Algebraic Geometry–Final Exam 31 May 2016

- Time allowed: 3 hours.
- You should answer all 6 questions.
- You may quote results from the lectures without proof in the exam. If you wish to use results from the exercises then you are expected to re-prove them in the exam.
- Pen and paper only allowed no books, notes, calculators etc.
- Throughout, k denotes an algebraically closed field, and all varieties we consider are varieties over the field k.
- 1. (a) State the Nullstellensatz.
 - (b) Let *m* and *n* be positive integers. Let $f_1, \ldots, f_n \in k[x_1, \ldots, x_m]$ and consider the morphism $\varphi \colon \mathbb{A}^m \to \mathbb{A}^n$ given by $\varphi(P) := (f_1(P), \ldots, f_n(P))$. Show that φ is surjective if and only if for all $a_1, \ldots, a_n \in k$ the ideal $(f_1 a_1, \ldots, f_n a_n)$ is not the whole ring $k[x_1, \ldots, x_m]$.
- 2. (a) Show that $\mathbb{P}^1 \times \mathbb{P}^1$ is a projective variety. That is, give a projective variety $Z \subset \mathbb{P}^N$ for some N together with an isomorphism $\psi \colon \mathbb{P}^1 \times \mathbb{P}^1 \to Z$.
 - (b) Show that $\mathbb{P}^1 \times \mathbb{P}^1$ is irreducible.
 - (c) Show that $\mathbb{P}^1 \times \mathbb{P}^1$ and \mathbb{P}^2 have isomorphic function fields.
 - (d) Show that $\mathbb{P}^1 \times \mathbb{P}^1$ and \mathbb{P}^2 are not isomorphic.
- 3. Let X be a smooth irreducible projective curve of genus g. Let D be a divisor on X. Let K be a canonical divisor on X.
 - (a) State the Riemann-Roch theorem applied to D.
 - (b) State Serre Duality applied to D.
 - (c) Let $f \in K(X)^*$. Show that $\deg(\operatorname{div}(f)) = 0$.
 - (d) Show that $H^0(X, D) = \{0\}$ if deg D < 0.
 - (e) Show that dim $H^0(X, D) = \deg D + 1 g$ if deg $D > \deg K$.
 - (f) Let $P \in X$. Show that $\mathcal{O}_X(X \setminus \{P\})$ is infinite dimensional.
 - (g) Show that $X \setminus \{P\}$ is not projective.
- 4. (a) Let X be a variety, $x \in X$ a point, and $d \ge 0$ an integer. State what it means for X to be smooth of dimension d at x.
 - (b) Let Y be the union of the coordinate axes in \mathbb{A}^4 . Write down a set of generators for I(Y). Hint: it may help to observe that $I(V \cup W) = I(V) \cap I(W)$ for closed subvarieties $V, W \subset \mathbb{A}^n$.
 - (c) Let $Z \subset \mathbb{A}^2$ be given by the vanishing of xy(x-y)(x+y). Show that Y and Z are not isomorphic.

Please turn over for the last two questions.

- 5. (a) Assume that k is an algebraic closure of a finite field \mathbb{F}_q with q elements. Let $X = \mathbb{P}^1$ and let $F_X : \mathbb{P}^1 \to \mathbb{P}^1$ be the q-Frobenius endomorphism of X. Show that F_X is bijective, but not an isomorphism.
 - (b) State the definition of a prime divisor on a smooth irreducible projective curve over \mathbb{F}_q .
 - (c) Describe all prime divisors on $\mathbb{P}^{1}_{\mathbb{F}_{q}}$. Briefly justify your answer (a detailed proof is not required).
- 6. Note that in this course complex manifolds were not required to be Hausdorff or second countable.
 - (a) State the definition of a k-space.
 - (b) Give an example of a C-space which is a complex manifold but is not an algebraic variety over C. Prove your answer.
 - (c) Give an example of a \mathbb{C} -space which is an algebraic variety over \mathbb{C} but is not a complex manifold. Prove your answer.

