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Abstract. We study the behaviour of solutions to nonlinear functional differential equations of
mixed type (MFDEs), that remain sufficiently close to a prescribed periodic solution. Under a
discreteness condition on the Floquet spectrum, we show that all such solutions can be captured
on a finite dimensional invariant center manifold, that inherits the smoothness of the nonlinearity.
This generalizes the results that were obtained previously in [18] for bifurcations around equilibrium
solutions to MFDEs.
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1 Introduction

In this paper we provide a tool to analyze the behaviour of solutions to a functional differential
equation of mixed type (MFDE),

#(§) = G(z¢), (1.1)
that lie in the vicinity of a prescribed periodic solution. Here x is a continuous C"-valued function
and for any ¢ € R, the state £z € C([Fmin, "max), C") is defined by z¢(0) = z(§ + 6). We allow
min < 0 and 7yax > 0, hence the operator G may depend on advanced and retarded arguments
simultaneously.

Historically, the primary motivation for the study of MFDEs comes from the study of lattice
differential equations (LDEs), which are systems of differential equations indexed by points on an
(infinite) spatial lattice, e.g. hZ™ for some integer n and grid size h > 0. Such equations allow
the incorporation of nonlocal interactions into otherwise local models and exhibit richer behaviour
than the limiting PDEs that arise when taking h — 0 [6, 11, 17, 24, 25]. For these reasons, models
involving LDEs have been developed in many scientific disciplines, including chemical reaction theory
[12, 21], image processing and pattern recognition [7], material science [3, 5] and biology [2, 4, 20].
As a specific example which is interesting in view of our main equation (1.1), we recall a Frenkel-
Kontorova type model that was analyzed numerically in [1]. This model was originally developed to
describe the motion of dislocations in a crystal [29, 30], but now has numerous other applications
in the literature. In particular, consider a chain of particles that have positions zy, with k € Z. The

dynamics are given by the LDE
Zp(t) + y2R(t) = zp—1(t) — 22k (t) + zp41(t) — dsinxg(t) + F, (1.2)

in which v and d are parameters and F' is an external applied force. In the literature a special class
of travelling wave solutions, which have been named uniform sliding states, has been constructed
for (1.2). Such solutions can be written in the form x(t) = ¢(k — ct) for some waveprofile ¢ and
wavespeed ¢ and in addition satisfy the special condition x4y = z + 27 M, in which N and M are
fixed integers. It is not hard to see that (1.2) can be restated in such a way that these states become
periodic and hence the study of bifurcations from these solutions can be fitted into the framework
developed here.

Recently [18], based upon earlier work by several authors [9, 23, 32], a center manifold approach
was developed to capture all solutions of (1.1) that remain sufficiently close to a given equilibrium Z.
It was shown that the dimension and linear structure on the center manifold are entirely determined
by the holomorphic characteristic matrix A : C — C™*™ associated to the linearized system 0(§) =
DG (ZT)ve. This matrix is explicitly given by A(z) = zI — DG(Z)exp(z-) and is thus relatively
straightforward to construct and analyze in many practical applications, see e.g. [8, 15]. As an

illustration of the strength of this reduction, consider a parameter dependent family of MFDEs,

Z(f) = G(ﬂ%ﬂ), (13)



that admit a common equilibrium Z and suppose that a pair of roots of the characteristic equation
det A(z, u) = 0 crosses the imaginary axis at a certain parameter value 1g. Under suitable conditions
the Hopf bifurcation theorem can be lifted to the infinite dimensional setting of (1.3) and hence one
may conclude the existence of a branch of periodic solutions to (1.3) bifurcating from the equilibrium
T for p ~ po. In [16] this approach was used to analyze an economic optimal control problem
involving delays. This problem was proposed by Rustichini in order to simplify a model describing
the dynamics of a capital market [27], whilst still retaining the periodic orbits that are compulsory
for any such model. The existence of these periodic orbits was established by numerically analyzing
the resulting characteristic equation and looking for root-crossings through the imaginary axis.
The main goal of this paper is to facilitate a similar bifurcation analysis around periodic solutions

pto (1.1). In order to do this, we will set out to capture all sufficiently small solutions to the equation

J(€) = DG (pe)ye + (G(pe + ye) — DG(pe)ye — G(pe)) (1.4)

on a finite dimensional center manifold, hence generalizing the approach in [18] for equilibria p = T.
Our results should be seen in the setting of Floquet theory in infinite dimensions. In particular, the
linear dynamics and structure on the center manifold are related to Floquet solutions of the linear

part of (1.4), i.e., functions v of the form v(&) = e**¢(£) that satisfy

0(§) = DG (pe)ve, (1.5)

in which ¢ is a periodic function that has the same period as p and A € C is called a Floquet
exponent. In particular, we will be interested in linearized equations that admit Floquet exponents
on the imaginary axis.

In contrast to the autonomous case, the construction and subsequent analysis of a characteristic
matrix for (1.5) in general poses a significant challenge. In the study of delay equations, at least two
approaches have been developed to deal with this problem. The first approach uses the fact that a
delay equation may be seen as an initial value problem on the state space C([rmin, 0], C™), which
allows one to define a monodromy map on this space. It is possible to show that this map is compact,
which immediately implies that the set of Floquet exponents is discrete [9]. Applying the theory
developed in [19] to the monodromy map, Szalai et al. were able to construct a characteristic matrix
for general periodic delay equations (1.5), which in addition can be used efficiently for numerical
computations [31]. However, only in very special cases can an explicit form for this matrix be given.
In addition, this approach fails whenever r,,x > 0, since in general MFDEs are ill-defined as initial
value problems [14].

If the operator DG(p¢) : C(["'min;s Tmax), C*) — C™ can be written in the form

DG(pe)p = ZAJ‘(E)¢(§ +75) (1.6)

and if the sizes of the shifts r; in (1.6) are all rationally related to the period of p, the Floquet

exponents can be studied in a more direct fashion. This is done by substituting ¢(£) = e~ () into



(1.5) and looking for periodic solutions g. The resulting equation can be transformed into an ODE
by introducing new variables g (§) = ¢(§ + kr.), for some r, that divides all the shifts r;. In [28, 33],

the authors use this reduction to analyze a scalar delay differential equation with a single delay,

#(§) = —pa(§) + f(x(€ - 1)), (1.7)

in which f is an odd C'-smooth nonlinearity. In particular, a characteristic matrix was constructed
for the Floquet exponents of a special class of periodic orbits p that satisfy p(§ +r) = —p(§), for
some r > 0 and all £ € R. Under some additional restrictions on f and p it was possible to explicitly
verify the presence of Floquet exponents on the imaginary axis. In general however, this will become
intractible. One will hence have to resort to numerical calculations in the spirit of [22, 31] to detect
Floquet exponents that cross through the imaginary axis as the parameters of a system are varied.

To state our results we will need to assume that the Floquet spectrum of (1.5) is discrete in
some sense. In Section 3 we will use the ODE reduction described above to verify this condition in
a number of special cases, but at the moment it is unclear if this holds for general MFDEs. Our
main results are formulated in Section 2 and the necessary linear machinery is developed in Sections
4 through 6. We remark here that the approach in Section 4 was chiefly motivated by the work
of Mielke. In [26], he constructed a center manifold to study bifurcations in the setting of elliptic
PDEs and hence also had to cope with the absence of a time evolution map. However, we will need
to deviate from his approach considerably, for reasons which should become clear in the sequel.
In Section 7 we use the Lyapunov—Perron technique to define the center manifold and derive the
associated flow, much along the lines of [9, 18, 15]. Finally, in Section 8 we use techniques developed

by Vanderbauwhede and van Gils [32] to address the smoothness of the center manifold.

2 Main Results

Consider the following functional differential equation of mixed type,

#(§) = L(&ze+ R(S2e), EER, (2.1)

in which z is a continuous mapping from R into C" for some integer n > 1 and the operators L(&)
and R(&,-) are a linear respectively nonlinear map from the state space X = C([rmin, "max], C"*) into
C™. The state z¢ € X is defined by z¢(0) = x(£ + 6) for any rmin < 0 < rmax, wWith rp, <0 <
Tmax- Furthermore, we require throughout this paper that L and R are periodic, in the sense that
L(§+2m)¢p = L(&)¢ and R(E+27,¢) = R(&, ¢) for all € € R and ¢ € X. For ease of notation, we will
present our results for (2.1) under the assumption that L acts on point delays only, i.e., we assume

that for some integer N the operator L(§) : X — C™ can be written in the form

N

L&)d = A;j(©)e(r), (2:2)

Jj=0



for C"*™-valued functions A; and shifts rmin = ro < r1... < TN = Tmax. We remark however that
the arguments developed here can easily be extended to arbitrary L(§) : X — C™.

As in [18], we will employ the following families of Banach spaces,

BC,R,C) = {weCRCY|z],:=supeer e o ()] < oo, 03
BCIR,C") = {we BC,(R,C")NCL(R,C") | i € BC,(R,C™},
parametrized by 1 € R, with the standard norm ||z[|gc. = |[lz]], + [|#[/,. Notice that for any
n

pair 7y > 71, there exist continuous inclusions J,,,, : BCy, (R,C") — BC,,(R,C") and J,,,
BC’}I1 (R,C") — BC’},2 (R,C"™).
An essential step towards understanding the behaviour of (2.1) is the study of the homogeneous

linear equation
#(§) = L(§)xe. (2.4)

In particular, we are interested in the special class of solutions to (2.4) that can be written in the form
z(€) = e p(€) with p € CE(R,C"), i.e., p is a periodic continuous function with p(¢ + 27) = p(€)
for all £ € R. The parameter A € C is called a Floquet exponent for (2.4) if and only if any such

solution exists. We need to impose the following restrictions on (2.4).
(HL) The map R — L(X,C") given by & — L(£) is of class C", for some integer r > 3.

(HF) There exist v < 0 and 4 > 0 such that (2.4) has no Floquet exponents A € C with
ReA € {7-,7+}.

When studying delay equations, which in our context means 7,.x = 0, one can show that (HF) is
always satisfied [13]. However, the proof requires the existence of an evolution map defined on the
entire statespace X and hence fails to work when r,,,, > 0. At the moment, it is unclear if equations
(2.4) exist for which (HF) fails. However, in Section 3 we give some criteria which will help establish
(HF) in the case where all the shifts r; appearing in (2.2) are rationally related to the period 2.
The following proposition, which will be proved throughout Sections 5 and 6, exhibits the finite

dimensional space Xy on which the center manifold will be defined.

Proposition 2.1. Consider any homogeneous linear equation (2.4) that satisfies the conditions (HL)
and (HF) and pick a constant v with 0 < v < |v&|, in which v+ are as introduced in (HF). Then
there exists a finite dimensional linear subspace Xo C X, a C"-smooth operator I : R — L(X, X))

and a matriz W € L(Xy), such that the following properties hold.
(i) Suppose x € [, - BCy(R,C") is a solution of (2.4). Then for any £ € R we have I1({)z¢ € Xo.

(i1) For any ¢ € X, there is a unique solution x = E¢ € BC,(R,C") of (2.4) such that o = ¢.
Moreover, we have that x € BC% (R,C"™) for any n > 0.

(iii) For any ¢ € Xo we have I1(§)(E®)e = eV ¢.



We also need to impose the following assumptions on the periodic nonlinearity R, after which

we are ready to state our main results.

(HR1)

(HR2)

The nonlinearity R is C*-smooth as a function R x X — C”, for some integer k > 2.

For all £ € R we have R(£,0) =0 and D2 R(£,0) = 0.

Theorem 2.2. Consider the nonlinear equation (2.1) and assume that (HL), (HF), (HR1) and
(HR2) are satisfied. Then there exists v > 0 such that (2.4) has no Floquet exponents A with 0 <

[Re \| < 7. Fiz an interval I = [Nmin, Pmax] C (0,7) such that Nmax > min(r, k)nmin, with v and k as
introduced in (HL) and (HR2). Then there exists a mapping u* : Xo x R — (1, ., BC}(R,C") and
constants € > 0, €* > 0 such that the following statements hold.

