Retake Exam - Lineaire Algebra 1 Date

Time: 3 hours.

Solutions

1. a)
b) The solution set is the span of the vectors $\left[\begin{array}{r}-2 \\ 0 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]$
2. a) $A^{-1}=\left[\begin{array}{rrr}0 & 3 & 2 \\ 1 & -5 & -4 \\ 0 & -1 & -1\end{array}\right]$
b) $\operatorname{det} B=6$
c) $A B=\left[\begin{array}{rrr}-8 & 9 & -4 \\ 2 & 1 & 0 \\ -5 & 0 & -1\end{array}\right]$
d) $\operatorname{det}(-B)=-6$
3. ${ }^{1}$ a) $-3 \underline{u}+1 \underline{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

2 b) $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{r}-2 \\ 4\end{array}\right]$
4 c) Observe that $2 \underline{u}+-1 \underline{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, hence $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{r}5 \\ -1\end{array}\right]$.
3 d) The standard matrix for T is $\left[\begin{array}{rr}-2 & 5 \\ 4 & -1\end{array}\right]$.
4_{2} a) Linear; it comes by matrix multiplication.
b) Linear (direct from the axioms)

2
2
c) Not linear; $\left[\begin{array}{l}-1 \\ -1\end{array}\right]=-f_{c}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right) \neq f_{c}\left(\left[\begin{array}{l}-1 \\ -1\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

2
d) Not linear; $\left[\begin{array}{l}-3 \\ -5\end{array}\right]=-f_{a}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=-f_{a} \circ f_{c}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right) \neq f_{a} \circ f_{c}\left(\left[\begin{array}{l}-1 \\ -1\end{array}\right]\right)=f_{a}\left(\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right)=$ $\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
2^{2}
e) Linear, because it sends every vector to $\left[\begin{array}{l}0 \\ 0\end{array}\right]$, i.e. it equals f_{b}.
5. a) Linear system with matrix (free to permute rows!)

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & -3 \\
0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 & 4 \\
0 & 0 & 1 & -1 & 0 & -4 \\
1 & -1 & 0 & 0 & 0 & 4
\end{array}\right]
$$

5
b) Reduced echelon form:

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & -3 \\
0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

c) Yes, there does exist a solution such that the flow along the edge labelled x_{3} is greater than 100, for example

$$
\left[\begin{array}{c}
1 \\
-3 \\
101 \\
105 \\
101
\end{array}\right] .
$$

6. a) False, e.g. $A=-B$ with A invertible.
b) False, e.g. $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
c) True; by a row replacement (which does not change the determinant) we can arrange for A to have a zero row, then cofactor expand along that row.
d) True; write the system as $A x=b$, then if 0 is a solution we see that $b=0$.
e) True; $\operatorname{det} A^{2}=(\operatorname{det} A)^{2}$, so this is non-zero if and only if $\operatorname{det} A$ is non-zero.
