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Abstract. We study the behaviour of solutions to nonlinear functional differential equations of
mixed type (MFDEs), that remain sufficiently close to a prescribed periodic solution. Under a
discreteness condition on the Floquet spectrum, we show that all such solutions can be captured
on a finite dimensional invariant center manifold, that inherits the smoothness of the nonlinearity.
This generalizes the results that were obtained previously in [18] for bifurcations around equilibrium
solutions to MFDEs.
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1 Introduction

In this paper we provide a tool to analyze the behaviour of solutions to a functional differential

equation of mixed type (MFDE),

ẋ(ξ) = G(xξ), (1.1)

that lie in the vicinity of a prescribed periodic solution. Here x is a continuous Cn-valued function

and for any ξ ∈ R, the state xξ ∈ C([rmin, rmax],Cn) is defined by xξ(θ) = x(ξ + θ). We allow

rmin ≤ 0 and rmax ≥ 0, hence the operator G may depend on advanced and retarded arguments

simultaneously.

Historically, the primary motivation for the study of MFDEs comes from the study of lattice

differential equations (LDEs), which are systems of differential equations indexed by points on an

(infinite) spatial lattice, e.g. hZn for some integer n and grid size h > 0. Such equations allow

the incorporation of nonlocal interactions into otherwise local models and exhibit richer behaviour

than the limiting PDEs that arise when taking h → 0 [6, 11, 17, 24, 25]. For these reasons, models

involving LDEs have been developed in many scientific disciplines, including chemical reaction theory

[12, 21], image processing and pattern recognition [7], material science [3, 5] and biology [2, 4, 20].

As a specific example which is interesting in view of our main equation (1.1), we recall a Frenkel-

Kontorova type model that was analyzed numerically in [1]. This model was originally developed to

describe the motion of dislocations in a crystal [29, 30], but now has numerous other applications

in the literature. In particular, consider a chain of particles that have positions xk, with k ∈ Z. The

dynamics are given by the LDE

ẍk(t) + γẋk(t) = xk−1(t)− 2xk(t) + xk+1(t)− d sinxk(t) + F, (1.2)

in which γ and d are parameters and F is an external applied force. In the literature a special class

of travelling wave solutions, which have been named uniform sliding states, has been constructed

for (1.2). Such solutions can be written in the form xk(t) = φ(k − ct) for some waveprofile φ and

wavespeed c and in addition satisfy the special condition xk+N = xk +2πM , in which N and M are

fixed integers. It is not hard to see that (1.2) can be restated in such a way that these states become

periodic and hence the study of bifurcations from these solutions can be fitted into the framework

developed here.

Recently [18], based upon earlier work by several authors [9, 23, 32], a center manifold approach

was developed to capture all solutions of (1.1) that remain sufficiently close to a given equilibrium x.

It was shown that the dimension and linear structure on the center manifold are entirely determined

by the holomorphic characteristic matrix ∆ : C → Cn×n associated to the linearized system v̇(ξ) =

DG(x)vξ. This matrix is explicitly given by ∆(z) = zI − DG(x) exp(z·) and is thus relatively

straightforward to construct and analyze in many practical applications, see e.g. [8, 15]. As an

illustration of the strength of this reduction, consider a parameter dependent family of MFDEs,

ẋ(ξ) = G(xξ, µ), (1.3)
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that admit a common equilibrium x and suppose that a pair of roots of the characteristic equation

det ∆(z, µ) = 0 crosses the imaginary axis at a certain parameter value µ0. Under suitable conditions

the Hopf bifurcation theorem can be lifted to the infinite dimensional setting of (1.3) and hence one

may conclude the existence of a branch of periodic solutions to (1.3) bifurcating from the equilibrium

x for µ ∼ µ0. In [16] this approach was used to analyze an economic optimal control problem

involving delays. This problem was proposed by Rustichini in order to simplify a model describing

the dynamics of a capital market [27], whilst still retaining the periodic orbits that are compulsory

for any such model. The existence of these periodic orbits was established by numerically analyzing

the resulting characteristic equation and looking for root-crossings through the imaginary axis.

The main goal of this paper is to facilitate a similar bifurcation analysis around periodic solutions

p to (1.1). In order to do this, we will set out to capture all sufficiently small solutions to the equation

ẏ(ξ) = DG(pξ)yξ +
(
G(pξ + yξ)−DG(pξ)yξ −G(pξ)

)
(1.4)

on a finite dimensional center manifold, hence generalizing the approach in [18] for equilibria p = x.

Our results should be seen in the setting of Floquet theory in infinite dimensions. In particular, the

linear dynamics and structure on the center manifold are related to Floquet solutions of the linear

part of (1.4), i.e., functions v of the form v(ξ) = eλξq(ξ) that satisfy

v̇(ξ) = DG(pξ)vξ, (1.5)

in which q is a periodic function that has the same period as p and λ ∈ C is called a Floquet

exponent. In particular, we will be interested in linearized equations that admit Floquet exponents

on the imaginary axis.