(1)

(i)

(iii)
(iv)

(v)

For anyn € (min(r, k)min, Nmax], the function u* viewed as a map from XoxR into BC} (R, C™)

is C™MIN(F) _gmooth.

Suppose for some ¢ > 0 that = € BC}(R,C") is a solution of (2.1) with supgcg |2(€)] < €*.
Then we have © = u*(I1(0)z0,0). In addition, the function ® : R — Xy defined by ®(&) =
II(&)ze € X is of class C™in(mk+1) and satisfies the ordinary differential equation

(&) = WR(E) + F(£, (). (2.5)

Here the function f : R x Xo — Xg is C™=LE) _smooth with f(€,0) = 0 and Df(£,0) = 0
for all £ € R. Furthermore, it is periodic in the first variable, with f(& + 2w, ) = f(&,4) for
all (£,v) € R x Xo and given explicitly by

f&y) = [ ()] [u* (v, §) — Ee= ¢yl
N (.8) 26)
HILE)X? (¥, €).
Here the states X' (¢, &) € X, fori= 1,2, are defined as
X', 8)(0) = L(E+0)[u*(¥,€) — Be " ileio
X2(,€)(0) = R(E+0, (u(1,8))e+o)-
Finally, we have z¢ = (u*(CID(E),g))E for any pair €,€ € R that satisfies € — & € 277Z.

&)X
X
(2.7)

For any ¢ € Xo such that supgcg |u*(¢,0)(&)| < €*, the function u*(¢,0) satisfies (2.1).

For any continuous function ® : R — Xy that satisfies (2.5) with ||®(&)|| < e for all € € R, we
have that x = u*(®(0),0) is a solution of (2.1). In addition, we have ¢ = (u*(@(f),g))g for
any pair £, € € R that satisfies € — € € 2n7.

Consider the interval I = (§_,&4), where {_ = —oc0 and &4 = oo are allowed. Let ® : [ — X
be a continuous function that satisfies (2.5) for every € € I and in addition has ||®(£)|| < € for
all such &. Then for any ¢ € (§-,&4) we have that © = u*(P((), () satisfies (2.1) for all £ € 1.
In addition, we have x¢ = (u*(<1>(§),g))E for any pair (€,€) € I x R that satisfies & — € € 277.



3 Preliminaries

In addition to the spaces BC,(R,C™) that contain continuous functions, we introduce two extra
families of Banach spaces, parametrized by p, v € R, that contain distributions that have controlled

exponential growth at doco,

BX,y(R,C") = (€ Ljoo(R,C") [ [|z] gy, , = supeco €™ [2(§)] + supesg e ()| < OO},
BX),(R,C") = {se WL R C)NCR.CY | [olpyy, = lallpx,, + I#llsx,, < oo}
(3.1)
In order to improve the readability of our arguments, we also introduce the notation ever = z¢ € X
for any € C(R,C") and & € R, together with the shift operators T¢ defined by T¢ f(-) = f(- + &),
for any f € L] (R,C").
Recall here the definitions of the Fourier transform F*(f)(k) = f(k) of a function f € L*(R,C")
and the inverse Fourier transform F~(g)(¢) = g(&) for any g € L?(R,C"), given by

~

Flk) = [Z em™f(e)de,  9(8) = 55 [7, e™g(k)dk. (3.2)

We remark here that the integrals above are well-defined only if f,g € L*(R,C"). If this is not the
case, the integrals have to be understood as integrals in the Fourier sense, i.e., the functions
k) = [ e g (33)
satisfy h,(k) — f in L?(R,C") and in addition there is a subsequence {n'} such that h, (k) — A(k‘)
almost everywhere. We recall that the Fourier transform takes convolutions into products, i.e.,
(f/*\g)(k) = f(k)ﬁ(k) for almost every k.
Now suppose f : R — C" satisfies f(£) = O(e™) as & — co. Then for any z with Rez > —a,

define the Laplace transform -
Foe) = [ e pepie (3.4
0

Similarly, if f(¢) = O(e”) as € — —oo, then for any z with Re z < b, define

Fe- | T f(—o)e. (3.5)

0
The inverse transformation is described in the next result, which can be found in the standard

Laplace transform literature [34, 7.3-5].

Lemma 3.1. Let f : R — C" satisfy a growth condition f(£) = O(e™%) as & — oo and suppose
that f is of bounded variation on bounded intervals. Then for any v > —a and & > 0 we have the

inversion formula

FEN+1E=) _ 1 /”““’ €7
5 —wh_r)réo omi ], e* f1(z)dz, (3.6)
whereas for € =0 we have
KO8y L[
5 —wlgréo ami ], e* fi(2)dz. (3.7)



Consider the linear operator L(£) : X — C™ appearing in (2.1). One may split this operator into

an autonomous part and a periodic part, i.e., write L(§) = Laut + Lper(§) with

Laut¢ = E;V:O Aiut¢(rj)7

3.8
Lper(§)¢ Z;‘V:o Bl (©)o(r))- (3.8)

We recall the characteristic matrix A(z) = 2I — Z;v:o Aéute"f associated to L,y and repeat some

useful properties of A that were established in [18].

Lemma 3.2. Consider any closed vertical strip S = {z € C|a_ <Rez < a4} and for any p > 0
define S, = {z € S| Imz| > p}. Then there exist C, p > 0 such that det A(z) # 0 for all z € S, and
in addition |A(z)_1| < |IHC:Z| for each such z. In particular, there are only finitely many zeroes of
det A(z) in S.

Notice that the splitting (3.8) is obviously ambiguous, in the sense that L,y can be chosen freely.
We will use this freedom to ensure that the characteristic equation det A(z) = 0 has no roots in a

small strip around the imaginary axis, which will allow us to solve linear systems of the form

#(§) = L(&ze + f(£), (3.9)

for suitable classes of inhomogeneities f. As a final matter of notation, for any function x we will
write Lz to represent the function & — L(&)ze.
We conclude this section by discussing the assumption (HF) concerning the Floquet exponents

for the system (2.4). We provide a number of results with which this criterion can be verified.

Lemma 3.3. Consider any system of the form (2.4) that has the property that all the shifts are
rationally related to the period, i.e., we have r; € 7Q for all 0 < j < N. Then either every A € C is
a Floquet exponent, or (HF) is satisfied.

Proof. Choose r* = % € R such that for some numbers m; € Z we have r; = m;r* forall0 < j < N.
Suppose that A € C is Floquet exponent and let p € CY"(R,C™) be the corresponding nontrivial

CMn_yalued function p, the

periodic function, such that @ = Lu. Associated to p we introduce the
components of which are defined by p;(§) = p(§+ir*) for 0 < i < M —1. Since p is periodic, it is clear
that p;(7+) = Pi+1moans (0) for all 0 < ¢ < M — 1, which can be reformulated as p(r.) = I,, ® Tp(0),
in which I,, is the n x n identity matrix and the M x M-matrix 7 is defined by 7; ; = 6; i+1modm -
After an appropriate shift one may assume p(0) # 0. Furthermore, a quick calculation shows that

p satisfies the ODE
p) = F(EAp©), (3.10)

in which F is given by

(.7:({, /\)V)z = _)\Vi + Zjvzo eATj Aj (5 + iT*)Vi+mjmodM~ (311)



Writing (€, A) for the fundamental matrix for the ODE (3.10), we have Q(r,, \)p(0) = I,, ® Tp(0)
and hence

det[Q(rs, A) — [, @ T] = 0. (3.12)
Since the coefficients of the ODE (3.10) depend analytically on A € C, it follows that for any fixed
¢ € R the matrix Q(&,-) is an entire function in the second variable [10, Section 10.7]. This however
implies that either (3.12) is satisfied for all A € C, or the set of solutions is discrete. To complete
the proof, observe that A € C™ is a Floquet exponent if and only if A + 4 is a Floquet exponent,
which means that the set of real parts of Floquet exponents is discrete whenever the set of Floquet

exponents is discrete. O

In some special cases we can get extra information on the fundamental matrix 2 and show that

not all A € C can be Floquet exponents.

Corollary 3.4. Consider any scalar system of the form (2.4) that has the property that all shifts
are integer multiples of the period, i.e., we have r; € 2n7Z for all0 < j < N. Then (HF) is satisfied.

Proof. In this case (3.10) is scalar and the fundamental matrix reduces to Q(27, A) = exp[—27A +
Z;VZO e fOQTr Aj(o)do], hence the set of roots of (3.12) is discrete. O

Corollary 3.5. Consider any system of the form (2.4) that has the property that all shifts are
rationally related to the period, i.e., we have r; € mQ for all 0 < j < N. Suppose that there exists

a vector v.€ C™™ that is an eigenvector for F*(£,N) for all € and all X\, with F and r. as given in
(8.11). Then (HF) is satisfied.

Proof. Observe that the complex conjugate of the eigenvalue p = p(¢,A) corresponding to the
eigenvector v of F*(£, \) is given by

pt = =2+ P(&)(exp(Ary)) + Q&) (exp(=Arw)), (3.13)

in which P(€)(-) and Q(§)(-) are polynomials for every £ € R, with P({+27) = P(§) and Q(£+27) =

. Introducing the scalar function = v*p, we may now calculate
g q p y

4(&) = V' F(&A)p = pv'p = —Ag(§) + P(§)(exp(Ar+)) + Q(&) (exp(—Ar+))q(§)- (3.14)
This means that ¢(27) = exp[—27\ + fo o)(exp(Ary))do + fo o)(exp(—Ar.))do]q(0) = ¢(0),
which concludes the proof. O

As an example to illustrate the result above, consider the equation

(&) = sin(§)x(§ — m) + sin(§)x(§ + ). (3.15)
If A\ € C is a Floquet exponent for (3.15
R2-valued function p(¢) = (po(€),p1(€)) =

po(€§) = —Apo
p1(§) —Ap1

) with corresponding scalar p € C;;r(R’ C"), then the
(p(&),p(€ + 7)) satisfies the system

)+ Sln(é)[f“ +e™p1(8),

(3.16)
€) —sin(§)[e™™ + e™po ().

©)
-



Writing ¢(&) = po(§) + ip1 (), we find that g solves the scalar ODE

(&) = =Aq(&) —isin(&)[e”™ + €™ q(€) (3.17)

and satisfies ¢(0) = ¢(27). Using the variation-of-constants formula for ¢ it is clear that (HF) must

be satisfied.

4 Linear inhomogeneous equations

We introduce the linear operator A : W,2' (R, C") N C(R,C") — Ll .(R,C"), given by

loc
(Az)(&) = #(&) — L(&)xe. (4.1)

In this section we set out to solve equations of the form Az = f and hence define an inverse for A.
Using Fourier transform techniques, we will first show that A is invertible when considered as an
operator from WH2(R,C") into L?(R,C"). This result can then be extended to compute A~!f for
f e L*(R,C").

Due to the periodicity of L(£), the transform F*+[Lx](ny) will only involve #(n;) when n, —no € Z.
It will hence be fruitful to follow the approach employed by Mielke [26] and introduce the sequence
space

by = {w = (wi)rez | wp € C" and [w|f3 == [wi|* < 00} (4.2)
k€EZ

Recalling the splitting (3.8), we need to solve

N
ZAauta: E+1)+ > BIOz(E+7)) + £(9). (4.3)

j=0

Since BJ € C"(R,C™ ") with BY(£ + 27) = B7(£), we may write
Bi(§) = i Bie'ks, (4.4)
in which the coefficients satisfy the estimate

(B;‘ <C/(1+ k). (4.5)

for some C > 0. For any 0 < j < N, define the convolution operator Bi i ly — by by
(Blw)y = Yyer € P Blwny, (4.6)

together with B, : £y — {5 given by B, = Z;'V:() ¢ BJ. To see that B’ is well-defined and bounded,
use the Cauchy-Schwartz inequality and the estimate (4.5) to compute

. . .1 . L
Yonez | Lmez ez(n_m)er%mwn—m’2 < Yonez [ Zmez |Bhl? |BL|? |wn—m|]2
ZnEZ(ZmEZ |B¥rb})(ZmEZ ’Bgn} |wn—m|2) = (ZmEZ |B¥n|)2 ||U)||§ .

