ym ) Ym−1 ) · · · ) Y0 = {pt} with Yi ⊂ Y irreducible and closed (in Y ).

Example 1.4.2 dimA1 = 1, since the longest chain is A1 ) {pt}.
1In a commutative algebra course it will be learnt that actually in every commutative ring A, every proper ideal I ⊂ A is contained

in a maximal ideal. This follows by an application of Zorn’s Lemma.
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Theorem 1.4.3 Let n be in N and Y an irreducible subset of An. Then dim(Y ) is the transcendence degree
of the field of fractions of the integral domain A(Y ) as extension of k. In particular, dim(An) = n.

See [Eis], Chapter 13, Theorem 13.1 and Chapter 8, Theorem A. Note that dim(Y ) ∈ N.

Proposition 1.4.4 Let Y ⊂ An be closed and irreducible. Then dim(Y ) = n− 1 if and only if Y = Z(f)

for some irreducible f ∈ A.

Warning 1.4.5 One may be tempted to believe that something more general is true: that for every closed
irreducible Y ⊂ An of dimension d there are f1, . . . , fn−d ∈ A so that Y = Z((f1, . . . , fn−d)). This is
wrong in general.

Definition 1.4.6 A closed irreducible algebraic subset Y is called a hypersurface in An if dim(Y ) = n−1

or equivalently Y = Z(f) for some irreducible f ∈ A. An irreducible algebraic subset Y ⊂ An of
dimension 1 is called an affine curve. An irreducible algebraic subset Y ⊂ An of dimension 2 is called an
affine surface.

1.5 Application: the theorem of Cayley-Hamilton

Theorem 1.5.1 (Cayley-Hamilton) Let k be any field. Let a be anm bymmatrix over k and let Pa ∈ k[x]

be its characteristic polynomial, then Pa(a) = 0.

Lemma 1.5.2 If a has m distinct eigenvalues, then Pa(a) = 0.

Proof Without loss of generality we may assume that k is algebraically closed. Assume that a has no
multiple eigenvalues. Then a is diagonalisable, so a = qdq−1 for some invertible matrix q and a diagonal
matrix d. We find that Pa(a) = qPa(d)q−1 = 0. �

Proof (of Theorem 1.5.1) Put n = m2 and view An as the set of all m by m matrices over k by ordering
the coefficients in some way.

Let Z1 ⊂ An be the subset of all matrices a that satisfy Pa(a) = 0. Note that Z1 is closed since it is
defined by n polynomials in the entries of a.

Let Z2 ⊂ An be the subset of all matrices a that have multiple eigenvalues. Also Z2 is closed since
a ∈ Z2 if and only if the discriminant of Pa is zero, and the discriminant of Pa is a polynomial in the
entries of a.

The lemma shows that An = Z1 ∪ Z2. Also An 6= Z2 since there exist matrices without multiple
eigenvalues. By the irreducibility of An (Corollary 1.2.9) we conclude that An = Z1, which proves the
theorem. �

1.6 Exercises

Let k be an algebraically closed field.

Exercise 1.6.1 Let Y = {P1, . . . , Pr} ⊂ An be a finite set consisting of r distinct points. Give generators
for the ideal I(Y ) ⊂ k[x1, . . . , xn].

Exercise 1.6.2 ([Hart, I.1.1])

i. Let Y ⊂ A2 be the zero set of y − x2. Show that the k-algebra A(Y ) is isomorphic to k[t].

ii. Let Y ⊂ A2 be the zero set of xy − 1. Show that the k-algebra A(Y ) is not isomorphic to k[t].
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Exercise 1.6.3 Let Y ⊂ A2 be the zero set of x2 +y2−1. Show that the k-algebraA(Y ) is not isomorphic
to k[t] if the characteristic of k is different from 2. What is A(Y ) if k is of characteristic 2?

Exercise 1.6.4 Let X ⊂ An be an irreducible closed subset. Show that X , endowed with the Zariski
topology, is connected.

Exercise 1.6.5 For f ∈ k[x1, . . . , xn] nonzero let D(f) ⊂ An be the complement of Z(f). Show that the
D(f) form a basis for the Zariski topology of An.

Exercise 1.6.6 Show that An with its Zariski topology is compact: every open cover has a finite subcover.

Exercise 1.6.7 Show that the map An → A1 defined by a polynomial f ∈ k[x1, . . . xn] is continuous
when both An and A1 are endowed with the Zariski topology.

Exercise 1.6.8 ([Hart, I.1.3]) Let Y ⊂ A3 be the common zero set of the polynomials x2− yz and xz−x.
Show that Y is the union of three irreducible components. Describe them and find their prime ideals.

Exercise 1.6.9 ([Hart, I.1.4]) If one identifies A2 with A1 × A1 in the natural way, show that the Zariski
topology on A2 is not the product topology of the Zariski topologies on the two copies of A1.

Exercise 1.6.10 Assume that the characteristic of k is not 3. Show that the common zero set in A3 of the
polynomials x2−yz and y2−xz is the union of four irreducible components. Describe them and find their
prime ideals.

Exercise 1.6.11 Let X ⊂ An be an irreducible closed subset and let U ⊂ X be a non-empty open subset.
Show that U is dense in X . Show that U is irreducible. Show that dim(U) = dim(X).

Exercise 1.6.12 ([Hart, I.1.5]) Show that a k-algebra B is isomorphic to A(Y ) for some algebraic set Y
in some affine space An if and only if B is a finitely generated k-algebra that is reduced.



Lecture 2

Projective space and its algebraic sets

In this lecture we discuss a part of Section I.2 of [Hart], although rather differently, putting more emphasis
on the origin of the graded rings that enter the stage. The reader is advised to read that section of [Hart]
separately. As in the previous lecture, we let k be an algebraically closed field.

2.1 Pn as a set

In this section, we do not need the assumption that k is algebraically closed.

Definition 2.1.1 For n ∈ Z≥0 we define the projective n-space Pn as the quotient of kn+1 − {0} by the
equivalence relation ∼, where a ∼ b ⇐⇒ ∃λ ∈ k× such that b = λa.

Remarks 2.1.2 i. ∼ is the equivalence relation given by the action of k× on kn+1 − {0}: (λ, a) 7→ λ · a.
So a ∼ b ⇐⇒ a and b are in the same orbit under this action of k×.

ii. a ∼ b ⇐⇒ k · a = k · b ⇐⇒ a and b lie on the same line through the origin. So we can view Pn

as the set {k · a : a ∈ kn+1 − {0}} of 1-dimensional k-vector spaces in kn+1.

Remark 2.1.3 If k = R, then Pn = Sn/ ∼ where a ∼ b ⇐⇒ a = ±b, so we identify antipodal points.

Notation 2.1.4 Let q : kn+1 − {0} → Pn be the quotient map. For a = (a0, . . . , an) in kn+1 − {0} we
write q(a0, . . . , an) = (a0 : · · · : an). These are the so called homogeneous coordinates, and the “:”
(colons) express the fact that we are dealing with ratios.

Examples 2.1.5 In these examples, we will discuss Pn for certain n.
i. P0 = (k1 − {0})/ ∼ = {(1)}, P0 is a 1-point set.
ii. P1 = {(a0, a1) ∈ k2 : (a0, a1) 6= (0, 0)}/ ∼ = {(a : 1) : a ∈ k} t {(1 : 0)} = A1 t {∞}.
iii We can generalise the procedure for n = 1 to the general case as follows:

Pn = {(a0 : · · · : an−1 : 1) : a0, . . . , an−1 ∈ k} t {(a0 : · · · : an−1 : 0) : 0 6= (a0, . . . , an−1) ∈ kn}
= An t Pn−1

= An t An−1 t · · · t A1 t A0.

Remark 2.1.6 We can even make the decomposition of for example P1 visible in a picture. For this first
draw the affine plane A2 with coordinates x0 and x1. Now P1 is the set of lines through the origin. We
now fix some line not passing through the origin, say the line given by the equation x1 = 1. Now a point
on this line, say (a0, 1) gives rise to a line through the origin, Z(x0 − a0x1), and if we vary a0 we get all

15
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the lines through the origin, except the one line which is running parallel to the chosen line (in this case
with the equation x1 = 0), this is our point at infinity.

For i ∈ {0, . . . , n}, consider the following diagram:

Ui

ϕi

��

:= {(a0 : · · · : an) ∈ Pn | ai 6= 0} = {(a0 : · · · : ai−1 : 1 : ai+1 : · · · : an) | aj ∈ k}

(a0 : · · · : an)
_

��

An (a0ai , . . . ,
ai−1

ai
, ai+1

ai
, . . . , anai ).

Notice that ϕi is a bijection, its inverse is given by

(b0, . . . , bi−1, bi+1, . . . , bn) 7→ (b0 : · · · : bi−1 : 1 : bi+1 : · · · : bn).

2.2 Pn as a topological space

Let A = k[x0, . . . , xn], the k-algebra of polynomial functions on kn+1 = An+1.
We have q : An+1 − {0} → Pn, where q is the quotient map previously defined. We give An+1 − {0}

the topology induced from the Zariski topology on An+1: a subset U of An+1−{0} is open if and only if it
is open as subset of An+1. We give Pn the quotient topology induced via q. Let Y be a subset of Pn. Then
Y is closed if and only if q−1Y ⊂ An+1 − {0} is closed, that is, if and only if there exists s closed subset
Z of An+1 such that q−1Y = Z ∩ (An+1 −{0}). Since a point is closed, this is equivalent to q−1Y ∪ {0}
being closed in An+1.

So we have the following bijection:

{closed subsets of Pn} →̃ {closed k×-invariant subsets of An+1 containing 0}
Y 7→ q−1Y ∪ {0}

Recall that we have the Nullstellensatz:

{closed subsets of An+1} 1:1←→ {radical ideals I ⊂ A}
Y 7→ I(Y )

Z(I) 7→ I

We now ask the following question: what does the property k×-invariant become on the right hand side?
The group k× acts on An+1: an element λ ∈ k× acts as the multiplication map λ· : An+1 → An+1,

a 7→ λ·a. Now k× also acts on the set of functions from An+1 to k as follows. Let a ∈ An+1. Then
((λ·)∗f)(a) := f(λa). This means that we have the following commutative diagram:

An+1 λ· //

(λ·)∗f=f◦λ·
$$

An+1

f

��

k.

The set {f : An+1 → k} of functions from An+1 to k is a k-algebra: (f + g)a = fa + ga and
(fg)a = (fa)·(ga) (we prefer not to write unnecessary parentheses, such as in f(a)). For each λ in
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k× the map (λ·)∗ from {f : An+1 → k} to itself is a k-algebra automorphism (its inverse is (λ−1·)∗). For
example, we check the additivity. Let f and g be functions An+1 → k, then

((λ·)∗(f + g))a = (f + g)(λa) = f(λa) + g(λa) = ((λ·)∗f)a+ ((λ·)∗g)a = ((λ·)∗f + (λ·)∗g)a.

As this is true for all a in An+1, we have (λ·)∗f + (λ·)∗g.
Recall that A = k[x0, . . . , xn]. It is a sub-k-algebra of {f : An+1 → k}. We claim that it is preserved

by the k×-action: for f in A and λ in k×, the function (λ·)∗f is again in A. Indeed, for f =
∑
i fix

i

(multi-index notation) the function (λ·)∗f : An+1 → k is given by

a 7→ λ·a 7→ f(λa) =
∑

i0,...,in

fi0,...,inλ
i0ai00 · · ·λinainn =

∑
i0,...,in

fi0,...,inλ
i0+···+inai00 · · · ainn .

Hence we see that
(λ·)∗f =

∑
i0,...,in

fi0,...,inλ
i0+···+inxi00 · · ·xinn ∈ A.

We conclude that each (λ·)∗ : A → A is a k-algebra automorphism, with inverse (λ−1·)∗. So k× acts on
the k-algebra A.

Now observe that for f in A, λ in k×, and a in An+1 we have:

a ∈ Z((λ·)∗f) ⇐⇒ ((λ·)∗f)(a) = 0 ⇐⇒ f(λ·a) = 0 ⇐⇒ λ·a ∈ Z(f).

So: Z((λ·)∗f) = λ−1·Z(f). And for S ⊂ A we have Z((λ·)∗S) = λ−1·Z(S). Hence restricting the
bijection from the Nullstellensatz on both sides to the subset k×-invariant subsets gives the bijection:

{closed k×-invariant subsets 1:1←→ {k×-invariant radical ideals a ⊂ A
of An+1 containing 0} with a ⊂ (x0, . . . , xn) = Ax0 + · · ·+Axn}

We now want to know which ideals are k×-invariant. For this, we first decompose A into eigenspaces for
the action of k×. An eigenspace under the action of k× is exactly the set of homogeneous polynomials of
a certain degree together with the 0 polynomial: A is graded as a k-algebra. This means that

A =
⊕
d≥0

Ad, Ad =
⊕

d0+···+dn=d

k·xd00 · · ·xdnn , f ∈ Ad, g ∈ Ae =⇒ f ·g ∈ Ad+e.

The sub-k-vectorspace Ad of A is called the space of homogeneous polynomials of degree d. For f ∈ A
we can write f =

∑
d fd with fd ∈ Ad, and such a decomposition is unique. The fd are called the

homogeneous parts of f . Then for λ ∈ k× we get (λ·)∗f =
∑
d λ

dfd.

Definition 2.2.1 An ideal a is homogenous if for all f in a the homogeneous parts fd are also in a.

Proposition 2.2.2 Let a ⊂ A be an ideal. Then a is k×-invariant if and only if a is homogeneous.

Proof ⇐: Assume a is homogeneous. Let f ∈ a, λ ∈ k×. Then (λ·)∗f =
∑
d λ

dfd ∈ a because fd ∈ a

for all d.
⇒: Assume a ⊂ A is a k×-invariant ideal. Let f ∈ a. Write f = f0 + · · ·+ fN with fi ∈ Ai for some

N ∈ Z≥0. Take λ0, . . . , λN ∈ k× distinct (we can do this since k is algebraically closed, hence infinite).
We have: a 3 (λi·)∗f = f0 + λif1 + · · ·+ λNi fN . In matrix form this gives: (λ0·)∗f

...
(λN ·)∗f

 =

 1 λ0 λ2
0 · · · λN0

...
...

...
. . .

...
1 λN λ2

N . . . λNN


 f0

...
fN


Now use that this Vandermonde matrix is invertible to get f0, . . . , fN in a (we can express fi as a k-linear
combination of the (λj ·)∗f in a). �
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Theorem 2.2.3 (Homogeneous Nullstellensatz) The following maps are inverses:

{closed subsets of Pn} 1:1←→ {homogeneous radical ideals a ⊂ A with a ⊂ (x0, . . . , xn)}
Y 7→ I(q−1Y ∪ {0})

q(Z(a)− {0}) 7→ a

and under this bijection we have that Y is irreducible if and only if I(q−1Y ∪ {0}) is prime and not equal
to (x0, . . . , xn).

Proof The proof of the first part follows from the previous observations. The proof of the second part is
one of the exercises below. �

2.3 A more direct description of the closed subsets of Pn

Definition 2.3.1 For a homogeneous element f in some Ad ⊂ A we define

Zproj(f) := {(a0 : · · · : an) ∈ Pn : f(a0, . . . , an) = 0}.

Note that the condition makes sense, as it is independent of the chosen representative (a0, . . . , an) of
(a0 : · · · : an). In fact, Zproj(f) = q(Z(f)− {0}) where Z(f) ⊂ An+1.

The following proposition is a direct consequence of the results of the previous section.

Proposition 2.3.2 The closed subsets of Pn are the Zproj(T ) =
⋂
f∈T Zproj(f) for subsets T of the set

Ahom =
⋃
d≥0Ad of homogeneous elements of A.

We first consider a special case: T ⊂ A1, the case of linear equations. These Zproj(T ) are called linear
subspaces of Pn. Using linear algebra you can say a lot about them. For example two lines in P2 are equal
or intersect in exactly one point, see exercise I.2.11 of [Hart]. A hyperplane is a Zproj(f) with 0 6= f ∈ A1.
We also have coordinate hyperplanes : Hi = Z(xi) for 0 ≤ i ≤ n. Also we have the standard affine opens:
Ui = Pn −Hi = {a ∈ Pn : ai 6= 0}.

Proposition 2.3.3 For i ∈ 0, 1, . . . , n the map ϕi : Ui → An,

(a0 : · · · : an) 7→ (
a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . . ,

an
ai

)

is a homeomorphism.

Proof We have already seen that ϕi is bijective. Now consider the following diagram:

An+1 − {0} ⊃

q

��

q−1Ui = An+1 − Z(xi)

q

��

ϕi◦q

''
Pn ⊃ Ui ϕi

// An

We first claim that ϕi◦q : a 7→ (a0/ai, . . . , ai−1/ai, ai+1/ai, . . . , an/ai) is continuous. It suffices to show
that for any f in k[y1, . . . , yn] the set (ϕi ◦ q)−1Z(f) is closed. So, let f be in k[y1, . . . , yn], of degree at
most some d in N. Then, for a in q−1Ui, the following conditions are equivalent:

a ∈ (ϕi ◦ q)−1Z(f)

f((ϕi ◦ q)a) = 0

f(a0/ai, . . . , ai−1/ai, ai+1/ai, . . . , an/ai) = 0

adi f(a0/ai, . . . , ai−1/ai, ai+1/ai, . . . , an/ai)) = 0

a ∈ Z(xdi f(x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi)).
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Hence (ϕi ◦ q)−1Z(f) = Z(xdi f(x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi)) ∩ q−1Ui. Hence ϕi ◦ q is
continuous. Since Ui has the quotient topology for q, ϕi is continuous.

On the other hand, the map si : An → An+1 − Z(xi) = q−1Ui,

(b0, . . . , bi−1, bi, . . . , bn) 7→ (b0, . . . , bi−1, 1, bi+1, . . . , bn)

is continuous because for any b = (b0, . . . , bi−1, bi, . . . , bn) and any f in k[x0, . . . , xn] we have that
f(si(b)) = 0 if and only if f(b0, . . . , bi−1, 1, bi+1, . . . , bn) = 0, hence si(b) ∈ Z(f) if and only if
b ∈ Z(f(x1, . . . , xi−1, 1, xi+1, . . . , xn)). Hence ϕ−1

i = q ◦ si is continuous. �

2.4 How to administrate Pn

On An+1 we have the coordinate functions x0, . . . , xn and the k-algebra k[x0, . . . , xn] generated by
them. Now ϕi is given by n functions on Ui: xi,j , 0 ≤ j ≤ n, j 6= i, with xi,j ◦ q = xj/xi. So
ϕi(P ) = (xi,0(P ), . . . , . . . , xi,i−1(P ), xi,i+1(P ), . . . , xi,n(P )).

Now for f ∈ Ad we have that x−di f is a k×-invariant function on q−1Ui, and it is a polynomial in the
xi,j , j 6= i. We have: ϕi(Zproj(f)) = Z(x−di f).

Example 2.4.1 Let f = xn1 − xn−1
0 x2 + xn2 ∈ k[x0, x1, x2]n. Then:

ϕ0(Zproj(f) ∩ U0) = Z(xn0,1 − x0,2 + xn0,2)

ϕ1(Zproj(f) ∩ U1) = Z(1− xn−1
1,0 x1,2 + xn1,2)

ϕ2(Zproj(f) ∩ U2) = Z(xn2,1 − xn−1
2,0 + 1)

Vice versa: For g ∈ k[{xi,j : j 6= i}] of degree d you can “homogenise” to go back to k[x0, . . . , xn]: just
replace xi,j by xj/xi and multiply by xdi .

2.5 Exercises

We recall: k is an algebraically closed field. We also recall that a topological space X is irreducible if and
only if first of all it is not empty and secondly has the property that if U and V are non-empty open subsets
of X , then U ∩ V is non-empty.

Exercise 2.5.1 Let X and Y be topological spaces, f : X → Y continuous. Assume that X is irreducible
and that f is surjective. Show that Y is irreducible.

Exercise 2.5.2 Let X and Y be topological spaces, f : X → Y a map, not necessarily continuous, and
Z ⊂ Y . Assume that f is open: for every open U in X , fU is open in Y . Show that f : f−1Z → Z is
open, if Z and f−1Z are equipped with the topologies induced from Y and X .

Exercise 2.5.3 Let X and Y be topological spaces, f : X → Y continuous. Assume that f is open and
that for every y in Y the subset f−1{y} of X , with its induced topology, is irreducible. Assume that Y is
irreducible. Show that X is irreducible.

Exercise 2.5.4 Let X be a topological space, and x ∈ X . Assume that X is not equal to {x}, that {x} is
closed, and that {x} is not open. Show that X − {x} is irreducible if and only if X is irreducible.

Exercise 2.5.5 Let n ∈ Z≥0, and q : An+1 −{0} → Pn as in today’s lecture. Show that q is open and that
for all P ∈ Pn, q−1{P} is irreducible.
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Exercise 2.5.6 Let n ∈ Z≥0. Let Y ⊂ Pn be a closed subset. Let I ⊂ A = k[x0, . . . , xn] be the ideal of
q−1Y ∪ {0}. Show that Y is irreducible if and only if I is prime and not equal to (x0, . . . , xn).

Exercise 2.5.7 Show by means of an example that Proposition 2.2.2 is false if k is not assumed to be
algebraically closed.

Exercise 2.5.8 Let P1 = (0, 0), P2 = (1, 0), P3 = (0, 1) and P4 = (1, 1). Let Y = {P1, P2, P3, P4} and
let I ⊂ k[x, y] be the ideal of Y .

i. Show that the affine coordinate ring A(Y ) = k[x, y]/I of Y has dimension 4 as k-vector space.
Hint: consider the k-algebra morphism k[x, y]→ k4 sending f to (f(P1), f(P2), f(P3), f(P4)), or
use the Chinese Remainder Theorem.

ii. Show that I = (f, g), where f = x2 − x and g = y2 − y. Hint: show that (f, g) ⊂ I , then that
(1, x, y, xy) gives a k-basis for k[x, y]/(f, g) using divisions with remainder, then that the natural
morphism k[x, y]/(f, g)→ A(Y ) is an isomorphism.

iii. Draw a picture of Y , Z(f) and Z(g).

Exercise 2.5.9 We assume now that k 6⊃ F2. Let Z = {P1, P2, P3} ⊂ A2, with the Pi as in Exercise 2.5.8.
Let J ⊂ k[x, y] be the ideal of Z. Our aim is to show that J can be generated by two elements. We view
A2 as a standard open affine subset of P2 via (a, b) 7→ (a : b : 1). Let P ′4 = (1 : 1 : 0) ∈ P2, and let
Y ′ = {P1, P2, P3, P

′
4} ⊂ P2.

i. Draw a picture of Y ′, the lines P1P2, P3P
′
4, P1P3 and P2P

′
4, and the line at infinity (draw your

picture in the affine plane that is the complement of a suitable line in P2).

ii. Give linear equations for the lines P1P2, P3P
′
4, P1P3 and P2P

′
4, and deduce from this your two

candidate generators f and g for J .

iii. Show that J = (f, g). Hint: same strategy as in Exercise 2.5.8.ii; dimk A(Z) = 3; show that
xy ∈ (f, g).

Remark 2.5.10 Later it will be easier for us to show that J = (f, g), by deducing it from the fact that
Z(f)∩Z(g) = Z, with “transversal intersection”. More generally, there are standard algorithms based on
the concept of Gröbner basis, with which one can compute in quotients such as k[x, y]/(f, g).



Lecture 3

Geometry in projective space

Let k be an algebraically closed field.

3.1 Points and lines in P2

In this section we do not need the assumption that k is algebraically closed. First recall the following (see
the previous lecture):

P2 = (k3 − {0})/k× = {lines in k3 through 0} = A2 t P1

In this last description, A2 is the set of points of the form (a : b : 1), and P1 is the set of points of the form
(c : d : 0) with (c, d) 6= (0, 0). A line in P2 is Z(f) where f = ax+ by + cz with (a, b, c) 6= (0, 0, 0). A
line in A2 is Z(f) where f = ax+ by + c with (a, b) 6= (0, 0).

Let l1, l2 ⊂ A2 be distinct lines. Then the intersection l1 ∩ l2 is empty if l1 and l2 are parallel, and
otherwise it consists of one point. In P2 the situation is much nicer: two distinct lines always intersect in
a unique point. Indeed, this follows from a dimension argument from linear algebra. The lines l1 and l2
as seen in A3 = k3 are just two distinct linear subspaces of dimension 2, whose intersection is then of
dimension one, which corresponds to a point in P2.

Using projective space, many theorems in affine geometry become easier to prove. Here is an example:

Proposition 3.1.1 In the following configuration (say in R2), the points A,P,Q lie on a line.

A

B

P Q

Proof First consider this problem in P2 instead of A2. After a linear change of coordinates we may
assume that A = (1 : 0 : 0) and B = (0 : 1 : 0). Indeed, A and B are distinct 1-dimensional subspaces
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of k3, hence we can take a basis of k3 with these lines as the first two coordinate axes. The line AB is then
the line at infinity, and therefore the two lines that intersect in A are parallel in A2 and similarly for the two
lines that intersect in B. So we then have the following picture.

P Q

But in this case, the result is obvious, and so we are done. �

3.2 Curves in P2

Remark 3.2.1 From now on, k is again assumed to be algebraically closed.

We have seen that the intersection of two distinct lines in P2 consists of one point. The following classical
theorem from projective geometry generalizes this.

Theorem 3.2.2 (Bézout) Let f1 and f2 in k[x, y, z] be homogeneous irreducible polynomials of degrees d1

and d2, respectively. Assume Z(f1) 6= Z(f2). Then #Z(f1)∩Z(f2) = d1d2 “counted with multiplicity”.

Only later in this course we will be able to define the “multiplicity” occurring in the statement, but let
us remark already now that it should be thought of as an “order of contact”. So if the multiplicity of an
intersection point is higher than one, this means that the curves are “tangent” to one another in that point.

Already the case d1 = d2 = 1 illustrates that it is important to work in the projective plane, instead of
the affine plane. Below is another illustration.

Example 3.2.3 Assume that 2 is nonzero in k. Let f1 = x2 + y2 − z2 and f2 = (x− z)2 + y2 − z2. Here
is a (real, affine) picture:

From the picture one can immediately read off two intersection points, namely (1/2 :
√

3/2 : 1) and
(1/2 : −

√
3/2 : 1), and by putting z = 0 we find two more intersection points on the line at infinity:

(1 :
√
−1 : 0) and (1 : −

√
−1 : 0). These two points at infinity correspond to the asymptotes. These

asymptotes are not visible in the real affine picture, but become visible in C2.

3.3 Projective transformations

For n in Z≥0 we denote the group of invertible n by n matrices with coefficients in k with matrix multipli-
cation by GLn(k). It is the automorphism group of the k-vector space kn.
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Let n be in Z≥0. Since a linear map sends 0 to 0, the group GLn+1(k) acts on kn+1−{0}. Since matrix
multiplication commutes with scalar multiplication, this induces an action of GLn+1(k) on the quotient Pn.

The normal subgroup k× of scalar matrices in GLn+1(k) acts trivially on Pn. Therefore the action of
GLn+1(k) on Pn induces an action of the quotient PGLn+1(k) := GLn+1(k)/k× on Pn. An element of
PGLn+1(k) is called a projective transformation.

For f in k[x0, . . . , xn], viewed as function from An+1 to k, and for g in GLn+1(k), the function

g∗f : An+1 → k : P 7→ f(gP )

is again in k[x0, . . . , xn]. This operation is a right-action of GLn+1(k) on the k-algebra k[x0, . . . , xn].
The polynomial g∗f is homogeneous of degree d if and only if f is homogeneous of degree d. Also, given
a homogeneous polynomial f ∈ k[x0, . . . , xn] and a point P ∈ Pn we have P ∈ Z(f) if and only if
g−1P ∈ Z(g∗f). It follows that GLn+1(k), and hence also PGLn+1(k), act on Pn by homeomorphisms.

Remark 3.3.1 The proof of Proposition 3.1.1 could have started with “There exists a projective transfor-
mation g ∈ PGL2 such that gA = (1 : 0 : 0) and gB = (0 : 1 : 0), so we may assume that A = (1 : 0 : 0)

and B = (0 : 1 : 0).”

3.4 Affine transformations

Definition 3.4.1 We define the group of affine transformations as follows:

Affn = Affn(k) =

{(
a b

0 1

)
: a ∈ GLn, b ∈ kn

}
⊂ GLn+1 .

It is the stabiliser in GLn+1 of the element xn in k[x0, . . . , xn], and therefore it stabilises all the hyperplanes
Z(xn − a), with a ∈ k. The group Affn acts on Pn. This action of Affn on Pn induces a morphism of
groups Affn → PGLn. This morphism is injective and its image is the stabiliser in PGLn of Z(xn), the
hyperplane at infinity. This means that Affn acts on Pn − Z(xn) = An and on Z(xn) = Pn−1 as well.

Example 3.4.2 Consider the case where n = 1. An element of Affn has the form g = ( a b0 1 ) with a ∈ k×
and b ∈ k. Now let P ∈ A1 be the point with coordinate p ∈ k. In P1 this point has homogeneous
coordinates (p : 1) and it is mapped by g to (ap+ b : 1), so gP ∈ A1 has coordinate ap+ b.

