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Abstract

We relate the strong uniform boundedness conjecture for abelian varieties
to the existence or otherwise of Néron models over higher-dimensional bases,
and to the algebraic version of Hain’s height jump.

1 Introduction

The strong uniform boundedness conjecture predicts that the size of the group of
torsion points on an abelian variety over a global field can be bounded uniformly in
the dimension of the abelian variety and the degree of the field (see conjecture 2.1).
We propose a conjectural generalisation of a theorem of Silverman and Tate on
heights in families of abelian varieties (conjecture 2.2), and show that this con-
jecture is equivalent to the strong uniform boundedness conjecture (theorem 3.1).
Using a recent result of Cadoret and Tamagawa, we can reduce further to the case
of families of curves.

We also show that this conjecture holds for any family of abelian varieties
which admits a finite-type Néron model over a suitable compactification of the base
scheme (lemma 4.1). In the absence of Néron model, we remark on the connection
between orders of torsion points and the slow growth of a certain ‘jump function’ j
inspired by asymptotic Hodge theory. Finally, we consider a variant (question 6.1)
where torsion points are replaced by ‘points of small height’.

Many thanks to Maarten Derickx, Ariyan Javanpeykar and Robin de Jong for
helpful comments.

2 Statements of the conjectures

Given a field k, by a variety over k we mean an integral separated k-scheme of
finite type. We fix a field K, which is either the field of rational numbers or the
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field Fl(T ) for some prime number l. We fix an algebraic closure K of K.

Conjecture 2.1 (The strong uniform boundedness conjecture for abelian vari-
eties). Fix an integer g ≥ 0. There exists a constant ε = ε(g) ∈ Z>0 such that for
every g-dimensional abelian variety A/K and point p ∈ A(K), we have that either
p is of infinite order, or that the order of p is less than ε.

Note that this is equivalent to the usual formulation of the strong uniform
boundedness conjecture (see for example [Sil01, conjecture 2.3.2]); by Weil restric-
tion we can obtain a bound for abelian varieties over finite extensions of K which
is uniform in the dimension of the variety and the degree of the field. Moreover,
since the l-rank of the group of torsion points on an abelian variety of dimension
g is bounded by 2g for every prime l, a uniform bound on the orders of torsion
elements easily implies a uniform bound on the size of the torsion subgroup.

The main result of this note is that 2.1 is equivalent to the following conjecture:

Conjecture 2.2. Let S/K be a variety and let A/S be an abelian scheme. Let
d ≥ 1 be an integer. Let σ ∈ A(S) be a section of infinite order. Define

T(d) = {p ∈ S(K̄)|[κ(p) : K] ≤ d and σ(p) is torsion in Ap(K̄)}.

Then T(d) is not Zariski dense in S.

In the case when the base scheme S has dimension 1, this conjecture is a theo-
rem due to Silverman [Sil83], see also [Tat83], [Lan83], [Cal86], [Gre89], [BHdJ14]
for various strengthened versions. In section 6 we will discuss a variant which looks
not only at torsion points but at all points of ‘small height’.

Using a recent result of Cadoret and Tamagawa [CT13], we can even reduce to
the case of families of curves:

Conjecture 2.3. Let S/K be a variety and let C/S be a proper smooth curve
with jacobian J/S. Let d ≥ 1 be an integer. Let σ ∈ J(S) be a section of infinite
order. Define

T(d) = {p ∈ S(K̄)|[κ(p) : K] ≤ d and σ(p) is torsion in Jp(K̄)}.

Then T(d) is not Zariski dense in S.

The equivalence of conjecture 2.1 with conjecture 2.3 may be proven in an
almost identical fashion to theorem 3.1, after first appealing to the main result of
[CT13] to reduce conjecture 2.1 to the case of curves. We omit the details.

2



3 Proof of the main equivalence

Theorem 3.1. Conjecture 2.1 is equivalent to conjecture 2.2.

Remark 3.2. It is possible to simultaneously ‘specialise’ both conjectures to again
obtain equivalent statements; for example, one can restrict conjecture 2.1 to el-
liptic curves and conjecture 2.2 to families of elliptic curves over base schemes
S of dimension at most 2. The proofs are identical and the possible variations
numerous, so we do not give further details.