Héijz (4.7)

IN
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Note that it is possible to choose Ly in such a way that det A(z) = 0 has no roots in a strip

|Re z| < e. For any such z, we can hence define a multiplication operator A, : f5 — {5 by
(Aw), = A(z+in) lw,. (4.8)

We claim that A, is compact. To see this, consider any bounded sequence {w"} ey C o, write
v" = A,w" and use a diagonal argument to pass to a subsequence for which each component v}

converges as n — oo. For any K > 0 we find

Jor — w2 < ST fop o (LK) ST (LR o — o (4.9)
|k|<K |k|>K

Fixing any € > 0 and noting that the estimate in Lemma 3.2 implies that the second sum can be
bounded independently of K, n and m, we can choose K > 0 sufficiently large to ensure that the
entire second term on the righthand side of (4.9) is bounded by /2. Similarly, for such a choice of
K we can choose a M > 0 such that the first term is bounded by /2 for any n > M and m > M,

which shows that A, is indeed compact.
For any 7 € R, consider a function f : 7 + iR — C" such that n — f(7 +1in) € L*(R,C"). For
any complex z with Rez = 7, define the sequence (J.f)r = f(z + ik). Notice that for almost all
such z, we have J,f € l2. Finally, for any w € fs, define ev,w = w, € C"* and (T, w)r = Wktn-

With these preparations we are ready to provide the inverse A= f for f € L?(R,C").

Proposition 4.1. Suppose that (4.3) admits no Floquet exponents A\ with Re A = 0. Then A is an
isomorphism from W12(R,C") onto L*(R,C"), with inverse given by

1 100 . -

A= [ el - MBI TALIR ) + (). (4.10)
In addition, there exists a Greens function G : R x R — C™ "™ such that for every & € R, the
function G(§,-) € L?(R,C"*") satisfies (4.3) in the sense of distributions, with f(¢') = §(& — &)I.

In addition, G(&,-) is bounded, admits a jump G(&,&+) —G(E,6—) = I and is Ct-smooth on R\ {¢}.

Proof. First consider any sequence w € f5 such that w = A,B,w. Then the function u(§) =
e ez €M wy, satisfies Au = 0. In addition, since (nw,) € f2, we have that the periodic function
p(&) = e *fu(€) satisfies p € WH2([0,27],C™) C C([0, 27],C™). We hence conclude that z must be
a Floquet exponent. Due to the absence of Floquet exponents on the imaginary axis, the Fredholm
alternative now implies that 1 — A, B, is invertible as a map from ¢ onto /5 for all z € iR. Since
both z — A, and z — B, are continuous, the same holds for z — [1 — A, B,]~!. Notice in addition
that one has B,y; = T1 B, T_1, together with a similar identity for A.. This implies that the norm
|[1 = A.B.]7!|| can be bounded independently of z for z € iR.

Taking the Fourier transform of (4.3), we arrive at

N (e
A(in)a(n) = fn) + Y Y e Bla(n — k). (4.11)

j=0 k=—00
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This identity can be inverted by introducing the sequence fa € {5 via f,‘i = f (6 + n) where this is
well-defined and choosing, for 6 € [0,1) and n € Z,

(0 +n) =evu[l — AwBig) ' A f°. (4.12)
It remains to show that & thus constructed is in fact an L2 function. We calculate

I~ [2(m)* dn = fo 2nez 1E( 0+n)* da*fo H —NigBio] ™ 0f9H

) (4.13)
Cfy|[satl, = c 15 s fm| <],

IN

In addition, using (4.11) together with the estimate (4.5) it follows that 1 — 73 (n) is an L? function,
from which we conclude x € W12(R,C"), as desired. To show that A is injective, consider any
z € WH2(R,C") with Az = 0. There exists a 6 € R such that 2% € £, with 2% # 0 and using (4.11)
it follows that 76 must be Floquet exponent, which yields a contradiction.

Without loss of generality, we will prove the statements concerning the Greens function G only
for & = 0. To this end, note that the construction above remains valid if we take f = 1 and
G(0,-) = A=1§(). The only modification that is required is the last inequality in (4.13), which can
be replaced by

/ ‘An dn<C/ A(in)|* dn < C|AG)] . < C. (4.14)

—o0

In view of this, we merely have G(0,-) € L?(R,C"*"), but using the differential equation we find
G(0,-) € WH2((0, 00), C"™*™) U W2 ((—00,0), C"*") and hence G(0,) is C'-smooth on R\ {0}, as
required. The remaining properties also follow from the distributional differential equation that G

satisfies. 0

Since we are specially interested in situations where (4.3) does admit Floquet exponents A with
Re A = 0, we will need a tool to shift such exponents off the imaginary axis. To this end, we introduce

the notation e, f = ¢ f(-) for any v € R and any f € L] (R,C"). In addition, for n € R we define

the shifted linear operator A, Wﬁjcl (R,C")NC(R,C") — L .(R,C"), by
N
(M) () = ( ) = D AL+ B + 1), (4.15)
7=0

One may check that e,Ae_,z = A,z and hence for any Floquet exponent A associated to A, one
has that A + 7 is a Floquet exponent associated to A.

In view of these observations, we introduce, for any n € R and p € {2, oo}, the Banach spaces

L’;,(R, c™) = {:v eLL (R,C") |e_,x€ LP(R,(C”)} , (4.16)
WiPR,C) = {z € Lic(R,C") | e—ya € WHP(R,C")},
with norms given by ||x||Lg = |le_yz||,, and similarly ||:I:||W7}p = [le—pz|lyr1.- The following result

now follows immediately from Proposition 4.1.
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Corollary 4.2. Suppose that (4.3) admits no Floquet exponents A with Re A = n. Then A is an

isomorphism from W,}’2(R, C™) onto L%(R, C™), with inverse given by

1 n41i00 . .
A= [ enll - AR AR + (e (4.17)

n—100
In addition, there exists a Greens function G : R xR — C"*™ such that for every & € R, the function
G(¢,-) € LE(R,C™*") satisfies (4.3) in the sense of distributions, with f(€') = 6(&'—&)I. In addition,
e_,G(&,-) is bounded, while G(&,-) admits a jump G(&,6+) — G(§,£—) = I and is C'-smooth on

R\ {¢}

In order to avoid confusion, we will write A(nl) for the inverse of A when considered as a map from
W,?(R,C") onto L2 (R,C") and similarly G, for the corresponding Greens function. In the next
section we will use these inverses to construct A=1 f for f € L>°(R,C"), by writing f as a sum of two
functions in Lin(R, C™) for appropriate 1 € R. The next result paves the road for this approach, by
showing that A~! f respects the growth rate of f. As a preparation, we emphasize that on the space
W,?(R,C") one can also define a norm ||x||gv[7n12 = |le—yz||3 + [|e—y||3, which is equivalent to the

norm ||.Z‘||WT11,2 defined above.

Proposition 4.3. Consider any n € R and € > 0 such that (4.3) admits no Floquet exponents A
with Re A € {n—¢e,n+¢c} and assume that A(*nl_‘_g)g = A(nl_g)g forallge L2, (R,C")NL;__(R,C").
Then for any f € Ly*(R,C*) N L2, _(R,C"), we have A(;}Jrs)f € W *(R,C"), with a similar result

for f € L*(R,C™) N L2_ (R, C").

Proof. Our arguments here are an adaptation of those presented by Mielke in [26] for elliptic PDEs.
Without loss of generality, we will assume that 7 = 0 and that time has been rescaled to ensure
that L(¢) has period one. Now consider any f € L°(R,C") N L2(R,C") and define x = A~'f €
Wh2(R,C").

For any n € Z, let x,, denote the indicator function for the interval [n,n + 1]. Writing f,, = xnf,
we see that f, € LZ(R,C")N L2 _(R,C"), with }_, ., fn — f in L2(R,C"). We can hence define
2, = A7'f, and observe that z, € W2(R,C") N WL2(R,C"), again with 3, _, =, — 2 in
W212(R,C"). The periodicity of the system (4.3) and the rescaling of time ensure that 7;, and A1

commute, i.e., TnA(;lE) = A&E)Tn. We can exploit this fact to compute

lznllwne @y = Lo 22(€) +a2(€)de2 = [0 22(& +n) + 32 (€ + n)dg]H?
< T @a (€ 4 n)es€)? + (e (& + n))2dg]/2e e
<

e—s(m=n) ”ann”fil,z < Cee_e(m_n) HTHCEHHWI’2

< C. A(_—ls) e—e(m—n) ||Tnfn||[,§i < C. A(—_lg)H e—e(m—n) e T full 2
< G| AL, | et el Ixnfll
S CE A(jg) e—E(m—n)ee ”f”oo :

(4.18)
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In a similar fashion, we obtain

i (@€ 4 m)em=6)2 4 (7 (€ + m))2dg] /2 He0nmmtD)

ec(m—n+1) ||Tnmn||wl»2 (4.19)

Ce[|agd e et 111 -

1 2.2 41

VAN VAN VAN

Using a Sobolev embedding it now follows that there exists a constant C' > 0, independent of n and

m, such that [[xman |, < Cetelm—n) | fll - Summing this identity over n € Z, we obtain
el €l [z € + 5y 0]
< 2l

This bound does not depend on m, hence x € L (R, C"), as desired. The differential equation now
implies that in fact z € W>°(R,C"). O

(4.20)

5 The state space

The main goal of this section is to analyze solutions to the homogeneous equation Ax = 0 and to
provide a pseudo-inverse for A that projects out these solutions in some sense. We start by using the
Laplace transform to characterize any solution x that satisfies Ax = f, even though  may no longer
be unique. As a preparation, we introduce the cutoff operators ®4 : L] (R,C") — Ll (R,C"),

loc
defined via [®4 f](§) =0 for all £ <0, [P_f](§) =0forall ¢ >0and &, f+D_f = f.

Proposition 5.1. Consider a linear equation of the form (4.3) that satisfies the assumption (HL)
and admits no Floquet exponents A on the lines Re X = ~, for some constants v+. Fiz a pair
o < p<v<Ayg, consider any function x € BX}W(R, C™) and write Ax = f. Then the following
identity holds,
-1 -1
T :A(7+)<I>+f+A(77)<I)_f+737777+x0, (5.1)

in which P_ ,, : X — BX) _ (R,C") is given by

(Poon (&) = 5k [T efevo(I = A.B.) T AL Tohy(-)dz 652)
+5- J:;z;o e*tevo(I — A,B,) A, T he(+)dz,
with
N 0 . .
he(2") = ¢(0) + Z e* " / e 7% (Al + B/ (o —r;))¢(o)do. (5.3)
=0 i
In addition, we have the representation
Py )€ = ATL 00— ATL 0)(E) + [Gp ) (0,6) — Gy y(0,016(0),  (5.4)

in which gy € L*(R,C") has compact support, is continuous on [—Tmax, —Tmin] and is given by

96(6) = X, 50 (Adue + BI(€) (& +15)xX(r,.0/(€)

, . (5.5)
+ Erj <0 (A;ut + BJ (f))¢(§ + Tj)X[O,*T]'] (5)
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Proof. First note that @4 f € L2, (R,C")NL (R, C"). Hence defining 21 = A(jfli)@if e WI2A(R,C") C

L (R,C"), the differential equation implies x4 +z_ € BX%fﬁ+ (R, C™). However, this means that

also Prg =2 — v, —2_ € BX} R,C"), hence P is well-defined. Taking the Laplace transform
y—

At
of Az = f yields
27, (2) = z(0)+ Z;V:o Al fooo e " x(u+r;)du

X0 o e B et ry)dut Fo(z)
2(0) + 370 Ade™ (F4.(2) + [}, e *7a(0)do) + f1(2)

N zri( [° —zupRj 0 —z0pj <56)
+2 0 € (fo e P B (u = rj)x(u)du + J, e B (o - rj)z(o)do)
j zZri (A 0 —z0O . ra
= 2(0)+ XN Alye (34 (2) + [ e al0)do) + o (2)
+ Y0 e [ Lpen e * BlEL (2 — k) + [} 727 Bl (0 — 1))z (0)do]
and thus after rearrangement we have
AR)T4(2) = @(0)+ Yper Yjo e M BT (2 — k) + f1(2) 57

+ Z;V:o e froj e 7 (Aiut + Bi(o — rj))x(a)da.