In the same way as before there is a compatible right-action of Affn on k[x0, . . . , xn−1]. Explicitly:

g =

(
a b

0 1

)
sends the polynomial f , viewed as function on kn, to g∗f := (x 7→ f(ax+ b)). Note that P lies on Z(f)

if and only if g−1P lies on Z(g∗f). In particular it follows that Affn acts as homeomorphisms on An.

Remark 3.4.3 The dimension of Aff1 is 2, but that of PGL2 is 3. Hence the projective line has more
symmetry than the affine line. In general Affn has dimension n2 + n (we can pick n2 entries for the linear
part, and then we can pick a vector to translate over, this gives an extra n) while PGLn+1 has dimension
(n+ 1)2 − 1 = n2 + 2n.

3.5 Pascal’s theorem

In this section, we will prove Pascal’s theorem. We first state a Euclidian version of it.
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Theorem 3.5.1 Suppose that X is a circle and A,B,C,A′, B′, C ′ ∈ X are distinct points on this circle.
Let P = B′C ∩ BC ′, Q = AC ′ ∩ CA′, R = A′B ∩ AB′, assuming these intersections exist (see the
picture below). Then P,Q,R lie on a line.

A

B

C

A′

B′

C ′

P
Q

R

To prove this it is convenient to generalize this to a projective statement.

Theorem 3.5.2 (Pascal) Let X = Z(g) with g ∈ k[x1, x2, x3] homogeneous of degree 2 and irreducible.
Let A,B,C,A′, B′, C ′ ∈ X be distinct points. Let P = B′C ∩BC ′, Q = AC ′ ∩CA′, R = A′B ∩AB′.
Then P,Q,R lie on a line.

Proof Note that no three of the six points A,B,C,A′, B′, C ′ can lie on a line, for otherwise this would
contradict Bézout’s theorem (together with the irreducibility of X).

So, without loss of generality we may assume that A′ = (1 : 0 : 0), B′ = (0 : 1 : 0), C ′ = (0 : 0 : 1).
We now write down the equation for X:

g = g11x
2
1 + g22x

2
2 + g33x

2
3 + g12x1x2 + g13x1x3 + g23x2x3.

Since A′ = (1 : 0 : 0) lies on this quadric, we see that g(1, 0, 0) = g11 = 0. In the same manner, one
obtains g22 = g33 = 0. So

g = g12x1x2 + g13x1x3 + g23x2x3.

Note that none of g12, g13, g23 are zero, for otherwise our g would be reducible. After applying the
projective transformation  g23 0 0

0 g13 0

0 0 g12

 ∈ PGL2

we may assume that
g = x1x2 + x2x3 + x3x1.

Note that A′, B′ and C ′ are fixed under this transformation.
Now let A, B, C be the points (a1 : a2 : a3), (b1 : b2 : b3) and (c1 : c2 : c3), respectively. Let us

compute the coordinates of the point P = B′C ∩ BC ′. The line B′C is given by c3x1 = c1x3, and BC ′

is given by b2x1 = x2b1. So we find that P = (1 : b2/b1 : c3/c1). Note that b1 is not zero, since B lies
on X and B is distinct from B′ and C ′, similarly ai, bi, ci are all non-zero. By symmetry, we find that
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Q = (a1/a2 : 1 : c3/c2) and R = (a1/a3 : b2/b3 : 1). To check that P , Q and R lie on a line, it is enough
to show that

det

 1 b2/b1 c3/c1
a1/a2 1 c3/c2
a1/a3 b2/b3 1

 = 0.

But this is true. The sum of the rows is zero, this follows sinceA,B and C lie on our quadric. For example,
for the first coordinate:

1 +
a1

a2
+
a1

a3
=
a2a3 + a1a3 + a1a2

a2a3
=
g(a1, a2, a3)

a2a3
= 0.

�

3.6 Exercises

Exercise 3.6.1 Consider Y1 = Z(y − x2) and Y2 = Z(xy − 1) in A2. Denote by i : A2 → P2 the map
(a, b) 7→ (a : b : 1). Let X1 and X2 be the closures of iY1 and iY2, respectively.

i. Give equations for X1 and X2.

ii. Describe X2 − iY2 and X1 − iY1.

iii. Show that there is no affine transformation α such that αY1 = Y2.

iv. Show that there is a projective transformation β such that βX1 = X2.

Exercise 3.6.2 Let P1, P2 and P3 be three distinct points in P1. Show that there is a unique projective
transformation that maps P1 to (1 : 0), P2 to (0 : 1), and P3 to (1 : 1).

Exercise 3.6.3 Let P1, P2, P3 and P4 be four points in P2 such that there is no line in P2 containing three
of them. Show that there is a unique projective transformation that maps P1 to (1 : 0 : 0), P2 to (0 : 1 : 0),
P3 to (0 : 0 : 1), and P4 to (1 : 1 : 1).

Exercise 3.6.4 ([Hart, 2.14]) Given positive integers r and s consider the map

((a1, . . . , ar), (b1, . . . , bs))→ (a1b1 : a1b2 : · · · : arbs)

from (Ar − {0})× (As − {0}) to Prs−1.

(a) Show that the map factors through Pr−1 × Ps−1;

Denote the resulting map from Pr−1 × Ps−1 to Prs−1 by Ψ.

(b) Show that Ψ is injective;

(c) Show that the image of Ψ is closed in Prs−1.

The map Ψ is called the Segre embedding of Pr−1 × Ps−1 in Prs−1.

Exercise 3.6.5 ([Hart, 2.15]) Consider the Segre embedding Ψ : P1×P1 → P3. Let Q ⊂ P3 be the image
of Ψ.

i. Give equations for Q.

ii. Show that for all P ∈ P1 the images of {P} × P1 and P1 × {P} are lines in P3 lying on Q.
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iii. Show that all lines in P3 lying on Q can be obtained in this way (hint: choose points (A1, A2) and
(B1, B2) in P1 × P1 and verify that the line through Ψ((A1, A2)) and Ψ((B1, B2)) lies on Q if and
only if A1 = B1 or A2 = B2).

iv. For any pair of lines L1, L2 lying on Q determine their intersection L1 ∩ L2.

v. Draw a picture of Q.

vi. Describe all closed subsets of P1 × P1 with the product topology.

vii. Show that Ψ is not continuous when P1×P1 is equipped with the product topology andQ is equipped
with the induced topology from P3.

In fact, as we will see later, the induced topology on Q, and not the product topology, is the “right one” for
the product P1 × P1.



Lecture 4

Regular functions and algebraic
varieties

In this lecture we discuss Section I.3 of [Hart], and more. We advise the reader to read that section for
her/himself. As usual, k is an algebraically closed field.

4.1 Regular functions on closed subsets of An

It is now time to make geometric objects of the closed subsets of An and Pn that we have seen so far: until
now they are just topological spaces, and moreover, the topology is quite weird. The difference between
topology and differential geometry comes from the kind of functions that are allowed: continuous versus
differentiable. In algebraic geometry, the functions chosen are called “regular.”

Lemma 4.1.1 For f ∈ k[x1, . . . , xn] we set D(f) := {P ∈ An : f(P ) 6= 0} = An − Z(f), so the D(f)

are open in the Zariski topology. The set of all D(f) is a basis for the Zariski topology on An.

The proof is left to the reader in Exercise 4.4.1.

Definition 4.1.2 Let n ∈ Z≥0, Y ⊂ An closed, V ⊂ Y open (for the induced topology on Y ), and
f : V → k a function. Then, for P ∈ V , f is called regular at P if there is an open subset U ⊂ An with
P ∈ U , and elements g, h ∈ k[x1, . . . , xn] such that for all Q ∈ U , h(Q) 6= 0 and for all Q ∈ U ∩ V :
f(Q) = g(Q)/h(Q). A function f : V → k is called regular if it is regular at all P ∈ V .

The set of regular functions on V ⊂ Y is denoted by OY (V ). It is a k-algebra for point-wise addition and
multiplication. We have made the topological space Y into a “ringed space,” and OY is called the “sheaf
of regular functions on Y .”

Lemma 4.1.3 Let X be a topological space, and Y a subset of X . Then Y is closed if and only if X can
be covered by open subsets Ui ⊂ X such that for all i, Y ∩ Ui is closed in Ui.

Proof Assume that Y is closed; just take the covering {X}. Conversely, if, for all i, Y ∩ Ui is closed in
Ui then every point in the complement X − Y has an open neighborhood in X − Y , hence Y is closed
in X . �

Lemma 4.1.4 Let n be in N, Y ⊂ An be closed, V ⊂ Y be open, and f ∈ OY (V ). Then f : V → k = A1

is continuous.

27
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Proof Since k has the co-finite topology, it is enough to show that for any a ∈ k, f−1{a} ⊂ V is
closed. By the previous lemma it is enough to give for every P ∈ V an open U ⊂ An with P ∈ U such
that f−1{a} ∩ U is closed in U ∩ V . So let P ∈ V be given and take an open U ⊂ An and g and h
in k[x1, . . . , xn] as in Definition 4.1.2. Then for Q ∈ U ∩ V the condition f(Q) = a is equivalent to
Q ∈ Z(g − ah). So f−1{a} ∩ U = Z(g − ah) ∩ (U ∩ V ), hence closed in U ∩ V . �

Remark 4.1.5 Not all continuous f : A1 → k are regular. For example every permutation of k is a home-
omorphism of A1.

Corollary 4.1.6 Let Y ⊂ An be closed and irreducible, V ⊂ Y open, non-empty, f and g in OY (V ) such
that f |U = g|U for some open nonempty U ⊂ V . Then f = g.

Proof Note that f − g is regular, hence continuous by the previous lemma. So (f − g)−1{0} is closed.
As (f − g)−1{0} contains U and V is irreducible, (f − g)−1{0} is dense in V , hence equal to V . �

The following theorem generalizes Theorem I.3.2(a) of [Hart].

Theorem 4.1.7 Let n be in Z≥0 and let Y ⊂ An be closed. Then the k-algebra morphism ϕ from
A := k[x1, . . . , xn] to OY (Y ) that sends a polynomial to the function that it defines is surjective and
has kernel I(Y ), the ideal of Y . Hence it induces an isomorphism from A/I(Y ) = A(Y ) to OY (Y ).

Proof By definition ker(ϕ) = {f ∈ A : ∀P ∈ Y, f(P ) = 0} = I(Y ). So we only need to prove the
surjectivity of ϕ, the rest follows immediately.

Let f ∈ OY (Y ). We want to show that f is in im(ϕ), or, equivalently, that its class f in the quotientA-
moduleOY (Y )/ im(ϕ) is zero. Let J ⊂ A be the annihilator of f , that is, J = {h ∈ A : ϕ(h)f ∈ im(ϕ)}.
Then J is an ideal. We want to show that 1 ∈ J , or, equivalently, that J = A. Note that I(Y ) ⊂ J since
for h ∈ I(Y ) we have hf = ϕ(h)f = 0·f = 0.

Suppose that J 6= A. Take m ⊂ A a maximal ideal such that J ⊂ m. By the Nullstellensatz there is a
P ∈ An such that m = mP , the maximal ideal corresponding to P . As I(Y ) ⊂ J ⊂ mP , we have P ∈ Y .
Since f is a regular function on Y we can take h1, h2, g2 in A such that

• P ∈ D(h1),

• for all Q ∈ D(h1) we have h2(Q) 6= 0,

• for all Q ∈ D(h1) ∩ Y we have f(Q) = g2(Q)/h2(Q).

Then ϕ(h2)f = ϕ(g2) on D(h1) ∩ Y . Hence ϕ(h1h2)f = ϕ(h1g2) on Y (both are zero on Y ∩ Z(h1)),
and ϕ(h1h2)f is in im(ϕ). So h1h2 ∈ J . But (h1h2)(P ) = h1(P )h2(P ) 6= 0 (by construction), this gives
a contradiction. Hence J = A and we are done. �

4.2 Regular functions on closed subsets of Pn

We also make closed subsets of Pn into ringed spaces. First we do this for Pn itself. LetA = k[x0, . . . , xn].

Definition 4.2.1 Let U ⊂ Pn be open, f : U → k, P ∈ U . Then f is called regular at P if there exists a
d ∈ Z≥0, g, h ∈ Ad such that h(P ) 6= 0 and f = g/h in a neighborhood of P . (Note that for Q ∈ An+1

with h(Q) 6= 0 and λ ∈ k×: (g/h)(λQ) = g(λQ)/h(λQ) = λdg(Q)/λdh(Q) = (g/h)(Q).) Also, f is
called regular if f is regular at all P ∈ U . Notation: OPn(U) = {f : U → k : f is regular}

Definition 4.2.2 Let Y ⊂ Pn be closed, V ⊂ Y open, f : V → k, and P ∈ V . Then f is called regular at
P if there exists an open U ⊂ Pn and g ∈ OPn(U) such that P ∈ U and for allQ ∈ V ∩U : f(Q) = g(Q).
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Remark 4.2.3 For Y ⊂ An closed we could have done the same thing: first defineOAn and then continue
as above.

Theorem 4.2.4 (Generalises Theorem I.3.4(a) of [Hart]). Let Y ⊂ Pn be closed. Then

OY (Y ) = {f : Y → k : f is locally constant.}

Proof We do not give a detailed proof. The proof of Theorem I.3.4(a) in [Hart] generalises as sketched
as follows. Let f be in OY (Y ). Let C ⊂ An+1 be the cone of Y , that is, C = q−1Y ∪ {0}. Then
OC(C) = A(C) is graded, and forN sufficiently large multiplication by f preserves the finite dimensional
subspace A(C)N . Therefore f satisfies a polynomial equation over k, and can only take finitely many
values. As f is continuous, it is locally constant. �

4.3 The category of algebraic varieties

Now we get at a point where we really must introduce morphisms. For example, we want to compare
Ui ⊂ Pn with An via the map ϕi : Ui → An and we would like to call ϕi an isomorphism, so both ϕi
and ϕ−1

i should be morphisms. We know that ϕi and ϕ−1
i are continuous. The idea is then to ask for a

morphism to be a continuous function that, by composition, sends regular functions to regular functions.
We formalize this as follows.

Definition 4.3.1 A k-space is a pair (X,OX), with X a topological space, and for every U ⊂ X open,
OX(U) ⊂ {f : U → k} a sub-k-algebra such that:

i. for all V ⊂ U (both open) and for all f in OX(U), f |V is in OX(V );

ii. for all U open and for all f : U → k, f is in OX(U) if and only if for all P ∈ U there is an open
UP ⊂ U such that P ∈ UP and f |UP

is in OX(UP ).

We call this OX the sheaf of admissible functions. The second condition in Definition 4.3.1 means that the
“admissibility” condition is a local condition: a function verifies it if and only if it does so locally.

Examples 4.3.2 The (Y,OY ) as defined above for closed subsets Y of An or Pn are k-spaces (they obvi-
ously satisfy both properties).

Definition 4.3.3 Let (X,OX) and (Y,OY ) be k-spaces. A morphism from (X,OX) to (Y,OY ) is a map
ϕ : X → Y such that:

i. ϕ is continuous;

ii. for all U ⊂ Y open, for all f ∈ OY (U), ϕ∗f : = f ◦ ϕ : ϕ−1U → k is in OX(ϕ−1U).

Remark 4.3.4 Condition ii is equivalent to: for all P inX , for all f : Y → k regular at ϕP , ϕ∗f is regular
at P .

The k-spaces and their morphisms form a category: k-Spaces. This gives us the notion of an isomorphism:
a morphism ϕ from (X,OX) to (Y,OY ) is an isomorphism if there is a morphism ψ from (Y,OY ) to
(X,OX) with ψ ◦ ϕ = id(X,OX) and ϕ ◦ ψ = id(Y,OY ). For further theory on categories, one can see
Lang’s Algebra [Lang].

Remark 4.3.5 This category k-Spaces, which looks rather ad hoc, is also used by Springer in [Spri].
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For (X,OX) a k-space and U an open subset of X we define OX |U , the restriction of OX to U , by: for
V ⊂ U open, OX |U (V ) = OX(V ). We can now define what (very abstract) algebraic varieties are.

Definition 4.3.6 Let k be an algebraically closed field. An algebraic variety over k is a k-space (X,OX)

such that for all x ∈ X there is an open U ⊂ X with x ∈ U such that (U,OX |U ) is isomorphic (in
k-Spaces) to a (Y,OY ) with Y ⊂ An closed for some n, and OY the sheaf of regular functions (that is,
is an affine algebraic variety over k). If (X,OX) and (Y,OY ) are algebraic varieties over k, a morphism
from (X,OX) to (Y,OY ) is just a morphism in k-Spaces. The category of algebraic varieties over k is
denoted vaVar(k). A variety is called projective if it is isomorphic to a (Y,OY ) with Y a closed subset of
some Pn andOY its sheaf of regular functions. A variety is called quasi-projective if it is isomorphic to an
open subvariety of a projective variety.

Remark 4.3.7 Our notion of variety in vaVar(k) is much more general than that in the first chapter
of [Hart]: those must be irreducible (which we don’t suppose) and quasiprojective (which we don’t suppose
either). For those who would rather do schemes: vaVar(k) is equivalent to the category of k-schemes that
are reduced, and locally of finite type.

Proposition 4.3.8 (I.3.3 in [Hart]) Let n ∈ Z≥0, i ∈ {0, . . . , n}, Ui ⊂ Pn as before, and ϕi : Ui → An the
map (a0 : · · · : an) to (a0/ai, . . . , ai−1/ai, ai+1/ai, . . . , an/ai). Then ϕi is an isomorphism of k-spaces.
Hence Pn is an algebraic variety.

Proof We have already seen that ϕi and its inverse are continuous. It remains to be shown that the
conditions “regular at P ” and “regular at ϕi(P )” correspond, that is, for f : U → k with U a neighborhood
of ϕi(P ), f is regular at ϕi(P ) if and only if ϕ∗i f is regular at P .

Let P be in Ui, and U ⊂ An open containing ϕ(P ), and f : U → k a function. Then f is regular
at ϕi(P ) if and only if there exist g, h ∈ k[{xi,j : j 6= i}] such that h(ϕi(P )) 6= 0 and f = g/h in a
neighborhood of ϕi(P ).

The function ϕ∗i f is regular at P if and only if there exist d ∈ Z≥0 and g′, h′ ∈ k[x0, . . . , xn]d such
that h′(P ) 6= 0 and ϕ∗i f = g′/h′ in a neighborhood of P .

Suppose that f is a regular function at ϕi(P ), locally given by g/h. Let d = max(deg(g),deg(h)) and
notice that for a in a neighborhood of P

(ϕ∗i (g/h))(a0 : · · · : an) = g(ϕi(a0 : · · · : an))/h(ϕi(a0 : · · · : an))

= g((aj/ai)j 6=i)/h((aj/ai)j 6=i)

= adi g((aj/ai)j 6=i)/a
d
i h((aj/ai)j 6=i)

= (g′/h′)(a0 : · · · : an)

where g′ = xdi g((xj/xi)j 6=i) and h′ = xdi h((xj/xi)j 6=i) are in k[x0, . . . , xn]d. Hence ϕ∗i f is regular at P .
Suppose now that ϕ∗i f is regular at P , locally given as g′/h′ in k[x0, . . . , xn]d for some d. Then f is

locally given by g/h with g = x−di g′ and h = x−di h′, showing that f is regular at ϕi(P ). �

Corollary 4.3.9 Let Y ⊂ Pn be closed, then (Y,OY ) is an algebraic variety.

Proof This follows since for each i, (Yi,OY |Yi
) with Yi = Ui ∩ Y is an algebraic variety by the above

theorem. �

Corollary 4.3.10 We have OPn(Ui) = k[xi,j : i 6= j].

We will now prove some things which will be useful later.
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Proposition 4.3.11 (Compare with I.3.6 in [Hart].) Let X be an algebraic variety, U ⊂ X an open subset
with its induced topology and regular functions, let Y ⊂ An closed, and let ψ : U → Y a map of sets. For i
in {1, . . . , n} let ψi = pri ◦ψ, hence for all P in U , ψ(P ) = (ψ1(P ), . . . , ψn(P )). Then ψ is a morphism
if and only if for all i, ψi is in OU (U).

Proof Assume that ψ is a morphism. Let i be in {1, . . . , n}. The restriction of the function xi : An → k

to Y is in OY (Y ) and we denote it still by xi. Then ψi = ψ∗(xi) is in OU (U).
Assume that all ψi are regular. We have to show that ψ is a morphism. We start with showing

that ψ is continuous. For f in k[x1, . . . , xn], ψ∗f is the function P 7→ f(ψ1(P ), . . . , ψn(P )), hence
ψ∗f = f(ψ1, . . . , ψn), the image inOU (U) of f under the k-algebra morphism that sends xi to ψi. Hence
for all f in k[x1, . . . , xn] we have:

ψ−1Z(f) = {P ∈ U : f(ψ(P )) = 0} = (ψ∗f)−1{0}.

Now ψ∗f ∈ OU (U) is continuous, because continuity is a local property and by Lemma 4.1.4 ψ∗f is
continuous at every P in X .

Now we show that ψ is a morphism. Let V ⊂ Y be open and f ∈ OY (V ). We must show that
ψ∗f : ψ−1V → k is in OU (ψ−1V ). This is a local property by the second part of Definition 4.3.1. We
must show that for all P in ψ−1V , ψ∗f is regular at P . So let P be in ψ−1(V ). Write f = g/h in a
neighborhood of ψ(P ), with g and h in k[x1, . . . , xn]. Then ψ∗f = g(ψ1, . . . , ψn)/h(ψ1, . . . , ψn) in a
neighborhood of P , hence a quotient of the two elements g(ψ1, . . . , ψn) and h(ψ1, . . . , ψn) in OX(U),
with (h(ψ1, . . . , ψn))P = h(ψ(P )) 6= 0. Hence, by Definition 4.1.2, ψ∗f is regular at P . �

We have the following theorem, which is needed for the exercises below. The proof will be given in the
next lecture, see Corollary 5.1.6.

Theorem 4.3.12 Let Y ⊂ An be closed, h ∈ k[x1, . . . , xn], and let V the intersection Y ∩ D(h). Then
(V,OY |V ) is an affine variety, that is, isomorphic to a closed subset of some Am with its regular functions.

4.4 Exercises

Exercise 4.4.1 Prove Lemma 4.1.1.

Exercise 4.4.2 Let n ∈ N. For d ∈ N and f ∈ Ad (A = k[x0, . . . , xn]) letD+(f) := {a ∈ Pn | f(a) 6= 0}.
Show that the set of all D+(f) is a basis for the topology on Pn.

Exercise 4.4.3 Let pt = A0. Let X be a variety. Show that all maps of sets pt → X and X → pt are
morphisms.

Exercise 4.4.4 Let X be a variety, and U ⊂ X an open subset, equipped with the induced topology. Show
that (U,OX |U ) is a variety and that the inclusion map j : U → X is a morphism. (Hint: you can use
Theorem 4.3.12.) We call U an open subvariety of X . Let (Z,OZ) be a variety and f : Z → U a map of
sets. Show that f is a morphism if and only if j ◦ f is a morphism.

Exercise 4.4.5 Let (X,OX) and (Y,OY ) be varieties, and f : X → Y a map of sets. Show that f is a
morphism if and only if for each x ∈ X there are open subsets U ⊂ X and V ⊂ Y such that x ∈ U ,
fU ⊂ V , and f |U : (U,OX |U )→ (V,OY |V ) is a morphism.

Exercise 4.4.6 Let n ∈ N, and let a1, . . . , an be distinct elements of k. Show that the union of {xi : i ∈ N}
and {(x− aj)−l : j ∈ {1, . . . , n} and l ∈ Z>0} is a basis of the k-vector space OA1(A1 − {a1, . . . , an}).
Give also a basis for OP1(P1 − {a1, . . . , an}). (Hint: prove that every regular function on a non-empty
open subset of A1 is uniquely represented as g/h with g and h in k[x] relatively prime and h monic.)
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Exercise 4.4.7 Let X be a variety, and Y ⊂ X a closed subset, equipped with the induced topology. For
V ⊂ Y open, f : V → k, and P ∈ V , we define f to be regular at P if and only if there is an open U ⊂ X
and a g ∈ OX(U) such that P ∈ U , and for all Q ∈ V ∩ U , f(Q) = g(Q). Notation: OY (V ). Show that
(Y,OY ) is a variety and that the inclusion map i : Y → X is a morphism. We call Y a closed subvariety
of X . Let (Z,OZ) be a variety and f : Z → Y a map of sets. Show that f is a morphism if and only if
i ◦ f is a morphism.

Exercise 4.4.8 Do Exercise I.3.4 of [Hart] for n = 1 and d = 2. Hint: do not do all of [Hart], Exer-
cise I.2.12, but use as much as you can the exercises above (4.4.4, 4.4.5 and 4.4.7). So, just show that the
image Y of ϕ : P1 → P2 is closed (by giving equations for it), and show that the inverse ψ : Y → P1, on
suitable standard open subsets, is given by the inclusion followed by a projection.

Exercise 4.4.9 Let X ⊂ A2 be the zero set of the polynomial x2 − y3. Consider the map of sets
ϕ : A1 → X given by t 7→ (t3, t2). Show that ϕ is a morphism of algebraic varieties. Show that ϕ is
bijective. Show that ϕ is not an isomorphism of algebraic varieties.

Exercise 4.4.10 Give an example of two affine varieties X , Y and a morphism ϕ : X → Y such that the
image of ϕ is not locally closed in Y . Recall that a subset Z of a topological space is called locally closed
if Z is the intersection of an open subset and a closed subset of X .



Lecture 5

The category of algebraic varieties
(continued)

Here are some references for categories, functors, equivalence of categories:

i. the wikipedia pages category, functor, equivalence of categories;

ii. the section “categories and functors” in Lang’s book “Algebra”;

iii. the chapter “Categorieën en functoren” in [Stev].

5.1 Affine varieties

Definition 5.1.1 A variety (Y,OY ) is called affine if there is an n ∈ Z≥0 and Z ⊂ An closed such that
(Y,OY ) ∼= (Z,OZ) where OZ is the sheaf of regular functions on Z.

Suppose ϕ : (X,OX) → (Y,OY ) is a morphism of k-spaces. Then we obtain a map ϕ∗ from OY (Y ) to
OX(X), f 7→ f ◦ ϕ. This ϕ∗ is a morphism of k-algebras, for example, for every P in X ,

(ϕ∗(f + g))P = (f + g)(ϕP ) = f(ϕP ) + g(ϕP ) = (ϕ∗f)P + (ϕ∗g)P = (ϕ∗f + ϕ∗g)P.

This procedure is a contravariant functor from the category k-Spaces to that of k-algebras, sending an
object (X,OX) to OX(X), and a morphism ϕ : X → Y to ϕ∗ : OY (Y ) → OX(X). Indeed, for
ϕ : (X,OX)→ (Y,OY ) and ψ : (Y,OY )→ (Z,OZ) in k-Spaces, we get (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

Proposition 5.1.2 Let X be a variety and Y an affine variety. Then the map

HomvaVar(k)(X,Y )→ Homk−algebras(OY (Y ),OX(X)), ϕ 7→ ϕ∗

is a bijection.

Proof We may and do assume that Y is a closed subset of An, with its sheaf of regular functions, as
Y is isomorphic to such a k-space. We construct an inverse of ϕ 7→ ϕ∗. So let h : OY (Y ) → OX(X)

be a k-algebra morphism. We have k[x1, . . . , xn] → OY (Y ), surjective, and with kernel I := I(Y ),
see Theorem 4.1.7. Let h̃ : k[x1, . . . , xn] → OX(X) be the composition of this morphism with h. Let
ψi := h̃(xi). Let ψ : X → An be the map P 7→ (ψ1(P ), . . . , ψn(P )). Then ψ is a morphism of varieties

33
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by Proposition 4.3.11. We claim that ψ(X) is contained in Y . Indeed, for P ∈ X we have the following
commuting diagram (where evalP is the k-algebra morphism which evaluates a function fromX to k in P ):

k[x1, . . . , xn]
h̃ //

evalP ◦h̃
''

OX(X)

evalP

��

k.

We see that evalP ◦ h̃ is the composition of two k-algebra morphisms, hence a k-algebra morphism. So as
xi 7→ ψi 7→ ψi(P ), f in k[x1, . . . , xn] goes to f(ψ1(P ), . . . , ψn(P )). Hence for f in I(Y ) and P in X
we have:

f(ψ(P )) = f(ψ1(P ), . . . , ψn(P )) = (evalP ◦ h̃)f = evalP (h̃f) = evalP (0) = 0.

We will now check that the two given maps are inverse to each other. We will write ψh for the map
ψ : X → Y obtained in the previous part of this proof for h : OY (Y )→ OX(X).

Let ϕ : X → Y be a morphism in vaVar(k). Then we have, for all P ∈ X:

ψϕ∗(P ) = ((ϕ∗x1)P, . . . , (ϕ∗xn)P ) = (x1(ϕP ), . . . , xn(ϕP )) = ϕ(P ).

This shows that ψϕ∗ = ϕ.
For h in Homk−algebra(OY (Y ),OX(X)) and P ∈ X we have, writing xi for its image in OY (Y ):

(ψ∗hxi)(P ) = xi(ψhP ) = xi((hx1)P, . . . , (hxnP )) = (hxi)P.

