Week 2 homework.
24. The system is consistent, see Theorem 2 (existence \& uniqueness)

$$
\begin{aligned}
& \text { 9 } x_{1}\left[\begin{array}{c}
0 \\
4 \\
-1
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
6 \\
3
\end{array}\right]+x_{3}\left[\begin{array}{c}
5 \\
-1 \\
-8
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] . \\
& \underline{10} x_{1}\left[\begin{array}{c}
3 \\
-2 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
-7 \\
4
\end{array}\right]+x_{3}\left[\begin{array}{c}
4 \\
5 \\
-3
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right] .
\end{aligned}
$$

11 Row reduction of $A C M$ in $\left[\begin{array}{lll:}1 & 0 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 5 & 0\end{array}\right]$.
Last column in not a pivot, so system in consistent, so \underline{b} is a linear combination of the \underline{Q}_{i}.
12 Row reduction of $A C M$ in $\left[\begin{array}{ccccc}1 & 0 & 0 & 1244 / 33 \\ 0 & 1 & 0 & -41 / 33 \\ 0 & 0 & 1 & 1 & -2 / 11\end{array}\right]$ As for 1, \underline{b} in a linear combination of the $\underline{\varphi}_{i}$.

22 Many possibilities, eq. $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right], \quad b=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

1 Undefined - A is 3×2, and $\underline{b} \in \mathbb{R}^{3}$.
2 Undefined - A is $3 \times 1, \& \quad \underline{b} G \mathbb{R}^{2}$.

8 Matrix equation:

$$
\left[\begin{array}{cccc}
2 & -1 & -4 & 0 \\
-4 & 5 & 3 & 2
\end{array}\right] \underline{x}=\left[\begin{array}{c}
5 \\
12
\end{array}\right] \quad\left(\underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)
$$

14 Row reduce the matrix $\left[\begin{array}{ccc:c}2 & 5 & -1 & 4 \\ 0 & 1 & -1 & -1 \\ 1 & 2 & 0 & 4\end{array}\right]$ to get $\left[\begin{array}{ccc|c}1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
System is inconsistent, so \underline{u} in not a linear combination of the columns of A, so in not in the span.
24a) True; if $A=\left[\underline{a}_{1} \ldots \underline{a}_{n}\right]$ then the vector eqin is

$$
x_{1} \underline{a}_{1}+\cdots+x_{n} \underline{a}_{n}=\underline{b}
$$

b) True; if $A=\left[\underline{a}_{1, \ldots}, \underline{a}_{n}\right]$, can write

$$
\underline{\underline{b}}=x_{1} \underline{Q}_{1}+\cdots+x_{n} \underline{a}_{n} \text { some } x_{1} \in \mathbb{R} \text {, }
$$ so \underline{b} is alinear combination of the columus.

c) True; Put the vectors as the colmusot A, \& take x as the weights (coefficients) of the linear combination.
d) False, eq $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \underline{b}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, then $A \underline{x}=\underline{b}$ in consistent.
e) True, See theorem 3.
f) False, eg take $m=n=1, A=[0]$, and $b=[1]$ $30 \quad A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Every $=$ in the span ot the
column of A has a 0 in the final position.
(Many possibilities)
$3\left[\begin{array}{c}4 \\ 9 \\ 16\end{array}\right]$
$4 \quad\left[\begin{array}{l}3 \\ 8\end{array}\right]$.

Parametric vector form:
The augmented coefficient matrix is

$$
\left[\begin{array}{llll}
-4 & -2 & 2 & -4
\end{array}\right]
$$

$\left[\begin{array}{llll}3 & 1 & 4 & 4\end{array}\right]$
which row-reduces to
[$\left.\begin{array}{llll}1 & 0 & 5 & 2\end{array}\right]$
$\left[\begin{array}{cccc}0 & 1 & -11 & -2\end{array}\right]$.
As equations, this becomes
x_1 + 5x_3 = 2
x_2-11x_3 =-2.
We rearrange these:

$$
\begin{aligned}
& x _1=2-5 x _3 \\
& x _2=-2+11 x _3 \\
& x _3=0+1 x _3 .
\end{aligned}
$$

Where does the last equation come from? Nowhere, it's just always true! Whenever we have a free variable, we can always insert an equation like this. Reading off the columns in the above equations, we see that the parametric vector form of the general solution is