It is easy to see that conjecture 2.1 implies conjecture 2.2; we must prove the
converse.

Lemma 3.3. Assume conjecture 2.2. Let S/K be a variety, and let A/S be an
abelian scheme with a section σ ∈ A(S). Fix d ∈ Z>0. Then there exists an integer
c = c(d) > 0 such that for every L/K of degree at most d and every point s ∈ S(L),
either σ(s) has infinite order, or σ(s) is torsion of order less than c.

Proof. We proceed by induction on the dimension of S. If dimS = 0 then S has
only finitely many K-points, so the result is immediate.

In general, we fix an integer δ > 0 and assume the lemma holds for every variety
S of dimension less than δ. Now let S have dimension δ. If σ is torsion (say of
order c0) then for every s ∈ S(K) it holds that c0σ(s) = 0, and we are done. As
such, we may and do assume that σ has infinite order. We apply conjecture 2.2 to
obtain a proper closed subscheme Z ⊆ S such that

{p ∈ S(L)|[L : K] ≤ d and σ(p) is torsion in Ap(L)} ⊆ Z(K).

Now Z has only finitely many irreducible components, and each has dimension
less than δ. We are done by the induction hypothesis.

Definition 3.4. Fix an integer g > 0. Let Ag denote the moduli stack of PPAS
of dimension g. Then Ag is a separated Deligne-Mumford stack of finite type over
Z. Given also an integer n ≥ 0, let Ag,n denote the moduli stack of PPAS of
dimension g, with a collection of n ordered marked sections (not assumed distinct)

We have natural maps ϕn : Ag,n+1 → Ag,n given by forgetting the last section.
The map ϕn has n natural sections τi, given by ‘doubling up’ the sections σi. One
checks without difficulty that (ϕn : Ag,n+1 → Ag,n, τ1, · · · , τn) is the ‘universal
PPAS with n marked sections’. In particular, each Ag,n is a Deligne-Mumford
stack, separated and of finite type over Z.

Proof of theorem 3.1. We begin by remarking that conjecture 2.1 for PPASs im-
plies conjecture 2.1 for all abelian varieties. Indeed, fix g ≥ 0, and let ε′(g) be
the constant from conjecture 2.1 for PPASs. Now given any abelian variety A of
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dimension g, we have that A4 × Â4 is principally polarised (Zarhin’s trick) and
has dimension 8g. As such, the rational torsion in A4 × Â4 has order bounded by
ε′(8g), so the same holds for A.

Now we assume conjecture 2.2 holds, and we prove conjecture 2.1 for PPASs.
Consider the universal map Ag,2 → Ag,1 with its tautological section σ1. Let
f : S → Ag,1 be a finite flat (hence locally free as Ag,1 locally noetherian) morphism
from a scheme to Ag,1 (which exists by [LMB00, theorem 16.6]).

‘Finite’ and ‘locally free’ both satisfy fpqc descent, and so make sense for a
representable morphism of stacks. Similarly, the degree at a point in the target
makes sense, and is locally constant. If the target is quasi-compact (say over Z)
then so is the source, in which case a finite locally free morphism has bounded
degree. The morphism f above satisfies these hypotheses, and so abusing notation
we write deg f for a bound on the degree of f . This is perhaps unnecessarily
complicated, but it avoids worrying about whether a connected stack admits a
finite flat cover by a connected scheme.

Write A = Ag,2×Ag,1 S (an abelian scheme over S), and write σ ∈ A(S) for the
base change of σ1. Let c := c(deg f) be the constant from lemma 3.3, so for every
L/K of degree at most deg f and every s ∈ S(L) we have that σ(s) has infinite
order or order less than c.

Now let B/K a PPAS of dimension g and p ∈ B(K) a torsion point. We
claim that p has order less than c. The pair (B, p) is a point in Ag,1(K), and the
universal property yields a pull-back

B //

��

Ag,2

��
SpecK // Ag,1

such that σ1 pulls back to p. There exists an extension L/K of degree at most
deg f and an L-point b ∈ S(L) such that f(b) = (B, p) ∈ Ag,1(K). We obtain
by base-change an abelian variety Ab/ SpecL and a section σb ∈ Ab(SpecL), such
that the following diagram is a pull-back:

Ab //

��

B

��
SpecL // SpecK

such that σb arises by base-change of p. Now the section σb ∈ Ab(SpecL) is torsion
(because p is torsion), and so has order less than c (by the lemma). Hence p has
order less than c and we are done.
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4 Proof of conjecture 2.2 when a Néron model

exists

The main result of this section can be more succinctly expressed as ‘conjecture 2.2
holds if a Néron model of the base exists after suitable compactification and alter-
ation of S’. A more precise statement and proof follow.

