Read chapter 2.1, in particular

- the row-colum rule for matrix multiplication;
- powers of a matrix

- the final part on the transpose of a matrix.

Answer the following questions, ready for the test on Friday.

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 5 \\ -1 & 4 \end{bmatrix}, \quad E = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$

1.
$$-2A$$
, $B-2A$, AC , CD

2.
$$A + 3B$$
, $2C - 3E$, DB , EC

In Exercises 5 and 6, compute the product AB in two ways: (a) by the definition, where $A\mathbf{b}_1$ and $A\mathbf{b}_2$ are computed separately, and (b) by the row-column rule for computing AB.

5.
$$A = \begin{bmatrix} -1 & 3 \\ 2 & 4 \\ 5 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}$

- 7. If a matrix A is 5 × 3 and the product AB is 5 × 7, what is the size of B?
- **8.** How many rows does B have if BC is a 5×4 matrix?

9. Let
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 9 \\ -3 & k \end{bmatrix}$. What value(s) of k , if any, will make $AB = BA$?

11. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
 and $D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Com-

pute AD and DA. Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a 3×3 matrix B, not the identity matrix or the zero matrix, such that AB = BA.

12. Let
$$A = \begin{bmatrix} 3 & -6 \\ -2 & 4 \end{bmatrix}$$
. Construct a 2 × 2 matrix B such that AB is the zero matrix. Use two different nonzero columns for B .

Exercises 15 and 16 concern arbitrary matrices A, B, and C for which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

- **15.** a. If A and B are 2×2 matrices with columns \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{b}_1 , \mathbf{b}_2 , respectively, then $AB = [\mathbf{a}_1\mathbf{b}_1 \ \mathbf{a}_2\mathbf{b}_2]$.
 - b. Each column of AB is a linear combination of the columns of B using weights from the corresponding column of A.

c.
$$AB + AC = A(B + C)$$

$$d. A^T + B^T = (A+B)^T$$

 The transpose of a product of matrices equals the product of their transposes in the same order.

- 31. Show that $I_m A = A$ where A is an $m \times n$ matrix. Assume $I_m \mathbf{x} = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^m .
- **32.** Show that $AI_n = A$ when A is an $m \times n$ matrix. [Hint: Use the (column) definition of AI_n .]

Define a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 5x_2 + 4x_3 \\ x_2 - 6x_3 \end{bmatrix}.$$

- a) Write down the standard matrix for T.
- b) Is T injective?
- c) Is T surjective?