Solution to Exercise 3.6.5

November 17, 2016

Let $\Psi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ be the Segre embedding defined by

$$
\left(\left(x_{0}: x_{1}\right),\left(y_{0}: y_{1}\right)\right) \mapsto\left(x_{0} y_{0}: x_{0} y_{1}: x_{1} y_{0}: x_{1} y_{1}\right)
$$

and let $\left\{w_{0}, w_{1}, w_{2}, w_{3}\right\}$ be the coordinates on \mathbb{P}^{3}.
(i) Observe that all points $p=\left(a_{0}: a_{1}: a_{2}: a_{3}\right) \in \operatorname{Im} \Psi$ satisfies $a_{0} a_{3}-a_{1} a_{2}=0$, so

$$
Q=\operatorname{Im} \Psi \subseteq Z_{\text {proj }}\left(w_{0} w_{3}-w_{1} w_{2}\right)=: Z .
$$

It remains to show that equality holds. There are two ways to show this:
(a) Check directly. Suppose $p=\left(a_{0}: a_{1}: a_{2}: a_{3}\right) \in Z$, then $a_{0} a_{3}=a_{1} a_{2}$. Consider the sets $S_{1}=\left\{\left(a_{0}, a_{2}\right),\left(a_{1}, a_{3}\right)\right\}$ and $S_{2}=\left\{\left(a_{0}, a_{1}\right),\left(a_{2}, a_{3}\right)\right\}$. By the definition of a point in \mathbb{P}^{3}, one of $\left\{a_{0}, \ldots, a_{3}\right\}$ is non-zero, so there will be at least one pair in each S_{i} that is non-zero.
Suppose $a_{0} \neq 0$, then $\left(a_{0}: a_{2}\right)$ and ($\left.a_{0}: a_{1}\right)$ define points in \mathbb{P}^{1}. We obtain

$$
\Psi\left(\left(a_{0}: a_{2}\right),\left(a_{0}: a_{1}\right)\right)=\left(a_{0}^{2}: a_{0} a_{1}: a_{0} a_{2}: a_{0} a_{3}\right)=\left(a_{0}: a_{1}: a_{2}: a_{3}\right)=p .
$$

The other cases are similar. So we have shown that $p \in Q$.
(b) Use the fact that Z is irreducible (check!). By the definition of dimension (Definition 1.4.1), any proper irreducible closed subset of Z must have dimension $<\operatorname{dim} Z$. We know that $\operatorname{dim} Z=$ $\operatorname{dim} \mathbb{P}^{3}-1=2$.
From Exercise 3.6.4(c), Q is closed in \mathbb{P}^{3}, so in particular, it is a closed subset of Z. If it is a proper subset, then all irreducible components of Q must have dimension ≤ 1. However, $\operatorname{dim} Q=\operatorname{dim} \mathbb{P}^{1}+\operatorname{dim} \mathbb{P}^{1}=2$, so we obtain a contradiction. Hence, $Q=Z$.

Hence, Q is defined by the homogeneous polynomial $w_{0} w_{3}-w_{1} w_{2} \in \mathbb{C}\left[w_{0}, \ldots, w_{3}\right]$.
(ii) Let $P=\left(a_{0}: a_{1}\right) \in \mathbb{P}^{1}$. Then

$$
\begin{aligned}
\Psi\left(P \times \mathbb{P}^{1}\right) & =\left\{\left(a_{0} y_{0}: a_{0} y_{1}: a_{1} y_{0}: a_{1} y_{1}\right) \mid\left(y_{0}: y_{1}\right) \in \mathbb{P}^{1}\right\} \\
& \subseteq Z_{\text {proj }}\left(a_{0} w_{2}-a_{1} w_{0}, a_{0} w_{3}-a_{1} w_{1}\right) .
\end{aligned}
$$