Hence (ψh)∗ and h have the same value on each xi, hence are equal (the xi generate OY (Y )). �

Remark 5.1.3 Let (X,OX) be an affine variety, closed in some An. Then OX(X) = A(X) by The-
orem 4.1.7. Hence the k-algebra OX(X) is reduced and finitely generated. On the other hand, by Ex-
ercise 1.6.12 every reduced finitely generated k-algebra occurs as A(Y ) for some closed Y in some An.
Actually, we have a bit more, as the following theorem tells us.

Theorem 5.1.4 We have the following anti-equivalence of categories:

{affine varieties} → {reduced k-algebras of finite type}
(X,OX) 7→ OX(X)

ϕ 7→ ϕ∗

Proof For the reader who knows some category theory: a functor is an equivalence of categories if and
only if it is fully faithful and essentially surjective. By Proposition 5.1.2 we see that the functor is fully
faithful, and the remarks above tell us that it is essentially surjective. �

This theorem basically tells us that “the only categorical difference between the two categories is the
direction of the arrows”.

We will now start proving Theorem 4.3.12.

Theorem 5.1.5 Let f ∈ k[x1, . . . , xn]. Then (D(f),OAn |D(f)) is an affine variety.

Proof Consider the closed subset Z := Z(xn+1f − 1) ⊂ An+1. Then we have the following maps:

D(f)→ Z, (a1, . . . , an) 7→
(
a1, . . . , an,

1

f(a1, . . . , an)

)
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and
Z → D(f), (a1, . . . , an, an+1) 7→ (a1, . . . , an)

These maps are inverses of each other. Both maps are morphisms since they are given by regular functions
(Proposition 4.3.11). So D(f) is an affine variety andOD(f)(D(f)) ∼= k[x1, . . . , xn+1]/(xn+1f − 1). �

We now easily obtain the following corollaries, the first of which is a strengthening of Theorem 4.3.12:

Corollary 5.1.6 Let X = Z(g1, . . . , gr) ⊂ An be a closed subset, and let f be in k[x1, . . . , xn]. Then
(X ∩ D(f),O|X∩D(f)) is an affine variety isomorphic to Z(g1, . . . , gr, xn+1f − 1) ⊂ An+1 with its
regular functions.

Corollary 5.1.7 Every variety has a basis for the topology consisting of affine open subvarieties.

5.2 Products of varieties

This is a special case of Theorem II.3.3 of [Hart]. We will first construct products in the affine case. Let
X ⊂ Am and Y ⊂ An be closed. Let I = I(X) and let f1, . . . , fa in k[x1, . . . , xm] be a system of
generators. Similarly, let J = I(Y ) with system of generators g1, . . . , gb in k[y1, . . . , yn].

Lemma 5.2.1 In this situation, X × Y ⊂ Am+n is closed, and I(X × Y ) is generated by the subset
{f1, . . . , fa, g1, . . . , gb} of k[x1, . . . , xm, y1, . . . , yn].

Proof We have X × Y = Z(f1, . . . , fa, g1, . . . , gb), hence X × Y is closed in Am+n. We must show
that f1, . . . , fa, g1, . . . , gb generate I(X × Y ). Showing this is equivalent to showing that the k-algebra
morphism

ϕ : k[x1, . . . , xm, y1, . . . , yn]/(f1, . . . , fa, g1, . . . , gb) −→ A(X × Y )

is an isomorphism. The morphism ϕ is surjective because the images of xi and yj generate A(X×Y ). Let
us show that ϕ is injective. We have

k[x1, . . . , xm, y1, . . . , yn]/(f1, . . . , fa) = A(X)[y1, . . . , yn].

Let h be in A(X)[y1, . . . , yn] such that its image in A(X × Y ) is zero. Write h =
∑p
i=1 aihi with ai in

A(X) and hi in k[y1, . . . , yn]. By choosing a basis of the sub-k-vector space of A(X) generated by the ai,
and expressing the ai as k-linear combinations of the elements of that basis, we may and do assume that
the ai are k-linearly independent. For each Q in Y we have 0 =

∑p
i=1 aihi(Q) in A(X), implying that

for each Q in Y and each i we have hi(Q) = 0 in k. So, for each i, hi is in I(Y ), and therefore h is in the
ideal of A(X)[y1, . . . , yn] that is generated by g1, . . . , gb. �

Definition 5.2.2 For closed subvarieties X ⊂ Am and Y ⊂ An as above, we let OX×Y be the sheaf of
regular functions on X × Y induced from those on Am+n. This makes X × Y into an affine variety.

Example 5.2.3 Consider Am × An = Am+n. Note that the Zariski topology is larger than the product
topology. For example, the diagonal in A2 is not closed in the product topology on A2 = A1 × A1.

Remark 5.2.4 For those who know tensor products of k-algebras. In the situation of Definition 5.2.2 we
have:

OX×Y (X × Y ) = k[x1, . . . , xm, y1, . . . , yn]/(f1, . . . , fa, g1, . . . , gb) = OX(X)⊗k OY (Y ).

The statement that, for k an algebraically closed field, the tensor product of two reduced k-algebras is
reduced requires a non-trivial proof. In fact, if k is not perfect then such a statement is false.
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Remark 5.2.5 The projections pX : X × Y → X , and pY : X × Y → Y are morphisms. This follows
from Proposition 4.3.11.

Theorem 5.2.6 (Universal property of the product) Let X and Y be affine varieties and Z a variety. Let
f : Z → X and g : Z → Y be morphisms. Then there exists a unique morphism h : Z → X × Y such that
pX ◦ h = f and pY ◦ h = g. This means that we have the following commutative diagram:

X

Z

f
22

g
,,

∃!h // X × Y
pX

;;

pY

##
Y.

Proof For h as a map of sets, there is a unique solution, namely for P ∈ Z we set h(P ) = (f(P ), g(P )).
This map is a morphism by Proposition 4.3.11. �

Corollary 5.2.7 The topology on X×Y and the sheafOX×Y do not depend on the embeddings of X and
Y in affine spaces.

Proof The proof goes as follows. Suppose we have another product with the same universal property,
say (X × Y )′ with projections p′X and p′Y , obtained from other closed embeddings of X and Y in affine
spaces. This means that (X × Y )′ is, as a set, X × Y , but with maybe another topology and another sheaf
of regular functions. We apply the universal property in the following situation:

X

(X × Y )′

p′X

11

p′Y --

∃!h // X × Y
pX

<<

pY

##
Y

and conclude that the identity map of sets of X × Y to itself is a morphism of varieties from (X × Y )′ to
X × Y . By symmetry, the same holds for the identity map of sets from X × Y to (X × Y )′. �

Now let X and Y be arbitrary varieties. We will construct the product variety X × Y as follows. As a set,
just take X×Y . Let T be the set of subsets W that are open in some U ×V where U ⊂ X and V ⊂ Y are
open and affine and where U × V has the Zariski topology as defined above. Then for all W and W ′ in T
the intersection W ∩W ′ is a union of elements of T . Therefore the unions of subsets of T are the open sets
for a topology on X × Y that we call the Zariski topology, and T is a basis for that topology. We define
the notion of regular functions. We only need to do this on the basis T above (since a function is regular iff
it is locally regular). A function W → k (with W as above) is regular if it is regular as a function on W as
open subset of U × V with U open affine in X and V open affine in Y (this does not depend on U and V
as long as U × V contains W ).

Theorem 5.2.8 The projections pX and pY are morphisms and the product X ×Y with its projections has
the universal property (as in the affine case).

Proof Apply Exercise 4.4.5 to see that we only need to prove it locally. The local case follows by Theo-
rem 5.2.6. �

Theorem 5.2.9 The product of projective varieties is a projective variety.

Proof Exercise 6.7.1. �
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5.3 Not all curves can be parametrised

Although not necessary for the development of the theory in this syllabus, we include this section in order
to illustrate an essential point in the theory of algebraic varieties. We defined algebraic varieties as k-spaces
that are locally isomorphic to algebraic subsets of affine spaces. Smooth manifolds can be defined as R-
spaces that are locally isomorphic to (Rn,O) withO(U) the set of smooth functions f : U → R. Complex
manifolds can be defined as C-spaces that are locally isomorphic to (U,O) with U open in Cn for some
n, and O the sheaf of holomorphic complex functions. One could think that in algebraic geometry (over
k = k) defining algebraic manifolds as k-spaces that are locally isomorphic to open pieces of affine spaces
gives all non-singular algebraic varieties. But that is far from true. There is no implicit function theorem
for polynomial or rational functions.

The next theorem shows that no Fermat curve over C of degree at least 3 has a non-empty open sub-
set that is isomorphic to an open subset of A1. Indeed, let n be in Z≥3 and C := Z(xn0 + xn1 − xn2 )

in P2 over C. Let U ⊂ C be a non-empty open subset of P1 and let ϕ : U → C be a morphism. We
claim that ϕ is constant. We may assume that U is affine, and that ϕ(U) is contained in C ∩ D+(x2).
Then ϕ : U → Z(xn + yn − 1) ⊂ A2 is a morphism between affine varieties and corresponds to
ϕ∗ : C[x, y]/(xn + yn − 1) → O(U) ⊂ C(t). Then there are relatively prime a, b and c in C[t]

(gcd(a, b, c) = 1), all three non-zero, such that ϕ∗(x) = a/c and ϕ∗(y) = b/c. By the next theorem,
a, b and c are constant.

Theorem 5.3.1 Let n be in Z≥3. If a, b and c in C[t] satisfy an + bn = cn and are relatively prime, then
a, b and c are of degree zero, that is, are in C.

Proof The method is called “infinite descent,” and is due to Fermat. Let us suppose that there are a, b and
c in C[t], relatively prime and not all constant, satisfying an + bn = cn. Then we may and do assume that
the maximum of the degrees of a, b and c is minimal. We note that a, b and c are pairwise relatively prime,
all non-zero and that at most one of them is constant. We have:

an = cn − bn =
∏

{ζ:ζn=1}

(c− ζb).

The factors c − ζb are pairwise relatively prime, because each pair among them is a basis of the sub-C-
vector space of C[t] generated by b and c (note that this subspace is of dimension two because b and c are
non-zero, relatively prime and not both constant). By the unique factorisation in C[t], we obtain that the
c− ζb are, up to units, nth powers. But as the units in C[t] are the non-zero constants, they are themselves
nth powers. Hence there exist xζ in C[t] such that

c− ζb = xnζ .

As the c − ζb are pairwise relatively prime, so are the xζ . Looking at the leading terms of c and of b, one
sees that at most one of the xζ is constant. Let us now take any triple x, y, and z among the xζ (this is
possible because n is at least 3). As xn, yn and zn are in the sub-C-vector space of C[t] generated by b and
c, there is a non-trivial linear relation between them, say:

αxn + βyn = γzn,

with α, β and γ in C, not all zero. As x, y and z are pairwise relatively prime, α, β and γ are all non-zero.
As each element of C is an nth power, we find, choosing nth roots of α, β and γ, a relation:

xn1 + yn1 = zn1 ,

with x1, y1 and z1 pairwise relatively prime, not all constant, and of the same degree as x, y and z,
respectively. But that contradicts the minimality in terms of the degrees of (a, b, c) that we started with. �
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5.4 Exercises

Exercise 5.4.1 Show that Pn is not affine if n > 0. (Use Theorem 4.2.4.)

Exercise 5.4.2 Let f : X → Y be a morphism of affine varieties and assume that the corresponding mor-
phism of k-algebras f∗ : OY (Y )→ OX(X) is surjective. Show that f is injective, that fX is closed in Y
and that f defines an isomorphism of X to the closed subvariety fX of Y .

Exercise 5.4.3 Let f : X → Y be a morphism of affine varieties and assume that the corresponding mor-
phism of k-algebras f∗ : OY (Y ) → OX(X) is injective. Show that fX is dense in Y . Give an example
with fX 6= Y .

Exercise 5.4.4 Assume char(k) 6= 2. Give an isomorphism between P1 and Z(x2 + y2 − z2) ⊆ P2.
Parametrise all integer solutions to the equation x2 + y2 = z2.

Exercise 5.4.5 Let q and n be positive integers. Show that

f : Pn → Pn, (a0 : · · · : an) 7→ (aq0 : · · · : aqn)

is a morphism of varieties. Assume now that k has characteristic p > 0 and that q = pd for some integer
d > 0. Show that f is bijective but not an isomorphism of varieties. Find all P ∈ Pn such that f(P ) = P .

Exercise 5.4.6 Let n > m. Show that any morphism Pn → Pm is constant.



Lecture 6

Presentations, smooth varieties and
rational functions

6.1 Separated varieties

(Compare with Section II.4 of [Hart].)
The following lemma from topology will only serve to motivate what follows.

Lemma 6.1.1 Let X be a topological space, and ∆ ⊂ X × X be the diagonal, that is, ∆ is the subset
{(x, x) : x ∈ X} ⊂ X × X . We give X × X the product topology. Then X is Hausdorff if and only if
∆ ⊂ X ×X is closed.

Proof Let x, y ∈ X with x 6= y. Then (x, y) 6∈ ∆ has an open neighborhood U with U ∩∆ = ∅ if and
only if there are V ⊂ X , W ⊂ X open with x ∈ V, y ∈ W with V ×W ∩∆ = ∅ (since the sets of the
form V ×W with V,W ⊂ X open form a basis of the product topology). Note that (V ×W ) ∩∆ = ∅ if
and only if V ∩W = ∅. �

We take this description of the Hausdorff property in the case of a variety.

Definition 6.1.2 A variety X is separated if ∆ = {(x, x) : x ∈ X} is closed in X × X (product of
varieties).

Examples 6.1.3 An is separated. Indeed, ∆ ⊂ An × An is the zero set of (x1 − y1, . . . , xn − yn). Let
X ⊂ An be closed. Then X is separated. Indeed, let X = Z(f1, . . . , fr). Then ∆X ⊂ X×X ⊂ An×An

is given by Z(f1, . . . , fr, f
′
1, . . . , f

′
r, x1− y1, . . . , xn− yn) where the fi are the polynomials in the xi, and

the f ′i the corresponding polynomials in the yi. Even all quasi-projective varieties are separated (exercise
6.7.1).

Example 6.1.4 In the exercises, we will see that affine and quasi-projective varieties are separated. Exer-
cise 6.7.3 gives an example of a variety which is not separated. This variety “looks” like:

.

Proposition 6.1.5 Let X be a separated variety, and let U and V ⊂ X be open and affine. Then U ∩ V is
open and affine.

39
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Proof Consider the following diagram:

U ∩ V ∼ //

⊂

(U × V ) ∩∆X ⊂

⊂

X ×X

X
∼ // ∆X ⊂ X ×X.

The map from X → ∆X just sends a point x to (x, x), and one can show that this is an isomorphism
(using the universal property, use the identity morphisms on X and for the inverse use a projection). This
isomorphism restricts to an isomorphism on U ∩ V → (U × V ) ∩∆X . Now (U × V ) ∩∆X is closed in
the affine space U × V , hence it is affine. �

6.2 Glueing varieties

We now want to construct new varieties from varieties that we already have. The process will be similar to
the construction of topological spaces in topology by glueing. Assume that:

i. I a set;

ii. ∀i ∈ I , Xi is a variety;

iii. ∀i, j ∈ I , Xij ⊂ Xi is an open subvariety;

iv. ∀i, j ∈ I , ϕij : Xij →̃ Xji is an isomorphism of varieties.

Assume moreover that these data satisfy the following compatibility conditions:

v. ∀i, j, k ∈ I , ϕij(Xij ∩Xik) = Xji ∩Xjk;

vi. ∀i, j, k ∈ I , ϕjk ◦ ϕij = ϕik on Xij ∩Xik;

vii. ∀i ∈ I , Xii = Xi and ϕii = idXi
.

Remark 6.2.1 The condition in (vii) that ϕii = idXi is in fact automatic, because ϕii ◦ ϕii = ϕii and ϕii
is an isomorphism.

Example 6.2.2 Let X be a variety, and let Xi ⊂ X be open subvarieties for some set I . Now let
Xij = Xi ∩Xj and let ϕij : Xij → Xji be the identity.

We construct a variety from these glueing data. The first step is to define the disjoint union X ′ :=
⊔
i∈I Xi

of theXi as a variety. As a set it is simply the disjoint union, and for every i in I we have the inclusion map
ji : Xi → X ′. We give X ′ the sum topology for the maps (ji)i∈I : a subset U of X ′ is open if and only if
for each i in I the subset j−1

i U of Xi is open. This simply means that all the ji are open immersions, that
is, ji(Xi) is open in X ′ and ji is a homeomorphism from Xi to ji(Xi) with the topology induced from X ′.
For U ⊂ X ′ we define OX′(U) as the set of functions f : U → k such that for all i in I the function j∗i f
from j−1

i U to k is in OXi
(j−1
i U). We leave it to the reader to check that (X ′,OX′) is a variety and that

the ji : Xi → X ′ are open immersions. The pair ((X ′,OX′), (ji)i∈I) has the following universal property:
for any variety Y and any set of morphisms fi : Xi → Y , there exists a unique morphism f : X ′ → Y

such that for all i in I , fi = f ◦ ji. Note that up to now we have only used the set I and the collection of
varieties (Xi)i∈I .

The second step is to define a quotient q : X ′ → X as a set. In order to simplify our notation we view
Xi as a subset of X ′, that is, we omit the inclusion maps ji. We define a relation ∼ on X ′ by:

(x ∼ y) if and only if (there exist i, j ∈ I such that x ∈ Xij , y ∈ Xji, and ϕij(x) = y).
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The reader is asked to check that this is indeed an equivalence relation. This gives us the quotient
q : X ′ → X as a map of sets. The third step is to make X into a topological space. We simply give
it the quotient topology.

The fourth and last step is to define the notion of regular functions on X . For U an open subset of X
we define OX(U) to be the set of functions f : U → k such that q∗f : q−1U → k is in OX′(q−1U). Then
OX is a sheaf of k-algebras on X .

We state without proof:

Proposition 6.2.3 The k-space X is a variety and the ji : Xi → X are open immersions.

Example 6.2.4 We construct P1 by glueing two copies of A1. So let X0 = A1 and X1 = A1. Let
X00 = X0, X11 = X1 and X01 = A1 − {0} ⊂ X0 and X10 = A1 − {0} ⊂ X1. Let ϕ00 and ϕ11 be the
identities, ϕ01 : X01 → X10, t 7→ t−1, and ϕ10 := ϕ−1

01 . Then X = A1 t A1/∼ = P1.

6.3 Presentations of varieties

We want to give presentations of varieties, that is, we want to be able to write down a variety in a finite
amount of data, so that for example it can be put into a computer. We assume that we can write down
elements of k. This is not a trivial assumption: k might be uncountable!

For an affine variety we can just write down equations defining the variety (we can take a finite set
of equations, since k[x1, . . . , xn] is Noetherian). We can also use the equivalence of categories between
affine varieties and finitely generated reduced k-algebras (note that it is better to have generators for the
ideal then just equations).

Here is a more general case. Let X be a variety and assume that X =
⋃
i∈I Xi with I a finite set, Xi

open affine and Xij = Xi ∩Xj affine. (The last condition is implied by the other ones if X is separated
by Proposition 6.1.5). Then X is determined by the following data, called a presentation of X:

i. ∀i ∈ I , the finitely generated reduced k-algebra OX(Xi);

ii. ∀i, j ∈ I , the finitely generated reduced k-algebra OX(Xij);

iii. ∀i, j ∈ I , the restriction morphism OX(Xi)→ OX(Xij) coming from the inclusion Xij → Xi;

iv. ∀i, j ∈ I , the isomorphism (identity map, in fact) of k-algebrasOX(Xij) →̃ OX(Xji) coming from
the identity map Xji → Xij .

Indeed, using the equivalence between affine varieties and finitely generated reduced k-algebras these
determine glueing data for X .

Example 6.3.1 Let X = P2. Write X = X0 ∪X1 ∪X2 with Xi = D(xi) = Ui, the standard open affine
cover. Then, as in Section 2.4,OX(X0) = k[x01, x02],OX(X1) = k[x10, x12] andOX(X2) = k[x20, x21].
We describe for exampleOX(X01) and its maps fromOX(X0) andOX(X1). By Theorem 5.1.5 we know
thatOX(X01) = k[x01, x02, x10, x12]/(x01x10−1, x01x12−x02, x12−x10x02). We can now directly de-
scribe the map from sayOX(X0) toOX(X01), which just sends x01 to x01 and x02 to x02 and analogously
for the other map(s).

6.4 Smooth varieties

One often sees other terminology for the word smooth: regular, non-singular. See also Section I.5 of [Hart],
and Section 16.9 in [Eis].
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To define this notion, we need the concept of partial derivatives of polynomials. For n in N and f
in k[x1, . . . , xn] the partial derivatives ∂f/∂xi in k[x1, . . . , xn] are defined formally, that is, the par-
tial derivatives ∂/∂xi : k[x1, . . . , xn] → k[x1, . . . , xn] are k-linear, satisfy the Leibniz rule and satisfy
∂(xj)/∂xi = 1 if j = i and is zero otherwise. For example, for m ∈ N, ∂(xm1 )/∂x1 = mxm−1

1 (which is
0 if m = 0). This is a purely algebraic operation on k[x1, . . . , xn] and there is no need to take limits of any
kind. But note that in characteristic p we have ∂(xp)/∂x = pxp−1 = 0.

Definition 6.4.1 Let X be a variety and d in N. For P in X , X is smooth of dimension d at P if there is
an open subvariety U of X containing P and an isomorphism ϕ : U →̃ Z(f1, . . . , fn−d) ⊂ An for some n
and f1, . . . , fn−d, such that the rank of the n− d by n matrix over k:(

∂fi
∂xj

(ϕP )

)
i,j

equals n − d. The variety X is smooth of dimension d if it is smooth of dimension d at all its points. The
variety X is smooth at P if it is smooth of dimension d at P for some d. Finally, X is smooth if at every
point P it is smooth of some dimension dP .

Remark 6.4.2 The matrix of partial derivatives of the fj at the point ϕP is called the Jacobian matrix. For
those who have learned some differential topology (manifolds) it should be a familiar object. The Jacobian
matrix at ϕP has rank n − d if and only if the map f = (f1, . . . , fn−d) from An to An−d has surjective
derivative at ϕP , that is, is a submersion at ϕP , if and only if the fibre of ϕP , f−1{fϕP} is smooth at ϕP .

In other words, X is smooth of dimension d at P if locally at P , X can be given as the zero set of n−d
equations in n variables, for some n, such that the gradients of the equations are linearly independent at P .
For linear subspaces of An this linear independence is indeed sufficient and necessary for the dimension to
be d.

In Lecture 7 we will see how the Jacobian matrix arises naturally from the definition of the tangent
space of X at P : the tangent space is the kernel of kn → kn−d, v 7→ Jv, with J the Jacobian matrix. This
will prove that for X a variety, P in X and U any affine open neighborhood of P , and ϕ an isomorphism
of U with a closed subset Y of An, and (f1, . . . , fm) a set of generators of I(Y ), the integer n− rank(J),
where J is the Jacobian matrix at ϕP , is the dimension of the tangent space of X at P and hence does not
depend on the choice of U nor ϕ.

Finally, there are relations with the dimension of varieties as in Section 1.4. We state them in the
following theorem.

Theorem 6.4.3 Let X be a variety.

i. IfX is connected and smooth of dimension d, thenX is irreducible and its dimension as a topological
space is d.

ii. If X is irreducible and of dimension d, and P is a point of X , then X is smooth at P if and only if
the dimension of the tangent space of X at P is d.

iii. The set of P in X such that X is smooth at P is a dense open subset.

iv. The variety X is smooth of dimension d at P ∈ X if and only if the dimension of the tangent space
of X at P is d.

v. If X = Z(f1, . . . , fn−d) such that at each P in X the rank of the matrix of partial derivatives as in
Definition 6.4.1 is n− d, then I(X) = (f1, . . . , fn−d).

Example 6.4.4 The affine space Ad is smooth of dimension d. Indeed, it is given by zero equations as
subset of Ad.
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Example 6.4.5 Consider X := Z(xy) ⊂ A2. We have the following picture of X:

We see that X is the union of the x and y axes, and it appears to have a 1-dimensional tangent space at
all points except at the origin (where it is 2-dimensional). Later we will see more about the connection
between the tangent space and smoothness.

It is easy to check that X is smooth of dimension one at all P 6= (0, 0). Theorem 6.4.3 shows that X
is not smooth of any dimension at (0, 0) because every open neighborhood in X of (0, 0) is connected but
not irreducible.

6.5 Rational functions

Definition 6.5.1 Let X be a variety. Now let

K(X) := {(U, f) : U ⊂ X is open and dense and f ∈ OX(U)}/ ∼

where (U, f) ∼ (V, g) if and only if there is an open and dense W ⊂ U ∩ V such that f = g on W (or
equivalently f = g on U ∩ V ). Elements of K(X) are called rational functions on X .

Remark 6.5.2 The set K(X) is a k-algebra, because addition and multiplication are compatible with ∼:
we just define (U, f) + (V, g) = (U ∩ V, f + g) and (U, f) · (V, g) = (U ∩ V, f · g).

Proposition 6.5.3 Let X be a variety.

i. If U ⊂ X is open and dense then K(U)→ K(X) : (V, f) 7→ (V, f) is an isomorphism;

ii. If X is irreducible and affine then K(X) is the field of fractions of OX(X);

iii. If X is irreducible then K(X) is a field (which we will call the function field of X).

Proof i. We have an obvious inverse, namely K(X)→ K(U), (V, f) 7→ (V ∩ U, f |V ∩U ).
ii. Suppose X ⊂ An is affine and irreducible. Let A = k[x1, . . . , xn] and I(X) = I which is prime

(since X is irreducible). Then OX(X) = A/I . Hence A/I is a domain and it has a field of fractions
Q(OX(X)) = Q(A/I). We now have the map Q(A/I) → K(X) given by g/h 7→ (X ∩ D(h), g/h),
where of course h 6∈ I . Notice that X ∩D(h) is dense (every non-empty open set in an irreducible space
is dense) and g/h is regular on D(h) ⊂ An by definition. This map is a k-algebra morphism, and it is
automatically injective sinceQ(A/I) is a field. We just need to show that it is surjective. That it is surjective
follows from the definition of a regular function on an open part of an affine variety (Definition 4.1.2).

iii. Use i. and ii. �

6.6 Local rings

Let R be a commutative ring (with 1, as always). We call R a local ring if R has precisely one maximal
ideal. Equivalently, if the set of non-units of R is an ideal of R. For example, each field is a local ring. The
following construction produces local rings attached to points on varieties.
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Definition 6.6.1 (Local ring at a point) Let X be a variety, and let P ∈ X a point. Let

OX,P := {(U, f) : U ⊂ X is open and dense, P ∈ U , and f ∈ OX(U)}/ ∼

where (U, f) ∼ (V, g) if and only if there is an open and dense W ⊂ U ∩ V with P ∈W such that f = g

on W (or equivalently f = g on U ∩ V ).

Notice the similarity of this definition with the definition of K(X); in fact we have a natural injective map
OX,P → K(X). The difference is that we only take regular functions defined in a neighborhood of our
fixed point P . In order to show that OX,P is a local ring, consider the (well-defined) subset

mX,P = {(U, f) : U ⊂ X is open and dense, P ∈ U , f ∈ OX(U), and f(P ) = 0}/ ∼

of OX,P . Then mX,P is a maximal ideal, as it is the kernel of the evaluation map OX,P → k that sends
[(U, f)] 7→ f(P ). Moreover, if [(U, f)] /∈ mX,P , then f(P ) 6= 0, and [(U, f)] = [(U \ Z(f), f)] is
invertible in OX,P .

If X is irreducible then K(X) is naturally the fraction field of OX,P . If X is affine and irreducible, let
mP ⊂ OX(X) be the maximal ideal at P , and let

OX(X)mP
:= {g/h : g, h ∈ OX(X), h /∈ mP } ⊂ Q(OX(X))

be the localization of OX(X) at mP . Then under the identification of K(X) with the fraction field of
OX(X) (cf. Proposition 6.5.3(ii)) we have that OX,P ⊂ K(X) is identified with OX(X)mP

. Thus, on
arbitrary irreducible varietiesX , local rings can be computed by first choosing a suitable affine open neigh-
borhood, and then localizing. The reader is encouraged to verify that the rings OX(X)mP

are Noetherian.
It follows that the local rings of varieties are Noetherian.

6.7 Exercises

Exercise 6.7.1 Let Ψ: Pm−1 × Pn−1 → Pmn−1 be the Segre map (of sets):

((a1 : · · · : am), (b1 : · · · : bn)) 7→ (a1b1 : · · · : ambn).

Let X ⊂ Pm−1 and Y ⊂ Pn−1 be closed.

i. Show that Ψ is a morphism of varieties.

ii. Show that Ψ(Pm−1 × Pn−1) is closed in Pmn−1.

iii. Show that Ψ is an isomorphism from the product variety Pm−1 × Pn−1 to the projective variety
Ψ(Pm−1 × Pn−1).

iv. Show that Ψ restricts to an isomorphism from the product variety X × Y to the projective variety
Ψ(X × Y ).

v. Show that the diagonal ∆Pn−1 is closed in Pn−1 × Pn−1.

vi. Show that projective varieties are separated.

Exercise 6.7.2 Let X = Z(xy) ⊂ A2. Show that K(X) is not a field.