Algebraic Geometry–Retake Exam 21 June 2016

- Time allowed: 3 hours.
- There are 6 questions, of which you should answer 5. If you answer more than 5, then only your best 5 answers will count.
- You may quote results from the lectures without proof in the exam. If you wish to use results from the exercises then you are expected to re-prove them in the exam.
- Pen and paper only allowed no books, notes, calculators etc
- Throughout, k denotes an algebraically closed field, and all varieties we consider are varieties over the field k.
- 1. (a) If one identifies \mathbb{A}^2 with $\mathbb{A}^1 \times \mathbb{A}^1$ in the natural way, show that the Zariski topology on \mathbb{A}^2 is not the product topology of the Zariski topologies on the two copies of \mathbb{A}^1 .
 - (b) Let X be the variety $\mathbb{A}^1 \times \mathbb{P}^1$. Prove that X is not affine and not projective.
- 2. Let X be an affine variety. For f in $\mathcal{O}(X)$ define $D(f) = \{p \in X : f(p) \neq 0\}$ and $Z(f) = X \setminus D(f) = \{p \in X : f(p) = 0\}$. Prove:
 - (a) $X = \bigcup_{i \in I} D(f_i) \Leftrightarrow \bigcap_{i \in I} Z(f_i) = \emptyset \Leftrightarrow \text{the } f_i \text{ generate } \mathcal{O}(X) \text{ as an ideal.}$
 - (b) The D(f) with f running through $\mathcal{O}(X)$ form a basis for the Zariski topology on X.
 - (c) X is compact, i.e., every covering of X with open subsets has a finite subcovering.
- 3. Let X be a smooth projective irreducible curve and D a divisor on X.
 - (a) State the definition of $H^0(X, \mathcal{O}_X(D))$ and $H^1(X, \mathcal{O}_X(D))$.
 - (b) Define the genus of X.
 - (c) Compute the genus of \mathbb{P}^1 .
- 4. (a) Let $U \subset \mathbb{A}^1$ be non-empty open and let $f: U \to \mathbb{A}^1$ be a morphism. Show that f extends uniquely as a morphism $\bar{f}: \mathbb{P}^1 \to \mathbb{P}^1$.
 - (b) Let $P_1, \ldots, P_r, Q_1, \ldots, Q_s$ be distinct points of \mathbb{A}^1 . Assume that $\mathbb{A}^1 \setminus \{P_1, \ldots, P_r\}$ and $\mathbb{A}^1 \setminus \{Q_1, \ldots, Q_s\}$ are isomorphic. Show that r = s.
 - (c) Describe explicitly $\operatorname{Aut}(\mathbb{P}^1)$ (you don't need to prove your answer).
 - (d) Does the converse hold to (b) hold? More precisely, is it true that for every positive integer r and every set $P_1, \ldots, P_r, Q_1, \ldots, Q_r$ of distinct points in \mathbb{P}^2 we have

$$\mathbb{A}^1 \setminus \{P_1, \dots, P_r\} \cong \mathbb{A}^1 \setminus \{Q_1, \dots, Q_s\}?$$

- 5. Let X be a smooth irreducible projective curve of genus g = 1.
 - (a) State the Riemann-Roch theorem for X.
 - (b) State Serre Duality for X.
 - (c) Show that the degree of a canonical divisor K on X is zero.
 - (d) Let φ : Div $X \to \operatorname{Pic} X$ be the map sending a divisor to its class modulo principal divisors. Show that the class $\varphi(K)$ of K in Pic X is zero.
 - (e) Let $O \in X$. Show that the map $\psi: X \to \operatorname{Pic}^0 X$ given by $P \mapsto \varphi(P O)$ is bijective (here we write $\operatorname{Pic}^0 X$ for the image of the degree-zero divisors in $\operatorname{Pic} X$).

6. Assume that k is an algebraic closure of a finite field \mathbb{F}_q with q elements. Let X be a smooth irreducible projective curve defined over \mathbb{F}_q and of genus g. For a divisor D on X we write $h^0(D) = \dim H^0(X, \mathcal{O}_X(D))$. Let

$$G(t) = \sum_{\substack{[D] \in \operatorname{Pic} X_0\\ 0 \leq \deg D \leq 2g-2}} q^{h^0(D)} t^{\deg D} \,.$$

- (a) Assume that $X(\mathbb{F}_q) \neq \emptyset$. Show that G(t) is a polynomial.
- (b) Show that G(t) satisfies the functional equation

$$G(t) = q^{g-1} t^{2g-2} G(1/qt) \,.$$