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Definition 6.6.1 (Local ring at a point) Let X be a variety, and let P 2 X a point. Let

OX,P := {(U, f) : U ⇢ X is open, P 2 U , and f 2 OX(U)}/ ⇠
where (U, f) ⇠ (V, g) if and only if there is an open and dense W ⇢ U \ V with P 2 W such that f = g
on W .

Notice the similarity of this definition with the definition of K(X); in fact if X is irreducible we have a
natural injective map OX,P ! K(X). The difference is that we only take regular functions defined in a
neighborhood of our fixed point P . In order to show that OX,P is a local ring, consider the (well-defined)
subset

mX,P = {(U, f) : U ⇢ X is open, P 2 U , f 2 OX(U), and f(P ) = 0}/ ⇠
of OX,P . Then mX,P is a maximal ideal, as it is the kernel of the evaluation map OX,P ! k that sends
[(U, f)] 7! f(P ). Moreover, if [(U, f)] /2 mX,P , then f(P ) 6= 0, and [(U, f)] = [(U \ Z(f), f)] is
invertible in OX,P .

If X is irreducible then K(X) is naturally the fraction field of OX,P . If X is affine and irreducible, let
mP ⇢ OX(X) be the maximal ideal at P , and let

OX(X)mP := {g/h : g, h 2 OX(X), h /2 mP } ⇢ Q(OX(X))

be the localization of OX(X) at mP . Then under the identification of K(X) with the fraction field of
OX(X) (cf. Proposition 6.5.3(ii)) we have that OX,P ⇢ K(X) is identified with OX(X)mP . Thus, on
arbitrary irreducible varieties X , local rings can be computed by first choosing a suitable affine open neigh-
borhood, and then localizing. The reader is encouraged to verify that the rings OX(X)mP are Noetherian.
It follows that the local rings of varieties are Noetherian.

6.7 Exercises

Exercise 6.7.1 Let  : Pm�1 ⇥ Pn�1 ! Pmn�1 be the Segre map (of sets):

((a
1

: · · · : am), (b
1

: · · · : bn)) 7! (a
1

b
1

: · · · : ambn).

Let X ⇢ Pm�1 and Y ⇢ Pn�1 be closed.

i. Show that  is a morphism of varieties.

ii. Show that  (Pm�1 ⇥ Pn�1) is closed in Pmn�1.

iii. Show that  is an isomorphism from the product variety Pm�1 ⇥ Pn�1 to the projective variety
 (Pm�1 ⇥ Pn�1).

iv. Show that  restricts to an isomorphism from the product variety X ⇥ Y to the projective variety
 (X ⇥ Y ).

v. Show that the diagonal �Pn�1 is closed in Pn�1 ⇥ Pn�1.

vi. Show that projective varieties are separated.

Exercise 6.7.2 Let X = Z(xy) ⇢ A2. Show that K(X) is not a field.

Exercise 6.7.3 Let X be the variety obtained from the following gluing data: X
1

= X
2

= A1 and
X

12

= X
21

= A1 � {0} with '
12

= id. Give the presentation of X corresponding to this glueing data.
Describe the topology on X and the sheaf of regular functions on X . What is the diagonal�X ⇢ X ⇥X?
What is the closure of the diagonal? Conclude that X is not separated.
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