Exercise 6.7.3 Let X be the variety obtained from the following gluing data: X1 = X2 = A1 and
X12 = X21 = A1 − {0} with ϕ12 = id. Give the presentation of X corresponding to this glueing data.
Describe the topology on X and the sheaf of regular functions on X . What is the diagonal ∆X ⊂ X ×X?
What is the closure of the diagonal? Conclude that X is not separated.
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Exercise 6.7.4 Consider the open subvarietyX = A2−{0} of A2. Denote the embedding by i : X → A2.
Show that i∗ : OA2(A2) → OX(X) is an isomorphism of k-algebras and deduce that X is not an affine
variety. Give a presentation of X .

Exercise 6.7.5 If X is smooth of dimension m and Y smooth of dimension n show that X × Y is smooth
of dimension m+ n.

Exercise 6.7.6 Show that the product of two separated varieties is separated. Show that a locally closed
subvariety of a separated variety is separated.

Exercise 6.7.7 Let n in Z>1 be an integer and k an algebraically closed field. Let X ⊂ P2
k be the curve

given by xn1 = x2x
n−1
0 − xn2 . Give a presentation of X using an index set of 2 elements. Is X smooth?

(The answer can depend on both n and the characteristic of k.) Give a presentation of the product X ×X .

Exercise 6.7.8 This exercise is a prequel of what will be discussed in Lecture 8.
Let X be a variety and d a positive integer. Assume given for all i ∈ I := {1, . . . , d} an open Xi ⊂ X ,

such that X = ∪i∈IXi. Put Xij := Xi ∩Xj . Consider the diagram of k-vector spaces

OX(X)
δ0−→
∏
i∈I
OX(Xi)

δ1−→
∏
i,j∈I
i<j

OX(Xij)

with
δ0 : f 7→ (f|Xi

)i and δ1 : (fi)i 7→
(
(fi)|Xij

− (fj)|Xij

)
ij
.

Show that δ0 is injective and that its image is the kernel of δ1.
Now let X ⊂ P2

k be the curve given by xn1 = x2x
n−1
0 − xn2 , let d = 2 and let X1 and X2 be the two

open affines that you used in the previous exercise.
Show that OX(X) = k.
Show that the dimension of the cokernel of δ1 is (n − 1)(n − 2)/2. (Hint: work with bases for the

infinite-dimensional vector spaces OX(X1), OX(X2) and OX(X12) that are as simple as possible.)
(Note that the same argument works for any curve of degree n, as long as it does not contain the point

(0 : 1 : 0).)

Exercise 6.7.9 Let X ⊂ Pnk be a smooth hypersurface of degree d > 1. Let m be an integer such that
2m ≥ n. Prove that X contains no linear varieties of dimension m. Recall that a linear variety is a closed
subvariety of Pnk whose homogeneous ideal is generated by linear forms.
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Lecture 7

Tangent spaces and 1-forms

7.1 Tangent spaces of embedded affine varieties

See also Exercise I.5.10 of [Hart].

Definition 7.1.1 Let X ⊂ An be an affine variety and let I ⊂ A := k[x1, . . . , xn] be its ideal. Let
(f1, . . . , fr) be a system of generators for I . For a ∈ X we define the tangent space of X at a as:

TX(a) = {v ∈ kn : ∀f ∈ I, λ 7→ f(a+ λv) has order ≥ 2 at 0}

= {v ∈ kn : ∀f ∈ I, ∂f
∂v

(a) :=

(
d

dλ
f(a+ λv)

)
(0) = 0}

= {v ∈ kn : ∀i,
∑
j

∂fi
∂xj

(a) · vj = 0}

= ker




∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)
...

. . .
...

∂fr
∂x1

(a) · · · ∂fr
∂xn

(a)

 : kn → kr


Example 7.1.2 Assume that k 6⊃ F2. LetX = Z(x2 +y2−z2) ⊂ A3; note that x2 +y2−z2 is irreducible,
so I = (x2 + y2− z2). It is a good idea to make a drawing of X: it is a cone. Let P = (a, b, c) ∈ X . Then
we obtain:

TZ(P ) = {(u, v, w) ∈ k3 : 2au+ 2bv − 2cw = 0}.

So dimTX(P ) = 2 if P 6= 0, and dimTX(0) = 3.

7.2 Intrinsic definition of the tangent space

Notation as in Definition 7.1.1. We let m = ma ⊂ A be the maximal ideal of a = (a1, . . . , an) ∈ X ⊂ An,
so m = (x1 − a1, . . . , xn − an). Let B := A/I = OX(X), let m = (x1 − a1, . . . , xn − an) be the
maximal ideal in B of a. This gives us the following exact sequences:

0→ I → A→ B → 0, and 0→ I → m→ m→ 0.

The image of m2 in B equals m2, so the inverse image in m of m2 is I + m2. This gives us the exact
sequences:

0→ I + m2 → m→ m/m2 → 0 and 0→ (I + m2)/m2 → m/m2 → m/m2 → 0.

47
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Now consider the following map:

〈·, ·〉 : m× TAn(a)→ k, (f, v) 7→
(
∂f

∂v

)
(a).

Lemma 7.2.1 The map 〈·, ·〉 is bilinear and induces a perfect pairing 〈·, ·〉 : m/m2 × TAn(a) → k of
k-vector spaces (“perfect” means that each side is identified with the dual of the other side).

Proof The map (f, v) 7→ 〈f, v〉 is obviously linear in f . It is linear in v as 〈f, v〉 =
∑
j(∂f/∂xj)(a) · vj .

Hence it is bilinear. Now 〈·, ·〉 gives a map m → TAn(a)∨, f 7→ 〈f, ·〉. The kernel of this map is
{f ∈ m : ∀i, (∂f/∂xi)(a) = 0}. By translation, we may assume that a = 0. Let f be in the kernel. We
write f =

∑
i fi, with fi homogeneous of degree i. Since f(0) = 0, the constant term f0 is zero and since

all the partial derivatives at 0 vanish, f1 is zero as well. This shows that f ∈ (x1, . . . , xn)2 = m2. So we
have an injection m/m2 → TAn(0)∨. Note that TAn(0) = kn and that (x1, . . . , xn) is a k-basis of m/m2,
so since the dimensions agree, our map is surjective and hence we have an isomorphism. �

Proposition 7.2.2 The pairing 〈·, ·〉 induces a perfect pairing m/m2 × TX(a)→ k.

Proof Remember that we have the following exact sequence:

0→ (I + m2)/m2 → m/m2 → m/m2 → 0

By Lemma 7.2.1, we have the perfect pairing 〈·, ·〉 : m/m2 × TAn(a)→ k. By definition:

TX(a) = {v ∈ kn : 〈f, v〉 = 0 for all f ∈ (I + m2)/(m2) ⊂ m/m2.}

So we get a perfect pairing between TX(a) and the quotient (m/m2)/((I+m2)/m2), which is m/m2 by the
short exact sequence above. Here we have used that if 〈·, ·〉 is a perfect pairing between finite dimensional
k-vector spaces V and W , and W ′ is a subspace of W , then we get an induced perfect pairing between
V/V ′ and W ′, with V ′ the orthogonal complement of W ′. �

Definition 7.2.3 For X a variety, x ∈ X , we define TX(x) = (m/m2)∨, where U ⊂ X is an affine open
containing x and m ⊂ OX(U) is the maximal ideal of x.

This is independent of the chosen affine open U . Actually, let OX,x be the local ring of X at x, and
mX,x ⊂ OX,x its maximal ideal. Then there is a natural isomorphism TX(x) → (mX,x/m

2
X,x)∨ of

k-vector spaces. The reader is encouraged to verify this, using the natural maps OX(U) → OX,x for
U ⊂ X affine open containing x, and the fact that the affine open neighborhoods of x form a basis of open
neighborhoods of x.

7.3 Derivations and differentials

See also Section II.8 of [Hart] or [Serre]. In this section we introduce differential forms. We will use the
pairing 〈·, ·〉 of the previous section, although we will change the order of its arguments.

Let X be an affine variety and let A := OX(X). For x ∈ X and v ∈ TX(x) we have a map (notice
that f − f(x) ∈ m): ∂v : A → k, f 7→ ∂vf := 〈v, f − f(x)〉. These maps ∂v are k-linear and satisfy the
Leibniz rule: ∂v(f · g) = f(x)∂vg + g(x)∂vf . Indeed:

〈v, fg − f(x)g(x)〉 = 〈v, (f − f(x))g + f(x)(g − g(x))〉

= 〈v, (f − f(x))(g − g(x)) + (f − f(x))g(x) + f(x)(g − g(x))〉

= 〈v, g(x)(f − f(x))〉+ 〈v, f(x)(g − g(x))〉
= f(x)∂vg + g(x)∂vf.
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In order to define the algebraic analogue of C∞-vector fields on manifolds we introduce the concept of
k-derivations of A-modules. Recall that A = OX(X).

Definition 7.3.1 Let M be an A-module. A k-derivation D : A→M is a k-linear map D : A→M such
that for all f, g ∈ A: D(fg) = fD(g) + gD(f). We denote the set of those derivations by Derk(A,M).

Remark 7.3.2 If D is a derivation then D(1) = D(1 · 1) = 1 ·D(1) + 1 ·D(1). Hence D(1) = 0 and by
k-linearity we see for c ∈ k that D(c) = 0.

Example 7.3.3 Let x ∈ X , A → k = A/mx : f 7→ f(x). This makes k into an A-module and
Derk(A,A/m) = TX(x) (Exercise 7.6.4).

Proposition 7.3.4 There is a universal pair (Ω1
A, d): Ω1

A is an A-module, d : A → Ω1
A is a k-derivation,

such that for any A-module M and any derivation D : A → M there exists a unique A-linear map ϕ
making the following diagram commute:

A
d //

D

��

Ω1
A

ϕ
~~

M

Proof Let N be the free A-module with basis the symbols da for all a in A: N =
⊕

a∈AAda. Let
N ′ ⊂ N be the submodule generated by the relations d(λa) = λ · d(a), d(a + b) = d(a) + d(b) and
d(ab) = a · db + b · da for all a, b ∈ A, λ ∈ k. We claim that we can take Ω1

A to be N/N ′ with d which
sends a to da ∈ N/N ′. Indeed one easily checks that (N/N ′, d) satisfies the universal property. �

Example 7.3.5 For A = k[x1, . . . , xn]/(f1, . . . , fr) one has:

Ω1
A =

(
n⊕
i=1

A · dxi

)
/ (A · df1 + · · ·+A · dfr)

where dfi =
∑
j(∂fi/∂xj)dxj . Hence Ω1

A is presented as follows:

Ar
J·−→ An → Ω1

A → 0, where J =

 ∂f1/∂x1 · · · ∂fr/∂x1

...
. . .

...
∂f1/∂xn · · · ∂fr/∂xn

 .

A proof is given in Exercise 7.6.6.

Remark 7.3.6 Let ϕ : A → B be a morphism of k-algebras and M a B-module. Then M becomes an
A-module via ϕ: a·m := ϕ(a)m. This gives a map Derk(B,M) → Derk(A,M), D 7→ D ◦ ϕ. Indeed,
we check the Leibniz rule (where the last part follows from the A module structure on M ):

(D ◦ ϕ)(fg) = D(ϕ(fg))

= D(ϕ(f)ϕ(g))

= ϕ(f)D(ϕ(g)) + ϕ(g)D(ϕ(f))

= fD(ϕ(g)) + gD(ϕ(f)).
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In particular we have a unique A-linear map Ω1(ϕ) making the following diagram commute:

A
ϕ
//

dA
��

dB◦ϕ

!!

B

dB
��

Ω1
A

Ω1(ϕ)

// Ω1
B

For morphisms of k-algebras ϕ1 : A1 → A2 and ϕ2 : A2 → A3 one has Ω1(ϕ2 ◦ ϕ1) = Ω1(ϕ2) ◦Ω1(ϕ1).

7.4 Differential 1-forms on varieties

Let X be a variety, obtained from glueing data:(
I, (Xi)i∈I ,

(
ϕi,j : Xi,j

∼→ Xj,i

)
i,j∈I

)
in which allXi andXi,j are affine (this is no restriction if the varietyX is separated, cf. Proposition 6.1.5).
Then we define the OX(X)-module of 1-forms on X:

Ω1
X(X) = {(ωi ∈ Ω1

OXi
(Xi)

)i∈I : ∀i, j, Ω1(ϕ∗ij) : ωj |Xj,i
7→ ωi|Xi,j

}.

More precisely, the compatibility condition between the ωi is that for all i and j in I , the images of ωi
and ωj in Ω1

O(Xi,j) and Ω1
O(Xj,i)

obtained by applying Ω1 to the restriction maps O(Xi) → O(Xi,j) and
O(Xj)→ O(Xj,i) correspond to each other via the isomorphism Ω1(ϕ∗i.j) from Ω1

O(Xj,i)
to Ω1

O(Xi,j).
It is a fact that Ω1

X(X) does not depend on the choice of presentation of X .

Remark 7.4.1 For simplicity of notation we will sometimes omit the subscript “X” in OX(U) and in
Ω1
X(U) = Ω1

U (U).

Example 7.4.2 Let X be an affine variety. Then we have Ω1
X(X) = Ω1

OX(X). For x ∈ X , Example 7.3.3
gives:

TX(x) = Derk(OX(X),OX(X)/mx) = HomOX(X)(Ω
1
X(X), k) =

(
Ω1
X(X)/mΩ1

X(X)
)∨
.

Example 7.4.3 For X = An: Ω1(An) = {
∑n
i=1 fidxi : fi ∈ k[x1, . . . , xn]}; it is a free k[x1, . . . , xn]-

module with basis (dx1, . . . , dxn).

Example 7.4.4 Let n ∈ Z≥2, X = Z(−yn + xn−1 − 1) ⊂ A2 and suppose that n(n − 1) ∈ k×. Let
A := OX(X) = k[x, y]/(f) where f = −yn + xn−1 − 1. Then:

Ω1
A = (A · dx⊕A · dy) /

(
−nyn−1dy + (n− 1)xn−2dx

)
On D(y) ⊂ X we have: dy = n−1

n
xn−2

yn−1 dx, so Ω1(D(y)) is free over OX(D(y)) with basis dx. On

D(x) ⊂ X: dx = n
n−1

yn−1

xn−2 dy. Hence Ω1(D(x)) = OX(D(x))dy (so it is free again). Note that
X = D(x) ∪D(y). We say that Ω1

X is locally free of rank 1.

Remark 7.4.5 For X a variety, and for varying U ⊂ X open, U 7→ Ω1(U) is a sheaf, denoted Ω1
X . It is

a “coherent sheaf of OX -modules”. For X smooth of dimension d, Ω1
X is locally free of rank d. If X is

moreover irreducible, then the equivalence classes of (U, ω) with U ⊂ X non-empty open and ω ∈ Ω1(U)

form the d-dimensional K(X)-vector space of “rational 1-forms”, Ω1
K(X).
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7.5 Functions and 1-forms on smooth irreducible curves, orders and
residues

Definition 7.5.1 Let k be an algebraically closed field. A curve over k is a quasi-projective algebraic
variety over k all of whose irreducible components are of dimension one.

Definition 7.5.2 Let X be a smooth irreducible curve, and x ∈ X . Let U 3 x be an affine open, and let
mx ⊂ OX(U) be the maximal ideal at x. The smoothness assumption implies that dim(mx/m

2
x) = 1.

i. For x ∈ X and g 6= 0 in K(X) we define vx(g) ∈ Z, the order of g at x, as follows. Let U 3 x
be an affine open and t ∈ O(U) such that t ∈ mx, t 6∈ m2

x. Such a t is called a parameter or uniformizer
at x. Then there is a unique n in Z and an h in K(X) that is regular at x and with h(x) 6= 0 such that
g = tnh. Then we define vx(g) := n, it is independent of the choices made (see the remarks at the end of
this section).

ii. For 0 6= ω ∈ Ω1
K(X) and x ∈ X we define vx(ω) ∈ Z as follows. Let t be a uniformizer at x. Then

there is a unique g ∈ K(X) such that ω = g·dt in Ω1
K(X). We put vx(ω) = vx(g); this is independent of

the choice of t.
iii. For ω ∈ Ω1

K(X) and x ∈ X we define resx(ω), the residue of ω at x, as follows. Write
ω = g·dt with t a parameter at x. If vx(g) ≥ 0, then resx(ω) := 0. If vx(g) = −n with n ≥ 1,
write g = a−nt

−n + · · · + a−1t
−1 + h with h ∈ K(X) regular at x. Then resx(ω) := a−1. This is

independent of the choice of t. See III.7.14 in [Hart] for more details.

Proposition 7.5.3 Let X be a smooth affine curve, x ∈ X , and t ∈ O(X) such that t ∈ mx, t 6∈ m2
x,

and, for all y in X − {x}, t(y) 6= 0. Then mx = (t). For all i in Z≥0 we have dimk(mix/m
i+1
x ) = 1 and

dimk(O(X)/mix) = i.

Proof As x is the only zero of t in X , we have
√

(t) = mx. Write mx = (f1, . . . , fr) (use that
O(X) is noetherian). We take n ∈ Z≥1 such that for all i we have fni ∈ (t). Hence mnrx ⊂ (t).
Now for each i in Z≥1, ti generates mix/m

i+1
x , because the smoothness assumption on X implies that

dimk(mx/m
2
x) = 1 and therefore t generates it. So for each i we have ai ∈ k and gi ∈ m2

x such that
fi = ait+ gi. Then fifj − aiajt2 is in m3

x, etc. Let now f be in mx. Then there exist b1, . . . , bnr−1 such
that f − (b1t+ · · ·+ bnr−1t

nr−1) is in mnrx , hence is in (t). We have proved that mx = (t).
Let us now prove that for all i in Z≥0 we have dimk(mix/m

i+1
x ) = 1. As ti generates mix/m

i+1
x ,

we have dimk(mix/m
i+1
x ) ≤ 1. Suppose that for some i in Z≥0 we have mix = mi+1

x . Then we have
(ti) = (ti+1), hence there is a g in O(X) such that ti = ti+1g. But then ti(1 − gt) = 0 in O(X). It
follows that ti is zero on a neighborhood of x. But then X = {x}, and this contradicts the fact that every
irreducible component of X is of dimension one.

The last claim follows from what we have just proved: use that O(X) ⊃ mx ⊃ · · · ⊃ mix. �

Remark 7.5.4 To compute the ai for i in {−n, . . . ,−1}, write tng = a−n + a−n+1t+ · · ·+ a−1t
n−1 in

O(U)/mnxO(U), using that dimk(mix/m
i+1
x ) = 1, with basis ti.

Remark 7.5.5 (Connection to discrete valuation rings) Let R be a Noetherian local domain, with maxi-
mal ideal m. Write l for the field R/m. You can write down a natural l-module structure on m/m2. We call
R a discrete valuation ring if dimlm/m

2 = 1. Using the theory of discrete valuation rings (as learnt in a
commutative algebra course), the above constructions can be motivated/elucidated as follows. Let X be a
smooth irreducible curve, and let x ∈ X be a point. Let mX,x ⊂ OX,x be the maximal ideal of the local
ring OX,x of X at x. Note that OX,x/mX,x = k. We have that dimk(mX,x/m

2
X,x) = 1 and that OX,x is a

Noetherian local domain. It follows thatOX,x is a discrete valuation ring. By general theory, every discrete
valuation ring has a unique surjective valuation to Z≥0 ∪ {∞}. What is this valuation? Note that K(X)
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is the field of fractions of OX,x, so we get an injection OX,x → K(X). Given an element g ∈ OX,x we
define its valuation to be∞ if g = 0 and to be vx(g) otherwise (with vx as defined in (i) of definition 7.5.2
above). The existence of a uniformiser t ensures that vx is surjective.

Note that if R is a discrete valuation ring with maximal ideal m and R/m = l then m is a principal
ideal, and for all i in Z≥0 we have diml(m

i/mi+1) = 1 and diml(R/m
i) = i. If v : R → Z≥0 ∪ {∞} is

the unique surjective valuation, then v extends naturally to a map Frac(R) → Z ∪ {∞}, and R is exactly
the set of elements with non-negative valuation.

7.6 Exercises

Exercise 7.6.1 Give a basis of the tangent space at (0 : 0 : 1) along the curve Z ⊂ P2 given by the
polynomial y2z − x3.

Exercise 7.6.2 Let k be a field,A a k-algebra andM anA-module. Show that Derk(A,M) is anA-module
for the addition and multiplication defined by (D1 +D2)g = D1g +D2g, (fD)g = f(Dg).

Exercise 7.6.3 Show that if ϕ : A→ B is a morphism of k-algebras and D ∈ Derk(B,M), then D ◦ ϕ is
in Derk(A,M) (what is the A-module structure on M?).

Exercise 7.6.4 Let k be a field, A a k-algebra and m ⊂ A a maximal ideal such that the morphism
k → A→ A/m = k is an isomorphism.

i. Let D ∈ Derk(A,A/m). Show that D is zero on m2, and hence factors through a derivation
D : A/m2 → k.

ii. Show that the map Derk(A,A/m)→ (m/m2)∨, D 7→ D|m/m2 is an isomorphism of A-modules.

Exercise 7.6.5 Let k be a field, A = k[x1, . . . , xn]. Show that (dx1, . . . , dxn) is an A-basis of Ω1
A, and

give a formula for df , where f ∈ A.

Exercise 7.6.6 Let k and A be as in the previous exercise. Let I = (f1, . . . , fr) be an ideal in A, and let
q : A→ B := A/I be the quotient map.

i. Show that, for any B-module M , q∗ : Derk(B,M) → Derk(A,M) is injective and has image the
set of those D such that for all i one has D(fi) = 0.

ii. Use the universal property of Ω1
A to show that d : B → Ω1

A/(A·df1 + · · ·A·dfr) is a universal
derivation.

Exercise 7.6.7 Consider the rational 1-form x−1dx on P1. Compute its order and residue at all P ∈ P1.

Exercise 7.6.8 Prove that for all rational 1-forms ω on P1 we have
∑
P resP (ω) = 0, where the sum is

over all P ∈ P1. Hint: write ω = f ·dx, with f ∈ k(x), and use a suitable k-basis of k(x).

Exercise 7.6.9 Let n ∈ Z≥2, X = Z(−xn1 + xn−1
0 x2 − xn2 ) ⊂ P2. Assume that n(n − 1) is in k×. We

have already seen thatX is smooth. You may now use without proof thatX is irreducible (in fact, Bezout’s
theorem implies that reducible plane projective curves are singular). Let U := X ∩ A2. Then U = Z(f)

with f = −yn + xn−1 − 1.

i. Show that in Ω1(U) we have (n− 1)xn−2dx = nyn−1dy.
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ii. We define a rational 1-form ω0 by:

ω0 =
dx

nyn−1
=

dy

(n− 1)xn−2
.

Show that ω0 has no poles on U . Hint: U = (U ∩D(x)) ∪ (U ∩D(y)).

iii. Show that ω0 has no zeros on U . Hint: both dx and dy are multiples of ω0, and, for each P ∈ U , at
least one of dx and dy is a generator of Ω1(U)/mPΩ1(U). Hence (you do not need to prove this)
Ω1(U) is a free O(U)-module, with basis ω0.

iv. Let P = X ∩ Z(x2) be the point at infinity of X . Compute vP (ω0).

v. For n ∈ {2, 3, 4}, give a basis (and hence the dimension) of Ω1(X).

Exercise 7.6.10 Let Q = Z(z − xy) in A3 and let a ∈ Q. Compute TQ(a). Show that (a + TQ(a)) ∩Q
is a union of two lines, and that all lines on Q are obtained in this way.

Exercise 7.6.11 Let X be the union of the three coordinate axes in A3, and let Y := Z(xy(x− y)) in A2.
Are X and Y isomorphic?
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Lecture 8

The theorem of Riemann-Roch

8.1 Exact sequences

In the next sections, we use the concept of complexes and exact sequences of k-vector spaces and some
properties of these.

Definition 8.1.1 A sequence of k-vector spaces is a diagram of k-vector spaces

· · · α0 // V1
α1 // V2

α2 // V3
α3 // · · ·

with k-vector spaces Vi and linear maps αi indexed by i in Z. Such a sequence is called a complex if for
all i in Z, αi+1 ◦ αi = 0, and most often the maps αi are then denoted di. A complex is called exact or an
exact sequence if for all i in Z, ker(αi+1) = im(αi). When writing sequences, terms that are omitted are
zero. A short exact sequence is an exact sequence of the following form:

0
α0 // V1

α1 // V2
α2 // V3

α3 // 0.

In other words, this means that α1 is injective, imα1 = kerα2 and α2 is surjective. In still other words:
V3 is the quotient of V2 by V1.

Lemma 8.1.2 Let
0

α0 // V1
α1 // V2

α2 // · · ·
αn−1

// Vn
αn // 0

be an exact sequence of finite dimensional vector spaces. Then

n∑
i=1

(−1)i dim(Vi) = 0.

Proof For all i define V ′i = kerαi = imαi−1 and choose a subspace V ′′i ⊂ Vi such that Vi = V ′i ⊕ V ′′i .
Then αi restricts to an isomorphism V ′′i → V ′i+1 hence dimV ′′i = dimV ′i+1 for all i. Together with the
identity dimVi = dimV ′i + dimV ′′i for all i this proves the lemma. �

8.2 Divisors on curves

We recall that “curve” is as defined in Definition 7.5.1. We do not assume curves to be smooth. The reason
is that in Lecture 11 we need the generality of this section for treating intersection of divisors on surfaces.
We will add smoothness conditions at the necessary places.

55
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Let X be an irreducible curve. Let P ∈ X and f ∈ K(X)×. We want to define an integer vP (f), the
order of vanishing of f at P , extending Definition 7.5.2 for smooth curves. Intuitively it should satisfy:

vP (f) = 0 if f(P ) 6= 0,∞,

< 0 if f has a pole at P ,

> 0 if f has a zero at P .

We will now give an example, which one can justify with the definition given later (see Exercise 8.5.1).

Example 8.2.1 LetX = P1. By Proposition 6.5.3,K(P1) = K(A1) = Q(k[x]) = k(x). Let f ∈ K(P1)×,
so f = g/h with g, h ∈ k[x] both non-zero. Let P be in A1. Then we can write g = (x − P )lg′ and
h = (x − P )mh′ for g′, h′ ∈ k[x] with g′(P ), h′(P ) 6= 0 and we set vP (f) = l − m. For the point
P = (1 : 0) =∞, we set v∞(f) = deg(h)− deg(g).

Definition 8.2.2 Let X be an irreducible curve, P ∈ X and f ∈ K(X)×. If there exists an affine open
U ⊂ X with P ∈ U such that f |U ∈ OX(U) and f has no zeros on U − {P}, then we define:

vP (f) = dimkOX(U)/(f |U ).

Proposition 8.2.3 In the situation of Definition 8.2.2, and with g satisfying the same conditions as f , we
have:

i. vP (f) <∞;

ii. vP (f) does not depend on U ;

iii. vP (fg) = vP (f) + vP (g).

Proof i: P corresponds to a maximal ideal m ⊂ OX(U). We have
√

(f) ⊃ m. Write m = (f1, . . . , ft)

with fi ∈ OX(U) (this can be done since OX(U) is Noetherian, i.e. every ideal of OX(U) is finitely
generated). Since m is maximal, it follows that either f is a unit or m =

√
(f). It follows that there exists

ai ∈ Z≥1 such that faii ∈ (f). Now let a =
∑t
i=1 ai, then by the pigeon hole principle ma ⊂ (f). And

this gives:

dimOX(U)/(f) ≤ dimOX(U)/ma = dimOX(U)/m + dimm/m2 + · · ·+ dimma−1/ma.

Notice thatOX(U)/m = k. It is enough to show that dimmb/mb+1 <∞ (for any b ∈ Z≥1). First observe
that mb/mb+1 is a finitely generated OX(U)-module. Now m ⊂ OX(U) annihilates mb/mb+1 (indeed, if
x ∈ mb and y ∈ m, then xy ∈ mb+1). So mb/mb+1 is even a finitely generated OX(U)/m-module, hence
a finite dimensional k-vector space. So dimkOX(U)/(f) <∞.

ii: Let U and V be two such opens; one easily reduces to the case where V ⊂ U . The natural map
OX(U)/(f |U ) → OX(V )/(f |V ) is injective; we need to show that it is surjective. Note that V is the
union of distinguished opens D(gi) ⊂ U for suitable gi ∈ OX(U); it suffices to consider the case that g is
one of the gi and V = D(g). ThenOX(V ) = OX(U)[1/g] and the task is to show that for each r ∈ N and
each h ∈ OX(U) there exist l,m ∈ OX(U) such that h/gr − lf |U = m. Equivalently, we need to write
h = lf |U +mgr for suitable l,m ∈ OX(U). This would follow if (f |U , gr) were equal to the unit ideal in
OX(U). But this is true: the assumptions guarantee that Z(f |U , gr) is empty.

iii: Consider the following short exact sequence:

0 // OX(U)/(g)
f ·
// OX(U)/(fg) // OX(U)/(f) // 0,

where f · is multiplication by f . Lemma 8.1.2 givesOX(U)/(fg) = dimOX(U)/(f) + dimOX(U)/(g),
that is, vP (fg) = vP (f) + vP (g). �
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Definition 8.2.4 Let X be an irreducible curve, P ∈ X and f ∈ K(X)×. Then choose U affine open
containing P , and g, h ∈ OX(U) such that f = g/h (Proposition 6.5.3) such that g and h have no zeros
on U − {P} and define vP (f) = vP (g)− vP (h). We call vP (f) the order of vanishing or valuation of f
at P .