Upon defining y(¢) = z(—¢) a similar identity may be obtained for y(z). Similarly as in [18], an

application of the inversion formula (3.7) now yields the desired result (5.2), upon observing that
Y+ +ioco 0 ~y_—ioco 0
/ et* / e *?z(o)dodz + / et* / e *?z(o)dodz = 0. (5.8)
Y4+ —100 13 v—+ioco 13

We now establish the representation (5.4), by writing ¢ = g, and computing g4 and g_. This

yields
Gi(2) = [T e®g(O)de =X, o fo e (Al + BI(E)) (€ + 7j)dE
= o€ [ e (A + BI(E —ry))a(€)de, 5.9)
G-(2) = foTedg(=9)de =3, oo fo? € (Al + B (=€) w(—E +1)dE '

= Y a0 [ e (Al BIE — ) a(€) e,
in which we used the substitutions {’ = & +r; and £’ = —{ + ;. The result follows using Corollary
4.2, together with the observation that the bounded function g,, has compact support, which means
Gz € Lgi (R,C™). O

We now study the set of solutions to the homogeneous equation (2.4) that have controlled expo-

nential growth. We will therefore consider the spaces

Nuw = {zeBX} ,(R,C")|Az=0},

(5.10)
X, = {peX|¢p=ugforsomexeN,,}.

From the representation (5.1) it follows immediately that for every ¢ € X, , there is a unique
z € N, with zyg = ¢, which we will denote as © = E¢. Using a standard shifting argument, it is clear
that for all z € J\fw, and any k € Z, we also have Top,x € NW,. We can hence define the monodromy
operators Mion : X, , — X, by ¢ +— evior ¢, which satisfy MorM_or = M_ox Mo, = 1I.
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Lemma 5.2. Consider a homogeneous linear equation (2.4) that satisfies (HL). Suppose further
that for two constants v— < v, this equation (2.4) admits no Floquet exponents A on the lines
ReX = v4. Then for any pair yv— < p < v < v4, we have that My, is a compact operator on X, .,

and N, is finite dimensional.

Proof. The representation (5.4) implies that for some C' > 0 we have a bound ||[Mz,¢| < C|¢||
for all ¢ € X,,,,, which using the differential equation implies that also |[DMs,¢| < C'||¢]|. An
application of the Ascoli-Arzela theorem shows that M, is compact. However, since M, has a

bounded inverse, the unit ball in X, , is compact and hence this space is finite dimensional. O

Since Moy, is invertible, we can define a matrix W such that 2™ = M,,.. Consider any ¢ € Xy

then the continuous function Py : R — C™ given by Py = Ee~tW4) is periodic, since

Py(¢+2m) = [BemCPMWy)(e +2m) = [Eevar EM_are™ " y)(€)

(5.11)
= [EM2WM—2W€_£W¢] €)= P¢(f).

Consider a Jordan chain ¢Y, ..., #* of length £+ 1 for W at some eigenvalue A, i.e., W¢? = A\¢? and
Wl = Xp' + ¢*~1 for 1 <4 < £. Recall that e"¢¢? = Zj’:o %{je/\gqﬁi*j. Writing 2! = E¢’, we now
obtain that

)

MNPy (6) =)

Jj=0

1

(07, (5.12)

This can be inverted, yielding 2° = e** Pyo, which implies that A is a Floquet multiplier. Similarly,
we have

1
i A

@) =P (§) = ) 5

j=1

(=€) 2" (€). (5.13)

We hence conclude that N, ,, is spanned by functions of the form e*$&ip(€), with p € Che' (R, C")
and A a Floquet exponent with ¢ < Re A < v. This important observation gives a criterion for the

existence of an inverse for A : WT}*OO(R, C") — Ly*(R,C"), merely in terms of Floquet exponents.

Proposition 5.3. Consider an equation of the form (4.3) that satisfies (HL). Consider any n € R
and g9 > 0 such that (4.3) has no Floquet exponents A in the strip n —eo < Re X <n+eg. Then the

operator A is an isomorphism from Wnl’OO(R,(C”) onto Ly°(R,C"). For any 0 < € < o, the inverse

is given by

AT = AL @ f H AL P (5.14)
Proof. Notice first that the assumptions of Proposition 4.3 are satisfied. Indeed, for any function
g € L727+5(R7 C")n L%_E(R, C"), write x = Aa}is)g — A(_nl_s)g, then z € BX%_EJH_E(R, C™) with

Az =0,ie., 2 € N,_. .. However, the condition on the Floquet exponents implies that Ny . 4o =
{0}, hence 2 = 0 as desired. Proposition 4.3 now shows that A~! defined above indeed maps into

WJ’OO(R, C™). The injectivity of A again follows from the condition on the Floquet multipliers. [
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The finite dimensionality of X, , can be exploited to define a projection from X onto this

subspace, using the operator P appearing in (5.1).

Lemma 5.4. Consider any set of constants y— < v_ < vy < 4 such that the equation (4.3) has no
Floquet exponents A with Re X € {y4,7+ }. Suppose further that (HL) is satisfied. Then the operator
P=P, , :X — X defined by Pp = evoP,_ -, ¢ is a projection, with R(Py_ ) = Xy_ .

Proof. Notice first that the set of real parts of Floquet exponents between 7_ and v, is dis-
crete, hence there exist y_ < p < v < 74 such that X, .. = X, ,. Now (5.4) implies that
R(Py_y) € Ny_yy = Ny, hence R(P,y_ ) C X, ,. In addition, for any ¢ € X, write
r = FE¢ € BX] ,(R,C") and notice that (5.1) implies z = P,_ ., ¢, yielding

¢=1x0=evoPy_ 5 ¢ =Py 5 ¢ (5.15)

This shows that indeed R(P,_,,) = X, =X and hence also P? = P. O

Y-+

From now on fix v > 0 such that there are no Floquet exponents with 0 < |Re | < . For
any 0 < g < =, define Xg = X_, ,, No = N_,,, and Qo = P_, ,. Note that these definitions are
independent of the particular choice of p. In addition, for any 0 < 1 < -, define the pseudo-inverse
K =K, : BC,(R,C") — BC(R,C") by

Kyf = A@1)<I>+f + A(’fn)QLf. (5.16)

Notice that if 0 < 1y < 1 < 7, then (ICm)IBCm r,cr) = Ky,. This can be verified by means of
the same reasoning used to established Proposition 5.3. In combination with (5.1), this allows us to

compute
Koo f = Kp, AR f 4+ Py Voo f = Ko f + Py mevolno f = Kyo f + P—py mevollp, f (5.17)

and hence
QOeUOKTIOf =0. (518)

6 Time dependence

For any 7 € R, consider the shifted mixed type functional differential equation

e = LT(§)z(§) + f(§) = L(§ + m)ze + f(§) (6.1)

and write X[, MJ, A7, Q] and K7 for the spaces and operators associated to (6.1) that are the

counterparts of those defined for the original unshifted equation (4.3).

Lemma 6.1. Consider the homogeneous equation (2.4), suppose that (HL) is satisfied and fix two
constants 79,71 € R. Then for any ¢ € X°, we have that Tr,_. E¢ € Nj*, i.e.,

oevy o Ed =ev. _, Ed. (6.2)
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In addition, for any function f € BCy(R,C"), the following identity holds,
IC;O"FT] Tﬁf — T_rl K:;’]of _ EQ60+T16V71’C:]0.}C' (63)

Proof. First, consider any ¢ € X[° and write u = E¢, then u(§) = L(§+70)ue. Defining ¢ = ur _ry,
notice that the function v = Ev has v(§) = u(§ + 71 — 70) and satisfies 0(€) = L(€ + 71 )ve, showing
that ¢ € X" as required. Now consider the function y defined by

y="T,Kf— IC;‘H'”TTlf. (6.4)
It is easy to compute

Y(&) = L&+ 710+ m)ye + f(E+ 1) = fF(E+7) = L(E+ 70+ T1)ye (6.5)

and hence y € N 0+ The final statement now follows from y = E1q, together with the computation

Yo = Q60+T1y0 — Q70—0+TleVT1’CZ7—Of — ng+‘r1eVOIC7T70+T1TTlf (6.6)
Qp " Mevy, K f,
where (5.18) was used in the last identity. O

An elementary observation that follows from this result and the uniqueness of continuations, is

that if y € NJ for any 7 € R, then
ev§Eevf/y = ev§+5/y. (67)

We will need the ability to relate the different subspaces X to one another in a natural fashion.
To this end, we recall the matrix W € L£(Xj) that is related to the monodromy operator Mo,
by My, = €*W. For all 7 € R, we define the bounded linear operators II”, : Xy — X7 and
7 : X§ — X, via

11" = ev,Fe W,
=9 N ¢ (6.8)
7y = eWev_,E.
In addition, we define a mapping IT: R — £L(X, X;) by
II(r) = IZ_QJ. (6.9)

Using the definition of W and the identity (6.7), it is clear that all three operators defined above
are periodic, i.e., II7*?™ = II7_ and similarly for II_, and II. Notice also that II”,II” = I and
n7 17, =1(-)II7, = 1.