In contrast to the autonomous case, the construction and subsequent analysis of a characteristic

matrix for (1.5) in general poses a significant challenge. In the study of delay equations, at least two

approaches have been developed to deal with this problem. The first approach uses the fact that a

delay equation may be seen as an initial value problem on the state space C([rmin, 0],Cn), which

allows one to define a monodromy map on this space. It is possible to show that this map is compact,

which immediately implies that the set of Floquet exponents is discrete [9]. Applying the theory

developed in [19] to the monodromy map, Szalai et al. were able to construct a characteristic matrix

for general periodic delay equations (1.5), which in addition can be used efficiently for numerical

computations [31]. However, only in very special cases can an explicit form for this matrix be given.

In addition, this approach fails whenever rmax > 0, since in general MFDEs are ill-defined as initial

value problems [14].

If the operator DG(pξ) : C([rmin, rmax],Cn) → Cn can be written in the form

DG(pξ)φ =
N∑
j=0

Aj(ξ)φ(ξ + rj) (1.6)

and if the sizes of the shifts rj in (1.6) are all rationally related to the period of p, the Floquet

exponents can be studied in a more direct fashion. This is done by substituting q(ξ) = e−λξv(ξ) into
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(1.5) and looking for periodic solutions q. The resulting equation can be transformed into an ODE

by introducing new variables qk(ξ) = q(ξ+kr∗), for some r∗ that divides all the shifts rj . In [28, 33],

the authors use this reduction to analyze a scalar delay differential equation with a single delay,

ẋ(ξ) = −µx(ξ) + f(x(ξ − 1)), (1.7)

in which f is an odd C1-smooth nonlinearity. In particular, a characteristic matrix was constructed

for the Floquet exponents of a special class of periodic orbits p that satisfy p(ξ + r) = −p(ξ), for

some r > 0 and all ξ ∈ R. Under some additional restrictions on f and p it was possible to explicitly

verify the presence of Floquet exponents on the imaginary axis. In general however, this will become

intractible. One will hence have to resort to numerical calculations in the spirit of [22, 31] to detect

Floquet exponents that cross through the imaginary axis as the parameters of a system are varied.

To state our results we will need to assume that the Floquet spectrum of (1.5) is discrete in

some sense. In Section 3 we will use the ODE reduction described above to verify this condition in

a number of special cases, but at the moment it is unclear if this holds for general MFDEs. Our

main results are formulated in Section 2 and the necessary linear machinery is developed in Sections

4 through 6. We remark here that the approach in Section 4 was chiefly motivated by the work

of Mielke. In [26], he constructed a center manifold to study bifurcations in the setting of elliptic

PDEs and hence also had to cope with the absence of a time evolution map. However, we will need

to deviate from his approach considerably, for reasons which should become clear in the sequel.

In Section 7 we use the Lyapunov–Perron technique to define the center manifold and derive the

associated flow, much along the lines of [9, 18, 15]. Finally, in Section 8 we use techniques developed

by Vanderbauwhede and van Gils [32] to address the smoothness of the center manifold.

2 Main Results

Consider the following functional differential equation of mixed type,

ẋ(ξ) = L(ξ)xξ +R(ξ, xξ), ξ ∈ R, (2.1)

in which x is a continuous mapping from R into Cn for some integer n ≥ 1 and the operators L(ξ)

and R(ξ, ·) are a linear respectively nonlinear map from the state space X = C([rmin, rmax],Cn) into

Cn. The state xξ ∈ X is defined by xξ(θ) = x(ξ + θ) for any rmin ≤ θ ≤ rmax, with rmin ≤ 0 ≤
rmax. Furthermore, we require throughout this paper that L and R are periodic, in the sense that

L(ξ+2π)φ = L(ξ)φ and R(ξ+2π, φ) = R(ξ, φ) for all ξ ∈ R and φ ∈ X. For ease of notation, we will

present our results for (2.1) under the assumption that L acts on point delays only, i.e., we assume

that for some integer N the operator L(ξ) : X → Cn can be written in the form

L(ξ)φ =
N∑
j=0

Aj(ξ)φ(rj), (2.2)
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for Cn×n-valued functions Aj and shifts rmin = r0 < r1 . . . < rN = rmax. We remark however that

the arguments developed here can easily be extended to arbitrary L(ξ) : X → Cn.
As in [18], we will employ the following families of Banach spaces,

BCη(R,Cn) =
{
x ∈ C(R,Cn) | ‖x‖η := supξ∈R e

−η|ξ| |x(ξ)| <∞
}
,

BC1
η(R,Cn) =

{
x ∈ BCη(R,Cn) ∩ C1(R,Cn) | ẋ ∈ BCη(R,Cn)

}
,

(2.3)

parametrized by η ∈ R, with the standard norm ‖x‖BC1
η

= ‖x‖η + ‖ẋ‖η. Notice that for any

pair η2 ≥ η1, there exist continuous inclusions Jη2η1 : BCη1(R,Cn) ↪→ BCη2(R,Cn) and J 1
η2η1 :

BC1
η1(R,C

n) ↪→ BC1
η2(R,C

n).

