Week 2 homework.

(1)

8 Matrix equation:

$$\begin{bmatrix} 2 & -1 & -4 & 0 \\ -4 & 5 & 3 & 2 \end{bmatrix} \stackrel{X}{=} \begin{bmatrix} 5 \\ 12 \end{bmatrix} \begin{pmatrix} X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \end{pmatrix}$$
14 Row reduce the matrix
$$\begin{bmatrix} 2 & 5 & -1 & 4 \\ 0 & 1 & -1 & -1 \\ 1 & 2 & 0 & 4 \end{bmatrix}$$
to get
$$\begin{bmatrix} 1 & 0 & 2 & 10 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
System in inconsistent, so U in not a lineae
combination of the columns of A , so in not in
the span.
24 a) True; if $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$ then the vector a_1^{i} is
 $x_1 g_1 + \cdots + x_n g_n = b$.
b) True; with $A = \begin{bmatrix} a_{1, \cdots} & a_n \end{bmatrix}$, can write
 $m = x \cdot g_1 + \cdots + x_n g_n$ some $x_1 \in \mathbb{R}$,
so b in a lineae combination of the columns.
c) #True; Put the vector as the columns of A .
8 take x as the weights (columns of A .
8 take x as the weights (columns of A .
8 take x as the weights (columns of A .
9 the lineae combination.
20 False, $e_{a} A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, then $A = b$ in
consistent.

2)

c) Frue, See theorem 3.
f) False, eg take
$$m = n = 1, A = [0], and b = [1]$$

30 $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ Every $\leq in$ the spanot the column of A has a 0 in the final position.
(Thany possibilities)
3 $\begin{bmatrix} 4 \\ 9 \\ 16 \end{bmatrix}$
4 $\begin{bmatrix} 3 \\ 8 \end{bmatrix}$.
Parametric vector form:
The augmented coefficient matrix is
 $[4 - 2 - 2 - 4]$
 $[3 + 4 - 4]$
which row-reduces to
 $[1 & 0 - 5 - 2]$
 $[0 - 1 - 11 - 2]$.
As equations, this becomes
 $x_1 + 5x_3 = 2$
 $x_2 - 11x_3 = -2$.
We rearrange these:
 $x_1 = 2 - 5x_3$
 $x_2 = -2 + 11x_3$.
Where does the last equation come from? Nowhere, it's just always true! Whenever we
have a free variable, we can always insert an equation like this. Reading off the columns
in the above equations, we see that the parametric vector form of the general solution is
 $[2] = [-5]$
 $x = [-2] + S[11]$, in R.
 $[0] = [1]$