In Exercises 1 and 2, let $A = PDP^{-1}$ and compute A^4 .

1.
$$P = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

In Exercises 3 and 4, use the factorization $A = PDP^{-1}$ to compute A^k , where k represents an arbitrary positive integer.

3.
$$\begin{bmatrix} a & 0 \\ 2(a-b) & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

Diagonalize the matrices in Exercises 7–20, if possible. The real eigenvalues for Exercises 11–16 and 18 are included below the matrix.

7.
$$\begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$$

8.
$$\begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$$

25. A is a 4×4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two-dimensional. Is it possible that A is *not* diagonalizable? Justify your answer.

13. Find the distance between
$$\mathbf{x} = \begin{bmatrix} 10 \\ -3 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} -1 \\ -5 \end{bmatrix}$.

Determine which pairs of vectors in Exercises 15–18 are orthogonal.

15.
$$\mathbf{a} = \begin{bmatrix} 8 \\ -5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$
 16. $\mathbf{u} = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}$

Compute the quantities in Exercises 1–8 using the vectors

$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$$

1.
$$\mathbf{u} \cdot \mathbf{u}$$
, $\mathbf{v} \cdot \mathbf{u}$, and $\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ 2. $\mathbf{w} \cdot \mathbf{w}$, $\mathbf{x} \cdot \mathbf{w}$, and $\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$

3.
$$\frac{1}{w \cdot w} w$$
 4. $\frac{1}{u \cdot u} u$

5.
$$\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$$
 6. $\left(\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{x} \cdot \mathbf{x}}\right) \mathbf{x}$

7.
$$\|\mathbf{w}\|$$
 8. $\|\mathbf{x}\|$

In Exercises 9–12, find a unit vector in the direction of the given vector.

9.
$$\begin{bmatrix} -30 \\ 40 \end{bmatrix}$$
 10. $\begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix}$