In the remainder of this section we will show that the operator Il inherits the C"-smoothness of

the linear operator L. In [26] this was obtained directly, using an equivalence between the Floquet

!
per»

of A to the space Wli;l(R, C") N CZ5(R,C"). In particular, any eigensolution Al u = —Au would

c per

spectrum and the spectrum of an operator A that in our setting should be seen as the restriction

lead to a Floquet exponent A via x(¢) = e*u(¢). However, this last observation is only valid in
the absence of delayed and advanced arguments in (2.2). This fact forces us to pursue an alternate

approach.
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Lemma 6.2. Consider a linear equation of the form (4.3) that satisfies the assumption (HL) and
suppose that this equation admits no Floquet exponents on the imaginary axis. Then the function

A=T:R — L(L*R,C"), WL2(R,C")) given by T+ (A7)~ is C'-smooth, with derivative given by
DA-1(1) = A=1(1)[DLT]A=1(7). (6.10)

In addition, for any & € R, the function G : R — L?(R,C"*™) given by 7 +— G7(&,+) is Ct-smooth,
with derivative given by

DG(1) = A—1(7)[DL"]G(7). (6.11)
Proof. Consider for 0 < j < N the operators BI™ € L(¢2,45), given by

(B¥"w),, = Zei("_k)”eikTBiwn_k. (6.12)
keZ

We claim that 7 — B77 is differentiable at 7 = 0 and that the derivative is generated by the operator
DB’ € £(X,C"). Indeed, a similar estimate as in (4.7) yields

~ ., ~, —7 2 . . .
H (Bim — B — TDBJ]wHQ s [y €T [T~ imr — 1Bl |’

, (6.13)
(Zmez | T imr — 1B | [lwll5 -

IN

Now fix & > 0 and choose ¢’ = £[23" _, [mBJ,||* > 0. Since the exponential function is differen-

tiable, there exists a ' > 0 such that
le* —z—1] < &' |z] (6.14)

for all [z| < &'. Now let M > 0 be so large that (& + D)3 s /mBJ,| < £. Finally, fix § = 1%.
For any 0 < |7| < 6, write A=Y, |[e™™ — im7 — 1]BJ,| and compute

A

[ef™™ —imT — 1] BJ, ’

2 m)< 2
|m‘§|7|

[eirm —imT — 1]B7Jn’ + Z|m‘>%

< Cpnie s & Nl mBL| + 5 s o @+ ] [7) | B 615
< el e B, [+ T ot (24 1) m 71| B3
< 5 Il Il S (Z 1) Bl <l

This proves the differentiability of 7 — BI7 at 7 =0 and analogously for all 7 € R. Since A, does
not depend on 7, this shows that 7+— I — A, BT € L({2) and hence the inverse are differentiable in

the variable 7, uniformly for z € iR. We find
Dlr— (I -A.B]) '] =7+—[I-A.B]]"'A.[DB]][I — A.B]]". (6.16)
An estimate analogous to (4.13) now completes the proof. O

The explicit forms (6.10) and (6.11) allow repeated differentiation of A—! and G, up to the point
that the differentiability of L is lost. This observation leads to the following result.
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Corollary 6.3. Consider a linear equation of the form (4.3) that satisfies the assumption (HL) and
suppose that this equation admits no Floquet exponents on the imaginary axis. Then the functions
AT R — L(L*R,C"),W"2(R,C")) and G : R — L*(R,C™ ™) are C"-smooth and for any
1 < /¢ <r we have

DA-I(1) = > Frfa) C(rrf) NI DI LTIA () . AT AT

D'G(1) = Z(fhm)fq)C(fl’_”,fq)F(T)[DflLT]A_l(T)
in which the sum is taken over tuples (fi,..., fq) with f; > 1 and f1 + ...+ f, = L.

We will use the representation (5.4) in order to establish the smoothness of II. We hence need to
extend the results above to show the differentiability of A—1 acting as an operator into the space of
CT*1-smooth functions. To do this, let K’ C R be a compact interval and consider the set Co(K’, C™)
of continuous functions f with support contained in K’, i.e., supp(f) € K’. Fixing any bounded
open interval Q C R, we now define operators I' = T,y : R — L(Co(K’,C"),C" (2, C™)) and
H=Hg:R—Cr(Q,C"™") via

A

T(rf = A nf A7, (0F.

_ ) _ (6.18)
H(T) = G(”I)(T) 7G(_n)(7').

Notice that indeed T'(7)f € CTT1(Q,C"), since A"T'(7)f = 0. Throughout the remainder of this
paper, we will use the symbol D¢ to exclusively represent differentiation with respect to a time-like
real-valued variable. The details should be clear from the context. We will also write D, for the
derivative with respect to the variable 7.

For any suitable integer s, a quick calculation shows that DngF(T) can be written as a sum

of elements of the form

Do) N1, 10)s (6.19)

for integers 0 < p < s, e; > 0 and f; > 1 that satisfy fi+...4+f; < fand p+ei+.. . +ep+fit+.. .+ f; =
s+ ¢, in which

D(el)___ep) = [DelLT] ... [DePLT], (6 20)
Ao,y = ATHD)[DILTIAT(r) . AT Y(7)[DILT]A(7), .
together with elements of the form
[D*'L7]...[DL7|DY, (6.21)

withe; >0, f >0andp+e +...+e,+f+1= s+ Now for any tuples (e1,...,ep) and
(f1,.-., fq), define the sets

{ler+ Tyenr.rep) (en,eat1eerep)sons (et nnrep+ 1)},
(f17~"7fq)@lu{(Lfla-"’fq)7(flala”"fq)""’(fla"'qu71)}'

(e1,...,ep) @1
(f17~-~7fq)®1

(6.22)
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If ¢ > 1, an easy calculation shows that

DD, ,...oe)Ni 1, t0) = Diey,orep)@1A(f1rnt) T Dierrooiep.0)N(f1vs 1)
+D(61""’ep’fl)A(f2w~sfq)
DTDgD(el ..... ep)A(fl ,,,,, fo) = D(el _____ ep)@l@lA(fl 11111 fa) + D(el,...,ep)@lA(fl ____ foo1 (6.23)

+D(el7---761)10)@1A(f17-~7fq) + D(el7--~7ep70)A(fla-~7fq)®1
FD(er e )01 M far o f) T Diersoen i) M2y f) 015

upon understanding that Ag = A~*(7) and noting that for any set £, one should read Dg = ) ¢ De.
If ¢ = 0, then the same identity holds if one writes f1 =0, Ay, .. r,) =id and A¢g, .t )o1 = 0. The
important observation, which can be verified by a simple calculation, is that D, and D¢ commute

on elements of the form (6.19), i.e.,
DrDeDey,....e))Mfroosfs) = DeDrDiey ey M s fe)- (6.24)

Lemma 6.4. Consider a linear equation of the form (4.3) that satisfies the assumption (HL) and
suppose that for some v > 0 this equation admits no Floquet exponents A with 0 < |Re\| < 7.
Consider an integer 0 < £ < r and a parameter n € (0,7). Then the maps Ty = f(n)l ‘R —
L(Co(K,C"),CmH=4Q,C")) and Hy = H ;¢ : R — C™74(Q,C™ ") are C*-smooth.

Proof. We will only treat the map Ty, since the differentiability of H, follows in a similar fashion.

For any 7 € R, consider the map ®,(7) : Co(K,C") — C™1=¢(Q, C") given by

®u(7)f = [DEAL () f = [DEA L 1(0)F. (6.25)

In order to see that indeed ®,(7)f € C™1=¢(Q2,C"), notice first that due to the special form of
®4(7) we can ignore all the terms of the form (6.21) in the expansion of [DEHJDfE] (1). We
hence need only consider the terms of the form (6.19) with s = r + 1 — . However, since e; < r for
all 1 <14 < p, these terms will yield a continuous function when applied to f, as desired.

For convenience, we will treat each of the r + 1 — ¢ components of I';f separately in order to
show that ®, is indeed the ¢-th derivative of I'y. To this end, define for all 0 < s < r + 1 — ¢, the
map TG (1) : Co(K,C") — C(Q,C"), given by TG (1) f = Dgfg(r)f. Observe first that due to
the Sobolev embeddings Wii (R,C") C LT, (R,C"), Corollary 6.3 implies that DITO) = &, when
viewing ®, as a function mapping into C (€, C™). Now due to the commutation relation (6.24), one
may use a similar argument to show that forall0 < s <r+1—1, ' is ¢-fold differentiable, with

[DIT@)(r)f = [DEDLALL,) — DEDIALL 1(7)f € C(9,C™). (6.26)

The continuity of ®, follows from the continuity of A(j[ln) as maps R — L(L%, (R,C"), WL? (R,C™)).
O

Corollary 6.5. Consider the setting of Lemma 6.4. The function T — II(7) is C"-smooth as a map
from R into L(X, Xo).
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Proof. Tt is sufficient to show that 7 — ev_,FQ{ is C"-smooth as a map from R — £(X). For an
appropriate open ' C R, notice that the evaluation function ' — L£(C*t1(Q,C"), X) defined by
> eve is C*-smooth. In view of Lemma 6.4 and the representation (5.4), the C"-smoothness of IT

now follows from Lemma A.3. O

7 The center manifold

We are now ready to construct the center manifold for the nonlinear equation (2.1). As a preparation,
we need to modify the nonlinearity R so that it becomes globally Lipschitz continuous. This can
be realized by choosing a C'*°-smooth cutoff-function x : [0,00) — R with ||x||., = 1, that satisfies
x(&) =0 for € > 2, while x(¢£) = 1 for £ < 1. We subsequently define for any § > 0 the nonlinearity
Rs :R x X — C", given by

Ry(&,6) = x(I)o| /3 )x(| (1 = Q)g]| /) R(¢. ). (7.1)

in which 0" = §supgcp HHE,H As in [18], one can show that this map is bounded and globally
Lipschitz continuous in the second variable. In particular, the Lipschitz constant Ls is independent
of £ € R and satisfies Ly — 0 as § — 0, while one has the estimate |Rs(&, ¢)| < 45Ls for all £ € R
and ¢ € X. Associated to Rs one can define the substitution map Rs : BC, »(R,C") — BC,(R,C™),
given by [Rsz](¢) = Rs(&,x¢). The Lipschitz constant associated to this substitution map Rs is

given by w"Ls, in which we have introduced the quantity

w = max(e” min elmax) > ], (7.2)

Following these preliminaries, we introduce the operator G : BC; (R, C") x Xy xR — BC}(R,C")
that acts as
G(u, ¢, 7) = BEe™™ [¢— H(T)(%VgICRs(u)] + Kﬁg(u). (7.3)
Notice that any fixpoint v = G(u, ¢, 7) will satisfy the equation @(§) = L(&)us + Rs(&, ue), with
Qlu, =117, ¢. For this reason, we set out to show that for any fixed pair (¢,7) € Xy x R, the map
G(-,¢,7) is a contraction on BC,(R,C"), yielding a fixpoint u = u} (¢, 7).

Theorem 7.1. Consider the nonlinear equation (2.1) and assume that the conditions (HL), (HF),
(HR1) and (HR2) are all satisfied. Pick any v > 0 such that there are no Floquet exponents \ with
0 < |[Re | < v and consider any interval [Nmin, Mmax] C (0,7) with min(k, )Nmin < Nmax- Then there
exist constants 0 < & < & such that the following properties hold.

(i) For all n € [Nmin, Mmax] and for any pair (¢, 7) € Xo x R, the fizpoint equation u = G(u, $,T)
has a unique solution u = u)(¢,7) € BC}(R,C").

(ii) For any pair £, € R with & — £ € 217, we have

u* (TH(E)eveu* (¢, 7),8) = T _gu* (¢, 7). (7.4)
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(#ii) For any pair Nmin < M < N2 < Nmax, one has the identity uy, = ._7,712,,1 uy, .

(iv) For any pair (¢,7) € Xo X R, we have the inequality
| = @§eveusio,m)| <o, (7.5)
for all € € R.

(v) Consider a pair (¢,7) € Xo x R that has ||¢|| < €. Then the following inequality holds for all

Tmin S 6 S Tmax »

|TI(7 + O)evrpou; (6, 7)|| < 6. (7.6)

(vi) For all n € (min(k,”)Nmin, max), the mapping J,\,  our —: Xox R — BC}(R,C") is of

class Cmin(k,r)

mi

We need a preparatory result to prove this theorem, which allows us to restrict the parameter 7
to the interval [0, 27]. This in turn will enable us to choose the parameters ¢ and e independently

of 7 € R, simplifying the analysis considerably.

Proposition 7.2. Let u satisfy u = G(u, ¢, 7). Consider any T with 7 —T € 27Z and let v = T, _Fu.
Then v satisfies the fixpoint equation v = G(v,d,T).

Proof. First note that Lemma 6.1 implies
KRs(v) = Ty _+KRjs(u) — EQoev,_=KRs(u), (7.7)
using which we compute

T G(v,0,7) = TrrBe ™ [¢ — N(F)eve{Ty_~KRs(u) — EQoev, K Rs(u)]]
+KRs(u) — Tr—_r EQoev, 7K Ry ()
= Be ™W[¢ —(F)ev,KRs(u)] + KRs(u)
+Ee"™WII(F)eveEQuev,_=KRs(u) — Ee™ W Quev,_=KRs(u) (7.8)
= u+ Be "VILQo(PTe™ Qoev, =KR;(u)
—EeTW Quev,_=KRs(u)

= u.