Remark 8.2.5 Definition 8.2.4 is compatible with Definition 7.5.2. But note once more that in the present
section we are not (yet) assuming that X is smooth. If X is not smooth at P , then dimk m/m

2 > 1 and
OX,P is not a discrete valuation ring.

Definition 8.2.6 Let X be a curve. A divisor on X is a Z-valued function D on X such that for at most
finitely many P in X , D(P ) 6= 0. In other words, it is a function D : X → Z with finite support. The
Z-module of divisors is Z(X), the free Z-module with basis X . Often a divisor D is written as a formal
finite sum D =

∑
P∈X D(P )·P . The degree of a divisor D is defined as deg(D) =

∑
P D(P ).

Example 8.2.7 A typical element of Z(X) looks something like 2P + 3Q−R for some P,Q,R ∈ X . The
degree of this divisor is 4.

Lemma 8.2.8 Let X be an irreducible curve, and f in K(X)×. Then the set of P in X with vP (f) 6= 0 is
finite.

Proof Recall that our standing assumption is that curves are quasi-projective. Hence X can be covered
by finitely many nonempty open affines Ui, such that for each of them, f |Ui

= gi/hi with gi and hi in
OX(Ui), both non-zero. For each i, Ui is irreducible and affine and of dimension one, hence Z(gi) and
Z(hi) are zero-dimensional affine varieties, hence finite. �

Definition 8.2.9 Let f ∈ K(X)×. Then we define the divisor of f as div(f) =
∑
P∈X vP (f)P .

Theorem 8.2.10 Let X be an irreducible curve. The map K(X)× → Z(X), f 7→ div(f), is a group
morphism.

Proof This is a direct consequence of Proposition 8.2.3 iii. �

Definition 8.2.11 Let X be an irreducible curve, and D and D′ divisors on X . Then we say that D ≤ D′

if for all P ∈ X , D(P ) ≤ D′(P ). This relation “≤” is a partial ordering.

Example 8.2.12 Let P , Q and R be disctinct points on X . Then P − 3Q + R ≤ 2P − 2Q + R. Note
however that P +Q 6≤ 2Q and that 2Q 6≤ P +Q, so the partial ordering is not a total ordering.

Definition 8.2.13 For X an irreducible curve, D a divisor on X , and U ⊂ X open and non-empty, we
define

L(U,OX(D)) := {f ∈ K(X)× : div(f |U ) +D|U ≥ 0} ∪ {0}.

We will often abbreviate L(U,OX(D)) to L(U,D) and L(U,OX(0)) to L(U,OX).

Example 8.2.14 Let X be an irreducible curve, U ⊂ X open and non-empty, and P in X . If P is not in
U then L(U,P ) is the set of rational functions f with no pole in U . If P is in U , then L(U,P ) is the set of
rational functions f with a pole of order at most 1 at P and no other poles in U .

We will state the following result without proof.

Proposition 8.2.15 Let X be an irreducible curve.
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i. If X is projective then L(X,D) is a k-vector space of finite dimension.

ii. If U ⊂ X is open, non-empty and smooth, then L(U,OX) = OX(U).

The reader with some background in commutative algebra (especially, localization) may want to prove item
(ii) in this result as follows. Let P ∈ U . As X is smooth at P we have that OX,P is a discrete valuation
ring and in particular we have OX,P = {f ∈ K(X)× : vP (f) ≥ 0}. It follows that L(U,OX) is equal to
the intersection of all OX,P for P running through U . Now a general result in commutative algebra (try to
prove this yourself!) states that if R is a domain, then R = ∩mRm, where the intersection is taken inside
the fraction field of R and runs over all maximal ideals m of R. Here Rm denotes the localization of R at
m. We obtain (ii) by applying this result to the domain OX(U), and by noting that OX(U)mP

is identified
with OX,P for all P ∈ U .

Example 8.2.16 The smoothness assumption in (ii) is necessary. Let A be the sub-k-algebra k[t2, t3]

of k[t]. It is finitely generated and it is an integral domain. LetX be the affine variety such thatOX(X) = A;
it is irreducible. Then L(X,OX) = k[t], which is strictly larger than A. Note that X is not smooth: it
is the curve Z(y2 − x3) in A2 (the morphism k[x, y] → A, x 7→ t2, y 7→ t3 is surjective and has kernel
(y2 − x3)).

Corollary 8.2.17 Let X be a smooth irreducible projective curve. Then OX(X) = L(X, 0) = k.

Proof Proposition 8.2.15 gives that OX(X) = L(X,OX), and that this is a finite dimensional k-vector
space. It is a sub-k-algebra of K(X), hence an integral domain. Hence it is a field (indeed, for f nonzero
in O(X), multiplication by f on O(X) is injective, hence surjective, hence there is a g in O(X) such that
fg = 1. So, k → O(X) is a finite field extension. As k is algebraically closed, k = O(X). �

8.3 H0 and H1

Let X be an irreducible curve. Then there exist nonempty open and affine subsets U1 and U2 of X such
that X = U1 ∪ U2 (see Exercise 8.5.4).

Definition 8.3.1 Let H0(X,OX) be the kernel of the map

δ : H0(U1,OX)⊕H0(U2,OX)→ H0(U1 ∩ U2,OX) ,

given by (f1, f2) 7→ f1|U1∩U2
− f2|U1∩U2

. In the same way, we define H0(X,D) to be the kernel of the
map:

(8.3.2) δ : H0(U1, D)⊕H0(U2, D)→ H0(U1 ∩ U2, D), (f1, f2) 7→ f1|U1∩U2
− f2|U1∩U2

.

Proposition 8.3.3 We have H0(X,OX) = OX(X).

Proof See Exercise 6.7.8. �

Note that if X is smooth, irreducible and projective, we get H0(X,OX) = OX(X) = L(X, 0) = k.
In fact, more generally we have that if X is smooth, irreducible and projective and D is a divisor on X ,
that H0(X,D) = L(X,D). From Proposition 8.2.15 we obtain that H0(X,D) is finite dimensional as a
k-vector space. For a different approach we refer to Exercise 8.5.7.

Definition 8.3.4 Assume again that X is an irreducible curve. Let δ be as in (8.3.2). We define

H1(X,OX(D)) = H1(X,D) := coker δ .
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Facts 8.3.5 i. H1(X,D) does not depend on the choice of U1 and U2. For example, if U ′1 and U ′2 are non-
empty open affines contained in U1 and U2, respectively, and cover X , then the restriction maps induce a
map from coker(δ) to coker(δ′). The claim is that such maps are isomorphisms and that all open affine
covers can be related via common refinements, resulting in unique isomorphisms between the coker(δ)’s.

ii. If X is affine, then H1(X,D) = 0.

Definition 8.3.6 LetX be an irreducible projective curve. Then dimH1(X,OX) is called the genus ofX .

Example 8.3.7 We have already calculated the genus of a particular curve; see Exercise 6.7.8.

8.4 The Riemann-Roch theorem

Theorem 8.4.1 Let X be a smooth, irreducible projective curve. Let g be the genus of X and D a divisor
on X . Then dimH0(X,D)− dimH1(X,D) = 1− g + deg(D).

In particular, H1(X,D) is finite-dimensional!

Proof Note that the statement is true for D = 0, as dimH0(X, 0) = 1 and dimH1(X, 0) = g. It now
suffices to show that for all D and all P ∈ X , the statement is true for D if and only if it is true for
D′ := D + P .

We have the following two exact sequences (with the notations from above):

0→ H0(X,D)→ H0(U1, D)⊕H0(U2, D)→ H0(U1 ∩ U2, D)→ H1(X,D)→ 0

0→ H0(X,D′)→ H0(U1, D
′)⊕H0(U2, D

′)→ H0(U1 ∩ U2, D
′)→ H1(X,D′)→ 0

We also have the following inclusions:

α : H0(U1, D)⊕H0(U2, D) → H0(U1, D
′)⊕H0(U2, D

′)

β : H0(U1 ∩ U2, D) → H0(U1 ∩ U2, D
′)

Now we can form a large diagram as follows (with exact rows and columns):

0

��

0

��

0

��

H0(X,D)

��

H0(X,D′)

��

A′

��

0 // H0(U1, D)⊕H0(U2, D)

δ

��

α // H0(U1, D
′)⊕H0(U2, D

′)

δ

��

// A

γ

��

// 0

0 // H0(U1 ∩ U2, D)

��

β
// H0(U1 ∩ U2, D

′)

��

// B

��

// 0

H1(X,D)

��

H1(X,D′)

��

B′

��

0 0 0
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In this diagram A and B are the cokernels of α respectively β; γ is the map induced by the δ’s above it and
A′ and B′ are the kernel and cokernel of γ, respectively.

We can now apply the snake lemma (see for example Wikipedia), and we obtain the following exact
sequence:

0→ H0(X,D)→ H0(X,D′)→ A′ → H1(X,D)→ H1(X,D′)→ B′ → 0.

We apply Lemma 8.1.2 a few times. If A and B are finite dimensional then we see from the last column of
the large diagram that:

dimB′ − dimA′ = dimB − dimA.

From the exact sequence obtained from the snake lemma and from the previous line we get:

(dimH0(X,D)− dimH1(X,D))− (dimH0(X,D′)− dimH1(X,D′))

= dimB′ − dimA′

= dimB − dimA.

So it suffices to show that dimA and dimB are finite and that dimA − dimB = 1. We claim that for
U ⊂ X open affine and non-empty:

dim coker
(
H0(U,D)→ H0(U,D′)

)
=

{
0 if P 6∈ U
1 if P ∈ U

If P 6∈ U , the claim is obvious as D|U = D′|U .
Suppose that P ∈ U . Let us first argue that the cokernel of H0(U,D) → H0(U,D′) has dimension

at most one. Let t ∈ OX(V ) be a uniformiser at P , with V open in U . Let n := −D′(P ). As in Defini-
tion 7.5.2 and Remark 7.5.4, each element f inH0(U,D′) can be written uniquely as f = an(f)tn+tn+1h

with an(f) in k and h in K(X) regular at P . Such an f is in H0(U,D) if and only if an(f) = 0. Hence
H0(U,D) is the kernel of the map H0(U,D′) → k, f, 7→ an(f). Hence the cokernel has dimension
at most one. To prove that it is one, it suffices to show that there is an f in H0(U,D′) that is not in
H0(U,D). We put g := tn. Then g is in K(X)×, and vP (g) = n = −D′(P ). We claim that there
exists an h in OX(U) such that h(P ) = 1 and f := h·g is in H0(U,D′). A element h 6= 0 in OX(U)

has this property if and only if h(P ) = 1 and for all Q in U , vQ(h) ≥ −vQ(g) − D′(Q). This means
that h(P ) = 1 and at a finite number of distinct points Q1, . . . , Qr, and elements ni in N, we must have
vQi

(h) ≥ ni. This is a consequence of the Chinese remainder theorem, that says that the morphism of
k-algebras OX(U) → OX(U)/mP ×

∏r
i=1OX(U)/mni

Qi
is surjective. This finishes the proof of the

claim.
Using the claim, we can now finish the proof. From the claim we get:

dimA dimB

P ∈ U1 ∩ U2 2 1

P 6∈ U1 ∩ U2 1 0

So indeed dimB − dimA = −1, and we are done with the proof. �

8.5 Exercises

Exercise 8.5.1 Consider the standard affine A1 ⊂ P1, and denote by ∞ the point (1 : 0), so that
P1 = A1 ∪ {∞}. Let g and h be nonzero elements of k[x] = OA1(A1). Verify using the definition
that v∞(g/h) = deg(h)− deg(g).

Exercise 8.5.2 In this exercise we consider divisors on P1.
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i. Compute dim(H0(P1,O(n∞)));

ii. Show that for every P ∈ P1 there exists an f ∈ K(P1) with div(f) = P −∞;

iii. Show that the dimensions of H0(P1,O(D)) and H1(P1,O(D)) depend only on the degree of D.
Give formulas for these dimensions.

Exercise 8.5.3 Let X be a smooth projective and irreducible curve and P a point of X . Use the Riemann-
Roch theorem to show that OX(X − {P}) is infinite-dimensional.

Exercise 8.5.4 Let X ⊂ Pn be a closed curve. Show that there exists hyperplanes H1 and H2 in Pn such
that H1 ∩ H2 ∩ X = ∅. Deduce that X is the union of two open affine subsets. Now generalise this
as follows (quite a lot harder): for X ⊂ Pn a quasi-projective curve there exist hypersurfaces Z(f1) and
Z(f2) in Pn such that Z(f1) ∩ Z(f2) ∩X = ∅ and X ∩D(fi) is closed in D(fi) for both i.

Exercise 8.5.5 Let X be a smooth, projective and irreducible curve. Let f : X → P1 be a morphism of
varieties.

i. Show that f is either constant or surjective (hint: use that all morphisms from X to A1 are constant);

ii. Let U be the complement of f−1((1 : 0)) and assume that U is non-empty. Show that f|U , seen as a
map to A1 = k defines an element f̃ of K(X);

iii. Show that f 7→ f̃ defines a bijection between the set of morphisms X → P1 whose image is not
{(1 : 0)} and K(X).

iv. Let X = P1 and f : X → P1 an isomorphism. Show that there exist a, b, c, d ∈ k such that
f̃ = (ax+b)/(cx+d), where we have identifiedK(P1) with the field of fractions of k[x] = OP1(A1).
Deduce that PGL2(k) is the group of automorphisms of the variety P1.

Exercise 8.5.6 Let X ⊂ A2 be the curve defined by x3 − y2.

i. Show that X is irreducible;

ii. Show that X is not smooth;

iii. Let P be the point (0, 0). Show that there is no pair (U, f) with P ∈ U ⊂ X open affine, f ∈ OX(U)

and vP (f) = 1. (Hint: consider k[x, y]/m2 with m = (x, y).)

Exercise 8.5.7 Let X be a smooth and irreducible curve. Let D be a divisor on X . The purpose of this
exercise is to show that H0(X,D) is finite dimensional if and only if H0(X, 0) is finite dimensional. For
example, if X is projective, it follows that H0(X,D) is finite dimensional, since H0(X, 0) = k. Note that
we can reduce to the case that D is effective.

i. Assume thatD ≥ 0. For everyQ ∈ X letUQ be an open affine neighborhood ofQ and tQ ∈ OX(UQ)

be a uniformizer at Q such that tQ has no zeroes on UQ except at Q. Show that we have a natural
exact sequence

0→ H0(X, 0)→ H0(X,D)→
⊕
Q∈X

t
−D(Q)
Q OX(UQ)/OX(UQ)

of k-vector spaces.

ii. Show that the right hand side of the sequence is finite dimensional.

iii. Show that H0(X,D) is finite dimensional if and only if H0(X, 0) is finite dimensional.
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Lecture 9

Complex varieties and complex
manifolds; analytification

9.1 Holomorphic functions in several variables

There is a very rich theory of holomorphic functions in several complex variables. We will only touch on
a tiny part of it.

In this section, we work with the standard Euclidean topology on Cn, which is not the same as the
Zariski topology unless n = 0.

For further reading on the topics of this and the next lecture, we suggest to browse through [Hart,
Appendix B].

Definition 9.1.1 Let U ⊂ Cn be an open subset, and f : U → C. Let u = (u1, . . . , un) ∈ U . We say f is
holomorphic at u if there exist ε ∈ R>0 and complex numbers ci : i ∈ Nn such that on the ball Bε(u) we
have an equality of functions

f(z1, . . . , zn) =
∑
i∈Nn

ci

n∏
j=1

(zj − uj)ij .

Implicitly we mean that the right hand side converges absolutely at every point in Bε(u).
We say f is holomorphic on U if f is holomorphic at u for every u ∈ U .
If g : U → Cm is another function and u ∈ U , we say g is holomorphic at u if each of the m compo-

nents of g is holomorphic at u (i.e. if for each of the m coordinate projections Cm → C, the composite
with g is holomorphic). Similarly, we say g is holomorphic on U if it is holomorphic at u for every u ∈ U .

Lemma 9.1.2 Holomorphic functions are continuous, even C∞ (smooth).

Proof Easy, omitted. �

Examples:

i. Any polynomial function, or power series which converges on U gives a holomorphic function.

ii. If f and g are polynomials and g has no zeros on U then the rational function f/g is holomorpic on
U . For example, if U = C \ {0}, f = 1 and g = z then we see that not every holomorphic function
can be globally defined by a power series.

63



64 LECTURE 9. COMPLEX VARIETIES AND COMPLEX MANIFOLDS; ANALYTIFICATION

iii. Not every holomorphic function can be written as a ratio of polynomials, even locally. For example,
the exponential function.

Lemma 9.1.3 i. Let f : U → C be a holomorphic function which does not vanish anywhere. Then
1/f is also holomorphic.

ii. Let f : U → V ⊂ Cn and g : V → Cm be holomorphic. Then g ◦ f is holomorphic.

Proof Omitted. �

Lemma 9.1.4 Let f : U → Cn be holomorphic. Then {u ∈ U : f(u) = 0} is a closed subset (in the
Euclidean topology).

Proof Immediate since f is continuous. �

9.2 Complex manifolds

Definition 9.2.1 Let U ⊂ Cn be Euclidean open. Define a C-space (U,hol(U,C)) where U has the
Euclidean topology, and hol(U,C) is the subsheaf of complex valued functions which are holomorphic.

These C-spaces will play the role of ‘affine varieties’ in defining complex manifolds. Note that they are
always open in Cn, in contrast to affine varieties.

Definition 9.2.2 A complex manifold is a C-space which is everywhere locally isomorphic to (U,hol(U,C))

for some n and some open subset U ⊂ Cn.
A morphism of complex manifolds is just a morphism as C-spaces (so the complex manifolds form a

full subcategory of C-spaces, just like C-varieties).

There is an obvious notion of the dimension of a complex manifold. If you have seen real manifolds, note
that the underlying topological space of a complex manifold of dimension n is a real manifold of dimension
2n - we will come back to this in the next lecture.

Example 9.2.3 i. Any union of open subsets of Cn gives a complex manifold, these are never compact
unless empty or n = 0.

ii. Glueing complex manifolds works in exactly the same way as glueing varieties, cf. section 6.2. Let
X1 = X2 = C with its sheaf of holomorphic functions. Let X12 = {z ∈ X1 : z 6= 0} and
similarly X21 = {z ∈ X2 : z 6= 0}, these are open submanifolds. Define ϕ1,2 : X12 → X21 by
ϕ(z) = 1/z (with the obvious map on sheaves, cf 9.1.3). Then the complex manifold obtained from
this glueing data is called CP1, ‘complex projective space’. As a ringed space, this is not isomorphic
to the variety P1

C. For example, on the level of topological spaces, CP1 is Hausdorff but P1
C is not!

Note that the constructions of P1
C and CP1 look rather similar, though they are carried out in different

categories. This will be generalised when we talk about ‘analytification’ of complex smooth varieties
- it will turn out that CP1 is the analytification of P1

C.

Though they are both special kinds of C-spaces, C-varieties and complex manifolds are very different
- this is illustrated a bit in the exercises.
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9.3 Sheaves on a base for a topology

For a moment we work in somewhat greater generality than usual, to develop an important tool that we will
use to define the analytification.

Let T be a topological space. Recall that a base for T is a set B of open subsets of T such that every
open U ⊂ T can be written as a union of elements of B. For example, if T is Rn with the Euclidean
topology then ε-balls around points give a base for the topology.

Let k be a field. Let T be a topological space and B a base for T .

Definition 9.3.1 Suppose for every U ∈ B we are given a subset F(U) ⊂ {f : U → k}. We say the
assignment F is a sheaf on B if

i. for all V ⊂ U with U , V ∈ B and for all f in F(U), f |V is in F(V );

ii. for all U in B and for all f : U → k, f is in F(U) if and only if for all P ∈ U there is a UP ⊂ U

such that UP ∈ B and P ∈ UP and f |UP
is in F(UP ).

If we take B to be the set of all opens in T , then to give a sheaf on B is trivially the same as to give a
k-space structure on the topological space T .

Theorem 9.3.2 Let B, B′ be two bases for the topological space T with B′ ⊂ B.

i. If F is a sheaf on B then restricting to opens in B′ gives a sheaf on B′;

ii. The above restriction map induces a bijection between sheaves on B and sheaves on B′,

Proof Exercise. �

If B1 and B2 are bases and their intersection is also a base, and if F1 and F2 are sheaves on B1 and
B2 respectively then we can see if F1 and F2 come from the same k-space structure by seeing if their
restrictions to B1 ∩ B2 are equal. This is a key thing we will need in defining analytifications. The most
important examples will be of the following form: let X be a topological space, and U = {Ui}i∈I an open
cover of X . Define a base B for the topology on X to consist of those opens which are contained in at
least one Ui. Suppose U ′ is another cover, and define B′ analogously. Then B ∩ B′ is also a base, and so
we can compare sheaves on B and B′ by looking at their restrictions to B ∩B′.

9.4 Analytification

Let SmVarC be the full subcategory of VarC consisting of varieties that are smooth. The analytification
functor takes as input a smooth complex variety (or map of such) and outputs a complex manifold (or map
of such). From now until the end of this section, fix a smooth complex varietyX . We will define a complex
manifold Xan, called the ‘analytification of X’.

9.4.1 The underlying set

This is easy: we define the underlying set of Xan to be the same as the underlying set of X .
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9.4.2 The topology

First we treat the case where X is affine. Then there exist n ≥ 0 and an ideal I ⊂ C[x1, . . . , xn] and an
isomorphism of varieties from X to Z(I) ⊂ An. We give An = Cn the Euclidean topology, and then
we define the topology on X to be (the pullback of) the subspace topology. A priori this depends on the
choice of the ideal I and the isomorphism, but in fact this is not the case, as can be easily deduced from the
following lemma:

Lemma 9.4.3 Let I, J ⊂ C[x1, . . . , xn] be ideals. Let f : Z(I) → Z(J) be an isomorphism of varieties.
Then f is a homeomorphism between the sets Z(I) and Z(J) with the subspace topologies from the
Euclidean topology.

Proof Rational functions without poles are continuous in the Euclidean topology. �

Now we treat the general case: by definition, there is an open cover of X by affine C-varieties. Choose
such a cover X = ∪jXj . Then (applying again the above lemma) we find that on overlaps Xi ∩ Xj the
subspace topologies from Xi and Xj coincide. We then define the topology on X to be the one induced by
the Xi. Again, this depends a priori on the choice of cover, but applying the above lemma again we find
this is not the case.

For interest and future use, we note:

Lemma 9.4.4 Let X be a complex variety, let XZar be the underlying Zariski topological space, and XEu

be the topology we have just defined. Let id : XEu → XZar be the identity map on sets. Then id is
continuous.

Proof Exercise. �

9.4.5 The C-space structure

Up to now we have not used the smoothness of X , but at this point it will be crucial. We repeat definition
6.4.1 for the convenience of the reader:

Definition 9.4.6 Let X be a variety and d in N. For P in X , X is smooth of dimension d at P if there is
an open subvariety U of X containing P and an isomorphism ϕ : U

∼→ Z(f1, . . . , fn−d) ⊂ An for some n
and f1, . . . , fn−d, such that the rank of the n− d by n matrix over k:(

∂fi
∂xj

(ϕP )

)
i,j

equals n − d. The variety X is smooth of dimension d if it is smooth of dimension d at all its points. The
variety X is smooth at P if it is smooth of dimension d at P for some d. Finally, X is smooth if at every
point P it is smooth of some dimension dP .

The key to the construction is the implicit function theorem, which we recall here without proof:

Theorem 9.4.7 (Holomorphic implicit function theorem) LetU ⊂ Cn be Euclidean open and f1, . . . , fn−d
be holomorphic functions on U . Let p ∈ U be such that the n− d by n− d matrix over C(

∂fi
∂xj

(p)

)
1≤i≤n−d,1≤j≤n−d

is invertible. Then there exist
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• an open neighbourhood U ′ of p contained in U

• a open subset W ⊂ Cd;

• holomorphic functions w1, . . . , wn−d : W → C;

such that for all (z1, · · · , zn) ∈ U ′ we have that

(fi(z1, · · · , zn) = 0 for all 1 ≤ i ≤ n− d) ⇐⇒ (wi(zn−d+1, · · · , zn) = zi for all 1 ≤ i ≤ n− d) .

Proof Omitted, see for example [KK, Section 0.8] or Wikipedia. �

If you have never seen the classical (eg. differentiable) version of this theorem and some applications,
it may help to look at the Wikipedia page on the implicit function theorem.

To define a C-space structure, it suffices to define it on a base for the topology as discussed above. To
check it is independent of choices, we only need to check that two sheaves obtained by different choices
agree on a small enough base for the topology (by theorem 9.3.2).

Let p ∈ X be a point. Because X is smooth at p (say of dimension d) there exist:

• an open subvariety U of X containing P ;

• an isomorphism ϕ : U
∼→ Z(f1, . . . , fn−d) ⊂ An for some n and f1, . . . , fn−d;

such that the rank of the n− d by n matrix over C:(
∂fi
∂xj

(ϕ(p))

)
i,j

equals n− d. Without loss of generality we assume that the left n− d by n− d block is invertible.
By the implicit function theorem, there exist

• a Euclidean open neighbourhood Vϕ(p) of ϕ(p) in An;

• a Euclidean open W ⊂ Cd;

• holomorphic functions w1, . . . , wn−d : W → C;

such that for all (z1, . . . , zn) ∈ Vϕ(p) we have that

f(z1, . . . , zn) = 0 ⇐⇒ (wi(zn−d+1, · · · , zn) = zi for all 1 ≤ i ≤ n− d) .

In other words, we get a homeomorphismψ : W → Vϕ(p)∩Z(f1, . . . , fn−d) by sending z = (zn−d+1, . . . , zn)

to
(w1(z), . . . , wn−d(z), zn−d+1, . . . , zn),

where the inverse is given by just forgetting the first n− d coordinates.
We will now define a sheaf of holomorphic functions on small open neighbourhoods of p.
Let V ′ be any open neighbourhood of p contained in ϕ−1Vϕ(p). As p varies, it is clear that such V ′

give a base of the (analytic) topology on X that we defined above. So by theorem 9.3.2 it is enough to tell
you what the holomorphic functions on V ′ are. Well, given f : V ′ → C, we say f is holomorphic if and
only if the composite

ψ−1V ′ → V ′
f→ C

is holomorphic, which is defined because ψ−1V ′ is an open subset of Cd.
It is not clear at this point that these holomorphic functions are well-defined (even after making the

various choices that we have), because the same V ′ could have its holomorphic functions ‘defined’ with
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respect to several different points p. But using that composites of holomorphic functions are holomorphic,
this can be checked.

We should check that we have defined a sheaf on the base. If V ′′ ⊂ V ′ it is clear that the restriction of
a holomorphic function on V ′ is again holomorphic on V ′′. The second condition follows from the local
nature of the definition of a holomorphic function.

During the definition of the sheaf, we made several choices, and we must check that the definition
is independent of the choices. This is largely analogous to checking that the definition of ‘holomorphic
functions on V ′’ does not depend on the p with respect to which it is taken, the key extra input is our
theorem that sheaves on two different bases induce the same C-space structure if they agree on a sub-base
of the intersection of the bases.

9.4.8 Analytification of morphisms

If f : X → Y is a morphism of C-varieties, we want to get a morphism of complex manifolds from Xan

to Y an. This is straightforward because rational functions without poles are holomorphic; we omit the
details.

This sends the inclusion of open sub varieties to the inclusion of open submanifolds. For example, for
smooth quasi-projective C-varieties X ⊂ PnC we can obtain Xan by restriction of the structure sheaf from
the analytification CPn of projective space PnC. We will study the latter a bit further in the next lecture.

9.5 Examples

We can now give a huge number of examples of complex manifolds - any smooth complex variety gives
one after analytification!

9.5.1 Projective line

We have already seen CP1, but now you can check that CP1 =
(
P1
C
)an

. Note that the latter is compact and
Hausdorff (it is a sphere). We will come back to this next week.

9.5.2 Affine space

The analytification of An is just Cn with the usual sheaf of holomorphic functions. It works similarly for
any open subvariety of An.

Note that (with the Zariski topology) any open subset X of An is compact. On the other hand, the
analytification Xan of such a subset is never compact unless n = 0 or it is empty.

Again with the Zariski topology, an open subset X of An is Hausdorff if and only if it is empty or
n = 0. On the other hand, the analytification Xan of such a subset is always Hausdorff, since Cn is.

This suggests that studying Xan may not be a good way to gain information on X , but in fact this is
far from true, and in the next lecture we will begin to develop a bit of a dictionary between them.

9.6 Exercises

Exercise 9.6.1 Show that an open subset U of Cn in the Zariski topology is Hausdorff if and only if n = 0

or U is empty.

Exercise 9.6.2 Give an example of a holomorphic function on C whose zero set is not closed in the Zariski
topology.
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Exercise 9.6.3 Here we check some basic facts about rational and holomorphic functions, in the 1-variable
case for simplicity. Let U be an open neighbourhood of 0 ∈ C. Let f ∈ C[x] be a polynomial which does
not vanish at 0.

i. Show that the image of f in the ring C[[x]] of formal power series is a unit.

ii. Show that the formal inverse of f that you found above has a positive radius of convergence.

iii. If you are following the commutative algebra course, show that C[[x]] is a local ring.