As in part (i), we can either check directly or use the irreducibility of $Z_{\text {proj }}\left(a_{0} w_{2}-a_{1} w_{0}, a_{0} w_{3}-a_{1} w_{1}\right)$ to check that equality holds (I^{\prime} 'l leave that as an exercise).
Hint: to prove that $Z_{\text {proj }}\left(a_{0} w_{2}-a_{1} w_{0}, a_{0} w_{3}-a_{1} w_{1}\right)$ is irreducible is equivalent to showing that the ideal $I=\left(a_{0} w_{2}-a_{1} w_{0}, a_{0} w_{3}-a_{1} w_{1}\right) \subset \mathbb{C}\left[w_{0}, \ldots, w_{3}\right]=S$ is prime, or that S / I is an integral domain. If $a_{0} \neq 0$, we can substitute $w_{2}=a_{1} w_{0} / a_{0}$ and $w_{3}=a_{1} w_{1} / a_{0}$ to show that $S / I \cong \mathbb{C}\left[w_{0}, w_{1}\right]$.
Therefore,
$\Psi\left(P \times \mathbb{P}^{1}\right)=Z_{\text {proj }}\left(a_{0} w_{2}-a_{1} w_{0}, a_{0} w_{3}-a_{1} w_{1}\right) \quad$ and $\quad \Psi\left(\mathbb{P}^{1} \times P\right)=Z_{\text {proj }}\left(a_{0} w_{1}-a_{1} w_{0}, a_{0} w_{3}-a_{1} w_{2}\right)$ are lines on \mathbb{P}^{3}.
(iii) Let $A=\left(A_{1}, A_{2}\right)=\left(\left(a_{0}: a_{1}\right),\left(a_{2}: a_{3}\right)\right)$ and $B=\left(B_{1}, B_{2}\right)=\left(\left(b_{0}: b_{1}\right),\left(b_{2}: b_{3}\right)\right)$ be two points on $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
What is a line L through two points $P=\left(p_{0}: \ldots: p_{3}\right)$ and $Q=\left(q_{0}: \ldots: q_{3}\right)$ in \mathbb{P}^{3} ?

Consider the projection $q: \mathbb{A}^{4}-\{0\} \rightarrow \mathbb{P}^{3}$. Then the closure of $q^{-1} P$ and $q^{-1} Q$ in \mathbb{A}^{4} are lines passing through the origin. Let $L \subset \mathbb{P}^{3}$ be the line through P and Q, so the closure of $q^{-1} L$ in \mathbb{A}^{4} is the plane containing the two lines $\overline{q^{-1} P}$ and $\overline{q^{-1} Q}$. Any point on this plane is parametrized by $\lambda\left(p_{0}, \ldots, p_{3}\right)+\mu\left(q_{0}, \ldots, q_{3}\right)$ with $\lambda, \mu \in k$. Hence, L is parametrized by $\lambda P+\mu Q$ with $(\lambda: \mu) \in \mathbb{P}^{1}$.
The line L through $\Psi(A)$ and $\Psi(B)$ lies in Q if and only if $\left(p_{0}: \ldots: p_{3}\right):=\lambda \Psi(A)+\mu \Psi(B) \in Q$ for all $(\lambda: \mu) \in \mathbb{P}^{1}$ if and only if

$$
\begin{aligned}
0 & =p_{0} p_{3}-p_{1} p_{2} \\
& =\left(\lambda a_{0} a_{2}+\mu b_{0} b_{2}\right)\left(\lambda a_{1} a_{3}+\mu b_{1} b_{3}\right)-\left(\lambda a_{0} a_{3}+\mu b_{0} b_{3}\right)\left(\lambda a_{1} a_{2}+\mu b_{1} b_{2}\right) \\
& =\lambda \mu\left(a_{0} b_{1}-a_{1} b_{0}\right)\left(a_{2} b_{3}-a_{3} b_{2}\right)
\end{aligned}
$$

for all $(\lambda: \mu) \in \mathbb{P}^{1}$.
If $\lambda \mu \neq 0$, then we require either $a_{0} b_{1}=a_{1} b_{0}$ or $a_{2} b_{3}=a_{3} b_{2}$, that is to say, $A_{1}=B_{1}$ or $A_{2}=B_{2}$. Suppose $A_{1}=B_{1}$. By (ii), we see that $\Psi\left(\left\{A_{1}\right\} \times \mathbb{P}^{1}\right)$ is a line passing through $\Psi(A)$ and $\Psi(B)$, so it is equal to L. Since Ψ is injective by Exercise 3.6.4(b), we obtain $\Psi^{-1}(L)=A_{1} \times \mathbb{P}^{1}$. Similarly, if $A_{2}=B_{2}$, we get $\Psi^{-1}(L)=\mathbb{P}^{1} \times A_{2}$.
(iv) Let L_{1} and L_{2} be two lines on Q, and $l_{i}=\Psi^{-1}\left(L_{i}\right) \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$. Since L_{i} lie in the image of Ψ, we have $L_{1} \cap L_{2}=\Psi\left(l_{1} \cap l_{2}\right)$.
If $L_{1}=L_{2}$, then $L_{1} \cap L_{2}=L_{1}$ is a line. Suppose $L_{1} \neq L_{2}$. Consider the cases described in (ii) and (iii).

