Solutions to Final Exam - Lineaire Algebra 2
 3 June 2019

Time: 3 hours.

1. a)

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & -2 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

b) The solution set is the span of the vectors $\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}2 \\ -2 \\ 0 \\ 1\end{array}\right]$
c) No, as the solution set has dimension 2 .
d) No, because any solution lies in the kernel.
2. a) $A^{-1}=\left[\begin{array}{rrr}1 & -1 & 5 \\ -1 & 2 & -8 \\ 0 & 0 & 1\end{array}\right]$
b) $\operatorname{det} B=-3$
c) $A B=\left[\begin{array}{rrr}0 & 1 & -3 \\ -14 & -13 & -2 \\ -3 & -3 & 0\end{array}\right]$
d) $\operatorname{det}(-3 B)=81$
3. a) True; e.g. send $\left[\begin{array}{l}x \\ y\end{array}\right]$ to $\left[\begin{array}{l}x \\ y \\ 0\end{array}\right]$.
b) False; almost any example with $n=2$ will do.
c) True; just write out the axioms;
d) True; the diagonal entries are the eigenvalues.
e) True; $(A b) \cdot(A b)=b^{T} A^{T} A b=b^{T} A^{-1} A b=b^{T} b=b \cdot b$.
4. a) Yes.
b) Yes.
c) No.
d) Projection is $\left[\begin{array}{r}\frac{2}{7} \\ -\frac{29}{14} \\ -\frac{9}{14}\end{array}\right]$.
5. a) For example, show that the given values are roots of the characteristic polynomial $\operatorname{det}(A-$ λI_{2}).
b) A basis of the eigenspace is given by $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
c) A basis of the eigenspace is given by $\left[\begin{array}{l}3 \\ 4\end{array}\right]$.
d) $P=\left[\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right], D=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.
e) $A^{2019}=\left[\begin{array}{ll}7 & -6 \\ 8 & -7\end{array}\right]$.
6. (a) We have $A \underline{y}=\underline{b}$, so the distance from $A \underline{y}$ to \underline{b} is zero. Distances are always non-negative, so this evidently minimises the distance.
(b) We know there exists a vector \underline{y} which is an actual solution, so the distance from $A \underline{y}$ to \underline{b} is 0 . Thus any LSS \underline{z} must also have that the distance from $A \underline{z}$ to \underline{b} is zero, but the only vector of length 0 is the zero vector.
(c) $A A^{T}=\left[\begin{array}{rr}2 & -2 \\ -2 & 5\end{array}\right]$.
(d) $A^{t} \underline{b}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$.
(e) The ACM of the normal equation is $\left[\begin{array}{rrr}2 & -2 & 4 \\ -2 & 5 & 2\end{array}\right]$. This row-reduces to $\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 1 & 2\end{array}\right]$. The unique solution is then given by $\left[\begin{array}{l}4 \\ 2\end{array}\right]$.

