Algebraic Geometry-Retake Exam 21 June 2016

- Time allowed: 3 hours.
- You should answer all 6 questions.
- You may quote results from the lectures without proof in the exam. If you wish to use results from the exercises then you are expected to re-prove them in the exam.
- Pen and paper only allowed - no books, notes, calculators etc.
- Throughout, k denotes an algebraically closed field, and all varieties we consider are varieties over the field k.

1. (a) If one identifies \mathbb{A}^{2} with $\mathbb{A}^{1} \times \mathbb{A}^{1}$ in the natural way, show that the Zariski topology on \mathbb{A}^{2} is not the product topology of the Zariski topologies on the two copies of \mathbb{A}^{1}.
(b) Let X be the variety $\mathbb{A}^{1} \times \mathbb{P}^{1}$. Prove that X is not affine and not projective.
2. Let X be an affine variety. For f in $\mathcal{O}(X)$ define $D(f)=\{p \in X: f(p) \neq 0\}$ and $Z(f)=X \backslash D(f)=$ $\{p \in X: f(p)=0\}$. Prove:
(a) $X=\cup_{i \in I} D\left(f_{i}\right) \Leftrightarrow \cap_{i \in I} Z\left(f_{i}\right)=\varnothing \Leftrightarrow$ the f_{i} generate $\mathcal{O}(X)$ as an ideal. You may use without proof that every proper ideal in a commutative ring is contained in at least one maximal ideal.
(b) The $D(f)$ with f running through $\mathcal{O}(X)$ form a basis for the Zariski topology on X.
(c) X is compact, i.e., every covering of X with open subsets has a finite subcovering.
3. Let X be a smooth projective irreducible curve and D a divisor on X.
(a) State the definition of $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ and $H^{1}\left(X, \mathcal{O}_{X}(D)\right)$.
(b) Define the genus of X.
(c) Compute the genus of \mathbb{P}^{1}.
4. (a) Let $U \subset \mathbb{A}^{1}$ be non-empty open and let $f: U \rightarrow \mathbb{A}^{1}$ be a morphism. Show that f extends uniquely as a morphism $\bar{f}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$.
(b) Let $P_{1}, \ldots, P_{r}, Q_{1}, \ldots, Q_{s}$ be distinct points of \mathbb{A}^{1}. Assume that $\mathbb{A}^{1} \backslash\left\{P_{1}, \ldots, P_{r}\right\}$ and $\mathbb{A}^{1} \backslash$ $\left\{Q_{1}, \ldots, Q_{s}\right\}$ are isomorphic. Show that $r=s$.
(c) Describe explicitly $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ (you don't need to prove your answer).
(d) Does the converse to (b) hold? More precisely, is it true that for every positive integer r and every set $P_{1}, \ldots, P_{r}, Q_{1}, \ldots, Q_{r}$ of distinct points in \mathbb{A}^{1} we have

$$
\mathbb{A}^{1} \backslash\left\{P_{1}, \ldots, P_{r}\right\} \cong \mathbb{A}^{1} \backslash\left\{Q_{1}, \ldots, Q_{s}\right\} ?
$$

Questions 5 and 6 are on the next page.
5. Let X be a smooth irreducible projective curve.
(a) State the Riemann-Roch theorem for X.
(b) State Serre Duality for X.

From now on assume X has genus 1 .
(c) Show that the degree of a canonical divisor K on X is zero.
(d) Let φ : Div $X \rightarrow$ Pic X be the map sending a divisor to its class modulo principal divisors. Show that the class $\varphi(K)$ of K in $\operatorname{Pic} X$ is zero.
(e) Let $O \in X$. Show that the map $\psi: X \rightarrow \operatorname{Pic}^{0} X$ given by $P \mapsto \varphi(P-O)$ is bijective (here we write $\operatorname{Pic}^{0} X$ for the image of the degree-zero divisors in $\left.\operatorname{Pic} X\right)$.
6. Assume that k is an algebraic closure of a finite field \mathbb{F}_{q} with q elements. Let X be a smooth irreducible projective curve defined over \mathbb{F}_{q} and of genus g. For a divisor D on X we write $h^{0}(D)=$ $\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}(D)\right)$. Let

$$
G(t)=\sum_{\substack{[D] \operatorname{Pic} X_{0} \\ 0 \leq \operatorname{deg} D \leq 2 g-2}} q^{h^{0}(D)} t^{\operatorname{deg} D} .
$$

(a) Assume that $X\left(\mathbb{F}_{q}\right) \neq \varnothing$. Show that $G(t)$ is a polynomial.
(b) Show that $G(t)$ satisfies the functional equation

$$
G(t)=q^{g-1} t^{2 g-2} G(1 / q t)
$$