If $l_{1}=P_{1} \times \mathbb{P}^{1}$ and $l_{2}=P_{2} \times \mathbb{P}^{1}$ with $P_{1} \neq P_{2}$, then $l_{1} \cap l_{2}=\emptyset$, so $L_{1} \cap L_{2}=\emptyset$. Similarly for $l_{1}=\mathbb{P}^{1} \times P_{1}$ and $l_{2}=\mathbb{P}^{1} \times P_{2}$.

If $l_{1}=P_{1} \times \mathbb{P}^{1}$ and $l_{2}=\mathbb{P}^{1} \times P_{2}$, then $l_{1} \cap l_{2}=\left(P_{1}, P_{2}\right)$ and $L_{1} \cap L_{2}=\Psi\left(P_{1}, P_{2}\right)$ is a point.
(v) It is difficult to visualize Q directly, so first we take an affine slice, eg. $w_{0}=1$ and we draw $Q_{0} \subset \mathbb{A}^{3}$. We shall take $k=\mathbb{R}$ (which is not algebraically closed!). Then, Q_{0} can be seen as a spiral around the axis w_{2} (and w_{3}, respectively) in \mathbb{R}^{3} parametrized by lines in the $w_{1}-w_{3}$ (and $w_{1}-w_{3}$, respectively) plane.

(vi) The closed subset of \mathbb{P}^{1} are

$$
\left\{F \subset \mathbb{P}^{1} \mid \# F<\infty\right\} \cup\left\{\emptyset, \mathbb{P}^{1}\right\}
$$

Hence, closed sets of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in the product topology are finite unions of

$$
F_{1} \times F_{2} \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \quad \text { where } \quad \# F_{i}<\infty \text { or } F_{i}=\mathbb{P}^{1}
$$

More explicitly, the closed sets of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ are of the form

$$
\begin{equation*}
F_{1} \times \mathbb{P}^{1} \cup \mathbb{P}^{1} \times F_{2} \cup S \tag{1}
\end{equation*}
$$

where $F_{1}, F_{2} \subset \mathbb{P}^{1}$ and $S \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ are finite subsets.
(vii) Consider the closed subset $Z:=Z_{\text {proj }}\left(w_{0}-w_{3}, w_{0} w_{3}-w_{1} w_{2}\right) \subset Q$. Then,

$$
\Psi^{-1}(Z)=\left\{\left(\left(a_{0}: a_{1}\right),\left(b_{0}: b_{1}\right)\right) \mid a_{0} b_{0}=a_{1} b_{1}\right\}=\left\{(\lambda: \mu),(\mu: \lambda) \mid(\lambda: \mu) \in \mathbb{P}^{1}\right\} \subsetneq \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Clearly, $\Psi^{-1}(Z)$ is an infinite set. If $\Psi^{-1}(Z)$ is a closed set, it admits a decomposition in the form of (1). Then, either $F_{1} \neq \emptyset$ or $F_{2} \neq \emptyset$. However, note that $\Psi^{-1}(Z)$ intersects any line of the form $\{x\} \times \mathbb{P}^{1}$ or $\mathbb{P}^{1} \times\{x\}$ at precisely one point, namely $(x, 1 / x)$ or $(1 / x, x)$. Hence, $\Psi^{-1}(Z)$ is not closed in the product topology on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Thus, Ψ is not continuous if we take the product topology on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and the topology induced from \mathbb{P}^{3} on Q.
On an affine slice, we can visualize $\Psi^{-1}(Z)$ as the curve $y=\frac{1}{x}$ while the closed sets of the product topology are the vertical and horizontal lines:

In fact, one can show that if $Z=Z_{\text {proj }}\left(\lambda_{0} w_{0}+\cdots+\lambda_{3} w_{3}, w_{0} w_{3}-w_{1} w_{2}\right)$ with $\lambda_{0} \lambda_{3} \neq \lambda_{1} \lambda 2$, then $\Psi^{-1}(Z)$ is not closed in the product topology.