O

We are now ready to prove items (i) through (v) of Theorem 7.1. The remaining item (vi) will

be treated in Section 8, where the necessary machinery is developed.

Partial proof of Theorem 7.1. In view of Proposition 7.2, we may assume throughout the proof that
T € [0,27].
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(i)

(i)

(iii)

(iv)

(v)

Choose ¢ > 0 in such a way that for all 1§ € [min, Jmax] and all o € R, we have

1
w" ||yl Ls [1 + | El,, ™™ [TI(0) || w"e*™] < 7 (7.9)
Then for any pair (¢, 7) € Xo x [0,27] and all ) € [Nmin, Ymax), We have the inequality
1
1G(u1, b, 7) — g(u27¢>7')||30; = 1 [ur — U'?HBC}] : (7.10)

In addition, if p > 2[| B[, e>™ W1 ¢, then G(-, ¢, 7) maps the ball with radius p in BC,(R,C")
into itself. We can hence use the contraction mapping theorem to define the unique solution

u = uy(¢,7) of the fixpoint equation u = G(u, ¢, 7) for 7 € [0, 27].
We first write ¢ = II(§)eveu* (¢, 7) and compute

¢ = T()eveBe ™ ¢ — (€)eve Be ™WII(T)ev, KRy (u* (¢, 7)) + I(€)eve K Rs (u* (4, 7))
=W — EIWII(T)ev, K Rs (u* (¢, 7)) + TT(E)eve L Rs (u* (6, 7)).
(7.11)

Now writing v = u*(¢,7) and v = Ty _gu, it suffices to show that u = TE%Q(U, ¥, €). We can
closely follow the computation (7.8) in Proposition 7.2 and substitute (7.11) to obtain

Te_G(v,4,8) = Ee W[y —(€)eveKRs(u)] + KRs(u)

o N B (7.12)
= Ee [ — II(T)ev KRs(u)] + KRs(u) = u.

This follows immediately using the fact that /C,, and KC,,, agree on BCy(R,C"), together with

the estimate |Rs(&, eveu™ (¢, 7))| < 40Ls.

If § > 0 is chosen sufficiently small to ensure that for some 0 < 19 < v and all ¢ € R we have
wLs < (4]|K7, |~ (7.13)

then we may use Lemma 6.1 to compute

(I - Q§)eveEe W [¢ — TL(E)eve Ky, Rs(u* (¢, 7))]
+(I = Qf)eveky, Rs(u(¢,7)) (7.14)
(I — Q)eveKy, Rs(u* (6, 7)) = evok, Te Rs(u* (¢, 7))

(I - Qf)eveu* (¢,7)

and hence

| = @feveur (0,7 < we I8, || | 7eRs(w (o 7))Hm < w™ ||KS,||46Ls < 5. (7.15)

Choose § > 0 and e > 0 sufficiently small to ensure that for some 0 < 179 < v and all 7, 7" € R,

we e || B, e*m WL ||e < 30

(7.16)
ALs |[Ky, || w0 ™0 [|[T(7)[| + 2 WHTI(r") || e mow™ || B[, O] <

Nl= N
&
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Recalling that 7 € [0, 2] and writing A = ||TI(7 4 0)ev,ou* (¢, 7)||, we compute

A = HHTJ%VTH Ee=™ [¢ — TI(r)ev, Ky R (u)] + TI(7 + 0)ev, oKy, Rs(w) H
< Tzl | wrowm e || B, 2™ WI e 4 [TI(7)|| €2 0w [|KCy, || 40 Ls) (7.17)
+ [[TI(7 + 0) || w w20 ||, || 46 L
< 248
O

In the remainder of this section we will derive an ODE that is satisfied on the finite dimensional
center manifold. To this end, we consider an arbitrary pair (¢,7) € Xo x R, and introduce the
function ® : R — X, given by

D(€) = T(E)eveu* (6, 7). (7.18)

Notice that we can apply the identity (7.4) to invert this and express u*(¢,7) in terms of ®(¢£). In
particular, for any £ for which & — € € 27Z, we find

W (6,7) = Te_u" (9(6), ). (7.19)

Setting out to obtain an ODE for ®, we introduce the shorthand uw = u*(7, ¢) and differentiate
(7.18) to find

>

®(¢) = [DI(&)eveu + TI(¢)Dleveul
I1(¢)]eveu + II(€)eve Du

(€)]
(€)]
T1(€)]eveu + T1(€)eve Lu + T1(€)eve Rs (u) (7.20)
(€)]
(€)]

)

DIL(E)]eveu* (B(£), €) + T()eve Lu* ((€), €) + TL(E)eve R(u* (B(£), €))
DII(&)|eve Ee W + TI(€)eve LEe =W ap + f(€, ®(€)).

S55TS

Here the nonlinearity f(&,) is of order O(||¢H2) as 1 — 0 and is explicitly given by

f&y) = [DH( Neve[u* (v, &) — Ee™ V4]
+HI()eve L[u* (¥, €) — Be=*"y] (7.21)

+IT(E)eve Rs(u* (1, €)).
Using Proposition 7.2 one easily sees that f is 2m-periodic in the first variable, i.e., f(§ + 27, ¢) =
f(&,4) for all € € R and 1 € Xg. In addition, the C"-smoothness of IT and the C™"("*)_smoothness
of u* imply that f € C™("—LE(R x Xo, Xo).
It remains to treat the linear part of (7.20). Defining y = Fe~"4 € N, notice that

[DIN(¢)]evey + TM(§leveLy = [DII(§)]evey + (§)eve Dy
[DIL()levey + 11(&) Devey = D[II(§)evey] (7.22)
= DleWev_¢Eevey] = D[etWevgy] = WetWevgy = Wb

We have hence established the following result.
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Proposition 7.3. Consider the setting of Theorem 7.1. For any (¢, 7) € Xo xR, define the function
®: R — Xo given by ®(&) = H(E)eveu(¢,7). Then ® is C™PE+D _smooth and satisfies the

ordinary differential equation

D(E) = WO(E) + f(& 2(9)). (7.23)

Here the function f : R x Xq — Xo, which is explicitly given by (7.21), is C™™=LE) _smooth and
satisfies f(E+2m, 1) = f(&, ) for all (£,v) € Rx Xy. Finally, we have f(£,0) =0 and Df(£,0) =0
for all € € R.

In a standard fashion [15, 18], one may now use the ODE derived above in conjunction with
the properties of u* established in Theorem 7.1 to prove our main results in Theorem 2.2. As
a final remark, we observe that in the constant coefficient situation where L(§) = L, we have
Teuw*(-,€) = u*(-,0) and II(§) = Qo for all £ € R, which shows that the definition of f reduces

correctly to the form derived in [18].

8 Smoothness of the center manifold

In this section we address the smoothness of the center manifold established above. In particular, we
set out to prove item (vi) of Theorem 7.1. Throughout this section we consider a fixed system (2.1)
that satisfies the conditions (HL), (HF), (HR1) and (HR2) and recall the corresponding integers r
and k. In addition, we fix an interval [9min, Jmax] C (0,7) as in the setting of Theorem 7.1. In order
to ease notation we will assume that r > k, but we remark that upon interchanging k& and r all
our arguments here remain valid when in fact 7 < k. Our arguments here are based on the strategy
developed in [9, Section IX.7] and will extend the proof given in [18] for autonomous versions of
(2.1).

Due to the presence of the cutoff function on the infinite dimensional complement of X, the
nonlinearity Rs loses the C*-smoothness on X and becomes merely Lipschitz continuous. To correct

for this situation, we introduce for any n > 0 the Banach space

Vi (R.C") = {u€ BOR.C™) | fullyy = supe I€uell + sup | (7 = Qe | + il < oo},
(8.1)
which is continuously embedded in BC’% (R,C"™), together with the open set

VIR, C") = {u e BCYR,C") |sup (I - Qfuel| < 8} < Vi(r,C™). (8.2)
£€R

We start by establishing conditions under which the substitution maps Rg : VIR, C") —
BC’%(R, C™) are smooth. Notice that Ry is of class C* on the set B%, in which

Bl = {(6,:6) e Rx X |||(1 - Q)| < o} (8.3)
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Considering any pair of integers p > 0, ¢ > 0 with p+q < k, observe that the norms || DY DIRs(&, ¢)|]

are uniformly bounded on B%. Thus, for any u € C(R,C") for which SUP¢cRr H(I - Qg)ug ‘ < 6 and
for any 0 < p < k, we can define a map REP’Q) (u) € LD (C(R,C"),C(R,C")) by
B @)(0n,0)(€) = DYDIRs(&,ue) ((01)es - (vg)e). (8.4)

Here the symbol £(9 (Y, Z) denotes the space of g-linear mappings from Y x...xY into Z. Note that
the map Egp ’q)(u) defined above is well-defined, since D} D§R; is a continuous map from B x X¢
into C”, as is the map i, : R — X which sends £ — z¢, for any « € C(R,C"). Throughout the
remainder of this section we will adopt the shorthand BCC1 = BC’C1 (R,C"™), together with analogous
ones for the other function spaces. The following two results are stated without proof, as they are

very similar to their counterparts in [18].

Proposition 8.1. Let p > 0 and q¢ > 0 be positive integers with p +q < k. Pick 7 > q( > 0. Then
for any v € C(R,C") such that sup,cg H(I - QS)UgH < 6§, we have

RP(u) € L9 (BCL, BC,) N LDV, BC,), (8.5)
where the norm is bounded by

< wSsup e DP DI RS (€, ue)|| < oo. (8.6)

HR(WJ)
J L£(a) ¢EeR

Furthermore, consider any 0 < £ < k— (p+q) and any o > 0. If n > qC + Lo, then in addition
the map u — ﬁgp"q) (u) from V1 into E(Q)(BC%, BC,) is C*-smooth, with Deﬁ((sp,q) = ﬁgp’qﬂ). The
same holds when considering u — E((sp,q) (u) as a map from V.1 into ﬁ(q)(Vcl,BCn).

Finally, if p+q < k, consider any u € Vol"s. Then for any g-tuple of functions vy, ...,v, € BCE,
we have E((;p’q)(u)(vl, oo, vg) € CHR,C™), with

DR D)y, vvg) = RV )(or, o vg) + RV ) o, vg) (8.7)
FRPD () (61,02, -, vg) + .+ RPD (u) (01, v, - .., Ty)-

Proposition 8.2. Consider integers p > 0 and ¢ > 0 with p+q < k. Let n > qC+ o for some ( > 0
and o > 0. Let ® be a mapping of class C* from Xy x R into V0. Then the mapping Egp’q) o®
from Xy x R into E(q)(BCCI, BC,) is of class C* with

D(RY? 0 ®)(6,7)(v1,..., v, (1,€)) = RETD(D(¢, 7)) (v1,...., v, DR(,7)(1,€)).  (8.8)

For convenience, we introduce for any 1 € [min, max] the function & : Vnm x (Xox10,27]) — BC%

via
E(u, (¢,7)) = Ee ™ [¢ — H(T)eVTICR(;(u)]. (8.9)
One may compute the partial derivatives
DiE(u,(6,7)) = —Ee™WII(r)ev, KR (u),
Dol (u, (¢,7)) = Ee ™ x (7 EWe ™W[p — I(r)ev. KRs(u)] (8.10)

—Ee_TW[DH(T)]eVT/CRS(U) + II(7)ev, [LICR;(U) + R;(u)])
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and easily conclude that these are both continuous functions. This means that £ is at least C*-
smooth and in addition enables us to define the continuous auxiliary functions F; : Xy x [0, 27] —
E(V,},BC’%) N E(BC’}],BC%) and F» : X x [0,27] — L(Xo % R,BC%) by

f1(¢77) = Dlg(U*(¢vT)7(¢vT))7
fg(d),’]’) = D2€(U*(¢7T)a (¢7T))

Notice that Proposition 8.1 implies that F; is indeed well-defined as an element in L(BC}], BC’%).

