Solution to Exercise 5.4.6

November 17, 2016

Exercise 5.4.6. Let $n>m$. Show that any morphism $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ is constant.

Proof. The proof consists of three main steps.

1. Parametrize the map f by rational sections s_{i} (to be defined).
2. Show that each section s_{i} can be determined by a homogeneous polynomial.
3. If $n>m$, show that these sections have a common zero unless they are non-zero constant.
4. Let $\left\{x_{0}, \ldots, x_{n}\right\}$ and $\left\{y_{0}, \ldots, y_{m}\right\}$ be coordinate functions on \mathbb{P}^{n} and \mathbb{P}^{m} respectively.

Let $\mathbb{A}_{i}^{m}=\left.\mathbb{P}^{m}\right|_{y_{i}=1}$ be an affine slice of \mathbb{P}^{m} and $f_{i}: X_{i}=f^{-1} \mathbb{A}_{i}^{m} \rightarrow \mathbb{A}_{i}^{m}$ be the restriction of f. The morphism f_{i} induces a ring homomorphism

$$
f_{i}^{*}: \mathcal{O}_{\mathbb{A}_{i}^{m}}\left(\mathbb{A}_{i}^{m}\right) \cong k\left[t_{0, i}, \ldots, t_{i-1, i}, t_{i+1, i}, \ldots, t_{m, i}\right] \rightarrow \mathcal{O}_{X_{i}}\left(X_{i}\right)=\mathcal{O}_{\mathbb{P}^{n}}\left(X_{i}\right)
$$

where the embedding of $\mathbb{A}_{i}^{m} \hookrightarrow \mathbb{P}^{m}$ is given by the identification $t_{j i}=\frac{y_{j}}{y_{i}}$. Let $s_{j i}=f_{i}^{*}\left(t_{j i}\right)$, these are called sections of $\mathcal{O}_{\mathbb{P}^{n}}$. Note that the morphism f_{i} is parametrized by

$$
f_{i}: X_{i} \rightarrow \mathbb{A}_{i}^{m}, \quad x \mapsto\left(s_{0, i}(x), \ldots, s_{i-1, i}(x), s_{i+1, i}(x), \ldots, s_{m, i}(x)\right)
$$

On the intersection $\mathbb{A}_{i}^{m} \cap \mathbb{A}_{i^{\prime}}^{m}$, there are equalities $t_{i i^{\prime}}=t_{i^{\prime} i}^{-1}$ and $t_{j i}=t_{j i^{\prime}} t_{i^{\prime} i}$. These induce equalities under f^{*}

$$
\begin{equation*}
s_{i i^{\prime}}=s_{i^{\prime} i}^{-1}, \quad s_{j i}=s_{j i^{\prime}} s_{i^{\prime} i} . \tag{1}
\end{equation*}
$$

Define $s_{i i}=1$, so the first equality becomes a special case of the second. There exists i such that $\operatorname{Im} f \cap \mathbb{A}_{i}^{m} \neq \emptyset$. Without loss of generality, assume $i=0$. Then X_{0} is open and dense in \mathbb{P}^{n}.
For any i where $X_{i} \neq \emptyset, X_{i}$ is also dense, so $X_{i} \cap X_{0} \neq \emptyset$. By (1), we get $s_{0, i} \neq 0$, so we can localize $\mathcal{O}_{\operatorname{Proj}^{n}}\left(X_{i}\right)$ with respect to $s_{0, i}$ and note that

$$
s_{j, 0}=\left.\frac{s_{j, i}}{s_{0, i}} \in \mathcal{O}_{P_{P r o j}}\left(X_{i}\right)_{s_{0, i}}\right|_{X_{i} \cap X_{0}}
$$