An essential step towards understanding the behaviour of (2.1) is the study of the homogeneous

linear equation

ẋ(ξ) = L(ξ)xξ. (2.4)

In particular, we are interested in the special class of solutions to (2.4) that can be written in the form

x(ξ) = eλξp(ξ) with p ∈ Cper
2π (R,Cn), i.e., p is a periodic continuous function with p(ξ + 2π) = p(ξ)

for all ξ ∈ R. The parameter λ ∈ C is called a Floquet exponent for (2.4) if and only if any such

solution exists. We need to impose the following restrictions on (2.4).

(HL) The map R → L(X,Cn) given by ξ 7→ L(ξ) is of class Cr, for some integer r ≥ 3.

(HF) There exist γ− < 0 and γ+ > 0 such that (2.4) has no Floquet exponents λ ∈ C with

Reλ ∈ {γ−, γ+}.

When studying delay equations, which in our context means rmax = 0, one can show that (HF) is

always satisfied [13]. However, the proof requires the existence of an evolution map defined on the

entire statespace X and hence fails to work when rmax > 0. At the moment, it is unclear if equations

(2.4) exist for which (HF) fails. However, in Section 3 we give some criteria which will help establish

(HF) in the case where all the shifts rj appearing in (2.2) are rationally related to the period 2π.

The following proposition, which will be proved throughout Sections 5 and 6, exhibits the finite

dimensional space X0 on which the center manifold will be defined.

Proposition 2.1. Consider any homogeneous linear equation (2.4) that satisfies the conditions (HL)

and (HF) and pick a constant γ with 0 < γ < |γ±|, in which γ± are as introduced in (HF). Then

there exists a finite dimensional linear subspace X0 ⊂ X, a Cr-smooth operator Π : R → L(X,X0)

and a matrix W ∈ L(X0), such that the following properties hold.

(i) Suppose x ∈
⋂
η>0BCη(R,Cn) is a solution of (2.4). Then for any ξ ∈ R we have Π(ξ)xξ ∈ X0.

(ii) For any φ ∈ X0, there is a unique solution x = Eφ ∈ BCγ(R,Cn) of (2.4) such that x0 = φ.

Moreover, we have that x ∈ BC1
η(R,Cn) for any η > 0.

(iii) For any φ ∈ X0 we have Π(ξ)(Eφ)ξ = eξWφ.
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We also need to impose the following assumptions on the periodic nonlinearity R, after which

we are ready to state our main results.

(HR1) The nonlinearity R is Ck-smooth as a function R×X → Cn, for some integer k ≥ 2.

(HR2) For all ξ ∈ R we have R(ξ, 0) = 0 and D2R(ξ, 0) = 0.

Theorem 2.2. Consider the nonlinear equation (2.1) and assume that (HL), (HF), (HR1) and

(HR2) are satisfied. Then there exists γ > 0 such that (2.4) has no Floquet exponents λ with 0 <

|Reλ| < γ. Fix an interval I = [ηmin, ηmax] ⊂ (0, γ) such that ηmax > min(r, k)ηmin, with r and k as

introduced in (HL) and (HR2). Then there exists a mapping u∗ : X0 × R →
⋂
η>0BC

1
η(R,Cn) and

constants ε > 0, ε∗ > 0 such that the following statements hold.

(i) For any η ∈ (min(r, k)ηmin, ηmax], the function u∗ viewed as a map from X0×R into BC1
η(R,Cn)

is Cmin(r,k)-smooth.

(ii) Suppose for some ζ > 0 that x ∈ BC1
ζ (R,Cn) is a solution of (2.1) with supξ∈R |x(ξ)| < ε∗.

Then we have x = u∗(Π(0)x0, 0). In addition, the function Φ : R → X0 defined by Φ(ξ) =

Π(ξ)xξ ∈ X0 is of class Cmin(r,k+1) and satisfies the ordinary differential equation

Φ̇(ξ) = WΦ(ξ) + f(ξ,Φ(ξ)). (2.5)

Here the function f : R ×X0 → X0 is Cmin(r−1,k)-smooth with f(ξ, 0) = 0 and Df(ξ, 0) = 0

for all ξ ∈ R. Furthermore, it is periodic in the first variable, with f(ξ + 2π, ψ) = f(ξ, ψ) for

all (ξ, ψ) ∈ R×X0 and given explicitly by

f(ξ, ψ) = [DΠ(ξ)][u∗(ψ, ξ)− Ee−ξWψ]ξ
+Π(ξ)χ1(ψ, ξ)

+Π(ξ)χ2(ψ, ξ).

(2.6)

Here the states χi(ψ, ξ) ∈ X, for i = 1, 2, are defined as

χ1(ψ, ξ)(σ) = L(ξ + σ)[u∗(ψ, ξ)− Ee−ξWψ]ξ+σ
χ2(ψ, ξ)(σ) = R(ξ + σ, (u∗(ψ, ξ))ξ+σ).