Exercise 9.6.4 Show that the underlying topological space of CP1 is a sphere. If you get stuck, google
‘stereographic projection’.

Exercise 9.6.5 Let X be a complex variety.

i. Assume X is separated. Show that Xan is Hausdorff.

ii. Assume Xan is connected. Show that X is connected.

In fact the converses also hold, but this is harder and is omitted.

Exercise 9.6.6 Prove theorem 9.3.2.

Exercise 9.6.7 Prove lemma 9.4.4.

Exercise 9.6.8 If you do not know what the fundamental group of a pointed topological space is, ignore
this exercise (it is just for fun). Let X be the complement of the origin in A1

C. Pick any basepoint in X .

i. Compute the fundamental group of Xan with the Euclidean topology.

ii. Compute the fundamental group of X with the Zariski topology.

It turns out that there is a good notion of the fundamental group of an algebraic variety, even for varieties
not over C (the ‘étale fundamental group’), but its definition takes more work.
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Lecture 10

Riemann surfaces

The main aim of this lecture is to discuss the analytification functor in more detail in the case of varieties of
dimension 1. We will see that the topological space underlying a complex manifold is much nicer to work
with than the topological space underlying a variety. First, we give a bit of a ‘dictionary’ relating properties
of varieties and properties of manifolds (with no restrictions on dimension yet).

10.1 Dictionary between varieties and manifolds

10.1.1 Projective varieties and compactness

The complex variety PnC is smooth, so you can analytify it. This is a very important example:

Theorem 10.1.2 The (underlying topological space of the) complex manifold CPn obtained by analytify-
ing PnC is compact.

Proof [Sketch of proof] Recall that the continuous image of a compact space is compact, so it is enough to
construct a continuous surjection from a compact space. In fact, we will construct a continuous surjection
from the (2n+ 1)-sphere S2n+1.

Recall that we can think of PnC as the space of (complex) lines through the origin in Cn+1. Note that
{z ∈ Cm : |z| = 1} is naturally S2m−1. Given a point z ∈ Cn+1 with |z| = 1, there is a unique (complex)
line through 0 and z, and every complex line arises in this way. This gives a surjection from S2(n+1)−1 to
CPn. We leave the (straightforward, but slightly messy) verification of continuity to the reader. �

Exercise 10.9.1 suggests an alternative proof.

Corollary 10.1.3 Let X be a smooth projective complex variety. Then Xan is compact.

Proof There exists a closed embedding X → Pn for some n. Then Xan is a subspace of CPn given as
the zero set of some (continuous) homogeneous rational functions and so is a closed subset of CPn. Hence
it is compact by the above theorem. �

10.1.4 Further properties

Above, we saw that if X is projective then Xan is compact. The converse fails, though it is true up to
dimension 1. What about Hausdorff?

Theorem 10.1.5 X is separated if and only if Xan is Hausdorff.
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Proof The direction ‘X separated implies Xan Hausdorff was in last week’s homework.
The converse is a lot harder. The key is to prove that an immersion of varieties whose analytification is

closed is itself closed. We omit this. �

Theorem 10.1.6 X is connected if and only if Xan is connected.

Proof One direction was in last week’s homework. Again, the converse is harder, and is omitted. �

We summarise this (and a few other easy properties) in a table:
X Xan

projective =⇒ compact
separated ⇐⇒ Hausdorff
connected ⇐⇒ connected

dimension n ⇐⇒ dimension n

We also mention a rather wonderful theorem:

Theorem 10.1.7 The analytification functor is fully faithful on smooth projective varieties.

Proof See [Artin, Algebrization of formal moduli II, theorem 7.3]. �

10.2 Riemann surfaces

We now look much more closely at the case of complex varieties of dimension 1, with particular attention
to the projective case.

Definition 10.2.1 A Riemann surface is a Hausdorff complex manifold of dimension 1.

Example 10.2.2

• We have already seen CP1;

• IfX is a separated complex variety of dimension 1 thenXan is a Riemann surface. IfX is projective
then Xan is compact. Moreover, X is connected if and only if Xan is connected.

If we restrict to compact Riemann surfaces, it turns out that this is the only source of examples. We
noted above that the analytification functor is fully faithful on projective varieties. In the case of dimension
1 it is also essentially surjective:

Theorem 10.2.3 The analytification gives an equivalence of categories between

• smooth projective complex varieties of dimension 1;

• compact Riemann surfaces.

Proof Omitted, see e.g. [Algebraic Curves and Riemann Surfaces by Rick Miranda]. �
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10.3 Fermat curves

We saw these before, but now we will look more closely, and also at the analytic aspects.

Definition 10.3.1 Fix d ≥ 1. The d-th (complex) Fermat curve is the curve in P2
C given by the equation

Xd + Y d = Zd.

Note that ‘Fermat’s last theorem’ says that such a curve with d ≥ 3 has few points with rational coordi-
nates...

From now on we fix some d ≥ 0, and we denote by Fd the d-th fermat curve.

Lemma 10.3.2 Fd is smooth.

Proof Exercise. �

So F and is a compact Riemann surface. Let us make the complex manifold structure more explicit. First,
let T 0 be the set

T 0 = {(x, y) ∈ C2 : xd + yd = 1} (10.1)

with the subspace topology from C2. Let ζd be a primitive d-th root of 1 in C. Now if f : U → C is
holomorphic function on an open subset of Cn and u ∈ U is a point with f(u) 6= 0, then there exists
an open neighbourhood u ∈ V ⊂ U such that f has a holomorphic dth root on V (you could check this
with the implicit function theorem, though it is overkill). Abusing notation, we write d

√
f for some such.

We will start by giving a Riemann surface structure to T 0, and will then deal with the ‘missing points at
infinity’ separately.

We will give a Riemann surface structure to T 0 by giving an open neighbourhood V of every point
t0 = (x0, y0) and a homeomorphism ϕ to V from an open subset U of C, such that the corresponding
transition functions are holomorphic on overlaps (cf. our construction of the analytification). There are
two cases to consider:

10.3.3 t0 = (x0, y0) with y0 6= 0

The fact that y0 6= 0 is equivalent to x0 not being a power of ζd. We write y0 = ζjd
d
√

1− xd0 for some j.
Then we define

ϕ(z) = (z, ζj
d
√

1− zd) (10.2)

which makes sense when |z − x0| is small enough (using that x0 is not a d-th root of 1). Note that
ζ(x0) = (x0, y0) and that for all |x0 − z| sufficiently small we have

zd +
(
ζj

d
√

1− zd
)d

= 1.

10.3.4 t0 = (x0, 0)

Then x0 = ζj for some j. We define

ϕ(z) =

(
zd + ζj , d

√
1− (zd + ζj)d

)
which makes sense when the absolute value of z is small enough. We have ζ(0) = (x0, y0) and for all |z|
sufficiently small we have (

zd + ζj
)d

+

(
d

√
1− (zd + ζj)d

)d
= 1.
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10.3.5 Points at infinity

Above we have given the necessary data to define a complex manifold structure on T 0, and hence describe
the analytification of the affine variety defined by xd + yd = 1. However, we want to describe the an-
alytification of the projective variety Fd. There are d points of Fd which are not contained in T 0, given
by

(ξj : 1 : 0) where ξ is a primitive dth root of − 1.

Fixing some 0 ≤ j < d, we give a coordinate neighbourhood of the point (ξj : 1 : 0) by

ϕ(z) = (ξj :
d
√
zd − 1 : z)

in just the same way as the previous two cases.

Remark 10.3.6 We could have worked out all of the above using the implicit function theorem. If we had
set things up just right, we would even have got the same answer. On the other hand, be warned that very
naively applying the implicit function theorem can lead to a bit of a mess...

10.4 A map from the Fermat curve to P1

It is easy to give a map of varieties from Fd to P1; just take the x-coordinate. More precisely, we can cover
Fd by two affine patches given by x = 1 and y = 1 (note that if both x = 0 and y = 0 then also z = 0

which is not a point in P2). On the y = 1 patch the curve is given by the equation xd + 1 = zd, and we
take the map of affine varieties corresponding to the ring map

C[s]→ C[x, z]

xd + 1− zd
; s 7→ x.

Similarly on the patch x = 1 the curve is given by the equation 1 + yd = zd, and we take the map of affine
varieties corresponding to the ring map

C[t]→ C[y, z]

1 + yd − zd
; t 7→ y.

If s and t are the standard coordinates on P1 (so st = 1) then one checks these maps are compatible, and
so gives a map of varieties. Another way to think of it is that we send a point (X : Y : Z) to (X : Z),
which is always well-defined because the point (0 : 1 : 0) is not on Fd.

Analytification of maps of smooth varieties gives maps of the corresponding complex manifolds. What
does this look like in terms of the holomorphic charts we described above on the Fermat curve? More
precisely, for each point p ∈ F and we gave an open subset Up ⊂ C, an open neighbourhood Vp ⊂ Fd,
and a homeomorphism ϕp : Up → Vp (the open subsets were only implicitly described, by saying our
constructions worked on ‘small enough neighbourhoods’). There were three ‘types’ of points:

i. points (x0 : y0 : 1) with y0 6= 0. Then the map to CP1 is given by (x : y : 1) 7→ (x : 1), and the
composite with ϕ sends z to (z : 1).

ii. points (x0 : 0 : 1). Then the map to CP1 is given by (x : 0 : 1) 7→ (x : 1), and the composite with ϕ
sends z to (zd + ζj : 1).

iii. points (ξj : 1 : 0). Then the map to CP1 is given by (x : y : z) 7→ (x : z), and the composite with ϕ
sends z to (ξj : z).

In each case, the composite map is clearly holomorphic. Moreover, it is bijective (even a homeomorphism)
in cases (1) and (3), and in case (2) it is d-to-1 except at the point (x0 : 0 : 1), where it is 1-to-1. This will
be important later.
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10.5 Triangulations of Riemann surfaces, Euler characteristic

For a little while, we will forget about varieties and complex manifolds (mostly), and do some topology.

Definition 10.5.1 A (real) manifold is a topological space T such that for every t ∈ T there exists an open
neighbourhood U of T and an open subset V ⊂ Rn for some n and a homeomorphism U → V .

Note that being a real manifold is a property of a topological space, there is no extra data attached. There
is an obvious notion of dimension. A real surface is a real manifold of dimension 2.

It is an easy exercise that if M is a complex manifold (say of dimension m) then the underlying topo-
logical space is a real manifold of dimension 2m. In particular, a Riemann surface (1-dimensional complex
manifold) has a real surface as its underlying topological space, which makes the terminology a little less
weird.

Just as studying complex manifolds can tell us things about complex varieties, so studying real man-
ifolds can tell us about complex manifolds. Be warned that real manifolds are much less ‘rigid’ than
complex manifolds - for example, many non-isomorphic compact Riemann surfaces can have isomorphic
underlying real manifold.

We want to talk about triangulations of Riemann surfaces. Let T be the closed subset

T = {(x, y) ∈ R2 : x ≥ 0 and y ≥ 0 and x+ y ≤ 1}.

The faces and corners are the obvious closed subsets.

Definition 10.5.2 Let X be a real surface. A triangulation of X consists of:

• A decomposition X =
⋃
i∈I Xi of X into finitely many closed subsets;

• for each i ∈ I a homeomorphism τi : Xi → T

such that for every i, j ∈ I we have that τi(Xi ∩Xj) is a face, edge or corner of T .

Theorem 10.5.3 Every compact Hausdorff real surface admits a triangulation.

Proof This is deep, and is omitted. Due to Radó. False in dimension 4 and higher! A nice exposition
can be found in [The Jordan-Schoenflies theorem and the classification of surfaces by Carsten Thomassen,
http://www.maths.ed.ac.uk/˜aar/jordan/thomass.pdf]. �

Definition 10.5.4 Let X be a real surface and T a triangulation X =
⋃
i∈I Xi. We define F (X,T ) = #I

(‘the number of faces’), and analogouslyE(X,T ) to be the number of edges and V (X,T ) to be the number
of vertices. We define the Euler characteristic of (X,T ) to be

χ(X,T ) = V (X,T )− E(X,T ) + F (X,T ).

Clearly V (X,T ), E(X,T ) and F (X,T ) depend on T as well as X . However:

Theorem 10.5.5 If T and T ′ are two triangulations of X then χ(X,T ) = χ(X,T ′).

Proof Omitted. Not too hard compared to the existence of a triangulation. �

We can now connect back to complex manifolds (and so varieties):

Theorem 10.5.6 LetX be a smooth connected projective complex curve of genus g. Then χ(Xan) = 2−2g.

Proof Omitted. Not technically particularly difficult, but needs a lot of tools for comparing topological
and algebraic geometry. �

We will not prove this, but let us consider the example of P1
C. You checked that the topological space is a

sphere. The simplest triangulation is probably as a tetrahedron. Then there are 4 vertices, 6 edges and 4
faces, so χ(CP1) = 4− 6 + 4 = 2. On the other hand, the genus is 0, so we have 2− 2g = 2.

http://www.maths.ed.ac.uk/~aar/jordan/thomass.pdf
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10.6 Genus of a topological cover

Definition 10.6.1 Let f : X → S be a morphism of topological spaces. We say f is a covering of degree
n if for every s ∈ S there exists an open neighbourhood U of p and a homeomorphism

f−1U → t1≤i≤nU.

Theorem 10.6.2 Let f : X → S be a degree-n cover of real surfaces. Then

χ(X) = nχ(S).

Proof [Sketch of proof] Because the Euler characteristic of S does not depend on the triangulation of S,
we may assume the latter is arbitrarily fine, so that each face, edge (and vertex!) is contained in at least
one of the opens U in the definition of a cover. Further, we can give X a triangulation by just pulling these
back in the obvious manner. Then it is clear that there are n faces of X over every face of S, and the same
for edges and vertices. �

This theorem is neat, but we would really like to apply it to the map from the Fermat curve to P1, and
this is not a topological cover (the map is d-to-1 almost everywhere, but 1-to-1 at exactly d-points). It turns
out that we can ‘correct’ the above theorem to allow for this.

10.7 Riemann-Hurwitz formula

The following is a special case of the Riemann-Hurwitz formula. The general case is not very much harder
to state or prove, and applies to any surjective map of connected compact Riemann surfaces.

Theorem 10.7.1 Let f : X → S be a (holomorphic) map of connected compact Riemann surfaces. As-
sume that there is a finite set of points R ⊂ S and an integer d ≥ 1 such that:

i. the restriction of f from f−1(S \R) to S \R is a topological cover of degree d;

ii. for every r ∈ R, there exists an analytic neighbourhood U of r such that the map f−1U → U is
isomorphic (in the analytic category) to the map

∆→ ∆; z 7→ zd

where ∆ = {z ∈ C : |z| < 1}.

Then we have
χ(X) = dχ(S) + (1− d)#R

Note that (i) above is actually always true, but we will not prove this and you should not assume it in
exercises.

Proof [Sketch of proof] As before, we choose a ‘fine enough’ triangulation of S, but now we also impose
that every point in R is a vertex. Again, we make a triangulation of X by pulling back the one on S. Then
every face of S has d faces of X lying over it, and every edge of S has d edges of X lying over it. The
vertices not in R also have d vertices over them, while the ones in R have exactly one vertex lying over
them. We find

χ(X) = V (X)− E(X) + F (X) = d(V (S)−#R) + #R− dE(S) + dF (S) = dχ(S) + (1− d)#R.

�
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10.8 Example: genus of a Fermat curve

The map we described before from Fd to P1 satisfies the conditions of the Riemann-Hurwitz theorem as
stated above, with d = d. We take R to be the set of points (ζj : 1) for 0 ≤ j < d, so #R = d. We know
that χ(CP1) = 2, so we find

χ(Fd) = 2d− d(d− 1)

If we write g(Fd) for the genus of the Fermat curve, we see that

g(Fd) =
(d− 1)(d− 2)

2
. (10.3)

10.9 Exercises

Exercise 10.9.1 The closed unit polydisk in Cn is defined to be the set of (z1, . . . , zn) in Cn such that for
each i = 1, . . . , n we have |zi| ≤ 1. Take the open cover (in the complex topology!) of CPn by standard
affine opens U0, . . . , Un. Show that CPn is covered by the closed unit polydisks in the Ui. Show that CPn

is compact.

Exercise 10.9.2 Prove lemma 10.3.2.

Exercise 10.9.3 Compute the Euler characteristic of the surface of a doughnut.

Exercise 10.9.4 Suppose f : P1 → P1 is a map of complex varieties such that fan : CP1 → CP1 is a
topological cover of degree d for some d. What are the possible values of d?

Exercise 10.9.5 Let a, b, c be distinct complex numbers. Define a curve C ⊂ P2
C by the equation

y2 = (x− a)(x− b)(x− c).

Define π : C → P1
C by sending (X : Y : Z) to (X : Z) if (X : Y : Z) is not equal to (0 : 1 : 0), and

sending (0 : 1 : 0) to (1 : 0).

i. Verify that π is a map of complex varieties.

ii. Verify that πan satisfies the hypotheses of theorem 10.7.1 for some d (what is that d?). Take care
with the point at Z = 0.

iii. Compute the genus of C.

Exercise 10.9.6 Give an example of a map of topological spaces from CP1 to CP1 which does not arise
as the analytification of any map of varieties P1

C → P1
C. You can describe your map in words, but you must

show that it does not come from a map of varieties.
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Lecture 11

Curves on surfaces

We return to working with varieties over an arbitrary algebraically closed field.
In this lecture, for closed curves Z1 and Z2 on a smooth irreducible projective surface X , we will

define their intersection number Z1 · Z2. This intersection product will be important for the proof of the
Hasse-Weil inequality.

11.1 Divisors

Let X be a connected, quasi-projective variety, smooth of dimension d. So in particular X is irreducible.

Definition 11.1.1 A prime divisor on X is a closed irreducible subset Z ⊂ X of dimension d− 1.

Definition 11.1.2 A divisor is an element of the free abelian group generated by the prime divisors. We
denote this group by Div(X).

So divisors are formal expressions of the form
∑
Z nZZ with Z ranging over the set of prime divisors, and

with the nZ integers, all but finitely many zero. We state without proof the following proposition (which
uses the smoothness of X).

Proposition 11.1.3 Let X be a smooth, connected, quasi-projective variety. Let Z ⊂ X be a prime
divisor. Then there is a finite open affine cover {Ui}i of X , such that there are nonzero fi ∈ OX(Ui) with
the property that I(Z ∩ Ui) = (fi) as ideals in OX(Ui).

Now we want to associate a valuation to a prime divisor. Let Z ⊂ X be a prime divisor. Use an affine
cover {Ui : i ∈ I} as in the above proposition. Then choose an i with Z ∩ Ui 6= ∅. For 0 6= f ∈ OX(Ui)

we define:
vZ(f) := the largest integer n such that f ∈ (fni ).

Such a largest integer exists and it does not depend on the chosen cover {Ui : i ∈ I} and the particular
choice of i. This vZ has the property vZ(fg) = vZ(f) + vZ(g). As usual we extend this to a morphism
vZ : K(X)× → Z.

Definition 11.1.4 Let X be a smooth, connected, quasi-projective variety. Then we define the divisor map

div : K(X)× −→ Div(X), f 7→ div(f) :=
∑
Z prime

vZ(f)Z.

79
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Note that div is a group homomorphism. To see that the sum occurring in div(f) is finite, first reduce to the
case thatX is affine (it has a cover by finitely many), then write f as g/h and note that nonzero coefficients
only occur at Z that are irreducible components of Z(g) or Z(h). A divisor of the form div(f) is called a
principal divisor.

Definition 11.1.5 For X a smooth, connected, quasi-projective variety we define the Picard group as
Pic(X) := Div(X)/ div(K(X)×), that is, the quotient of Div(X) by the subgroup of principal divisors.

Example 11.1.6 We determine the Picard group of X = Ad. Recall that the prime divisors of Ad are
the Z(f) for f ∈ k[x1, . . . , xd] irreducible. But then every prime divisor is principal, hence hence
Pic(Ad) = 0.

Proposition 11.1.7 LetX = Pd with d ∈ Z≥1. Then Pic(Pd) ∼= Z, generated by the class of a hyperplane.

Proof We first determine the prime divisors of Pd. These are the Z(f) where f ∈ k[x0, . . . , xd] is
homogeneous and irreducible. We now define deg(Z(f)) = deg(f) (indeed, Z(f) determines f up to
scalar multiple). We extend this to a morphism of groups and obtain a map deg as follows:

deg : Div(X) −→ Z,
∑
Z

nZZ 7→
∑
Z

nZ deg(Z).

We now claim that
∑
Z nZZ is principal if and only if deg(

∑
Z nZZ) = 0. Indeed, consider a divisor

div(f) for some f ∈ K(X)× and write f = g/h with g and h in k[x0, . . . , xd] homogeneous of the same
degree. Decompose g and h into irreducibles, g =

∏
i g
ni
i and h =

∏
i h

mi
i , then

deg(div(f)) =
∑
i

ni deg(gi)−
∑
i

mi deg(hi) = deg(g)− deg(h) = 0.

On the other hand, if deg(
∑
niZi) = 0, then let Zi = Z(fi) and consider f :=

∏
fni
i . By construction

deg(f) = 0 and so f ∈ K(X)× and div(f) =
∑
niZi.

So the degree factors through an injective map Pic(X) → Z. The map is also surjective, since for
example degZ(x0) = 1. �

Proposition 11.1.8 Let X be a smooth, irreducible projective curve. Every principal divisor on X has
degree zero.

Proof Let D be a divisor on X , let f ∈ K(X)×, and let D′ = D − div(f). Then multiplication by f
induces an isomorphism from H0(X,D) to H0(X,D′) and from H1(X,D) to H1(X,D′) (the reader is
requested to verify this for herself!). Riemann-Roch now gives:

deg(D) + 1− g = dimH0(X,D)− dimH1(X,D)

= dimH0(X,D′)− dimH1(X,D′)

= deg(D′) + 1− g

So deg(D) = deg(D′) = deg(D)− deg(div(f)). Hence deg(div(f)) = 0. �

11.2 The intersection pairing on surfaces

LetX be a smooth connected projective surface (a smooth connected projective variety of dimension 2). In
this section we define the intersection pairing on Div(X), show that it factors through Pic(X), and derive
Bézout’s theorem for P2 as a very simple consequence.
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For prime divisors Z1 and Z2 on X the intersection number Z1·Z2 in Z is defined as the degree on Z1

of a locally freeOZ1 -module of rank one,OX(Z2)|Z1 . As we have not defined these notions (lack of time)
we give the procedure that produces Z1·Z2 in terms of concepts that we have defined, and that one would
use even if one had the notions that we did not define. This definition of Z1·Z2 does not assume that Z1

and Z2 are distinct.

Definition 11.2.1 Let Z1 and Z2 be prime divisors on X .

i. Choose open subsets (Ui)i∈I (I = {1, . . . , r} for some r) in X and fi in OX(Ui) such that the Ui
cover Z2, each Ui meets Z2, and such that div(fi) = Z1∩Ui on Ui. In particular, I(Z1∩Ui) = (fi)

(as in Proposition 11.1.3).

ii. Since fi and fj generate the same ideal of OX(Uij) there are unique fij in OX(Uij)
× such that

fi = fijfj in OX(Uij). Note that fij ·fjk = fik on Uijk := Ui ∩ Uj ∩ Uk.

iii. Define gi := fi1 ∈ OZ2
(Z2 ∩ Ui1)×. Remark that g1 = 1 and that gi = fijgj in OZ2

(Z2 ∩ Uij).
This shows that gi 6= 0 in OZ2(Z2 ∩ Ui1). For P ∈ Z2 and i such that P ∈ Ui, the number vP (gi)

depends only on P . We finally define:

Z1·Z2 :=
∑
P∈Z2

vP (giP ) =
∑

P∈Z2−Z2∩U1

vP (giP ), where iP ∈ I such that P ∈ UiP .

Remark 11.2.2 The ideas behind Definition 11.2.1 can be understood, very briefly, as follows. On Ui, the
OX -moduleOX(Z1) is generated by 1/fi. TheOZ2

-moduleOX(Z1)|Z2
has the rational section 1/f1, and

on Ui we have 1/f1 = (fi/f1)·(1/fi), hence fi/f1 on Ui ∩Z2 measures how far 1/f1 is from a generator.

As promised, we will show that this really is a good definition. We will make frequent use of the following
fact, which we will not prove. We refer to Proposition 11.1.8 for a proof in the smooth case.

Proposition 11.2.3 If f is a rational function on an irreducible projective curve X then deg div(f) = 0.

Lemma 11.2.4 The integer Z1·Z2 does not depend on the choice of the fi.

Proof Assume that f ′i for i in I satisfy the same conditions as the fi. Then f ′i = uifi with ui ∈ OX(Ui)
×,

and f ′ij := f ′i/f
′
j = (ui/uj)fij and g′i = (ui/u1)gi. This then gives (we use that vP (ui) = 0 for all P ∈ Ui

and that the degree of a principal divisor is 0):

(Z1·Z2)′ = Z1·Z2 +
∑
P

vP (uiP /u1) = Z1·Z2 + deg(div(1/u1)) = Z1·Z2.

�

Lemma 11.2.5 The integer Z1·Z2 does not depend on the choice of 1 in {1, . . . , r} in step iii.

Proof Assume that we use U2 instead. Then g′i = fi2 = fi1f12 = gif12. Hence:

(Z1·Z2)′ = Z1·Z2 + deg(div(f12)) = Z1·Z2

�

Lemma 11.2.6 The integer Z1·Z2 does not depend on the choice of the open cover {Ui : i ∈ I}.

Proof Given two covers {Ui : i ∈ I} and {U ′j : j ∈ J}, one can consider a common refinement (given
by for example the open {Ui ∩ U ′j : i ∈ I, j ∈ J}). So it is enough to show that the lemma holds for a
refinement, and this is just a calculation which we leave to the reader. �
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As Div(X) is the free Z-module with basis the set of prime divisors on X , the map “·” extends bilinearly
and obtain a bilinear map:

· : Div(X)×Div(X) −→ Z, (Z1, Z2) 7→ Z1·Z2.

Proposition 11.2.7 Let Z1 6= Z2 be prime divisors. Then Z1 ∩ Z2 is finite. For all P in Z1 ∩ Z2 there is
an open affine UP ⊂ X with P ∈ UP such that UP ∩Z1 ∩Z2 = {P} and f1,P and f2,P ∈ OX(UP ) such
that I(Z1 ∩ UP ) = (f1,P ) and I(Z2 ∩ UP ) = (f2,P ). For such a collection of UP we have:

Z1·Z2 =
∑

P∈Z1∩Z2

dimOX(UP )/(f1,P , f2,P ).

For each P ∈ Z1 ∩ Z2 the integer dimOX(UP )/(f1,P , f2,P ) is independent of the choice of UP , and is
called the local intersection multiplicity of Z1 and Z2 at P .

Proof As Z1 ∩Z2 is closed in the projective curve Z1, and not equal to Z1, it is finite. The existence of a
collection of (UP , f1,P , f2,P ) as in the proposition follows from the fact that the set of open affines in X is
a basis for the topology, together with Proposition 11.1.3. But note that Z1 ∩Z2 may be empty. We extend
this collection of (UP , f1,P , f2,P ) to one (Ui, f1,i, f2,i), i ∈ I , such that the Ui ∩Z1 ∩Z2 have at most one
element and are disjoint, and the conditions in step i of Definition 11.2.1 are met: the Ui cover Z2 and all
meet Z2. For P in Z2, let iP be an i ∈ I such that Ui contains P ; this iP is unique if P is in Z1 ∩ Z2.

As Z1 and Z2 are distinct all f1,i ∈ OX(Ui) are not identically zero on Z2 ∩ Ui, and give nonzero
rational functions on Z2, regular on Ui ∩ Z2, that we still denote by f1,i. Definition 11.2.1 gives

Z1·Z2 =
∑
P∈Z2

vP (f1,iP /f1,1).

As for every iwe haveOZ2
(Ui∩Z2) = OX(Ui)/(f2,i), and the degree of a principal divisor on a projective

curve is zero, and for i ∈ I such that Ui ∩ Z1 ∩ Z2 is empty, OX(Ui)/(f1,i, f2,i) = 0, we get:

Z1·Z2 =
∑
P∈Z2

vP (f1,iP )−
∑
P∈Z2

vP (f1,1) =
∑
P∈Z2

dimOZ2(Z2 ∩ UiP )/(f1,iP )

=
∑
P∈Z2

dimOX(UiP )/(f2,iP , f1,iP )

=
∑

P∈Z1∩Z2

dimOX(UiP )/(f1,iP , f2,iP ).

�

Using local rings, the above definition of the local intersection multiplicity may be made more intrin-
sic (and hence more visibly independent of choices) as follows. Let Z1 6= Z2 be prime divisors, and
P ∈ Z1 ∩ Z2. Inside the local ring OX,P we have the ideal I(Z1) given by classes of (U, f) such that
f vanishes along Z1 ∩ U . The ideal I(Z1) is principal, say I(Z1) = (f1). Similarly we have an ideal
I(Z2) ⊂ OX,P associated to Z2 and an element f2 ∈ OX,P such that I(Z2) = (f2). Then the local
intersection multiplicity of Z1, Z2 at P is equal to dimOX,P /(f1, f2). We leave the verification of this as
an exercise for the interested reader.