First, some notation: if K = Q then set Λ = SpecZ, and if K = Fp(T ) then
set Λ = P1

Fp
.

Lemma 4.1. Let A/S be a PPAS, and σ ∈ A(S) a section of infinite order.
Suppose we have

1. a proper flat morphism S → Λ;

2. a dense open subscheme U ⊆ S;

3. an alteration f : U ×Λ K → S;

4. an abelian scheme A/U ;

5. a section σ̄ ∈ A(U);

6. an isomorphism A×Λ K → f ∗A such that f ∗σ = σ̄;

7. a (finite type) Néron model A /S for A with fibrewise-connected-component
A 0 semiabelian.

Define

T(d) = {p ∈ S(K̄)|[κ(p) : K] ≤ d and σ(p) is torsion in Ap(K̄)}.

Then T(d) is not Zariski dense in S.

Remark 4.2. The list of assumptions may seem rather extensive. However, note
that assumptions (1) through (6) can always be easily arranged, even in very many
non-isomorphic ways. It is condition (7) (the existence of the Néron model) that
is very restrictive and, by [Hol14], cannot in general be arranged.

Proof. We begin with some simple reductions. It is clear that the conclusion is
not affected by making alterations of S, so we will assume to simplify the notation
that the alteration f is an isomorphism. We can freely alter S without affecting
the other assumptions, so we may assume by [dJ96] that S is regular. We know
that some multiple of σ̄ is contained in the fibrewise-connected-component A 0, so
to simplify the notation we will assume that σ̄ itself extends across A 0, and we
will simply write σ for the extension.
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Since A is isomorphic to A∨ we see that the latter also admits a finite type
Néron model over S, denoted A ∨ and with fibrewise-connected-component A ∨,0,
and the polarisation extends to an isomorphism A → A ∨. Write P for the
Poincare bundle on A×U A∨. By [MB85b, Definition II.1.2.7 and Theorem II.3.6]
we find that P extends uniquely as a biextension over A 0 ×S A ∨,0. Write L
for the pullback to A 0 of the extended Poincare bundle via the polarisation, as a
rigidified line bundle.

At any Archimedean place of K, the restricted rigidified bundle LA admits a
unique hermitian metric with translation-invariant first-chern class and such that
the rigidifcation is an isometry (see [MB85a]). By [Gre89] we find that this metric
admits a (unique) continuous extension to L on the whole of A 0. From now on
we will assume that the rigidified bundle L is equipped with this metric at each
Archimedean place.

The pullback of L along σ gives a hermitian metrised line bundle on S. Write

hσ : S(K̄)→ R≥0

for the height on K̄-points induced by σ∗L . Then we see by [MB85a] that this
function coincides with the function

ĥσ : S(K̄)→ R≥0

p 7→ ĥp(σ(p)),

where ĥp denotes the Néron-Tate height in the fibre Ap with respect to the given
principal polarisation. If we can show that some positive tensor power of the line
bundle σ∗LK on SK induces a non-constant map from SK to some projective space
over K, then the non-Zariski-density of the set T(d) follows from the Northcott
property applied to this projective space.

To show that some positive tensor power of σ∗LK induces a non-constant map,
we will use that σ has infinite order. Pick a proper curve Z ⊆ SK such that the
restriction σZ ∈ AZ(Z) still has infinite order. Then since the Néron-Tate height
is non-degenerate and is given by the line bundle σ∗LK |Z , we know that σ∗LK |Z
must have positive degree. Since Z is a curve over K, this means some tensor
power is very ample. If we use the same tensor power to define a map from SK to
some projective space then this map cannot contract the curve Z, in particular it
is non-constant.