(2.7)

Finally, we have xξ =
(
u∗(Φ(ξ), ξ)

)
ξ

for any pair ξ, ξ ∈ R that satisfies ξ − ξ ∈ 2πZ.

(iii) For any φ ∈ X0 such that supξ∈R |u∗(φ, 0)(ξ)| < ε∗, the function u∗(φ, 0) satisfies (2.1).

(iv) For any continuous function Φ : R → X0 that satisfies (2.5) with ‖Φ(ξ)‖ < ε for all ξ ∈ R, we

have that x = u∗(Φ(0), 0) is a solution of (2.1). In addition, we have xξ =
(
u∗(Φ(ξ), ξ)

)
ξ

for

any pair ξ, ξ ∈ R that satisfies ξ − ξ ∈ 2πZ.

(v) Consider the interval I = (ξ−, ξ+), where ξ− = −∞ and ξ+ = ∞ are allowed. Let Φ : I → X0

be a continuous function that satisfies (2.5) for every ξ ∈ I and in addition has ‖Φ(ξ)‖ < ε for

all such ξ. Then for any ζ ∈ (ξ−, ξ+) we have that x = u∗(Φ(ζ), ζ) satisfies (2.1) for all ξ ∈ I.
In addition, we have xξ =

(
u∗(Φ(ξ), ξ)

)
ξ

for any pair (ξ, ξ) ∈ I ×R that satisfies ξ− ξ ∈ 2πZ.
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3 Preliminaries

In addition to the spaces BCη(R,Cn) that contain continuous functions, we introduce two extra

families of Banach spaces, parametrized by µ, ν ∈ R, that contain distributions that have controlled

exponential growth at ±∞,

BXµ,ν(R,Cn) =
{
x ∈ L1

loc(R,Cn) | ‖x‖BXµ,ν
:= supξ<0 e

−µξ |x(ξ)|+ supξ≥0 e
−νξ |x(ξ)| <∞

}
,

BX1
µ,ν(R,Cn) =

{
x ∈W 1,1

loc (R,Cn) ∩ C(R,Cn) | ‖x‖BX1
µ,ν

:= ‖x‖BXµ,ν
+ ‖ẋ‖BXµ,ν

<∞
}
.

(3.1)

In order to improve the readability of our arguments, we also introduce the notation evξx = xξ ∈ X
for any x ∈ C(R,Cn) and ξ ∈ R, together with the shift operators Tξ defined by Tξf(·) = f(·+ ξ),

for any f ∈ L1
loc(R,Cn).

Recall here the definitions of the Fourier transform F+(f)(k) = f̂(k) of a function f ∈ L2(R,Cn)
and the inverse Fourier transform F−(g)(ξ) = ǧ(ξ) for any g ∈ L2(R,Cn), given by

f̂(k) =
∫∞
−∞ e−ikξf(ξ)dξ, ǧ(ξ) = 1

2π

∫∞
−∞ eikξg(k)dk. (3.2)

We remark here that the integrals above are well-defined only if f, g ∈ L1(R,Cn). If this is not the

case, the integrals have to be understood as integrals in the Fourier sense, i.e., the functions

hn(k) =
∫ n

−n
e−ikξf(ξ)dξ (3.3)

satisfy hn(k) → f̂ in L2(R,Cn) and in addition there is a subsequence {n′} such that hn′(k) → f̂(k)

almost everywhere. We recall that the Fourier transform takes convolutions into products, i.e.,

(f̂ ∗ g)(k) = f̂(k)ĝ(k) for almost every k.

Now suppose f : R → Cn satisfies f(ξ) = O(e−aξ) as ξ → ∞. Then for any z with Re z > −a,
define the Laplace transform

f̃+(z) =
∫ ∞

0

e−zξf(ξ)dξ. (3.4)

Similarly, if f(ξ) = O(ebξ) as ξ → −∞, then for any z with Re z < b, define

f̃−(z) =
∫ ∞

0

ezξf(−ξ)dξ. (3.5)

The inverse transformation is described in the next result, which can be found in the standard

Laplace transform literature [34, 7.3-5].

Lemma 3.1. Let f : R → Cn satisfy a growth condition f(ξ) = O(e−aξ) as ξ → ∞ and suppose

that f is of bounded variation on bounded intervals. Then for any γ > −a and ξ > 0 we have the

inversion formula
f(ξ+) + f(ξ−)

2
= lim
ω→∞

1
2πi

∫ γ+iω

γ−iω
ezξ f̃+(z)dz, (3.6)

whereas for ξ = 0 we have

f(0+)
2

= lim
ω→∞

1
2πi

∫ γ+iω

γ−iω
ezξ f̃+(z)dz. (3.7)
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Consider the linear operator L(ξ) : X → Cn appearing in (2.1). One may split this operator into

an autonomous part and a periodic part, i.e., write L(ξ) = Laut + Lper(ξ) with

Lautφ =
∑N
j=0A

j
autφ(rj),

Lper(ξ)φ =
∑N
j=0B

j(ξ)φ(rj).
(3.8)

We recall the characteristic matrix ∆(z) = zI −
∑N
j=0A

j
aute

zrj associated to Laut and repeat some

useful properties of ∆ that were established in [18].