Corollary 11.2.8 If Z1 6= Z2 are distinct then Z1·Z2 ≥ 0.

Remark 11.2.9 If Z1 = Z2, then Z1·Z2 can be negative, as can be seen in Exercise 11.3.1.

Corollary 11.2.10 The intersection pairing · : Div(X)×Div(X)→ Z, (Z1, Z2) 7→ Z1·Z2 is symmetric.
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Proof In view of Proposition 11.2.7 this is now obvious. �

Proposition 11.2.11 Situation as in Proposition 11.2.7. If Z1 6= Z2 and for all P in Z1 ∩ Z2 the tangent
spaces TZ1

P and TZ2
P have a trivial intersection (inside TXP ), then Z1·Z2 = #(Z1 ∩ Z2). In this case

we say that Z1 and Z2 intersect transversally.

Theorem 11.2.12 The intersection pairing · : Div(X)×Div(X)→ Z factors through Pic(X)×Pic(X).

Proof It suffices (by symmetry) to verify that Z1·Z2 = 0 for Z1 = div(f) for some f ∈ K(X)× and
Z2 a prime divisor. Write Z1 =

∑
Z Z1(Z)Z with Z ranging over the set of prime divisors on X . We

take an open cover {Ui : i ∈ I} such that for all the Z with Z1(Z) 6= 0 and for each i in I we have an
fi,Z ∈ OX(Ui) such that OX(Ui)·fi,Z is the ideal of Z ∩ Ui (take a common refinement if necessary).
Then for each i there is a ui in OX(Ui)

× such that
∏
Z f

Z1(Z)
i,Z = uif . Linearity in Z1, Definition 11.2.1,

the fact that vP (uiP ) = 0, and Theorem 12.1.10 ii, give

Z1·Z2 =
∑
Z

Z1(Z)
∑
P∈Z2

vP (fiP ,Z/f1,Z) =
∑
P∈Z2

vP

(∏
Z f

nZ

iP ,Z∏
Z f

nZ

1,Z

)
=
∑
P∈Z2

vP

(
uiP f

u1f

)
=
∑
P∈Z2

vP (uiP /u1) = −
∑
P∈Z2

vP (u1) = −deg(div(u1|Z2)) = 0.

�

Corollary 11.2.13 (Bézout) Let Z1 and Z2 be prime divisors in P2, then Z1·Z2 = deg(Z1)·deg(Z2).

Proof By Theorem 11.2.12 the intersection pairing is given by · : Pic(P2) × Pic(P2) → Z. The degree
map deg : Pic(P2)→ Z is an isomorphism by Lemma 11.1.7. The induced bilinear map · : Z× Z→ Z is
determined by the value of (1, 1). So it suffices to prove that there are two lines Z1 and Z2 in P2 such that
Z1·Z2 = 1. Take the lines Z1 = Z(x1) and Z2 = Z(x2), and apply Proposition 11.2.7. �

11.3 Exercises

Exercise 11.3.1 Assume that the characteristic of k is not 3. Let X ⊂ P3 be the surface given by
x3

0 − x3
1 + x3

2 − x3
3 = 0. Verify that X is smooth. Let Z ⊂ X be the line consisting of the points

(s : s : t : t) with (s, t) ∈ k2 − {0}. Compute the intersection number Z·Z.

Exercise 11.3.2 Show that any morphism f : P2 → P1 is constant. Hint: if not show that f is surjective
and that f−1(0 : 1) and f−1(1 : 0) are curves. Use Bézout to obtain a contradiction.

Exercise 11.3.3 Assume that 6 is invertible in k. Let C ⊂ P2 be a smooth curve given by a homogeneous
polynomial f ∈ k[x0, x1, x2] of degree 3. Given a point P ∈ C denote by LP ⊂ P2 the tangent line in P
to C.

i. Show that LP intersects C in only the point P if and only if the local intersection multiplicity of LP
and C at P is 3. If this is the case P is called a flex-point of C.

ii. Show thatP = (p0 : p1 : p2) is a flex point if and only if the determinant of the matrix (∂2f/∂xi∂xj)

is zero at (x, y, z) = (p0, p1, p2).

iii. Show that C has 9 flex-points.
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Exercise 11.3.4 Consider X = P1 × P1 and use coordinates x : y on the first factor and u : v on the
second factor.

If f ∈ k[x, y, u, v] is polynomial which is homogeneous of degree d in x, y and homogeneous of degree
e in u, v then we say that f is bihomogeneous and has bidegree (d, e). For example, x3u+ xy2v − y3v is
bihomogeneous of bidegree (3, 1).

Denote the prime divisors {(0 : 1)} × P1 and P1 × {(0 : 1)} by V and H , respectively.

i. Show that V is equivalent with V ′ = {(1 : 1)} × P1 and deduce that V ·V = 0. Same for H·H .

ii. Show that H·V = 1.

iii. If f is irreducible and bihomogeneous of bidegree (d, e) show that

Z(f) = {((a0 : a1), (b0 : b1)) ∈ P1 × P1 : f(a0, a1, b0, b1) = 0}

is a prime divisor on P1 × P1 which is equivalent with dV + eH .



Lecture 12

Serre duality, varieties over Fq and
their zeta function

12.1 Serre duality

Let X be an irreducible projective smooth curve and let D =
∑
P∈X D(P )P be a divisor on X . For

ω ∈ Ω1
K(X) a non-zero rational 1-form on X we define:

div(ω) =
∑
P∈X

vP (ω)P.

We define:

H0(X,Ω1(−D)) := {0 6= ω ∈ Ω1
K(X) : div(ω)−D ≥ 0} ∪ {0}

= {0 6= ω ∈ Ω1
K(X) : ∀P ∈ X, vP (ω) ≥ D(P )} ∪ {0}.

Fact 12.1.1 H0(X,Ω1(−D)) is finite dimensional.

Recall that we have the following map for X = U1 ∪ U2, U1, U2 affine open:

δ : H0(U1, D)⊕H0(U2, D)→ H0(U1 ∩ U2, D), (f1, f2) 7→ f1|U1∩U2
− f2|U1∩U2

.

The cokernel of this map was defined to be H1(X,D). We define the following pairing:

(12.1.2) 〈·, ·〉 : H0(U1 ∩ U2, D)×H0(X,Ω1(−D))→ k, (g, ω) 7→
∑

P∈X−U2

resP (g·ω).

Theorem 12.1.3 (Serre duality) Let X be a smooth irreducible projective curve. The pairing in (12.1.2)
induces a perfect pairing

H1(X,D)×H0(X,Ω1(−D))→ k.

It does not depend on the choice of the pair (U1, U2) in the same sense as in Facts 8.3.5.

Remark 12.1.4 We have chosen to sum over residues at the points missing U2. One can also decide to do
it for the points missing U1, and this would change the pairing by a factor −1. To see this, first notice that
U c1 ∩ U c2 = ∅ and by definition g·ω is regular at the points of U1 ∩ U2. Furthermore, one can show that for

85
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all θ ∈ Ω1
K(X) one has

∑
P∈X resP (θ) = 0. This gives:

0 =
∑
P∈X

resP (g·ω)

=
∑

P∈X−U1

resP (g·ω) +
∑

P∈X−U2

resP (g·ω) +
∑

P∈U1∩U2

resP (g·ω)

=
∑

P∈X−U1

resP (g·ω) +
∑

P∈X−U2

resP (g·ω).

Corollary 12.1.5 Let X be a smooth irreducible projective curve. Then H0(X,Ω1) and H1(X,OX) are
both of dimension g, the genus of X .

Proof By Theorem 12.1.3 the finite dimensional k-vector spaces H0(X,Ω1) and H1(X,OX) are iso-
morphic to each other’s dual, hence they have the same dimension. �

Using Riemann-Roch and Serre duality, one obtains the following theorem.

Theorem 12.1.6 Let X be a smooth irreducible projective curve, and D a divisor on X . Then

dimH0(X,D)− dimH0(X,Ω1(−D)) = deg(D) + 1− g.

Definition 12.1.7 Let X be a smooth irreducible projective curve. For ω0 ∈ Ω1
K(X) non-zero, the divisor

div(ω0) is called a canonical divisor.

Remark 12.1.8 Let X be a smooth irreducible projective curve. For ω = f ·ω0 with f ∈ K(X)× and ω0

as above, div(ω) = div(ω0) + div(f), so two canonical divisors differ by a principal divisor.

Lemma 12.1.9 Let X be a smooth irreducible projective curve. For D a divisor on X , consider the fol-
lowing map ϕ : K(X) → Ω1

K(X), f 7→ f ·ω0. This map induces an isomorphism of k-vector spaces
H0(X,div(ω0)−D)→ H0(X,Ω1(−D)).

Proof Notice that:

f ·ω0 ∈ H0(X,Ω1(−D)) ⇐⇒ div(f ·ω0)−D ≥ 0

⇐⇒ div(f) + (div(ω0)−D) ≥ 0

⇐⇒ f ∈ H0(X,div(ω0)−D).

�

Theorem 12.1.10 Let X be a smooth irreducible projective curve.
i. Let ω0 ∈ Ω1

K(X) be non-zero. Then deg(div(ω0)) = 2g− 2. In other words, every canonical divisor
on X has degree 2g − 2.

ii. Let f be inK(X)×. Then deg(div(f)) = 0. In other words, every principal divisor has degree zero.
iii. LetD be a divisor onX . ThenH0(X,D) = {0} if degD < 0, and dimH0(X,D) = degD+1−g

if degD > 2g − 2.

Proof i. We use Theorem 12.1.6 with D = div(ω0) in combination with the above lemma and Corol-
lary 12.1.5. We get:

deg(D) = g − 1 + dimH0(X,D)− dimH0(X,Ω1(−D))

= g − 1 + dimH0(X,Ω1(0))− dimH0(X, 0)

= g − 1 + g − 1

= 2g − 2.
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ii. We have proved this already in Proposition 11.1.8. Here is another proof, using a canonical divisor.
Let f be in K(X)×. Take ω ∈ Ω1

K(X) nonzero. Then div(f ·ω) = div(f) + div(ω). Hence div(f) is the
difference of two canonical divisors and therefore it has degree zero.

iii. The first case follows directly from ii. For the second case, notice that H0(X,Ω1(−D)) = {0} and
apply Theorem 12.1.6. �

Remark 12.1.11 We note that 2− 2g is the Euler characteristic of the sphere with g handles attached to it.

12.2 Projective varieties over Fq
Let Fq be a finite field with #Fq = q elements. Let Fq → F be an algebraic closure. Now consider
σ : F→ F, a 7→ aq . Then σ is an automorphism of F and Fq = {a ∈ F : σ(a) = a}.

LetX ⊂ Pn = Pn(F) be closed and let I ⊂ F[x0, . . . , xn] be its ideal; I homogeneous and radical. As-
sume that I is generated by elements in Fq[x0, . . . , xn], that is, I = (f1, . . . , fr) with fi ∈ Fq[x0, . . . , xn]

for all i. We say: “X is defined over Fq . ” This gives X some extra structures.

i. The q-Frobenius endomorphism FX : X → X , a = (a0 : · · · : an) 7→ (aq0 : · · · : aqn). This is a mor-
phism of varieties over F. Note that for a inX , FX(a) = a if and only if a ∈ X(Fq) := Pn(Fq)∩X .

ii. An affine presentation of X “defined over Fq .” Let Xi = Z(fi,1, . . . , fi,r) ⊂ An with

fi,k = fk(xi,0, . . . , xi,n) ∈ Fq[{xi,j : j 6= i}]

and Xi,j = D(xi,j) ∩Xi with ϕi,j : Xi,j →̃ Xj,i where ϕi,j is defined by polynomials over Fq .

Definition 12.2.1 The category of projective varieties over Fq has as objects the pairs (X,FX) as above,
and as morphisms the f : X → Y (morphisms of varieties over F) such that FY ◦ f = f ◦ FX .

12.3 Divisors on curves over Fq
Let X0 := (X,FX) be a projective variety over Fq , with X irreducible and smooth of dimension 1 (so X
is a smooth irreducible projective curve).

Definition 12.3.1 A prime divisor on X0 of degree d is a divisor D = P1 + · · ·+ Pd on X with the Pi in
X distinct and transitively permuted by FX . We let deg(D) = d.

Example 12.3.2 If X0 = (P1, FP1) and D is a prime divisor on X0, then either D = ∞ or there is an
irreducible f ∈ Fq[x] such that D is the formal sum of the zeros of f in F.

Note that dimFq (Fq[x]/(f)) = deg(f) = deg(D). So the prime divisors are closely related to maximal
ideals of a certain ring, and this motivates our next definition.

Definition 12.3.3 We define the zeta function of X0 as

Z(X0, t) :=
∏

D prime

1

1− tdegD
∈ Z[[t]].

Remark 12.3.4 This product indeed converges because for all r ≥ 1, X(Fqr ) ⊂ Pn(Fqr ) is finite. So the
number of FX -orbits of length r is finite.

Definition 12.3.5 Let P be the set of prime divisors on X0. We define the group of divisors on X0 as
Div(X0) := Z(P ), and Div(X0)+ := N(P ), the subset of effective divisors.
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The map FX : X → X induces a homomorphism FX : DivX → DivX and we have that DivX0 is
the subgroup of DivX consisting of those divisors D that satisfy FX(D) = D.

Proposition 12.3.6 We have Z(X0, t) =
∑
n≥0 dn · tn, with dn = #{D ∈ Div(X0)+ : deg(D) = n}.

Proof

Z(X0, t) =
∏
D∈P

1

1− tdeg(D)
=
∏
D∈P

∑
n≥0

tn·deg(D) =
∑

D∈Div(X0)+

tdegD =
∑
n≥0

dnt
n.

�

The same argument is used for establishing the Euler product for the Riemann zeta function.
We want to study Div(X0) using finite dimensional Fq-vector spaces H0(X0, D). We take the shortest

route to define these: via the action of σ on K(X).
Let U ⊂ X be a nonempty open affine subset, defined over Fq: U is closed in An, I(U) = (f1, . . . , fr),

with fi ∈ Fq[x1, . . . , xn]. Then σ acts on F[x1, . . . , xn], g =
∑
i gix

i is mapped to σg :=
∑
i(σgi)x

i.
Note that σ(I(U)) = I(U), since the fi are fixed by σ. So we even have an induced action of σ on
O(U) = F[x1, . . . , xn]/I(U). One can show that this action of σ on O(U) is independent of the chosen
embedding in An.

Now recall that K(X) = Q(O(U)) (the fraction field), so we have an action on K(X) as well. We put
K(X0) := K(X)σ = {f ∈ K(X) : σ(f) = f}. For D ∈ Div(X0) we have an induced action of σ on
H0(X,D) and we put H0(X0, D) := H0(X,D)σ .

Theorem 12.3.7 In this situation, dimFq
H0(X0, D) = dimFH

0(X,D).

Now consider the following exact sequence (where Pic(X0) := coker(div)):

0→ F×q → K(X0)×
div→ Div(X0)→ Pic(X0)→ 0

We also have the degree map deg : Div(X0)→ Z. Since the degree of an element coming from K(X0)×

is zero, this factors through Pic(X0), so we obtain a map deg : Pic(X0)→ Z.

Theorem 12.3.8 The map deg : Div(X0)→ Z is surjective.

Proof We use the Hasse-Weil inequality, which will be proved later, but not using the results of this lecture
and the next.

If there is a point in X0(Fq), then we directly find an element with degree 1, and we are done. So
suppose that this does not happen. Let r be prime, and large enough such that qr + 1− 2g·qr/2 > 0. Then
by the Hasse-Weil inequality X0(Fqr ) 6= ∅, hence there is a prime divisor of degree r. Now take two such
primes r to find divisors which have coprime degree and hence our map is surjective. �

The following proposition gives the zeta function as a counting function for the number of rational points
on X0 over finite extensions of Fq .

Proposition 12.3.9 Let X0 = (X,FX) be a projective curve over Fq , with X smooth and irreducible. The
identity

Z(X0, t) = exp(

∞∑
n=1

#X(Fqn)
tn

n
)

holds.
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Proof For a ∈ X(k) denote by OrbFX
(a) ⊂ X(k) the FX -orbit of a. Note that

X(Fqn) = {a ∈ X(k) : FnX(a) = a}

=
⊔
d|n

{a ∈ X(k) : # OrbFX
(a) = d} .

Also note that
#{a ∈ X(k) : # OrbFX

(a) = d} = d ·#{D ∈ P : degP = d}

for each d ∈ N, so that ∑
d|n

d ·#{D ∈ P : degP = d} = #X(Fqn) .

It follows that

logZ(X0, t) =
∑
D∈P

log

(
1

1− tdegD

)

=
∑
D∈P

∑
i>0

ti degD

i degD
degD

=

∞∑
n=1

tn

n

∑
d|n

d ·#{D ∈ P : degP = d}

=

∞∑
n=1

tn

n
#X(Fqn)

as required. �

12.4 Exercises

Exercise 12.4.1 Let X be an irreducible affine curve, x ∈ X , t ∈ O(X) := OX(X) non-zero with
div(t) = x, and m ⊂ O(X) the maximal ideal of x.

i. Show that m = (t). Hint: we have (t) ⊂ m; consider O(X)/(t)→ O(X)/m.

ii. Show that for f ∈ O(X) with f(x) = 0, there is a unique g ∈ O(X) with f = tg.

iii. Let f ∈ O(X) be non-zero, with div(f) = nx for some n ∈ Z≥0. Show that there is a unique
invertible element g ∈ O(X) such that f = tng.

Exercise 12.4.2 Let n ∈ Z≥0.

i. Compute a k-basis for H1(P1,−n·0).

ii. Compute a k-basis for H0(P1,Ω1(n·0)).

iii. Give the Serre duality pairing explicitly.

Exercise 12.4.3 Let X and D and g and ω be as in (12.1.2). Show that
∑
P∈X−U2

resP (gω) does not
depend on the choice of representative g in the class g, i.e., for g1 ∈ H0(U1, D) show that∑

P∈X−U2

resP ((g + g1)ω) =
∑

P∈X−U2

resP (gω),

and similarly for g2 ∈ H0(U2, D). Here, you can use that for any η ∈ Ω1
K(X) one has

∑
P∈X resP (η) = 0.
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Exercise 12.4.4 This is a continuation of exercise 11.3.4.
Consider X = P1 × P1 and use coordinates x : y on the first factor and u : v on the second factor.
Denote the prime divisors {(0 : 1)} × P1 and P1 × {(0 : 1)} by V and H , respectively.
Assume that k is of characteristic p and that q is a power of p. Let

F : P1 → P1, (a0 : a1) 7→ (aq0 : aq1)

be the q-Frobenius endomorphism. Let ∆ ⊂ P1 × P1 be the diagonal and let Γ = {(P, F (P )) : P ∈ P1}
be the graph of the q-Frobenius.

i. Show that ∆ = Z(f) for some f which is irreducible and bihomogeneous of bidegree (1, 1).

ii. Show that Γ = Z(f) for some f which is irreducible and bihomogeneous of bidegree (q, 1).

iii. Compute the four by four symmetric matrix whose entries are the intersection products of all pairs
of divisors in {H,V,∆,Γ}.



Lecture 13

Rationality and functional equation

13.1 Divisors of given degree

Let Fq → F be an algebraic closure, X ⊂ Pn = Pn(F) be closed, irreducible, smooth of dimension 1
and defined over Fq . Let X0 = (X,FX) be the corresponding variety over Fq . We introduce some more
notation concerning (effective) divisors and divisor classes. Let Div(X0)+ ⊂ Div(X0) be the space of
effective divisors (that is, those divisors D ≥ 0).

Definition 13.1.1 For n ∈ Z, let Divn(X0) := deg−1{n}, the set of divisors of degree n. Also, let
Divn(X0)+ := Divn(X0) ∩Div(X0)+ and Picn(X0) := deg−1{n}.

The zeta function of X0 is Z(X0, t) =
∑
n≥0 dnt

n, where dn = # Divn(X0)+.

Remark 13.1.2 As the degree map is a surjective morphism of groups, there are bijections, for all inte-
gers n, Div0(X0)→ Divn(X0) and Pic0(X0)→ Picn(X0).

Let ϕ : Div(X0)→ Pic(X0) be the map that sends a divisor to its class in the Picard group.

Lemma 13.1.3 Let D ∈ Div(X0)+. Write D for the image of D in PicX0. Then the map(
H0(X0, D)− {0}

)
/F×q −→ ϕ−1{D}, f 7→ div(f) +D

is a bijection.

Proof For f ∈ K(X0)× we have f ∈ H0(X0, D) if and only if div(f) +D ≥ 0. For f1, f2 ∈ K(X0)×

we have div(f1) = div(f2) if and only if f1 = λf2 for some λ ∈ F×q . Lastly, observe that ϕ−1{D}
consists precisely of the E ∈ Div+X0 such that E −D = div(f) for some f ∈ K(X0)×. �

Corollary 13.1.4 For all n ∈ Z, we have

dn =
∑

D∈Picn(X0)

qh
0(D) − 1

q − 1
,

where h0(D) = dimFq H
0(X0, D).

Corollary 13.1.5 For all n ≥ 2g − 1, we have

dn = (# Picn(X0))
qn+1−g − 1

q − 1
.

The group Pic0(X0) is finite.
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13.2 The zeta function of X0

We are now ready to prove the rationality of the zeta function.

Theorem 13.2.1 (Rationality) There is a P ∈ Z[t]≤2g such that

Z(X0, t) =
P (t)

(1− t)(1− qt)
.

Proof This is now a direct computation:

Z(X0, t) =
∑
n≥0

dnt
n

=

2g−2∑
n=0

dnt
n +

(
# Pic0(X0)

) ∑
n≥2g−1

qn+1−g − 1

q − 1
tn

=

2g−2∑
n=0

dnt
n +

# Pic0(X0)

q − 1
t2g−1

(
qg

1− qt
− 1

1− t

)
.

�

By Proposition 12.3.9 we have Z(X0, 0) = 1, and it follows that P (0) = 1.
The next step is to use Serre duality to deduce the functional equation for Z(X0, t). Let ω ∈ Ω1

K(X0)

be non-zero. Then the involution D 7→ div(ω)−D on Div(X0) induces for every n ∈ Z bijections

Divn(X0) −→ Div2g−2−n(X0) and Picn(X0) −→ Pic2g−2−n(X0).

From Serre duality we know that h0(D)− h0(div(ω)−D) = deg(D) + 1− g.

Lemma 13.2.2 For all n ∈ Z with 0 ≤ n ≤ 2g − 2 we have

dn − qn+1−gd2g−2−n =
qn+1−g − 1

q − 1
# Pic0(X0).

Proof Let D ∈ Divn(X0). Recall that

#ϕ−1(D) =
qh

0(D) − 1

q − 1

and

#ϕ−1(div(ω)−D) =
qh

0(div(ω)−D) − 1

q − 1
=
qh

0(D)−(n+1−g) − 1

q − 1
.

From this we see that

#ϕ−1(D)− qn+1−g#ϕ−1(div(ω)−D) =
qn+1−g − 1

q − 1
.

The result follows by summing over all classes in Picn(X0). �

For the rest of the proof of the functional equation we will do our bookkeeping in the Q[t, t−1]-module

Q[[t, t−1]] =

{∑
n∈Z

ant
n : ∀n ∈ Z, an ∈ Q

}
.
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Despite the notation, this object is not a ring. It contains Q[[t]] and Q[[t−1]].
Note that dn = 0 for n < 0, so we have Z(X0, t) =

∑
n∈Z dnt

n and

Z(X0, (qt)
−1) =

∑
n∈Z

dn(qt)−n =
∑
n∈Z

d−nq
ntn.

Hence we have ∑
n∈Z

qn+1−gd2g−2−nt
n = (t2q)g−1Z(X0, (qt)

−1).

So in Q[[t, t−1]], we have

Z(X0, t)− (t2q)g−1Z(X0, (qt)
−1) =

# Pic0(X0)

q − 1

∑
n∈Z

(qn+1−g − 1)tn.

The sum on the right-hand side splits as

q1−g
∑
n∈Z

(qt)n −
∑
n∈Z

tn.

The first sum is annihilated by 1− qt and the second one by 1− t, so in Q[[t, t−1]] we have

(1− t)(1− qt)
(
Z(X0, t)− (t2q)g−1Z(X0, (qt)

−1)
)

= 0.

Rearranging the terms, we see that

(1− t)(1− qt)Z(X0, t) = (1− t)(1− qt)(t2q)g−1Z(X0, (qt)
−1).

The left-hand side is in Q[[t]] and the right-hand side is in t2gQ[[t−1]]. It follows that both sides are in
Q[t]≤2g and are equal. This not only gives us the functional equation, but also proves the rationality in a
different way. In conclusion, we have proven the following theorem.

Theorem 13.2.3 (Functional equation) In Q(t), we have Z(X0, t) = (t
√
q)2g−2Z(X0, (qt)

−1).

Corollary 13.2.4 We have P (t) = (t
√
q)2gP ((qt)−1). That is, if we write P (t) = P0t

0 + · · · + P2gt
2g ,

then P2g−n = qg−nPn. In particular, since P0 = 1 we have P2g = qg and hence P has degree precisely
2g.

Corollary 13.2.5 There are α1, . . . , αg ∈ C, all non-zero such that

P (t) = (1− α1t) · · · (1− αgt)(1− (q/α1)t) · · · (1− (q/αg)t).

In the next, final lecture we will prove the Riemann Hypothesis for curves over finite fields, which is
the following more precise statement:

Theorem 13.2.6 (Riemann Hypothesis) Let X0 = (X,FX) be a projective curve defined over Fq , with
X smooth and irreducible. Write Z(X0, t) = P (t)/(1 − t)(1 − qt) for the zeta function of X0, with
P (t) = (1 − α1t) · · · (1 − αgt)(1 − (q/α1)t) · · · (1 − (q/αg)t), then for each i = 1, . . . , g we have
|αi| =

√
q.

In other words, all the zeroes of ζ(X0, s) := Z(X0, q
−s) have real part equal to 1/2; whence the terminol-

ogy.
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13.3 Exercises

Exercise 13.3.1 Let k be an arbitrary algebraically closed field, and X an irreducible projective variety
over k, smooth of dimension one, and of genus zero. Let P , Q and R in X be distinct.

i. Using RR+SD, show that there is a unique f ∈ K(X)× such that div(f) = P −R and f(Q) = 1.

ii. Show that the morphism of k-algebras k[x]→ OX(X − {R}) that sends x to f is an isomorphism.
Hint: use that OX(X − {R}) is the union of the H0(X,n·R), n ∈ N.

iii. Similar for k[x−1]→ OX(X − {P}), x−1 7→ f−1.

iv. Show that f gives an isomorphism X → P1.

Exercise 13.3.2 Let k be an arbitrary algebraically closed field, and X an irreducible projective variety
over k, smooth of dimension one, and of genus one.

i. Show, using RR+SD, that the map of sets X → Pic1(X), P 7→ P , is bijective.

ii. Let O ∈ X . Show that the map ϕ : X → Pic0(X), P 7→ P −O is bijective.

iii. Deduce that given P andQ inX there is a uniqueR inX such that (R+O)− (P +Q) is a principal
divisor, and that the map (of sets) ⊕ : X ×X → X , (P,Q) 7→ R defines a group law on X with O
as neutral element.

Exercise 13.3.3 Let F2 → F be an algebraic closure. Let X = Z(x2
1x2 + x1x

2
2 + x3

0 + x3
2) ⊂ P2(F); it is

defined over F2 and we let X0 denote this variety over F2. You may assume that x2
1x2 + x1x

2
2 + x3

0 + x3
2

is irreducible in F[x0, x1, x2]. The intersection X ∩D+(x2) ⊂ A2 (notation as in Exercise 4.4.2) is given
by the equation y2 + y = x3 + 1, where x = x0/x2 and y = x1/x2. Note that X has exactly one point
∞ := (0 : 1 : 0) on Z(x2).

i. Show that X is smooth of dimension 1.

ii. Show that the rational 1-form ω := dx = x−2dy has no poles and no zeros on X . Deduce that the
genus of X is 1.

iii. List the elements of X(F2) and X(F4). Use the following notation for F4: F4 = {0, 1, z, z−1}, with
z2 + z + 1 = 0.

iv. Show that Z(X0, t) = (1 + 2t2)/(1− t)(1− 2t).

v. Compute # Div2(X0)+ by expanding Z(X0, t) in Z[[t]] up to order 2.

vi. List all the elements of Div2(X0)+. For example, 2∞ and (0, z) + (0, z−1) are two of them.

vii. Compute the divisors of the functions x, x+ 1, y, y + 1, x+ y and y + x+ 1.

viii. Give explicitly the map Div2(X0)+ → Pic2(X0), D 7→ D; you may use without proof that
Pic0(X0) = {0, (1, 0)−∞, (1, 1)−∞} (this works as in Exercise 13.3.2).



Lecture 14

Hasse-Weil inequality and Riemann
Hypothesis

14.1 Introduction

In the exercise at the end of this lecture we will show how the Riemann Hypothesis for curves over finite
fields (Theorem 13.2.6) follows from: the rationality of Z(X0, t), the functional equation of Z(X0, t), and
the so-called Hasse-Weil inequality. This exercise is the same as Exercise 5.7 of Appendix C of [Hart]. We
refer to this same Appendix C for more background material and the statement of a wide generalization of
the Riemann hypothesis for curves.

