Solutions to Final Exam – Lineaire Algebra 2 3 June 2019

Time: 3 hours.

1. a)

b) The solution set is the span of the vectors
$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- c) The dimension is 2.
- 2. a) Yes.
 - b) Yes.
 - c) No.
 - d) $\begin{bmatrix} \frac{13}{19} \\ \frac{65}{38} \\ -\frac{39}{38} \end{bmatrix}$.
- 3. a) False; almost any example with 2×2 matrices will suffice.
 - b) False; for example if n = 3, and we take A to be the identity matrix, then det $B = 8 \neq 6$.
 - c) True; just check the axioms.
 - d) True, $(A \lambda I_n)\underline{x} = \mathbf{0}$ is equivalent to $A\underline{x} = \lambda \underline{x}$.
 - e) True; the orthogonal complement to \underline{a} has dimension 1, and so is spanned by \underline{b} , then use that $(V^{\perp})^{\perp} = V$.
- 4. a) Solution is not unique, but one basis of kernel given by $\begin{vmatrix} 1 \\ 1 \\ 0 \\ 0 \end{vmatrix}$, $\begin{vmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{vmatrix}$.
 - b) Basis of column space given by $\begin{bmatrix} 1\\0\\-2 \end{bmatrix} \begin{bmatrix} -1\\0\\-2 \end{bmatrix}$.

c) The *image* is the set of vectors $\underline{v} \in \mathbb{R}^3$ such that there exists $\underline{u} \in \mathbb{R}^4$ with $T(\underline{u}) = \underline{v}$.

- d) $\begin{bmatrix} 1\\0\\-2 \end{bmatrix} \begin{bmatrix} -1\\0\\-2 \end{bmatrix}$.
- 5. a) For example, show that the given values are roots of the *characteristic polynomial* det $(A \lambda I_2) = \lambda^2 + \lambda 6$.

b) A basis of the eigenspace is given by $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

- c) A basis of the eigenspace is given by $\begin{bmatrix} -1\\ 3 \end{bmatrix}$.
- d) $P = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$. e) $A^{2019} = PD^{2019}P^{-1} = \begin{bmatrix} 3x^{2019} - 2y^{2019} & x^{2019} - y^{2019} \\ -6x^{2019} + 6y^{2019} & -2x^{2019} + 3y^{2019} \end{bmatrix}$ where x = 2 and y = -3. This simplifies to the given solution.
- 6. (a) $AA^{T} = \begin{bmatrix} 17 & -7 \\ -7 & 3 \end{bmatrix}$. (b) $A^{t}\underline{b} = \begin{bmatrix} 15 & -7 \end{bmatrix}$.
 - (c) The ACM of the normal equation is $\begin{bmatrix} 17 & -7 & 15 \\ -7 & 3 & -7 \end{bmatrix}$. This row-reduces to $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -7 \end{bmatrix}$. The unique solution is then given by $\begin{bmatrix} -2 \\ -7 \end{bmatrix}$.

(d) The best-fitting curve is obtained when $\underline{v} = \begin{bmatrix} v_0 \\ v_1 \end{bmatrix}$ is a least-squares solution to the equation

$$\begin{bmatrix} 1 & \sqrt{1} \\ 1 & \sqrt{1} \\ 1 & \sqrt{4} \\ 1 & \sqrt{4} \end{bmatrix} \underline{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 4 \end{bmatrix}$$

The \underline{v} giving the best fit is then the solution to the normal equation

$$\begin{bmatrix} 4 & 6 \\ 6 & 10 \end{bmatrix} \underline{v} = \begin{bmatrix} 6 \\ 11 \end{bmatrix}.$$