Lemma 3.2. Consider any closed vertical strip S = {z ∈ C | a− ≤ Re z ≤ a+} and for any ρ > 0

define Sρ = {z ∈ S | |Im z| > ρ}. Then there exist C, ρ > 0 such that det ∆(z) 6= 0 for all z ∈ Sρ and

in addition
∣∣∆(z)−1

∣∣ < C
|Im z| for each such z. In particular, there are only finitely many zeroes of

det ∆(z) in S.

Notice that the splitting (3.8) is obviously ambiguous, in the sense that Laut can be chosen freely.

We will use this freedom to ensure that the characteristic equation det ∆(z) = 0 has no roots in a

small strip around the imaginary axis, which will allow us to solve linear systems of the form

ẋ(ξ) = L(ξ)xξ + f(ξ), (3.9)

for suitable classes of inhomogeneities f . As a final matter of notation, for any function x we will

write Lx to represent the function ξ 7→ L(ξ)xξ.

We conclude this section by discussing the assumption (HF) concerning the Floquet exponents

for the system (2.4). We provide a number of results with which this criterion can be verified.

Lemma 3.3. Consider any system of the form (2.4) that has the property that all the shifts are

rationally related to the period, i.e., we have rj ∈ πQ for all 0 ≤ j ≤ N . Then either every λ ∈ C is

a Floquet exponent, or (HF) is satisfied.

Proof. Choose r∗ = 2π
M ∈ R such that for some numbersmj ∈ Z we have rj = mjr

∗ for all 0 ≤ j ≤ N .

Suppose that λ ∈ C is Floquet exponent and let p ∈ Cper
2π (R,Cn) be the corresponding nontrivial

periodic function, such that u̇ = Lu. Associated to p we introduce the CMn-valued function p, the

components of which are defined by pi(ξ) = p(ξ+ir∗) for 0 ≤ i ≤M−1. Since p is periodic, it is clear

that pi(r∗) = pi+1modM (0) for all 0 ≤ i ≤M − 1, which can be reformulated as p(r∗) = In⊗T p(0),

in which In is the n× n identity matrix and the M ×M -matrix T is defined by Ti,j = δj,i+1modM .

After an appropriate shift one may assume p(0) 6= 0. Furthermore, a quick calculation shows that

p satisfies the ODE

ṗ(ξ) = F(ξ, λ)p(ξ), (3.10)

in which F is given by

(F(ξ, λ)v)i = −λvi +
∑N
j=0 e

λrjAj(ξ + ir∗)vi+mjmodM . (3.11)
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Writing Ω(ξ, λ) for the fundamental matrix for the ODE (3.10), we have Ω(r∗, λ)p(0) = In ⊗T p(0)

and hence

det[Ω(r∗, λ)− In ⊗ T ] = 0. (3.12)

Since the coefficients of the ODE (3.10) depend analytically on λ ∈ C, it follows that for any fixed

ξ ∈ R the matrix Ω(ξ, ·) is an entire function in the second variable [10, Section 10.7]. This however

implies that either (3.12) is satisfied for all λ ∈ C, or the set of solutions is discrete. To complete

the proof, observe that λ ∈ Cn is a Floquet exponent if and only if λ + i is a Floquet exponent,

which means that the set of real parts of Floquet exponents is discrete whenever the set of Floquet

exponents is discrete.

In some special cases we can get extra information on the fundamental matrix Ω and show that

not all λ ∈ C can be Floquet exponents.

Corollary 3.4. Consider any scalar system of the form (2.4) that has the property that all shifts

are integer multiples of the period, i.e., we have rj ∈ 2πZ for all 0 ≤ j ≤ N . Then (HF) is satisfied.

Proof. In this case (3.10) is scalar and the fundamental matrix reduces to Ω(2π, λ) = exp[−2πλ +∑N
j=0 e

λrj
∫ 2π

0
Aj(σ)dσ], hence the set of roots of (3.12) is discrete.

Corollary 3.5. Consider any system of the form (2.4) that has the property that all shifts are

rationally related to the period, i.e., we have rj ∈ πQ for all 0 ≤ j ≤ N . Suppose that there exists

a vector v ∈ CnM that is an eigenvector for F∗(ξ, λ) for all ξ and all λ, with F and r∗ as given in

(3.11). Then (HF) is satisfied.

