The purpose of this note is to provide some background material for Exercise 11.3.4 and Exercise 12.4.4. We will use the following fact:

1. $X:=\mathbb{P}^{m} \times \mathbb{P}^{n}$ is an irreducible closed subvariety of $\mathbb{P}^{(m+1)(n+1)-1}$ of dimension $m+n$ through Segre embedding. Here m, n are nonnegative integers.
2. Let $x_{0}: \ldots: x_{m}$ be the coordinates of \mathbb{P}^{m}, and $y_{0}: \ldots: y_{n}$ the coordinates of \mathbb{P}^{n}. Then X admits an open covering given by all $D_{+}\left(x_{i}\right) \times D_{+}\left(y_{j}\right)$, with $0 \leq i \leq m, 0 \leq j \leq n$.

We give the following statements to help the readers to have a better understanding of X. Key hints will be given below.

1. Each closed subset of X is given by a set of bihomogeneous polynomials in $S:=k\left[x_{0}, \ldots, x_{m}, y_{0}, \ldots, y_{n}\right]$, i.e., each nonempty closed subset of X is of the form
$Z\left(f_{i}, i \in I\right)=\left\{\left(\left(a_{0}: \ldots, a_{m}\right),\left(b_{0}: \ldots: b_{n}\right)\right) \in \mathbb{P}^{m} \times \mathbb{P}^{n} \mid f_{i}\left(a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{n}\right)=0, \forall i \in I\right\}$
where $f_{i}(i \in I)$ is a set of bihomogeneous polynomials in S such that the ideal generated all f_{i} is strictly contained in $\left(x_{0}, \ldots, x_{m}, y_{0}, \ldots, y_{n}\right) \subset S$.
Hint:
(a) use Segre embedding

$$
\mathbb{P}^{m} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{(m+1)(n+1)-1},\left(\left(x_{0}: \ldots: x_{m}\right),\left(y_{0}, \ldots, y_{n}\right)\right) \mapsto\left(w_{i j}=x_{i} y_{j}\right)
$$

(b) If $f \in S$ is bihomogeneous polynomial of degree (d, d), then there exists a homogenous polynomial

$$
F \in k\left[w_{i j}, 0 \leq i \leq m, 0 \leq j \leq n\right],
$$

such that $\left.F\right|_{w_{i j}=x_{i} y_{j}}=f\left(x_{0}, \ldots, x_{m}, y_{0}, \ldots, y_{n}\right)$.
(c) If $f \in S$ is a bihomogeneous polynomial of bidgree (d, e) such that $d>e$. Then $f\left(a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{n}\right)=0$ if and only if

$$
\left(y_{j}^{d-e} f\right)\left(a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{n}\right)=0
$$

for all j.
2. For each nonzero irreducible bihomogenous polynomial f in S, the closed subset $Z(f)$ is a prime divisor. Hint:
(a) $f\left(x_{0}, \ldots, x_{m}, y_{0}, \ldots, y_{n}\right)$ implies that

$$
f_{i j}:=f\left(x_{0}, \ldots, x_{i-1}, 1, x_{i}, \ldots, x_{m}, y_{0}, \ldots, y_{i-1}, 1, y_{i+1}, \ldots, y_{n}\right)
$$

is irreducible in $S_{i j}:=k\left[x_{0}, \ldots, x_{i-1}, 1, x_{i}, \ldots, x_{m}, y_{0}, \ldots, y_{i-1}, 1, y_{i+1}, \ldots, y_{n}\right]$

If $Z(f)_{i j}:=Z(f) \cap\left(D_{+}\left(x_{i}\right) \times D_{+}\left(y_{j}\right)\right) \neq \emptyset$, then

$$
Z(f)_{i j} \subset D_{+}\left(x_{i}\right) \times D_{+}\left(y_{j}\right) \cong \mathbb{A}^{m+n}
$$

is equal to $Z\left(f_{i j}\right) \subset D_{+}\left(x_{i}\right) \times D_{+}\left(y_{j}\right)$, which is prime divisor (namely, an irreducible closed subset of dimension $m+n-1$) in $D_{+}\left(x_{i}\right) \times$ $D_{+}\left(y_{j}\right)$. Where we use $S_{i j}$ to denote the coordinate ring of $D_{+}\left(x_{i}\right) \times$ $D_{+}\left(y_{j}\right)$. Since $D_{+}\left(x_{i}\right) \times D_{+}\left(y_{j}\right)$ is dense in X, the closure of $Z(f)_{i j}$ in X is $Z(f)$. Note that a subset W of a topological space Y is irreducible, then the closure of W in Y is irreducible. In particular, we have that $Z(f)$ is irreducible. On the other hand, by Exercise 1.6.11, we have $\operatorname{dim} Z(f)_{i j}=m+n$.
3. Each prime divisor Y of X is of the form $Z(f)$, where f is an irreducible bihomogenous polynomial.
Hint: let $Y=Z\left(f_{i}, i \in I\right)$ with each f_{i} nonzero bihomogenous. Take any $i \in I$, then $Y \subset Z\left(f_{i}\right)$. Let g be an irreducible factor of f_{i} (this makes sense since S is a unique factorial domain), which is necessarily bihomogenous (this is easy to check). Then we have $Y \subset Z(g)$. But since $Y, Z(g)$ are both prime divisors, we must have $Y=Z(g)$ by dimension consideration.
4. Any rational function of X has the form $\frac{F}{G}$ such that F, G are homogeneous polynomials such that
(a) F, G are both bihomogeneous polynomials in S;
(b) If F, G have bidegrees $\left(d_{1}, e_{1}\right),\left(d_{2}, e_{2}\right)$ respectively, then $d_{1}+e_{1}=$ $d_{2}+e_{2}$.

Conversely, if $F, G \in S$ both satisfy requirement (b) above, then $\frac{F}{G}$ is a rational function of X.
Hint: This is easy.
5. A divisor Z of X is a principle divisor if and only if it has bidegree (0,0). Here given a divisor $Y=\Sigma_{i} n_{i} Z\left(f_{i}\right)$, with f_{i} bihomogeneous of bidgree $\left(d_{i}, e_{i}\right)$, the bidgree of Y is defined to

$$
\left(\Sigma n_{i} d_{i}, \Sigma n_{i} e_{i}\right)
$$

Hint: this is also easy.

