Homework for week 2:

Read:

- The Row Vector rule for multiplying a matrix by a vector
- Read Section 1.4, Existence of Solutions
- Answer the following questions, ready for the test on Friday.
- Practise multiplying a matrix and a vector; this will be the first question on the test.

24. Suppose a system of linear equations has a 3×5 augmented matrix whose fifth column is not a pivot column. Is the system consistent? Why (or why not)?

In Exercises 9 and 10, write a vector equation that is equivalent to the given system of equations.

9. $x_2 + 5x_3 = 0$ $4x_1 + 6x_2 - x_3 = 0$ $-x_1 + 3x_2 - 8x_3 = 0$ 10. $3x_1 - 2x_2 + 4x_3 = 3$ $-2x_1 - 7x_2 + 5x_3 = 1$ $5x_1 + 4x_2 - 3x_3 = 2$

In Exercises 11 and 12, determine if **b** is a linear combination of $\mathbf{a}_1, \mathbf{a}_2$, and \mathbf{a}_3 .

11.
$$\mathbf{a}_1 = \begin{bmatrix} 1\\ -2\\ 0 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}, \mathbf{a}_3 = \begin{bmatrix} 5\\ -6\\ 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2\\ -1\\ 6 \end{bmatrix}$$

12. $\mathbf{a}_1 = \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} -2\\ 3\\ -2 \end{bmatrix}, \mathbf{a}_3 = \begin{bmatrix} -6\\ 7\\ 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 11\\ -5\\ 9 \end{bmatrix}$

22. Construct a 3 × 3 matrix A, with nonzero entries, and a vector b in ℝ³ such that b is *not* in the set spanned by the columns of A.

Compute the products in Exercises 1–4 using (a) the definition, as in Example 1, and (b) the row-vector rule for computing Ax. If a product is undefined, explain why.

1.
$$\begin{bmatrix} -4 & 2 \\ 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 7 \end{bmatrix}$$
 2.
$$\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

In Exercises 5–8, use the definition of Ax to write the matrix equation as a vector equation, or vice versa.

8.
$$z_1 \begin{bmatrix} 2 \\ -4 \end{bmatrix} + z_2 \begin{bmatrix} -1 \\ 5 \end{bmatrix} + z_3 \begin{bmatrix} -4 \\ 3 \end{bmatrix} + z_4 \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

14. Let $\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ 4 \end{bmatrix}$ and $A = \begin{bmatrix} 2 & 5 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix}$. Is \mathbf{u} in the subset of \mathbb{R}^3 spanned by the columns of A? Why or why not?

True or false (and why):

- 24. a. Every matrix equation $A\mathbf{x} = \mathbf{b}$ corresponds to a vector equation with the same solution set.
 - b. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then **b** is in the set spanned by the columns of A.
 - c. Any linear combination of vectors can always be written in the form Ax for a suitable matrix A and vector x.
 - d. If the coefficient matrix A has a pivot position in every row, then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent.
 - e. The solution set of a linear system whose augmented matrix is $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}]$ is the same as the solution set of $A\mathbf{x} = \mathbf{b}$, if $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$.
 - f. If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^m .
- 30. Construct a 3 × 3 matrix, not in echelon form, whose columns do *not* span ℝ³. Show that the matrix you construct has the desired property.

Compute the following two products:

3.
$$\begin{bmatrix} 1 & 2 \\ -3 & 1 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
4.
$$\begin{bmatrix} 1 & 3 & -4 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Let M be the matrix [-4 -2 2] [3 1 4] and b the vector

and b the vector [-4] [4]

Write the general solution of the matrix equation Ax = b in parametric vector form.