Proof. Observe that the complex conjugate of the eigenvalue µ = µ(ξ, λ) corresponding to the

eigenvector v of F∗(ξ, λ) is given by

µ∗ = −λ+ P (ξ)(exp(λr∗)) +Q(ξ)(exp(−λr∗)), (3.13)

in which P (ξ)(·) and Q(ξ)(·) are polynomials for every ξ ∈ R, with P (ξ+2π) = P (ξ) and Q(ξ+2π) =

Q(ξ). Introducing the scalar function q(ξ) = v∗p, we may now calculate

q̇(ξ) = v∗F(ξ, λ)p = µ∗v∗p = −λq(ξ) + P (ξ)(exp(λr∗)) +Q(ξ)(exp(−λr∗))q(ξ). (3.14)

This means that q(2π) = exp[−2πλ+
∫ 2π

0
P (σ)(exp(λr∗))dσ +

∫ 2π

0
Q(σ)(exp(−λr∗))dσ]q(0) = q(0),

which concludes the proof.

As an example to illustrate the result above, consider the equation

ẋ(ξ) = sin(ξ)x(ξ − π) + sin(ξ)x(ξ + π). (3.15)

If λ ∈ C is a Floquet exponent for (3.15) with corresponding scalar p ∈ Cper
2π (R,Cn), then the

R2-valued function p(ξ) = (p0(ξ), p1(ξ)) = (p(ξ), p(ξ + π)) satisfies the system

ṗ0(ξ) = −λp0(ξ) + sin(ξ)[e−πλ + eπλ]p1(ξ),

ṗ1(ξ) = −λp1(ξ)− sin(ξ)[e−πλ + eπλ]p0(ξ).
(3.16)
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Writing q(ξ) = p0(ξ) + ip1(ξ), we find that q solves the scalar ODE

q̇(ξ) = −λq(ξ)− i sin(ξ)[e−πλ + eπλ]q(ξ) (3.17)

and satisfies q(0) = q(2π). Using the variation-of-constants formula for q it is clear that (HF) must

be satisfied.

4 Linear inhomogeneous equations

We introduce the linear operator Λ : W 1,1
loc (R,Cn) ∩ C(R,Cn) → L1

loc(R,Cn), given by

(Λx)(ξ) = ẋ(ξ)− L(ξ)xξ. (4.1)

In this section we set out to solve equations of the form Λx = f and hence define an inverse for Λ.

Using Fourier transform techniques, we will first show that Λ is invertible when considered as an

operator from W 1,2(R,Cn) into L2(R,Cn). This result can then be extended to compute Λ−1f for

f ∈ L∞(R,Cn).
Due to the periodicity of L(ξ), the transform F+[Lx](η0) will only involve x̂(η1) when η1−η0 ∈ Z.

It will hence be fruitful to follow the approach employed by Mielke [26] and introduce the sequence

space

`2 =
{
w = (wk)k∈Z | wk ∈ Cn and ‖w‖22 :=

∑
k∈Z

|wk|2 <∞
}
. (4.2)

Recalling the splitting (3.8), we need to solve

ẋ(ξ) =
N∑
j=0

Ajautx(ξ + rj) +
N∑
j=0

Bj(ξ)x(ξ + rj) + f(ξ). (4.3)

Since Bj ∈ Cr(R,Cn×n) with Bj(ξ + 2π) = Bj(ξ), we may write

Bj(ξ) =
∑∞
k=−∞Bjke

ikξ, (4.4)

in which the coefficients satisfy the estimate∣∣∣Bjk∣∣∣ ≤ C/(1 + |k|)r. (4.5)

for some C > 0. For any 0 ≤ j ≤ N , define the convolution operator B̃j : `2 → `2 by

(B̃jw)n =
∑
k∈Z e

i(n−k)rjBjkwn−k, (4.6)

together with Bz : `2 → `2 given by Bz =
∑N
j=0 e

zrj B̃j . To see that B̃j is well-defined and bounded,

use the Cauchy-Schwartz inequality and the estimate (4.5) to compute∥∥∥B̃jw∥∥∥2

2
=

∑
n∈Z

∣∣∑
m∈Z e

i(n−m)rjBjmwn−m
∣∣2 ≤ ∑

n∈Z
[∑

m∈Z
∣∣Bjm∣∣ 1

2
∣∣Bjm∣∣ 1

2 |wn−m|
]2

≤
∑
n∈Z(

∑
m∈Z

∣∣Bjm∣∣)(∑m∈Z
∣∣Bjm∣∣ |wn−m|2) = (

∑
m∈Z

∣∣Bjm∣∣)2 ‖w‖22 . (4.7)
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Note that it is possible to choose Laut in such a way that det∆(z) = 0 has no roots in a strip

|Re z| < ε. For any such z, we can hence define a multiplication operator ∆z : `2 → `2 by

(∆zw)n = ∆(z + in)−1wn. (4.8)

We claim that ∆z is compact. To see this, consider any bounded sequence {wn}n∈N ⊂ `2, write

vn = ∆zw
n and use a diagonal argument to pass to a subsequence for which each component vnk

converges as n→∞. For any K > 0 we find

‖vn − vm‖22 ≤
∑
|k|<K

|vnk − vmk |
2 + (1 +K)−1

∑
|k|≥K

(1 + |k|) |vnk − vmk |
2
. (4.9)

Fixing any ε > 0 and noting that the estimate in Lemma 3.2 implies that the second sum can be

bounded independently of K, n and m, we can choose K > 0 sufficiently large to ensure that the

entire second term on the righthand side of (4.9) is bounded by ε/2. Similarly, for such a choice of

K we can choose a M > 0 such that the first term is bounded by ε/2 for any n ≥ M and m ≥ M ,

which shows that ∆z is indeed compact.

