Solution to Exercise 3.6.5

November 17, 2016

Let U : P! x P! — P3 be the Segre embedding defined by

((zo = 1), (o : 1)) = (ToYo : Toy1 : T1Yo : T1Y1)

and let {wo, w1, ws, w3} be the coordinates on P3.

(i)

(i)

(iii)

Observe that all points p = (ap : a1 : as : az) € Im U satisfies agaz — ajas = 0, so
Q=ImV¥ C Z,oj(wows — wrws) =: Z.
It remains to show that equality holds. There are two ways to show this:

(a) Check directly. Suppose p = (ag : ay : as : a3) € Z, then agas = ajas. Consider the sets
S1 = {(ao,a2), (a1,a3)} and Se = {(ag,a1), (az,a3)}. By the definition of a point in P?, one of
{ao,...,a3} is non-zero, so there will be at least one pair in each S; that is non-zero.

Suppose ag # 0, then (ag : az) and (ag : a1) define points in P1. We obtain

U((ag : a2),(ap : a1)) = (ag apay : apaz : agaz) = (ag : ay : ag :ag) = p.

The other cases are similar. So we have shown that p € Q.

(b) Use the fact that Z is irreducible (check!). By the definition of dimension (Definition 1.4.1), any
proper irreducible closed subset of Z must have dimension < dim Z. We know that dim Z =
dimP? — 1 =2.

From Exercise 3.6.4(c), @ is closed in P3, so in particular, it is a closed subset of Z. If it is
a proper subset, then all irreducible components of ¢ must have dimension < 1. However,
dim Q = dim P! + dim P! = 2, so we obtain a contradiction. Hence, Q = Z.

Hence, @ is defined by the homogeneous polynomial wyws — wyws € Clwy, . .., ws].

Let P = (ap : a1) € P'. Then

(P x P') = {(aoyo : aoy: : aryo : a1y1) | (yo : y1) € P}
C Zproj(apwz — a1wo, apws — ajwy).
As in part (i), we can either check directly or use the irreducibility of Zp,0;(aows —aiwo, apws —aiwy)
to check that equality holds (I'll leave that as an exercise).

Hint: to prove that Zp.oj(aows — a1wo, aows — aqwy) is irreducible is equivalent to showing that the
ideal I = (agws —ajwp, apwz —ajwy) C Clwy, ..., ws] = S is prime, or that S/I is an integral domain.
If ap # 0, we can substitute ws = ajwg/ag and ws = ajw; /ag to show that S/T = Clwg, wy].

Therefore,
\I/(P X Pl) = Zproj (aow2 — a1Wp, AgwWs — alwl) and \I’(Pl X P) = Zproj (CLQU)1 — a1wo, apws — a1w2)

are lines on P3.

Let A = (41,A42) = ((ao : a1),(az : a3)) and B = (By,Bs) = ((bg : b1), (b2 : b3)) be two points on
P! x PL.
What is a line L through two points P = (pg : ... :p3) and Q = (qo : ... : q3) in P3?



Consider the projection q : A* — {0} — P3. Then the closure of ¢"'P and ¢~ 'Q in A* are lines
passing through the origin. Let L C P3 be the line through P and Q, so the closure of ¢~ 'L in A*
is the plane containing the two lines ¢~ 1P and q~1Q. Any point on this plane is parametrized by
Apo,---,p3) + 1(qo, - - -, q3) with A\, u € k. Hence, L is parametrized by AP + uQ with (X : u) € PL.

The line L through ¥(A4) and ¥(B) lies in Q if and only if (po : ... : p3) := AV(A) + p¥(B) € Q for
all (\: p) € P! if and only if

0 = pops — p1p2
= (Aagaz + pboba)(Aatas + pbibs) — (Aagas + pbobs)(Aaias + pb1bs)
= )\M(aobl — albo)(agbg — 0,3172)

for all (A : pu) € PL.

If A # 0, then we require either agb; = a1bg or asbs = agbs, that is to say, A3 = By or As = Bs.
Suppose A; = Bj. By (ii), we see that W({A4;} x P!) is a line passing through ¥(A) and ¥(B), so it
is equal to L. Since V¥ is injective by Exercise 3.6.4(b), we obtain W~!(L) = A; x PL. Similarly, if
Ay = Bo, we get UTL(L) =P x A,.

(iv) Let L; and Lo be two lines on @, and I; = =1(L;) C P! x P!, Since L; lie in the image of ¥, we
have Ll n L2 = \I/(ll N lg)

If Ly = Lo, then Ly N Ly = Ly is a line. Suppose Ly # Ly. Consider the cases described in (ii) and
(i)

Ifl; = PLxPland Iy = P, x P! with P, # P5, then Iy Nly = 0, so Ly N Ly = (). Similarly for
llzpl XPl andl2:P1 XPQ.

Ifll = P1 X ]P)l and 12 :Pl X PQ, then ll mlg = (Pl,Pg) and L1 OLQ = \I/(Pl,PQ) is apoint.

(v) Tt is difficult to visualize @ directly, so first we take an affine slice, eg. wy = 1 and we draw Qo C A3.
We shall take &k = R (which is not algebraically closed!). Then, Qy can be seen as a spiral around the
axis wy (and wg, respectively) in R3 parametrized by lines in the wq-ws (and wy-ws, respectively)
plane.
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(vi) The closed subset of P! are
{F CP'|#F < 0} U {0,P'}.

Hence, closed sets of P! x P! in the product topology are finite unions of
Fi x F, C P! x P! where #F; < oo or F; =P
More explicitly, the closed sets of P! x P! are of the form
Fy xP'UP' x F,US (1)
where Fy, F» C P! and S C P! x P! are finite subsets.
(vii) Consider the closed subset Z := Z,.qj(wo — w3, wows — wiwz) C Q. Then,

UH(Z) = {((a0 : ar). (bo : b1)) [abo = arbi} = {(A: o), (s A) [ (A: p) € P} © P x P,



Clearly, ¥~=1(Z) is an infinite set. If ¥=1(Z) is a closed set, it admits a decomposition in the form
of . Then, either F; # () or F, # (). However, note that ¥~1(Z) intersects any line of the form
{z} x P or P! x {x} at precisely one point, namely (z,1/z) or (1/z,z). Hence, ¥~1(Z) is not closed
in the product topology on P! x P'. Thus, ¥ is not continuous if we take the product topology on
P! x P! and the topology induced from P2 on Q.

On an affine slice, we can visualize ¥=1(Z) as the curve y = % while the closed sets of the product
topology are the vertical and horizontal lines:

In fact, one can show that if Z = Z,,0;(Aowo + - - - + Asws, wows — wiws) with AgAs # A1 A2, then
U~1(Z) is not closed in the product topology.



