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Definition 8.2.4 Let X be an irreducible curve, P 2 X and f 2 K(X)⇥. Then choose U affine open
containing P , and g, h 2 OX(U) such that f = g/h (Proposition 6.5.3) such that g and h have no zeros
on U � {P} and define vP (f) = vP (g)� vP (h). We call vP (f) the order of vanishing or valuation of f
at P .

Remark 8.2.5 Definition 8.2.4 is compatible with Definition 7.5.2. But note once more that in the present
section we are not (yet) assuming that X is smooth. If X is not smooth at P , then dimk m/m2 > 1 and
OX,P is not a discrete valuation ring.

Definition 8.2.6 Let X be a curve. A divisor on X is a Z-valued function D on X such that for at most
finitely many P in X , D(P ) 6= 0. In other words, it is a function D : X ! Z with finite support. The
Z-module of divisors is Z(X), the free Z-module with basis X . Often a divisor D is written as a formal
finite sum D =

P
P2X D(P )·P . The degree of a divisor D is defined as deg(D) =

P
P D(P ).

Example 8.2.7 A typical element of Z(X) looks something like 2P +3Q�R for some P,Q,R 2 X . The
degree of this divisor is 4.

Lemma 8.2.8 Let X be an irreducible curve, and f in K(X)⇥. Then the set of P in X with vP (f) 6= 0 is
finite.

Proof Recall that our standing assumption is that curves are quasi-projective. Hence X can be covered
by finitely many nonempty open affines Ui, such that for each of them, f |Ui = gi/hi with gi and hi in
OX(Ui), both non-zero. For each i, Ui is irreducible and affine and of dimension one, hence Z(gi) and
Z(hi) are zero-dimensional affine varieties, hence finite. ⇤

Definition 8.2.9 Let f 2 K(X)⇥. Then we define the divisor of f as div(f) =
P

P2X vP (f)P .

Theorem 8.2.10 Let X be an irreducible curve. The map K(X)⇥ ! Z(X), f 7! div(f), is a group
morphism.

Proof This is a direct consequence of Proposition 8.2.3 iii. ⇤

Definition 8.2.11 Let X be an irreducible curve, and D and D0 divisors on X . Then we say that D  D0

if for all P 2 X , D(P )  D0(P ). This relation “” is a partial ordering.

Example 8.2.12 Let P , Q and R be disctinct points on X . Then P � 3Q + R  2P � 2Q + R. Note
however that P +Q 6 2Q and that 2Q 6 P +Q, so the partial ordering is not a total ordering.

From now on in this chapter we work with smooth curves.

Definition 8.2.13 For X an irreducible smooth curve, D a divisor on X , and U ⇢ X open and non-empty,
we define

L(U,OX(D)) := {f 2 K(X)⇥ : div(f |U ) +D|U � 0} [ {0}.
We will often abbreviate L(U,OX(D)) to L(U,D) and L(U,OX(0)) to L(U,OX).

Example 8.2.14 Let X be an irreducible smooth curve, U ⇢ X open and non-empty, and P in X . If P is
not in U then L(U,P ) is the set of rational functions f with no pole in U . If P is in U , then L(U,P ) is the
set of rational functions f with a pole of order at most 1 at P and no other poles in U .

We will state the following result without proof.



58 LECTURE 8. THE THEOREM OF RIEMANN-ROCH

Proposition 8.2.15 Let X be an irreducible smooth curve.

i. If X is projective then L(X,D) is a k-vector space of finite dimension.

ii. If U ⇢ X is open and non-empty, then L(U,OX) = OX(U).

The reader with some background in commutative algebra (especially, localization) may want to prove item
(ii) in this result as follows. Let P 2 U . As X is smooth at P we have that OX,P is a discrete valuation ring
and in particular we have OX,P = {f 2 K(X)⇥ : vP (f) � 0} [ {0}. It follows that L(U,OX) is equal
to the intersection of all OX,P for P running through U . Now a general result in commutative algebra (try
to prove this yourself!) states that if R is a domain, then R = \mRm, where the intersection is taken inside
the fraction field of R and runs over all maximal ideals m of R. Here Rm denotes the localization of R at
m. We obtain (ii) by applying this result to the domain OX(U), and by noting that OX(U)mP is identified
with OX,P for all P 2 U .

Example 8.2.16 One may be tempted to believe that even if X is not necessarily smooth, one has that
{0} [ {f 2 K(X)⇥ : div(f) � 0} = OX(X). This is not true as the following example shows. Let A be
the sub-k-algebra k[t2, t3] of k[t]. It is finitely generated and it is an integral domain. Let X be the affine
variety such that OX(X) = A; it is irreducible. Then {0} [ {f 2 K(X)⇥ : div(f) � 0} = k[t], which
is strictly larger than A. Note that X is the curve Z(y2 � x3) in A2 which has a “cusp” at the origin (the
morphism k[x, y] ! A, x 7! t2, y 7! t3 is surjective and has kernel (y2 � x3)).

Corollary 8.2.17 Let X be a smooth irreducible projective curve. Then OX(X) = L(X, 0) = k.

Proof Proposition 8.2.15 gives that OX(X) = L(X,OX), and that this is a finite dimensional k-vector
space. It is a sub-k-algebra of K(X), hence an integral domain. Hence it is a field (indeed, for f nonzero
in O(X), multiplication by f on O(X) is injective, hence surjective, hence there is a g in O(X) such that
fg = 1. So, k ! O(X) is a finite field extension. As k is algebraically closed, k = O(X). ⇤

8.3 H0 and H1

Let X be a smooth irreducible curve. Then there exist nonempty open and affine subsets U
1

and U
2

of X
such that X = U

1

[ U
2

(see Exercise 8.5.4).

Definition 8.3.1 Let H0(X,OX) be the kernel of the map

� : L(U
1

,OX)� L(U
2

,OX) ! L(U
1

\ U
2

,OX) ,

given by (f
1

, f
2

) 7! f
1

|U1\U2 � f
2

|U1\U2 . In the same way, we define H0(X,D) to be the kernel of the
map:

(8.3.2) � : L(U
1

, D)� L(U
2

, D) ! L(U
1

\ U
2

, D), (f
1

, f
2

) 7! f
1

|U1\U2 � f
2

|U1\U2 .

Proposition 8.3.3 We have H0(X,OX) = OX(X).

Proof See Exercise 6.7.8. ⇤

Note that if X is smooth and irreducible, we get H0(X,OX) = OX(X) = L(X, 0). In fact, more
generally we have that if X is smooth and irreducible and D is a divisor on X , that H0(X,D) = L(X,D).
We thus see that we can use the notations H0 and L interchangeably. From Proposition 8.2.15 we obtain
that if X is moreover projective H0(X,D) is finite dimensional as a k-vector space. For a different
approach we refer to Exercise 8.5.7. For example, if X is smooth, irreducible and projective, we get
H0(X,OX) = OX(X) = L(X, 0) = k.
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