(8.11)

We will employ an induction approach towards establishing the smoothness of u*. The next result

serves as a starting point by obtaining the C'-smoothness.
Proposition 8.3. For all 1 € (Nmin, Mmax), the function J;nminuj;mm 0 Xo x [0,27] — BC}] is C'1-
smooth. In addition, for each 1 <p <k and all n € (PNmin, Mmax), the function

(6, 7) = Ty i DEUS, (0,7, (8.12)

which maps Xy % [0, 27] into BC’}], s continuous.

Proof. Consider any 1 € (min, Tmax]- We will apply Lemma A.2 in the setting Yo = V! |V =

Tmin’

BC! andY; = BC'}], together with their natural inclusions. Furthermore, we choose Qp = V10

TImin TImin

V). andlet A = Xo xR with Ag = Xo x [0, 27]. For any (¢, 7) € X x [0, 2], the operators featuring
in Appendix A are defined by

Flu,d,7) = E(u,(6,7)) + Ky Rs (1), u€ BC%W
FO(u,¢,7) = Di€(u, (¢,7)) + Ky 0 By () € L(BCY, ), we Vi, (8.13)
FV(uw,0,7) = Di€(u,(¢,7)) + Ky o By (u) € L(BCY), ue v
In the context of Lemma A.2 this means that G : V20 x X x [0,27] — BC} is defined by
G('LL, ¢7 T) = S(u7 (d)? T)) + ‘7771"7min ICnmin R5 (U) (814)

= E(u, (¢,7)) + Ky Rs(u),

in which the final equality follows from the fact that IC and K, agree on BCj.

Tmin
Conditions (HC1), (HC3) and (HC4) are satisfied due to the C''-smoothness of £, together with

Proposition 8.1. The inequality (7.9) implies (HC2) and (HC5), while (HC6) follows from (7.13). We

COHClude that k777177min © u:;min lb Of Clabb Cl and that D(jnl"?mm nmm)(dj f) 77'Umm ;;f(nl‘n ((b 5)

L(Xy xR, BC},), where u:,min (¢, &) is the unique solution of the equation
u® = [FU(7) + K 0 ROD (g, (&, 7)]uD) + Fo(0,7) (8.15)
in the space L£(Xo x R, BC%min). We compute

Deuy (6,7) = Luj  (6,7)+ Rs(ujy, . (6,7))
D£ nmin(¢’7) = [ } nm,n(¢a )+L[Dunmm(¢a )]+ (8]‘6)
RO (uyy (6,€)) + ROV (uy, . (6,7))Dujy (¢, 7)
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and hence (¢,7) — J}

NMmin

tiated another k — 1 times, showing that in general (¢, 7) — Jnlenmng Tein (@5 T) 18 continuous for

1<l<Ek. O

Deuy . (¢,7) is continuous. It is easy to see that (8.16) can be differen-

In the interest of clarity, we specify in some detail the induction hypothesis that we use prior
to performing the induction step, To this end, consider any integer ¢ that satisfies 1 < ¢ < k and
suppose that for all 1 < g < /¢, there exist mappings

wsD s X x [0,21] — L9(Xy x R,BCY, ), (8.17)

Tlmin 4Mmin

such that the following properties are satisfied.

(IH1) For all 1 < ¢ < £ and for all § € (¢Mmin, Nmax), the mapping Jnnmm up s of class C? with
DUF)  oul )=} upl® (8.18)
MM min Mmin n q77mm nmm

(IH2) For all integer pairs (p,q) with 0 < g <{¢and 1 <p <k —qand all n € ((p + ¢)Mmin, Mmax)
the function X¢ x [0,27] — £ (X, x R,BC}Z), defined by

(¢7 ) n (p+q)”]m1uD§u*(q) (¢7T)’ (8.19)

is continuous.

(IH3) For any pair (¢,7) € X % [0, 27], the map u;,(fi)n (¢, 7) is the unique solution at 7j = fyi, of an
equation of the form
u® = Fﬁ(f)(u(f),(ﬁm) (8.20)

in the space £ (X, x R, BCL}W), with
FO WO, ¢,7) = [Fi(d,7) + Ko BV (uf, (6, 7))]u'® + DT Fy(,€) + HY (¢, 7). (8.21)

Here we have H( (¢, 7) = 0 and for £ > 2 we can write Hg)(qﬁ, 7) as a finite sum of terms of

two different forms, the first of which is given by

Kaz 0 ROV (ur,  (6y7)) (un')(,7), .. unle? (6, 7)), (8.22)

with 2 < ¢ < £ and integers e; > 1 such that e; + ...+ e, = £. The second form can be written
as

DN Fi (¢, m)uild? (¢, 7), (8.23)

with integers f; > 1 and fy > 1 that satisfy f; + fo = 4.

Using Proposition 8.3 it is easily verified that the assumptions above are satisfied for ¢ = 1.
Before proceeding with the remaining cases, we need to study the smoothness of the operators F;

and Fo.
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Proposition 8.4. Suppose that for some integer 1 < £ < k the induction assumptions (IH1) through
(IH3) all hold. Then for any 1 € [Nmin, Tmax], the functions Fy : Xo x [0,27] — L(BCL, BC}) and
Fa: Xo x [0,2n] — L(Xo x R, BCy) are C*-smooth.

Proof. Upon defining &' (u, (¢, 7)) = E(u, (¢, 7))—Ee~™ ¢, we remark that it is sufficient to establish

the claim for the operators i and F} associated to £’. Observe first that for i = 1,2 we can write

D*F!(¢,7) as a sum of terms of the form
D Dg2E (w* (¢, 7), (6, 7)u* P (g, 7) .. w3 (6, 7), (8:24)

in which 8; > 1 for 1 < j < ng. If i = 1, then we have in addition that oy > 1, ng = a3 — 1 and
ag+B1+...+ B, = L. If however i = 2, then we have ap > 1, ng = a; and ao+61+...+ 8, = {+1.
Now notice that the only nonzero component of Df* D§?E’(u, (¢, 7)) can be written as a sum of
terms of the form
EWoe™W (D) (r)ev, D KRS (), (8.25)
in which v; > 0 for 0 < j < 2 with 79 + 71 + 72 = 2. Setting out to compute the derivatives with
respect to ¢ appearing in (8.25), notice first that

DeKR ) (u) = LIKR ™ (u) + RV (u). (8.26)

Generalizing, we obtain that DgWCR(;O’O”) (u) can be written as a sum of terms of two different forms,

the first of which is given by
[De1L) ... [D%e LIR®o1+0) (y)(Df1u, ..., DIsw)(D92, ... D9=1), (8.27)

in which we have p > 0, ¢ > 0 and n. > 0, together with e; > 0 for all 1 < j < n., f; > 1 for all

1<j<gqandg; >0foralll<j<a. In addition, we must have
I+(1+e)+...+Q+en)+p+ it +fota+...+ga =7 (8.28)

The second form is given by
(D' L] ... [Dee LK R ™) (u), (8.29)

in which ne >0, e; >0 for all 1 < j <n, and
I4+e)+...+(1+en) =" (8.30)

Indeed, this can be verified directly for 75 = 1 and differentiation of the terms in (8.27) and (8.29)
again gives terms of these forms.
It remains to show that the terms (8.27) and (8.29) are continuous after substituting v = u*(¢, 7).
In view of Proposition (IH2), it suffices to check that we have oy +p+¢ <k, e; <rfor 1 <j <mn,,
fi<lfor1<j<gqgandg;+03; <{lfor1<j<ng. Ifin fact we have ¢ =1, i.e., we are considering
D*F], then we in addition need g,, < ¢ — 1 to ensure that BC’f; is mapped into BC’% under the
operator Dg‘”. All these inequalities can easily be verified by using the conditions (8.28) and (8.30).
O
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Proof of item (vi) of Theorem 7.1. Assume that for some 1 < ¢ < k, the induction assumptions
(IH1) through (IH3) are satisfied. Notice that these conditions ensure that Fﬁ(z) L0 (X()?BC;W) X
Xo— L(Z)(Xo, BC}H) is well-defined for all 77 € [Mmin, %nmax] and, in addition, is a uniform contrac-
tion for these values of 7. We now fix € ((¢ + 1)Mmin, max] and choose o and ¢ such that Ny, <
o < ({+1)0 < ¢ < n. We wish to apply Lemma A.2 in the setting Qy = Yy = L (X, x R, BC}),
Y = LO(Xy x R, BC’Cl)7 Y; = £LO(X, x RBC%) with the corresponding natural inclusions, with
the parameter space given by Ag = X % [0, 27r] with Ag C A = X xR. For any (¢, 7) € Xo x [0, 27],

we define the functions

F(u), ¢,7) Fal6,7) + K o BV (s, (6, m)I® + D1 Fa(g,7) + HO(9),
FOWO,¢,7) = Fi(d7)+ Ko ROV (ur,, (6,7)) € LILO(Xo x R, BCL)), (8.31)

FUWO,6,7) = Fi(d,7)+Kyo ROV (ur,  (¢,7)) € LILO(Xo x R, BCL)),

in which we take u(®) € L((X, x R, BC}) in the definition of F and u*) € £ (X, x R, BCY,) for
FM and Fl(l). To check (HC1), we need to show that the map G : £(9(Xo xR, BO} ) x X x [0, 27] —
LO(X,, BC%) given by

G, 6,7) = [Fi(6,7) + Tnc o Ko RSV (wy L (6,7))]u®) + D1 Fo(6,7) + Tic H)y(6,7) (8.32)

is of class C'. In view of the linearity of this map with respect to u(¥), together with the smooth-
ness of 1 and F» as established in Proposition 8.4, it is sufficient to show that (¢,7) — K¢ o
R((;O Dy uy, (¢, 7)) is of class C" as a map from Xy x R into L(BC},, BC}) and, in addition, that
(¢, 7) — Hé/z(gb, 7) is of class C' as a map from X x R into £9) (X x R, BC’%). The first fact follows
from Proposition 8.2 using ¢ > (£+1)o and the C*-smoothness of the map (¢, 7) — T3, . - ($,7).
To verify the second fact, we again use Proposition 8.2 to differentiate the components of H*) given

n (8.22) and (8.23). The first component yields

DKo R ‘”( LGN (7). und) (6, 7))
= Kco RO (wr (¢, m)(upl) (7). - uzﬁi‘g’w,r) unt) (¢,7)) (8.33)
+ 30 Ko ROD(u n,,),,,<¢,7>><u:;£f.;><¢,r>, untat (g, 7), L unld (6, 7)),

*(J)

min

in which each occurrence of w,,;, is understood to map into BC’}J. An application of Proposi-
tion 8.1 with ¢ > (¢ + 1)o, shows that the above map is indeed continuous from Xy X R into
E(“‘l)(Xo x R, BCcl). The second component can be treated using similar arguments in conjunc-
tion with Proposition 8.4. These arguments immediately show that also (HC4) is satisfied. Condi-
tions (HC2), (HC3) and (HC5) can be verified much as before. (HC6) follows from the fact that
LO(Xo xR,BC}, ) C LY(X, xR, BC},).