Hence, there exists a rational section s_{j} on \mathbb{P}^{n} defined by gluing $s_{j, 0}$ with the sections $s_{j, i} / s_{0, i}$ whenever $X_{i} \neq \emptyset$. The map f is then defined by

$$
f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}, \quad\left(x_{0}: \ldots: x_{n}\right) \mapsto\left(1: s_{1}\left(x_{0}, \ldots, x_{n}\right): \cdots: s_{m}\left(x_{0}, \ldots, x_{n}\right)\right)
$$

Explicitly, on an open set X_{i}, we have

$$
\left(1: s_{1}: \cdots: s_{m}\right)=\left(1: s_{1, i} / s_{0, i}: \cdots: s_{n, i} / s_{0, i}\right)=\left(s_{0, i}: \cdots: s_{n, i}\right)
$$

Remark. In the language of rational functions (see Section 6.5 of the notes), s_{i} is an element of the function field $K\left(\mathbb{P}^{n}\right)$.
2. Consider a section $s_{j i} \in \mathcal{O}_{\mathbb{P}^{n}}\left(X_{i}\right)$. X_{i} can be covered by open subvarieties $X_{i k}=X_{i} \cap \mathbb{A}_{k}^{n}$. Each $X_{i k} \subset \mathbb{A}_{k}^{n}$ can in turn be covered by open affine subsets of the form $D(g)$ for some polynomials g. By Theorem 5.1.5,

$$
\mathcal{O}_{\mathbb{A}_{k}^{n}}(D(g))=k\left[u_{0}, \ldots, \hat{u}_{k}, \ldots, u_{n}, u_{n+1}\right] /\left(u_{n+1} g-1\right)
$$

From commutative algebra, it is known that the latter is precisely the localization of the polynomial ring $k\left[u_{0}, \ldots, \hat{u}_{k}, \ldots, u_{n}\right]$ with respect to g. We can thus write $\left.s_{j i}\right|_{D(g)}$ in the form h / g^{r} for some polynomial $h \in k\left[u_{0}, \ldots, \hat{u}_{k}, \ldots, u_{n}\right]$ and $r \in \mathbb{N}$.
For any $D(g)$ and $D\left(g^{\prime}\right)$ in the open cover, the intersection $D(g) \cap D\left(g^{\prime}\right)$ is dense and open since k is algebraically closed, so $\left.s_{j i}\right|_{D(g)}$ and $\left.s_{j i}\right|_{D\left(g^{\prime}\right)}$ coincide on a dense open subset, and they must be identical as rational functions in $k\left(u_{0}, \ldots, \hat{u}_{k}, \ldots, u_{n}\right)$. Hence, $\left.s_{j i}\right|_{X_{i k}}$ can be identified with a unique rational function in $k\left(u_{0}, \ldots, \hat{u}_{k}, \ldots, u_{n}\right)$.
The embedding $\mathbb{A}_{k}^{n} \rightarrow \mathbb{P}^{n}$ identifies $u_{j}=\frac{x_{j}}{x_{k}}$, thus $\left.s_{j i}\right|_{X_{i k}}$ is a rational function, homogeneous of degree 0 in $k\left(x_{0}, \ldots, x_{n}\right)$, i.e. there exist $g, h \in k\left[x_{0}, \ldots, x_{n}\right]$, homogeneous with $\operatorname{deg} g=\operatorname{deg} h$ such that $\left.s_{j i}\right|_{X_{i k}}=g / h$. A similar gluing argument shows that $s_{j i}$ is defined globally by a rational function $g_{j i} / h_{j i} \in k\left(x_{0}, \ldots, x_{n}\right)$.
Repeating the gluing over all i for a fixed j shows that $s_{j}=g_{j 0} / h_{j 0}$. Hence, clearing denominators, we get

$$
\left(1: s_{1}\left(x_{0}, \ldots, x_{n}\right): \cdots: s_{m}\left(x_{0}, \ldots, x_{n}\right)\right)=\left(g_{0}: g_{1}: \ldots: g_{m}\right)
$$