5 Conjecture 2.2 in the absence of a Néron model;

height jumping

We know from [Hol14] that Néron models do not in general exist even after al-
teration of the base. As such, perhaps lemma 4.1 may be seen as motivation for
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analysing in depth obstructions to the existence of Néron models.
The proof of lemma 4.1 may be summarised as saying that the existence of a

Néron model implies that the function

ĥσ : S(K̄)→ R≥0

sending a K̄-point in S to the height σ in the fibre over it can be expressed as
a height on S with respect to a certain metrised line bundle. In particular, this
function is a Weil height, and the result then follows from the Northcott property
and the fact that σ has infinite order.

If a Néron model does not exist, then this function ĥσ cannot in general be
expressed as the height with respect to some metrised line bundle. In [BHdJ14],
we give a new proof of conjecture 2.2 for S of dimension 1 by showing that the
function ĥσ is still a Weil height even when there is no Néron model; we do this
by showing that ĥσ can be written as a difference hL −j where hL is a height on
S with respect to a suitable metrised line bundle, and j is a bounded function.

This function j is closely related to the ‘height jump’ of asymptotic hodge
theory (see [Hai13]). In more general situations, one can still write ĥσ = hL −j
with hL a height on S with respect to a metrised line bundle and j a ‘height jump’
(see [BHdJ14] for details in the case of jacobians), but unfortunately this function
j is no longer bounded. On the other hand, if j grows slowly enough with hL then
conjecture 2.2 and hence conjecture 2.1 would follow.

6 Sparse small points and a conjecture of Silver-

man

We can consider an analogue of conjecture 2.2 where we look not only at torsion
points but at all points of small Néron-Tate height:

Question 6.1. Let S/K be a variety and A/S a PPAS. Let d ≥ 1 be an integer.
Let σ ∈ A(S) be a section of infinite order. Given ε ≥ 0, define

Tε(d) = {p ∈ S(K̄)|[κ(p) : K] ≤ d and ĥ(σ(p)) ≤ ε}.

Does there exists δ = δ(A/S, d) > 0 such that for all δ > ε ≥ 0 the set Tε(d) is
not Zariski dense in S?

It is clear that a positive answer to this question would imply conjecture 2.2.
If we knew whether or not the converse implication held, this might by useful as
a guide to what techniques could be applied in trying to prove conjecture 2.2 - for
example, will (good) estimates on the height suffice to prove non-Zariski-density?
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To suggest that question 6.1 is not completely unreasonable, we show that a
conjecture of Lang would imply a positive answer question 6.1 for elliptic curves
and d = 1. Moreover, this conjecture of Lang is in fact a theorem (see [HS88]) over
global function fields, yielding an unconditional positive answer to question 6.1 for
elliptic curves and d = 1 over global function fields.

We begin by recalling Lang’s conjecture:

Conjecture 6.2. (Lang, [Lan78] or [HS00, conjecture F.3.4 (a)]). Fix a global
field k. There exists a constant c = c(k) > 0 such that for all elliptic curves A/k
and all non-torsion points a ∈ A(k), we have

ĥ(a) ≥ c · logNk/K∆E/k.

Here ∆E/k is the discriminant, and Nk/K denotes the norm down to either the
rationals or Fq(T ) for a suitable q.

Lemma 6.3. If charK = 0 then assume conjecture 6.2 holds. Question 6.1 has a
positive answer assuming that A/S is a family of elliptic curves and that d = 1.

Proof. Let Σ denote the finite set of elliptic curves over K with everywhere good
reduction, and let b > 0 denote the smallest height of a non-torsion K-point
appearing on any curve in Σ, or set b = 1 if no such exists. Let c be the constant
from Lang’s conjecture, and let m denote the infimum of the values taken by the
expression c · log ∆E/K as E runs over all elliptic curves over K with at least one
place of bad reduction; this infimum is achieved (since there are only finitely many
curves of bounded discriminant) and is positive (by our bad-reduction assumption).

Then setting δ = min(b,m) we find for all δ > ε ≥ 0 we have

Tε(1) = T(1).

Now conjecture 2.1 is known for elliptic curves over the rationals by work of
Mazur [Maz77], [Maz78], and over global function fields by various authors (see
eg. [Poo07]), so we know that conjecture 2.2 holds in our situation, hence T(1) is
not Zariski dense in S.

In general, a positive answer to question 6.1 might be expected to follow from
conjecture 2.2 and very good lower bounds on the heights of non-torsion points.
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