For any τ ∈ R, consider a function f : τ + iR → Cn such that η 7→ f(τ + iη) ∈ L2(R,Cn). For

any complex z with Re z = τ , define the sequence (Jzf)k = f(z + ik). Notice that for almost all

such z, we have Jzf ∈ `2. Finally, for any w ∈ `2, define evnw = wn ∈ Cn and (Tnw)k = wk+n.

With these preparations we are ready to provide the inverse Λ−1f for f ∈ L2(R,Cn).

Proposition 4.1. Suppose that (4.3) admits no Floquet exponents λ with Reλ = 0. Then Λ is an

isomorphism from W 1,2(R,Cn) onto L2(R,Cn), with inverse given by

Λ−1f =
1

2πi

∫ i∞

−i∞
ezξev0[I −∆zBz]−1∆zJz[f̃+(·) + f̃−(·)]dz. (4.10)

In addition, there exists a Greens function G : R × R → Cn×n such that for every ξ ∈ R, the

function G(ξ, ·) ∈ L2(R,Cn×n) satisfies (4.3) in the sense of distributions, with f(ξ′) = δ(ξ′ − ξ)I.

In addition, G(ξ, ·) is bounded, admits a jump G(ξ, ξ+)−G(ξ, ξ−) = I and is C1-smooth on R\{ξ}.

Proof. First consider any sequence w ∈ `2 such that w = ∆zBzw. Then the function u(ξ) =

ezξ
∑
n∈Z e

inξwn satisfies Λu = 0. In addition, since (nwn) ∈ `2, we have that the periodic function

p(ξ) = e−zξu(ξ) satisfies p ∈ W 1,2([0, 2π],Cn) ⊂ C([0, 2π],Cn). We hence conclude that z must be

a Floquet exponent. Due to the absence of Floquet exponents on the imaginary axis, the Fredholm

alternative now implies that 1 −∆zBz is invertible as a map from `2 onto `2 for all z ∈ iR. Since

both z 7→ ∆z and z 7→ Bz are continuous, the same holds for z 7→ [1−∆zBz]−1. Notice in addition

that one has Bz+i = T1BzT−1, together with a similar identity for ∆z. This implies that the norm∥∥[1−∆zBz]−1
∥∥ can be bounded independently of z for z ∈ iR.

Taking the Fourier transform of (4.3), we arrive at

∆(iη)x̂(η) = f̂(η) +
N∑
j=0

∞∑
k=−∞

ei(η−k)rjBjkx̂(η − k). (4.11)
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This identity can be inverted by introducing the sequence f̂θ ∈ `2 via f̂θn = f̂(θ + n) where this is

well-defined and choosing, for θ ∈ [0, 1) and n ∈ Z,

x̂(θ + n) = evn[1−∆iθBiθ]−1∆iθf̂
θ. (4.12)

It remains to show that x̂ thus constructed is in fact an L2 function. We calculate∫∞
−∞ |x̂(η)|

2
dη =

∫ 1

0

∑
n∈Z |x̂(θ + n)|2 dθ =

∫ 1

0

∥∥∥[1−∆iθBiθ]−1∆iθf̂
θ
∥∥∥2

2

≤ C
∫ 1

0

∥∥∥∆iθf̂
θ
∥∥∥2

2
= C

∫∞
−∞

∣∣∣∆(iη)−1f̂(η)
∣∣∣2 ≤ C ′

∥∥∥f̂∥∥∥
2
.

(4.13)

In addition, using (4.11) together with the estimate (4.5) it follows that η 7→ ηx̂(η) is an L2 function,

from which we conclude x ∈ W 1,2(R,Cn), as desired. To show that Λ is injective, consider any

x ∈ W 1,2(R,Cn) with Λx = 0. There exists a θ ∈ R such that x̂θ ∈ `2 with x̂θ 6= 0 and using (4.11)

it follows that iθ must be Floquet exponent, which yields a contradiction.

Without loss of generality, we will prove the statements concerning the Greens function G only

for ξ = 0. To this end, note that the construction above remains valid if we take f̂ = 1 and

G(0, ·) = Λ−1δ(·). The only modification that is required is the last inequality in (4.13), which can

be replaced by ∫ ∞
−∞

∣∣∣Ĝ(η)
∣∣∣2 dη ≤ C

∫ ∞
−∞

|∆(iη)|2 dη ≤ C ‖∆(i·)‖L2 ≤ C ′. (4.14)

In view of this, we merely have G(0, ·) ∈ L2(R,Cn×n), but using the differential equation we find

G(0, ·) ∈ W 1,2((0,∞),Cn×n) ∪W 1,2((−∞, 0),Cn×n) and hence G(0, ·) is C1-smooth on R \ {0}, as

required. The remaining properties also follow from the distributional differential equation that G

satisfies.