We thus conclude from Lemma A.2 that 7,5, ou;(e.) is of class C! with D(J,},, unmm)(qs7 T) =

min

j,}g o u*(+1 (¢, 7), in which u*“+1) (¢, 7) is the unique solution of the equation
ul*D = [Fi(g,m) + Ko ROV (up (6, 7)]ul™D + DUFy(6,7) + HY G (0,7) (8:34)
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in LD (X, x R, BCY), with

HED (907) = K¢ 0 B (6,7 O(6,7),uwD(6,7)) + DHY(6,7).  (8.35)

However, the definition (8.35) remains valid upon writing ¢ = (£ 4 1)7min. This allows one to define
H,gi:nl € LD (X, x R7BC(1€+1)nm;n) in a natural fashion, with Héﬁ;ﬁl) = ‘7<j1(£+1) gD,

Nmin "~ Imin

We hence conclude that the fixed point u**+1) (¢, 7) of (8.34) is also contained in LU+ (X, x

R BC(1£+1)nmm) We can hence define un({jl) = (g, 7) € LD (X xR BO(@+1 )Nmin

to complete the proof, it remains only to consider the statements in (IH2) that involve the D

). In order

derivatives. However, these follow from inspection, repeatedly using DK f = LK 4 f together with
(8.7). O

A Embedded Contractions

In this appendix we outline a version of the embedded contraction theorem that we used to prove
that the center manifold is C*-smooth. The presentation given here contains slight adaptations of
results given in [32], therefore the proofs are omitted.

Let Yy, Y, Y7 and A be Banach spaces with norms denoted respectively by

s MF (Il and |- (A1)

and suppose that we have continuous embeddings Jy : Yy — Y and J : Y — Y7. Let Qg C Yy and

Ao C A be two open convex open subsets of Yj respectively A. We consider the fixed-point equation
y=F(y, ) (A2)
for some F': Y x A — Y. Associated to F' we define a function Fy: Qg X Ag — Y via

Fo(yo, o) = F'(Joyo, Mo) (A.3)

and also a function G : Qg x Ag — Y1 by G = J o Fy. We shall need the following assumptions on F'
and G.

(HC1) The function G is of class C!. Fix any wy € Qg and A\g € A and consider the partial derivative
D1G(wo, \o) € L(Yy,Y1). Then there exist ™M) (wp, Ag) € L(Y) and Fl(l)(wo,)\o) € L(Y1) such

that for any vy € Yy we have

DlG(wo,)\o)’Uo = JF(l)(WO,/\O)JOUOa (A 4)
TJED(wo, Moy = F{(wo, Ao)JTy. '
(HC2) There exists some k1 € [0,1) such that for all wy € Qy and \g € Ay we have
IFO@o M)l gy <1 and AV o do)| < (A5)

L(Y1)
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(HC3) The mapping (wo, Ag) — J o FM)(wg, Ag) is continuous as a map from Qg x Ag into £(Y,Y7).
(HC4) The function Fp has a continuous partial derivative
DyFy: Qo x Ag — L(AY). (A.6)
(HC5) There exists some k2 € [0,1) such that for all y, 7 € Y and all Ay € Ag we have
1F(y, Xo0) = F(F, 2o)|| < ka2 lly — 7l - (A7)

It follows from (HC5) that (A.2) has for each Ao € Ag a unique solution ¥ = ¥(\). We assume that
(HC6) For some continuous ® : Ag — Qp we have ¥ = Jy o ®.
We define k = max(x1, K2).

Lemma A.1. Assume that assumptions (HC1) through (HC6) hold, except possibly (HCS3). Then

W s locally Lipschitz continuous.

Assuming that (HC1) through (HC6) hold, we can consider the following equation for A €
L(AY),
A =FO(®(\g), \o)A + DaFy(®(No), No).- (A.8)

Since HF(l)Hg(y) < k < 1 by (HC2), we see that I — F(D(®()\g), \g) is invertible in £(Y") and hence
for each A9 € Ag (A.8) has a unique solution A = A(N\g) € L(A,Y).

Lemma A.2. Assume that (HC1) through (HC6) hold. Then the mapping J oV is of class C and
D(J o W)(Ag) = J o A(Xg) for all g € Ap.

We conclude with the following result on differentiation in nested spaces.

Lemma A.3. Consider an integer £ > 1 and a sequence of Banach spaces Yo C Yy C ... C Yy, in
which each inclusion Jj; 1 Y; — Y; with j > i is continuous. Let Zy and Z, be Banach spaces and
[a,b] C R be an interval. Consider functions M : [a,b] — L(Zy,Yy) and L : [a,b] — L(Ye, Z1) with
the following properties.

(i) For each 0 < j < [, we have that the map [a,b] — L(Zy,Y;) given by & — TjoM(E) is

C7 -smooth.
(ii) For every 0 < q < j, we have that
DiT;0M (&) = TjqD?Tq0 M (€). (A.9)

(i4i) For each 0 < j < ¢, we have that the restriction map [a,b] — L(Y}, Z1) given by § — (L(€)))y;

is C*~J-smooth.

Then the map [a,b] — L(Zo, Z1) given by & — L(&)TuM (€) is C*-smooth.

34



Proof. For convenience, define the maps L; = L}y, and M; = JjoM. Notice first that for any p >0
and ¢ > 0 with p + ¢ < £, we have that the function W»1 : [a,b] — L(Zy, Z1) defined by

WHA(E) = DL, (€) DP My () (A.10)

is well-defined and continuous. Associated to a given C7-smooth operator S : [a,b] — (2, we define

the usual remainder functions Rg) : [a,b] X [a,b] — Q by

. J Y
R (€)= 5() - Y s Eh (A1)
k=0 ’
and observe that Hjo)(f,f’) (1€ = ¢'P).
Now notice that
LE)MAE) = LERY(€€) + Xty L€)DF M (€) S
= L()RV (6.€) + 5o LE) Tuu D My (€) E 52 (A.12)

LR (6,€) + b _o Lu(€) DF M, (€) EEE

Recalling that

Lie(€) = RV (6,¢) + 0K DLy () =8 (A.13)
one can write
L(E)Me(&') — L(E)M(§) = Z<p>o,q>o>|1<p+q<; CpWPI(E — E)PTa
+ 3o RV (€, €Y DR M (6) (€ — )R (A.14)

+L(£ ) Mg(£a§ )a

for appropriate constants c, ,, which shows that indeed D*[LJyM] can be properly defined in a

continuous fashion. O

References

[1] Abell, K. A., Elmer, C. E., Humphries, A. R., and Vleck, E. S. V. (2005), Computation of
Mixed Type Functional Differential Boundary Value Problems. SIAM J. Appl. Dyn. Sys. 4,
755-781.

[2] Bateman, M. D. and Vleck, E. S. V. (2006), Traveling Wave Solutions to a Coupled System of
Spatially Discrete Nagumo Equations. SIAM J. Appl. Math. 66, 945-976.

[3] Bates, P. W. and Chmayj, A. (1999), A discrete Convolution Model for Phase Transitions. Arch.
Rational Mech. Anal. 150, 281-305.

[4] Bell, J. (1981), Some Threshold Results for Models of Myelinated Nerves. Math. Biosciences
54, 181-190.

35



[17]

[18]

[19]

[20]

Cahn, J. W. (1960), Theory of Crystal Growth and Interface Motion in Crystalline Materials.
Acta Met. 8, 554-562.

Cahn, J. W., Mallet-Paret, J., and Van Vleck, E. S. (1999), Traveling Wave Solutions for
Systems of ODE’s on a Two-Dimensional Spatial Lattice. SIAM J. Appl. Math 59, 455-493.

Chua, L. O. and Roska, T. (1993), The CNN paradigm. IEEFE Trans. Circuits Syst. 40, 147-156.

d’Albis, H. and Augeraud-Véron, E. (2007), Balanced Cycles in an OLG Model with a Contin-
uum of Finitely-lived Individuals. J. Econ. Theory 30, 181-186.

Diekmann, O., van Gils, S. A., Verduyn-Lunel, S. M., and Walther, H. O. (1995), Delay Equa-
tions. Springer-Verlag, New York.

Dieudonné, J. (1960), Foundations of Modern Analysis. Academic Press, New York.

Elmer, C. E. and Van Vleck, E. S. (2002), A Variant of Newton’s Method for the Computation of
Traveling Waves of Bistable Differential-Difference Equations. J. Dyn. Diff. Eqn. 14, 493-517.

Erneux, T. and Nicolis, G. (1993), Propagating Waves in Discrete Bistable Reaction-Diffusion
Systems. Physica D 67, 237—-244.

Hale, J. K. and Verduyn-Lunel, S. M. (1993), Introduction to Functional Differential Equations.
Springer—Verlag, New York.

Harterich, J., Sandstede, B., and Scheel, A. (2002), Exponential Dichotomies for Linear Non-
Autonomous Functional Differential Equations of Mixed Type. Indiana Univ. Math. J. 51,
1081-1109.

Hupkes, H. J. and Verduyn-Lunel, S. M., Center Projections for Smooth Difference Equations
of Mixed Type. J. Diff. Eqn. submitted.

Hupkes, H. J. and Verduyn-Lunel, S. M., Invariant Manifolds and Applications for Functional
Differential Equations of Mixed Type. In preparation.

Hupkes, H. J. and Verduyn-Lunel, S. M. (2005), Analysis of Newton’s Method to Compute
Travelling Waves in Discrete Media. J. Dyn. Diff. Eqn. 17, 523-572.

Hupkes, H. J. and Verduyn-Lunel, S. M. (2007), Center Manifold Theory for Functional Differ-
ential Equations of Mixed Type. J. Dyn. Diff. Eqn. 19, 497-560.

Kaashoek, M. A. and Verduyn-Lunel, S. M. (1992), Characteristic Matrices and Spectral Prop-
erties of Evolutionary Systems. Trans. Amer. Math. Soc. 334, 479-517.

Keener, J. and Sneed, J. (1998), Mathematical Physiology. Springer—Verlag, New York.

36



[31]

[32]

[33]

[34]

Laplante, J. P. and Erneux, T. (1992), Propagation Failure in Arrays of Coupled Bistable
Chemical Reactors. J. Phys.Chem. 96, 4931-4934.

Luzyanina, T. and Engelborghs, K. (2002), Computing Floquet Multipliers for Functional Dif-
ferential Equations. Int. J. of Bifurcation and Chaos 12, 2977-2989.

Mallet-Paret, J. (1999), The Fredholm Alternative for Functional Differential Equations of
Mixed Type. J. Dyn. Diff. Eqn. 11, 1-48.

Mallet-Paret, J. (1999), The Global Structure of Traveling Waves in Spatially Discrete Dynam-
ical Systems. J. Dyn. Diff. Eqn. 11, 49-128.

Mallet-Paret, J. (2001), Crystallographic Pinning: Direction Dependent Pinning in Lattice Dif-

ferential Equations. preprint.

Mielke, A. (1994), Floquet Theory for, and Bifurcations from Spatially Periodic Patterns. Tatra
Mountains Math. Publ. 4, 153-158.

Rustichini, A. (1989), Hopf Bifurcation for Functional-Differential Equations of Mixed Type.
J. Dyn. Diff. Equations 1, 145-177.

Skubachevskii, A. L. and Walther, H. O. (2006), On the Floquet Multipliers of Periodic Solutions
to Non-linear Functional Differential Equations. J. Dyn. Diff. Fq. 18, 257-355.

Strunz, T. and Elmer, F. J. (1998), Driven Frenkel-Kontorova model I. Uniform Sliding States
and Dynamical Domains of Different Particle Densities. Phys. Rev. £ 58, 1601-1611.

Strunz, T. and Elmer, F. J. (1998), Driven Frenkel-Kontorova model II. Chaotic Sliding and
Nonequilibrium Melting and Freezing. Phys. Rev. E 58, 1612-1620.

Szalai, R., Stépédn, G., and Hogan, S. J. (2006), Continuation of Bifurcations in Periodic Delay-
Differential Equations using Characteristic Matrices. SIAM J. Sci. Comput. 28, 1301-1317.

Vanderbauwhede, A. and van Gils, S. A. (1987), Center Manifolds and Contractions on a Scale
of Banach Spaces. J. Functional Analysis 72, 209-224.

Walther, H. O. (1983), Bifurcation from Periodic Solutions in Functional Differential Equations.
Mathematische Zeitschrift 182, 269-289.

Widder, D. V. (1946), The Laplace Transform. Princeton Univ. Press, Princeton, NJ.

37