In this lecture we prove the Hasse-Weil inequality (Theorem 14.1.1), using the Hodge index theorem
(that we admit without proof) and intersection theory on the surface X ×X .

Recall that the rationality of Z(X0, t) is given by Theorem 13.2.1, and the functional equation by
Theorem 13.2.3.

Theorem 14.1.1 (Hasse-Weil inequality) Let X be a projective variety over Fq , which, as variety over Fq ,
is a smooth projective irreducible curve of genus g. Then:

|#X(Fq)− (q + 1)| ≤ 2g
√
q

Example 14.1.2 (of Theorem 14.1.1) Let q be a prime power, n ∈ Z≥1. Let f ∈ Fq[x, y, z]n be a
homogeneous polynomial of degree n. Write

f =
∑

i,j,k≥0

i+j+k=n

fi,j,kx
iyjzk

and assume that f , ∂f/∂x, ∂f/∂y, ∂f/∂z have no common zero in F3

q − {0}. In this case the genus is
equal to (n− 1)(n− 2)/2. Then we have:∣∣∣∣∣#{(a, b, c) ∈ F3

q − {0} : f(a, b, c) = 0}
q − 1

− (q + 1)

∣∣∣∣∣ ≤ 2 · (n− 1)(n− 2)

2

√
q.

Here one should really think of P2(Fq) = (F3
q − {0})/F×q , the set of lines through 0 in F3

q; the “projective
plane”.

Note that for n equal to 1 or 2 the theorem gives an equality that we can check, and it also shows why
we need the “points at ∞”, that is, why we must “compactify”. Indeed, for n = 1 we have a non-zero
linear homogeneous polynomial. In F3

q −{0} we find q2− 1 points satisfying the equation given by f , and
indeed (q2 − 1)/(q − 1) = q + 1. For the case n = 2 one can parametrise a conic using a rational point.
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14.2 Self-intersection of the diagonal

(Here we assume that k is any algebraically closed field) In this section we will sketch a proof of the
following theorem:

Theorem 14.2.1 LetX be a smooth irreducible projective curve, g its genus, and ∆ ⊂ X×X the diagonal.
Then ∆·∆ = 2− 2g.

Remark 14.2.2 Note that 2− 2g is minus the degree of a canonical divisor. We give a proof relating ∆·∆
with the degree of such a canonical divisor.

We start with some affine geometry. Let Y be an affine variety and A(Y ) = k[x1, . . . , xn]/(f1, . . . , fs) its
coordinate ring. Then the coordinate ring of Y × Y is

A(Y × Y ) = k[x, y]/(f1(x), . . . , fs(x), f1(y), . . . , fs(y)),

where x = (x1, . . . , xn) and y = (y1, . . . , yn). The projection pr1 : Y × Y → Y , (P,Q) 7→ P gives the
k-algebra morphism pr∗1 : A(Y )→ A(Y ×Y ). It sends xi inA(Y ) to xi inA(Y ×Y ). It makesA(Y ×Y )

into an A(Y )-algebra. We also have the diagonal embedding:

∆: Y −→ Y × Y, P 7→ (P, P ),

giving us a k-algebra morphism in the other direction:

∆∗ : A(Y × Y ) −→ A(Y ), xi 7→ xi, yi 7→ xi.

Let I be the kernel of ∆∗. This is the ideal of ∆. It is an A(Y )-module via pr∗1, and it is generated by the
(yi − xi)1≤i≤s.

Proposition 14.2.3 The map D : A(Y ) → I/I2, f 7→ pr∗1f − pr∗2f is a derivation, and the induced
morphism of A(Y )-modules Ω1

A(Y ) → I/I2 is an isomorphism.

Proof For f in A(Y ) we have ∆∗(pr∗1f − pr∗2f) = f − f = 0, hence pr∗1f − pr∗2f ∈ I . We claim that
D is indeed a derivation. That D is k-linear is obvious. We now check that the Leibniz rule is satisfied.
Computing modulo I2 we find:

D(fg) = (pr∗1f)(pr∗1g)− (pr∗2f)(pr∗2g)

= (pr∗1f)(pr∗1g)− (pr∗2f)(pr∗2g) + ((pr∗1f)− (pr∗2f)) ((pr∗1g)− (pr∗2g))

= (pr∗1f)((pr∗1g)− (pr∗2g)) + (pr∗1g)((pr∗1f)− (pr∗2f))

= f ·Dg + g·Df.

As D : A(Y ) → I/I2 is a k-derivation, there is a unique morphism of A(Y )-modules ϕ : Ω1
A(Y ) → I/I2

such that D = ϕ ◦ d.
We give an inverse to ϕ. Let ψ : k[x, y]→ Ω1

A(Y ) be the k-linear map that sends, for all f and g in k[x],
(pr∗1f)(pr∗2g) to −f ·dg; to see that this exists, use the k-basis of all monomials. Then for f in I(Y ), and
g in k[x], ψ((pr∗1f)(pr∗2g)) = 0 and ψ((pr∗1g)(pr∗2f)) = 0, hence ψ factors through k[x, y]→ A(Y × Y ).
The resulting k-linear map ψ : A(Y × Y ) → Ω1

A(Y ) is a morphism of A(Y )-modules. We claim that ψ is
zero on I2. As ψ is k-linear, even A(Y )-linear, and I is generated as ideal by the pr∗1f − pr∗2f , it suffices
to show that ψ is zero on all elements of the form (pr∗1f − pr∗2f)(pr∗1g − pr∗2g)pr∗2h, with f , g, and h
in A(Y ). This computation is as follows. We have

(pr∗1f−pr∗2f)(pr∗1g−pr∗2g)pr∗2h = (pr∗1(fg))(pr∗2h)− (pr∗1f)(pr∗2(gh))− (pr∗1g)(pr∗2(fh))+pr∗2(fgh).
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Under ψ, this is sent to:

− fg·dh+ f ·d(gh) + g·d(fh)− d(fgh)

= −fg·dh+ fg·dh+ fh·dg + gf ·dh+ gh·df − gh·df − fh·dg − fg·dh = 0.

So, we have our morphismψ : I/I2 → Ω1
A(Y ), and, for f inA(Y ), it sends pr∗1f − pr∗2f to 0−(−df) = df .

Therefore, this ψ is the inverse of ϕ. �

Remark 14.2.4 The notation and some arguments in our proof of Proposition 14.2.3 would be much sim-
pler if we used the tensor product,A(Y ×Y ) = A(Y )⊗kA(Y ), and even more simple and very conceptual
if we had developed relative differentials. So, the reader should not be worried by the complicated notation
here, and by the seemingly meaningless computations.

Now we go back to the situation as in Theorem 14.2.1.

Proposition 14.2.5 Let P be in X , and t ∈ OX(U) a uniformiser at P . Then there is an open neighbor-
hood V of (P, P ) in X ×X such that pr∗1t− pr∗2t is a generator for the ideal of ∆ ∩ V .

Proof By Proposition 11.1.3, there is an open affine neighborhood V of (P, P ) on which the ideal of ∆ is
generated by some f in OX×X(V ). By intersecting with U × U , we may and do assume that pr∗1t− pr∗2t

is regular on V . As pr∗1t−pr∗2t is zero on ∆, there is a unique g inOX×X(V ) such that pr∗1t−pr∗2t = gf .
Let i : X → X × X be the map Q 7→ (Q,P ). Then, under i∗ : OX×X(V ) → OX(i−1V ) we get
t = (i∗g)·(i∗f). But t is not in m2, where m is the maximal ideal of P , and i∗f is in m, so i∗g is not in m.
Hence g(P, P ) 6= 0, and g is a unit on a neighborhood of (P, P ). �

Proof (of Theorem 14.2.1) We follow the procedure in Definition 11.2.1. By Proposition 14.2.5 there are
an r in N, non-empty affine opens Vi ⊂ Ui × Ui, for i ∈ {1, . . . , r}, covering ∆ and all meeting ∆, open
affines Ui in X and ti in OX(Ui), such that the ideal of ∆ ∩ Vi is generated by pr∗1ti − pr∗2ti. Then we
have:

∆·∆ =
∑
P∈X

v(P,P )

(
pr∗1tiP − pr∗2tiP
pr∗1t1 − pr∗2t1

∣∣∣∣
∆

)
, where (P, P ) is in ViP .

Let ω be the rational one-form dt1 on X . Then we have:

deg(div(ω)) =
∑
P∈X

vP (ω)

=
∑
P∈X

vP

(
ω

dtiP

)
(dtiP generates Ω1

X at P by Proposition 14.2.3)

=
∑
P∈X

v(P,P )

(
pr∗1t1 − pr∗2t1

pr∗1tiP − pr∗2tiP

∣∣∣∣
∆

)
(ω = dt1 and Proposition 14.2.3)

= −
∑
P∈X

v(P,P )

(
pr∗1tiP − pr∗2tiP
pr∗1t1 − pr∗2t1

∣∣∣∣
∆

)
= −∆·∆.

�

14.3 Hodge’s index theorem

Hodge’s index theorem is discussed in Theorem V.1.9 and Remark V.1.9.1 in [Hart]. Let S be a con-
nected smooth projective surface over an algebraically closed field k. We have the intersection pairing
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· : Pic(S)× Pic(S)→ Z. It is symmetric and bilinear. Let N be its kernel:

N = {x ∈ Pic(S) : ∀y ∈ Pic(S), x·y = 0}.

Let Num(S) := Pic(S)/N . Then the intersection pairing on Pic(S) induces a non-degenerate symmetric
bilinear pairing · : Num(S) × Num(S) → Z. It is a theorem by Néron and Severi (see the discussion
in [Hart]) that Num(S) is finitely generated as Z-module. Hence it is free of some finite rank d, because
the intersection pairing injects it into HomZ-Mod(Num(S),Z). We have d ≥ 1, since a hyperplane section
of S defines a non-zero element of Num(S). Choosing a Z-basis b = (b1, . . . , bd) of Num(S) gives the
intersection pairing as a symmetric d by d matrix with coefficients in Z and with non-zero determinant.
One can take a basis c of Q⊗ Num(S) such that the matrix of the intersection pairing with respect to c is
diagonal. The diagonal coefficients of c are then non-zero, and it is a well-known result in linear algebra
(over R if you want) that the numbers of positive and of negative coefficients do not depend on the choice
of the basis c. Hodge’s index theorem tells us what these numbers are.

Theorem 14.3.1 (Hodge index theorem) The intersection pairing on Q⊗Num(S) has exactly one +.

Remark 14.3.2 Another way to state Hodge’s index theorem (without using Néron-Severi first) is that for
any morphism of Z-modules f : Zd → Pic(S), the symmetric bilinear form on Zd given by sending (x, y)

to (fx)·(fy) has, after extending scalars to R and diagonalisation, at most one +, and there are f for which
there is exactly one +.

14.4 Proof of the Hasse-Weil inequality

Let X/Fq as in the statement of the Hasse-Weil inequality (Theorem 14.1.1) and let F : X → X be the
Frobenius map. We now work with four prime divisors, each isomorphic to X and we will calculate the
matrix of the intersection pairing for the subspace generated by these four prime divisors. The divisors are:

H = {(x, pt) : x ∈ X}, V = {(pt, x) : x ∈ X},
∆ = {(x, x) : x ∈ X}, Γ = {(x, F (x)) : x ∈ X}.

We calculate the tangent spaces at the point (P,Q) (assuming that it lies on the divisor), as seen as a
subspace of TX(P )× TX(Q) = TX×X(P,Q). One then finds:

TH(P,Q) = k·(1, 0), TV (P,Q) = k·(0, 1), T∆(P,Q) = k·(1, 1).

For the tangent space to Γ consider the two projection maps to X . The first one

pr1 : Γ→ X, (P, F (P )) 7→ P

is an isomorphism (an inverse is given by P 7→ (P, F (P ))), so induces an isomorphism on tangent spaces.
If we use pr1 to identify Γ with X then pr2 is the same as the Frobenius map F : X → X . The Frobenius
map induces the zero map on tangent spaces since the derivative of any p-th power of a function is zero.
So we get:

TΓ(P,Q) = k·(1, 0).

Notice that Γ is not constant horizontal, but its tangent direction is everywhere horizontal. (Compare with
the function x 7→ xq which is non-constant, but its derivative is 0).

We compute the intersection matrix. Here we have to do 10 calculations (by symmetry):

• H·H = 0. If H = X × {pt}, then find a divisor D on X with D ∼ {pt} such that D and {pt} are
disjoint. Then H·H = H·(X ×D) = 0, since H ∩X ×D = ∅.
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• H·V = 1. Indeed, we have one intersection point and the intersection is transversal there (see the
calculation of the tangent spaces).

• H·∆ = 1. Again, we have a transversal intersection.

• H·Γ = q. We have one intersection point (P, F (P )) since F : X → X is a bijection, but we don’t
have a transversal intersection here, so we need to do more computations. Let t be a uniformiser at
FP . Then pr∗2t is a local equation for H , near (P, F (P )). Restricting pr∗2t to Γ, and pulling back
via the isomorphism X → Γ, a 7→ (a, Fa), gives F ∗t near P . One can show that vP (F ∗t) = q.
For example, when X = P1 and P = 0 one finds dim k[x, y]/(y, xq − y) = q (a basis consists of
1, x, . . . , xq−1).

• V ·V = 0. By symmetry, V ·V = H·H .

• V ·∆ = 1. By symmetry, V ·∆ = H·∆.

• V ·Γ = 1. Since F : X → X is a bijection, we have one intersection point, but this time we have a
transversal intersection.

• ∆·∆ = 2− 2g. This is Theorem 14.2.1.

• ∆·Γ = #X(Fq) := N . We have a transversal intersection again. We calculate:

∆·Γ = #∆ ∩ Γ = #{(x, y) ∈ X ×X : x = y, F (x) = y} = #X(Fq).

• Γ·Γ = q(2 − 2g). This is again a harder case (it uses some techniques which we don’t have yet).
Consider (F, id) : X × X → X × X . This inverse image under this map of ∆ is Γ. One then
obtains (from a general theorem) that Γ·Γ = deg(F, id)·(∆·∆). This degree is the degree of the
corresponding extension of function fields, and one can show that this degree is q in our case.

We put these calculations in a matrix with respect to H,V,∆,Γ. One then gets:
0 1 1 q

1 0 1 1

1 1 2− 2g N

q 1 N q(2− 2g)


Now one can make some entries 0 by choosing some other divisors (by some linear invertible transforma-
tion), namely H,V,∆− V −H,Γ− qV −H . With these divisors one gets the following matrix A:

A :=


0 1 0 0

1 0 0 0

0 0 −2g N − 1− q
0 0 N − 1− q −2gq


Remark that this matrix consists of two diagonal blocks. There are now two cases to consider. In the first
case H,V,∆,Γ are dependent in Num(X × X). Then det(A) = 0. In the other case, H,V,∆,Γ are
independent in Num(X × X). Then Theorem 14.3.1 tells us that there is at most 1 positive eigenvalue.
Notice that the eigenvalues of the first block are 1 and −1. Hence the second block has determinant ≥ 0.
In other words:

4g2q − (N − 1− q)2 ≥ 0.

Hence |N − 1− q| ≤ 2g
√
q. This finishes the proof of the Hasse-Weil inequality.
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14.5 Exercises

Exercise 14.5.1 This is Exercise 5.7 of Appendix C of [Hart], with some explanations added. It shows
how the Riemann Hypothesis for curves over finite fields follows from the Hasse-Weil inequality, plus
rationality plus functional equation (apply the series of steps below, with νn = #X(Fqn)).

Let q be a prime power, g ∈ Z≥1, α1, . . . , α2g ∈ C and let Z(t) in C(t) be the rational function with:

Z(t) =
P1(t)

(1− t)(1− qt)
, P1(t) =

2g∏
i=1

(1− αit).

i. Define the complex numbers νn (n ≥ 1) by:

logZ(t) =
∑
n≥1

νn
n
tn.

Show that νn = qn + 1−
∑2g
i=1 α

n
i .

ii. Assume that for all n ≥ 1: |qn + 1− νn| ≤ 2gqn/2. Prove that for all n ≥ 1:∣∣∣∣∣
2g∑
i=1

αni

∣∣∣∣∣ ≤ 2gqn/2.

iii. (This is the essential step!) Prove that for all i: |αi| ≤ q1/2. Hints. There are at least two strategies.
First, you can consider the power series expansion of

∑2g
i=1 αit/(1 − αit) and use a little bit of

complex function theory. Or as follows, by contradiction: assume that for some i one has |αi| > q1/2.
Renumber the αi such that the first m are non-zero, and the others are zero. Let

β = (α1/|α1|, . . . , αm/|αm|) ∈ (S1)m

be the m-tuple of arguments of the αi. Show that the sequence (βn)n≥1 has a convergent subse-
quence. Show that it has a subsequence that converges to 1 = (1, . . . , 1). Get a contradiction.

iv. Assume that Z(t) satisfies the following functional equation:

Z(1/qt) = q1−gt2−2gZ(t).

Prove that for all i ∈ {1, . . . , 2g} there is a j ∈ {1, . . . , 2g} such that αiαj = q. Deduce that for
all i: |αi| = q1/2, and that all the zeros of ζ(s) := Z(q−s) have real part equal to 1/2.



Lecture 15

Appendix: Zeta functions and the
Riemann hypothesis

The purpose of this Appendix is to give the reader some more motivation and background for the study of
zeta functions of varieties over finite fields. Probably the proper context is “zeta functions of schemes of
finite type over Z”. We will get as far as discussing zeta functions of rings of finite type.

15.1 The Riemann zeta function

We start with the definition of the classical Riemann zeta function.

Definition 15.1.1 We define the Riemann zeta function as ζ(s) =
∑
n>0 n

−s, where, for n in Z>0 and s
in C, n−s = e−s logn.

We have some facts about this function.

Fact 15.1.2 The series defining the Riemann zeta function ζ(s) converges absolutely for <(s) > 1. This
can be easily deduced from the fact that for s = a + bi with a, b ∈ R we have that |n−s| = |n−a| and the
fact that

∑
n>0 n

−a converges (absolutely) for a > 1.

Fact 15.1.3 The Riemann zeta function ζ(s) extends uniquely to a holomorphic function on C−{1}. This
extension has the property that ζ(−2n) = 0 for n ∈ Z>0.

Conjecture 15.1.4 (Riemann hypothesis) All other zeros s ∈ C of the Riemann zeta function ζ satisfy
<(s) = 1/2.

Remark 15.1.5 The Riemann zeta function has an Euler product expansion . For s ∈ C with <(s) > 1:

ζ(s) =
∏
p>0

p prime

1

(1− p−s)
.

This last expression will be generalized to define the zeta function of a ring of finite type.

101



102 LECTURE 15. APPENDIX: ZETA FUNCTIONS AND THE RIEMANN HYPOTHESIS

15.2 Rings of finite type

Definition 15.2.1 LetR be a ring. A generating subset ofR is a subset S such that for all subringsR′ ⊂ R
with S ⊂ R′ we have that R′ = R.

Definition 15.2.2 A ring R is said to be of finite type, or finitely generated, if it has a finite generating
subset.

Examples 15.2.3 Here are some examples of rings of finite type:

i. Z (take S = ∅);

ii. Any finite ring R (take S = R);

iii. If R is a ring of finite type then so is R[X] (take S′ = S ∪ {X});

iv. IfR is of finite type and I ⊂ R an ideal thenR/I is finitely generated (take S′ = {s : s ∈ S}, where
s denotes the image of s in R/I).

Examples 15.2.4 Not all rings are of finite type:

i. Z[X1, X2, . . .] is not of finite type (given a finite candidate generating set S let {Xi1 , . . . , Xik} be
the finite set of variables occurring in the polynomials in S. Then S is contained in the strict subring
Z[Xi1 , . . . , Xik ] of Z[X1, X2, . . .]);

ii. Q is not of finite type (given a finite candidate generating set S let N be the least common multiple
of the denominators of the elements of S. Take R′ = Z[1/N ] = {a/N b : a ∈ Z, b ∈ N}. Then
S ⊂ R′ ( Q.)

Theorem 15.2.5 Let R a ring of finite type which is a field. Then R is a finite field.

For a proof, see [Eis], Theorem 4.19. Chapter 4 of this reference provides the proper context for this result:
integral dependence and Hilbert’s Nullstellensatz. See also [Looij].

Corollary 15.2.6 Let R be a ring of finite type and m ⊂ R a maximal ideal. Then the quotient R/m is a
finite field.

15.3 Zeta functions of rings of finite type

Definition 15.3.1 Let R be a ring of finite type. The zeta function of R is defined as follows (for s ∈ C
with <(s) sufficiently large):

ζ(R, s) =
∏
m⊂R

m maximal ideal

1

1− (#R/m)−s

Examples 15.3.2

i. ζ(Z, s) = ζ(s);

ii. ζ({0}, s) = 1 (since there are no maximal ideals);

iii. Let k be a field of q elements. Then ζ(k, s) = (1− q−s)−1 (since 0 is the unique maximal ideal).
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Fact 15.3.3 Let R be a ring of finite type. Then there is a ρ ∈ R such that the product defining ζ(R, s)

converges absolutely for <(s) > ρ. For example, for R = Z[x1, . . . , xn], the product converges for
<(s) > n+ 1 (use exercise 15.5.8).

Remark 15.3.4 From now on we will manipulate certain products and series without carefully looking at
convergence. We implicitly assume that these manipulations are done in the domain of absolute conver-
gence.

Proposition 15.3.5 Let R be a ring of finite type. Then

ζ(R, s) =
∏

p is prime

ζ(R/(p), s).

Proof Let m ⊂ R be a maximal ideal of R. Since R/m is a finite field, it has a finite characteristic p > 0.
This gives us the element p =

∑p
i=1 1 ∈ m. Moreover, we have the following bijection, where we only

consider maximal ideals:

{m ⊂ R| p ∈ m} 1:1←→ {m′ ⊂ R/(p)}
m 7→ m/(p)

m′ + (p) 7→ m′

Now recall that
R/m = R/(p)

/
m/(p),

so they have the same number of elements. �

In general one has the following conjecture (Riemann hypothesis for rings of finite type).

Conjecture 15.3.6 Let R be a ring of finite type. Then s 7→ ζ(R, s) extends to a meromorphic function
on C, and for every s in C at which ζ(R,−) has a pole or a zero we have 2<(s) ∈ Z.

For R = Z this conjecture is equivalent to the Riemann hypothesis, as the zeros and poles of ζ(Z,−) with
<(s) > 1 or <(s) < 0 are known. The main result of this course implies the conjecture for R that are an
Fp-algebra (for some prime number p) generated by two elements.

15.4 Zeta functions of Fp-algebras

For p a prime number we denote by Fp the finite field Z/pZ. A ring R in which p = 0 has the property that
the ring morphism Z→ R factors as Z→ Fp → R. Such rings are called Fp-algebras. Proposition 15.3.5
allows us to express the zeta function of a ring of finite type as a product of zeta functions of Fp-algebras.

If R is an Fp-algebra of finite type and m ⊂ R a maximal ideal then R/m is a field with q = pn

elements for some n ∈ Z≥1. We write deg(m) = n.

Definition 15.4.1 Let R be an Fp-algebra of finite type. We define a formal power series Z(R, t) as
follows:

Z(R, t) =
∏
m⊂R

m maximal ideal

1

1− tdeg(m)
=
∏
m

∑
n≥0

tn· deg(m)

 ∈ Z[[t]].

Remark 15.4.2 Note that ζ(R, s) = Z(R, p−s).
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Here is a deep theorem of Bernard Dwork and Alexander Grothendieck that we will not use, nor prove.
See [Dwork] and [SGA5].

Theorem 15.4.3 Let p be a prime number and R an Fp-algebra of finite type. Then there exist f and g in
Z[t] with f(0) = 1 and g(0) = 1 such that Z(R, t) = f/g.

This implies the meromorphic continuation of Conjecture 15.3.6 for Fp-algebras of finite type. Pierre
Deligne has proved Conjecture 15.3.6 for Fp-algebras of finite type; see [Del].

Now let Fp → Fp be an algebraic closure of Fp and for n in Z>0 let Fpn be the unique subfield of Fp
of pn elements, that is, Fpn is the set of roots in Fp of Xpn −X . For R an Fp-algebra of finite type we let
νn(R) be the number of ring morphisms from R to Fpn .

Remark 15.4.4 Let p be prime and R = Fp[X1, . . . , Xr]/I with I the ideal generated by polynomials
f1, . . . , fm. What are the ring morphisms R → Fpn? We first note that a ring morphism is completely
determined by its values at the generators Xi. Suppose a ring morphism sends Xi to xi ∈ Fpn . Since a
ring morphism sends 0 to 0, it follows that fj(x1, . . . , xr) = 0 in Fpn for all j. On the other hand, if we
have (x1, . . . , xr) in Frpn such that fj(x1, . . . , xr) = 0 for all j, the ring morphism from Fp[X1, . . . , Xr]

to Fpn that sends Xi to xi factors through R. Hence we get:

νn(R) = #{(x1, . . . , xr) ∈ Frpn : fi(x1, . . . , xr) = 0 for i = 1, . . . ,m}.

Definition 15.4.5 The logarithm (of power series) is defined as the map

log : 1 + xQ[[x]] → xQ[[x]]

1− a ∈ 1 + xQ[[x]] 7→ −
∑
n>0

an

n
.

Remark 15.4.6 Note that this sum converges to a formal power series: since x divides a, only finitely
many terms contribute to the coefficient of xn in log(1− a).

Fact 15.4.7 The logarithm is a group morphism from the multiplicative group 1 + xQ[[x]] to the additive
group xQ[[x]].

The following theorem gives a very convenient expression for Z(R, t).

Theorem 15.4.8 For p prime and R an Fp-algebra of finite type, we have:

logZ(R, t) =

∞∑
n=1

νn(R)tn

n
.

Proof First of all we have the following bijection:

{ring morphisms β : R→ Fpn}
1:1←→ {(m, α) : α a ring morphism R/m→ Fpn}

β 7→ (ker(β), β : R/ ker(β)→ Fpn)

R→ R/m
α→ Fpn 7→ (m, R/m

α→ Fpn).

Let now m be a maximal ideal ofR. Note thatR/m has degm embeddings in Fp and that the image of each
embedding is Fpdeg(m) . Recall that the subfields of Fpn are the Fpd with d dividing n. Hence the number
of ring morphisms R/m→ Fpn is deg(m) if deg(m) divides n and is zero otherwise. This gives us:

νn(R) =
∑
d|n

d ·#{m ⊂ R| deg(m) = d}.
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Now we just calculate:

logZ(R, t) = log
∏
m

1

1− tdeg(m)
=
∑
m

log

(
1

1− tdeg(m)

)
=
∑
m

∑
i>0

ti·deg(m)

i

=
∑
m

∑
i>0

ti·deg(m)

i · deg(m)
· deg(m) =

∞∑
n=1

tn

n

∑
d|n

d ·#{m ⊂ R| deg(m) = d} =

∞∑
n=1

νn(R) · t
n

n
.

�

15.5 Exercises

Exercise 15.5.1 Show that a ring is of finite type if and only if it is isomorphic to a quotient of a polynomial
ring over Z with finitely many variables.

Exercise 15.5.2 Let n be a positive integer. Compute ζ(Z/nZ, s).

Exercise 15.5.3 Let p be a prime, r ∈ Z>0, q = pr and R = Fq[X,Y ]/(XY − 1). Compute Z(R, t) and
show that it is a rational function of t.

Exercise 15.5.4 Same as the previous one but with R = Fq[X,Y, Z]/(X + Y 2 + Z3).

Exercise 15.5.5 Same as the previous one but with R = F3[X,Y ]/(X2 + Y 2 + 1).

In the following exercises you may assume that <(s) is sufficiently large so that all occurring infinite
products are absolutely convergent.

Exercise 15.5.6 Let R1 and R2 be rings of finite type. Show that R1 × R2 is of finite type and that
ζ(R1 ×R2, s) = ζ(R1, s)ζ(R2, s).

Exercise 15.5.7 Show that ζ(Z[X]/(Xn), s) = ζ(Z, s).

Exercise 15.5.8 Let R be a ring of finite type. Show that R[X] is of finite type and that

ζ(R[X], s) = ζ(R, s− 1).

Exercise 15.5.9 Let p be a prime,R = Fp[X1, . . . , Xi]/(f1, . . . , fj), andR′ = Fpr [X1, . . . , Xi]/(f1, . . . , fj).
Show that Z(R′, t) =

∏
zr=1 Z(R, zt), with the product taken over the z ∈ C with zr = 1.

Exercise 15.5.10 Let R be the ring F2[X,Y ]/(Y 2 + Y + X3 + 1). From the theory developed in the
lectures one may deduce that there exists an α ∈ C with

Z(R, t) =
(1− αt)(1− ᾱt)

1− 2t
.

Denote the number of solutions of y2 + y + x3 + 1 = 0 with x and y in the field F2n by νn.

i. Show that νn = 2n − αn − ᾱn for all positive integers n;

ii. compute ν1 and ν2 and use this to determine α;

iii. compute ν3 by counting solutions and verify that the formula obtained in (i) and (ii) is correct in
these cases;

iv. determine all the zeroes of ζ(R, s) = Z(R, 2−s).

Optional exercise: use a computer algebra package to do (iii) for νn with larger values of n.
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