for some homogeneous polynomials $g_{i} \in k\left[x_{0}, \ldots, x_{n}\right]$ with $\operatorname{deg} g_{0}=\cdots=\operatorname{deg} g_{m}$, and such that $\operatorname{gcd}\left(g_{0}, \ldots, g_{m}\right)=1$.
Remark. Proposition 6.5.3(i) and (ii) gives $K\left(\mathbb{P}^{n}\right)=K\left(\mathbb{A}_{0}^{n}\right)=k\left(u_{1}, \ldots, u_{n}\right)$ where $u_{i}=\frac{x_{i}}{x_{0}}$. Thus, any element $s \in K\left(\mathbb{P}^{n}\right)$ is a rational function homogeneous of degree 0 in $k\left(x_{0}, \ldots, x_{n}\right)$.
3. We need two lemmas from commutative algebra.

Definition. Let R be a noetherian ring. The height of a prime ideal \mathfrak{p} is the maximal length m of any chain of prime ideals $0=\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{m}=\mathfrak{p}$. The height of an ideal I is the minimum of the height of any prime ideal containing I.
Lemma 1 (Krull's hauptidealsatz). Let R be a Noetherian ring and I be a proper ideal generated by m elements in R, then the height of I is at most m.

Proof. See Mat80, 12.I (Theorem 18)].
Lemma 2. Let $S=k\left[x_{0}, \ldots, x_{n}\right]$ be the polynomial ring and $0=\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{m} \subsetneq S$ be a maximal chain of prime ideals in S. Then, $m=n+1$.

Proof. This is an easy consequence of Noether's normalization lemma Eis95, 8.2.1, Theorem A1].

Suppose $n>m$ and suppose that $\operatorname{deg} g_{0}=\cdots=\operatorname{deg} g_{m}=d>0$. Let $I=\left(g_{0}, \ldots, g_{m}\right) \triangleleft$ $k\left[x_{0}, \ldots, x_{n}\right]=: S$. Since $I \subset\left(x_{0}, \ldots, x_{n}\right)=: \mathfrak{m}$, it is a proper ideal, so by Krull's Hauptidealsatz (Lemma 11), the height of I is at most m. Hence, there exists a prime ideal \mathfrak{p} of height m containing I.
By Lemma 2, there exists a maximal chain of prime ideals of the form

$$
0=\mathfrak{p}_{0} \subsetneq \cdots \subsetneq \mathfrak{p}_{m}=\mathfrak{p} \subsetneq \cdots \subsetneq \mathfrak{p}_{n+1}=\mathfrak{m} \subsetneq S
$$

In particular, $Z_{\text {proj }}(I) \supset Z_{\text {proj }}(\mathfrak{p}) \neq \emptyset$. Hence, there exists a point $p \in \mathbb{P}^{n}$ such that $f(p)=\left(g_{0}(p)\right.$: $\left.\cdots: g_{m}(p)\right)=(0: \ldots: 0)$ is not well-defined.
We obtained a contradiction, hence we must have $d=0$. In this case, g_{i} are constant functions, so the image of f is constant in \mathbb{P}^{m}.

Remark. Note that the second assertion in the proof is only true when the domain is \mathbb{P}^{n}. For a morphism $f: X \rightarrow \mathbb{P}^{m}$ where $X \subset \mathbb{P}^{n}$ is a projective variety, the sections s_{i} may not be generated by polynomials in $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] / I(X)$.
Remark. The first and second assertions of the proof can also be rephrased in terms of twisted sheaves on \mathbb{P}^{n}, see Har77, Theorem II.7.1]

References

[Eis95] D. Eisenbud. "Commutative Algebra with a View Toward Algebraic Geometry". In: Graduate Texts in Mathematics Vol. 150 (1995).
[Har77] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics Vol. 52. Springer, 1977.
[Mat80] H. Matsumura. Commutative Algebra, Second Edition. Mathematics Lecture Note Series 56. Benjamin/Cummings Publishing Company, 1980.

