In Exercises 1-6, determine which sets of vectors are orthogonal.
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In Exercises 7-10, show that {u;,u,} or {u;, u,, us} is an orthog-
onal basis for R? or R?, respectively. Then express x as a linear
combination of the u’s.
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7. u = [_3],u2 — [4],andx= [_7]
12. Compute the orthogonal projection of {_: J onto the line

through [ _; ] and the origin.

In Exercises 17-22, determine which sets of vectors are orthonor-
mal. If a set is only orthogonal, normalize the vectors to produce
an orthonormal set.
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26. Suppose W is a subspace of R" spanned by n nonzero
orthogonal vectors. Explain why W = R".



In Exercises 3—6, verify that {u,, u,} is an orthogonal set, and then
find the orthogonal projection of y onto Span {u;, u,}.
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In Exercises 21 and 22, all vectors and subspaces are in R". Mark
each statement True or False. Justify each answer.

21. a. If z is orthogonal to u;, and to u, and if W =
Span {u;, u,}, then z must be in W+,

b. For each y and each subspace W, the vector y — proj,, y
is orthogonal to W.

c. The orthogonal projection ¥ of y onto a subspace W can
sometimes depend on the orthogonal basis for W used to
compute ¥.

d. Ifyisinasubspace W, then the orthogonal projection of
y onto W isy itself.

Find an orthogonal basis for the column space of each matrix in
Exercises 9—-12.
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