Solutions to Final Exam - Lineaire Algebra 2 3 June 2019

Time: 3 hours.

1. a)

$$
\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & -3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

b) The solution set is the span of the vectors $\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 1\end{array}\right]$
c) The dimension is 2 .
2. a) Yes.
b) Yes.
c) No.
d) $\left[\begin{array}{r}\frac{13}{19} \\ \frac{65}{38} \\ -\frac{39}{38}\end{array}\right]$.
3. a) False; almost any example with 2×2 matrices will suffice.
b) False; for example if $n=3$, and we take A to be the identity matrix, then $\operatorname{det} B=8 \neq 6$.
c) True; just check the axioms.
d) True, $\left(A-\lambda I_{n}\right) \underline{x}=\mathbf{0}$ is equivalent to $A \underline{x}=\lambda \underline{x}$.
e) True; the orthogonal complement to \underline{a} has dimension 1 , and so is spanned by \underline{b}, then use that $\left(V^{\perp}\right)^{\perp}=V$.
4. a) Solution is not unique, but one basis of kernel given by $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ 1 \\ 1\end{array}\right]$.
b) Basis of column space given by $\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right]\left[\begin{array}{r}-1 \\ 0 \\ -2\end{array}\right]$.
c) The image is the set of vectors $\underline{v} \in \mathbb{R}^{3}$ such that there exists $\underline{u} \in \mathbb{R}^{4}$ with $T(\underline{u})=\underline{v}$.
d) $\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right]\left[\begin{array}{r}-1 \\ 0 \\ -2\end{array}\right]$.
5. a) For example, show that the given values are roots of the characteristic polynomial $\operatorname{det}(A-$ $\left.\lambda I_{2}\right)=\lambda^{2}+\lambda-6$.
b) A basis of the eigenspace is given by $\left[\begin{array}{r}1 \\ -2\end{array}\right]$.
c) A basis of the eigenspace is given by $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$.
d) $P=\left[\begin{array}{rr}1 & -1 \\ -2 & 3\end{array}\right], D=\left[\begin{array}{rr}2 & 0 \\ 0 & -3\end{array}\right]$.
e) $A^{2019}=P D^{2019} P^{-1}=\left[\begin{array}{rr}3 x^{2019}-2 y^{2019} & x^{2019}-y^{2019} \\ -6 x^{2019}+6 y^{2019} & -2 x^{2019}+3 y^{2019}\end{array}\right]$ where $x=2$ and $y=-3$. This simplifies to the given solution.
6. (a) $A A^{T}=\left[\begin{array}{cc}17 & -7 \\ -7 & 3\end{array}\right]$.
(b) $A^{t} \underline{b}=\left[\begin{array}{ll}15 & -7\end{array}\right]$.
(c) The ACM of the normal equation is $\left[\begin{array}{rrr}17 & -7 & 15 \\ -7 & 3 & -7\end{array}\right]$. This row-reduces to $\left[\begin{array}{lll}1 & 0 & -2 \\ 0 & 1 & -7\end{array}\right]$. The unique solution is then given by $\left[\begin{array}{l}-2 \\ -7\end{array}\right]$.
(d) The best-fitting curve is obtained when $\underline{v}=\left[\begin{array}{l}v_{0} \\ v_{1}\end{array}\right]$ is a least-squares solution to the equation

$$
\left[\begin{array}{cc}
1 & \sqrt{1} \\
1 & \sqrt{1} \\
1 & \sqrt{4} \\
1 & \sqrt{4}
\end{array}\right] \underline{v}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
4
\end{array}\right] .
$$

The \underline{v} giving the best fit is then the solution to the normal equation

$$
\left[\begin{array}{cc}
4 & 6 \\
6 & 10
\end{array}\right] \underline{v}=\left[\begin{array}{c}
6 \\
11
\end{array}\right] .
$$

