1. Is
$$\lambda = 2$$
 an eigenvalue of $\begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix}$? Why or why not?

2. Is
$$\lambda = -3$$
 an eigenvalue of $\begin{bmatrix} -1 & 4 \\ 6 & 9 \end{bmatrix}$? Why or why not?

3. Is
$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 1 & -1 \\ 6 & -4 \end{bmatrix}$? If so, find the eigenvalue.

In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.

9.
$$A = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}, \lambda = 1, 3$$

Find the eigenvalues of the matrices in Exercises 17 and 18.

17.
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -2 \end{bmatrix}$$

In Exercises 21 and 22, A is an $n \times n$ matrix. Mark each statement True or False. Justify each answer

- .
- **21.** a. If $A\mathbf{x} = \lambda \mathbf{x}$ for some vector \mathbf{x} , then λ is an eigenvalue of A.
 - b. A matrix A is not invertible if and only if 0 is an eigenvalue of A.
 - c. A number c is an eigenvalue of A if and only if the equation $(A cI)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
 - d. Finding an eigenvector of A may be difficult, but checking whether a given vector is in fact an eigenvector is easy.
 - e. To find the eigenvalues of A, reduce A to echelon form.
- **24.** Construct an example of a 2×2 matrix with only one distinct eigenvalue.
- **25.** Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} . [*Hint*: Suppose a nonzero \mathbf{x} satisfies $A\mathbf{x} = \lambda \mathbf{x}$.]
- **26.** Show that if A^2 is the zero matrix, then the only eigenvalue of A is 0.
- **27.** Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^T . [Hint: Find out how $A \lambda I$ and $A^T \lambda I$ are related.]