Since we are specially interested in situations where (4.3) does admit Floquet exponents λ with

Reλ = 0, we will need a tool to shift such exponents off the imaginary axis. To this end, we introduce

the notation eνf = eν·f(·) for any ν ∈ R and any f ∈ L1
loc(R,Cn). In addition, for η ∈ R we define

the shifted linear operator Λη : W 1,1
loc (R,Cn) ∩ C(R,Cn) → L1

loc(R,Cn), by

(Ληx)(ξ) = ẋ(ξ)− ηx(ξ)−
N∑
j=0

[Ajaut +Bj(ξ)]e−ηrjx(ξ + rj). (4.15)

One may check that eηΛe−ηx = Ληx and hence for any Floquet exponent λ associated to Λη, one

has that λ+ η is a Floquet exponent associated to Λ.

In view of these observations, we introduce, for any η ∈ R and p ∈ {2,∞}, the Banach spaces

Lpη(R,Cn) =
{
x ∈ L1

loc(R,Cn) | e−ηx ∈ Lp(R,Cn)
}
,

W 1,p
η (R,Cn) =

{
x ∈ L1

loc(R,Cn) | e−ηx ∈W 1,p(R,Cn)
}
,

(4.16)

with norms given by ‖x‖Lp
η

= ‖e−ηx‖Lp and similarly ‖x‖W 1,p
η

= ‖e−ηx‖W 1,p . The following result

now follows immediately from Proposition 4.1.
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Corollary 4.2. Suppose that (4.3) admits no Floquet exponents λ with Reλ = η. Then Λ is an

isomorphism from W 1,2
η (R,Cn) onto L2

η(R,Cn), with inverse given by

Λ−1f =
1

2πi

∫ η+i∞

η−i∞
ezξev0[I −∆zBz]−1∆zJz[f̃+(·) + f̃−(·)]dz. (4.17)

In addition, there exists a Greens function G : R×R → Cn×n such that for every ξ ∈ R, the function

G(ξ, ·) ∈ L2
η(R,Cn×n) satisfies (4.3) in the sense of distributions, with f(ξ′) = δ(ξ′−ξ)I. In addition,

e−ηG(ξ, ·) is bounded, while G(ξ, ·) admits a jump G(ξ, ξ+) − G(ξ, ξ−) = I and is C1-smooth on

R \ {ξ}.

In order to avoid confusion, we will write Λ−1
(η) for the inverse of Λ when considered as a map from

W 1,2
η (R,Cn) onto L2

η(R,Cn) and similarly G(η) for the corresponding Greens function. In the next

section we will use these inverses to construct Λ−1f for f ∈ L∞(R,Cn), by writing f as a sum of two

functions in L2
±η(R,Cn) for appropriate η ∈ R. The next result paves the road for this approach, by

showing that Λ−1f respects the growth rate of f . As a preparation, we emphasize that on the space

W 1,2
η (R,Cn) one can also define a norm ‖x‖2fW 1,2

η
:= ‖e−ηx‖22 + ‖e−ηẋ‖22, which is equivalent to the

norm ‖x‖W 1,2
η

defined above.

Proposition 4.3. Consider any η ∈ R and ε > 0 such that (4.3) admits no Floquet exponents λ

with Reλ ∈ {η−ε, η+ε} and assume that Λ−1
(η+ε)g = Λ−1

(η−ε)g for all g ∈ L2
η+ε(R,Cn)∩L2

η−ε(R,Cn).
Then for any f ∈ L∞η (R,Cn) ∩ L2

η+ε(R,Cn), we have Λ−1
(η+ε)f ∈W

1,∞
η (R,Cn), with a similar result

for f ∈ L∞η (R,Cn) ∩ L2
η−ε(R,Cn).

Proof. Our arguments here are an adaptation of those presented by Mielke in [26] for elliptic PDEs.

Without loss of generality, we will assume that η = 0 and that time has been rescaled to ensure

that L(ξ) has period one. Now consider any f ∈ L∞(R,Cn) ∩ L2
ε(R,Cn) and define x = Λ−1f ∈

W 1,2
ε (R,Cn).
For any n ∈ Z, let χn denote the indicator function for the interval [n, n+ 1]. Writing fn = χnf ,

we see that fn ∈ L2
ε(R,Cn) ∩ L2

−ε(R,Cn), with
∑
n∈Z fn → f in L2

ε(R,Cn). We can hence define

xn = Λ−1fn and observe that xn ∈ W 1,2
ε (R,Cn) ∩ W 1,2

−ε (R,Cn), again with
∑
n∈Z xn → x in

W 1,2
ε (R,Cn). The periodicity of the system (4.3) and the rescaling of time ensure that Tn and Λ−1

commute, i.e., TnΛ−1
(±ε) = Λ−1

(±ε)Tn. We can exploit this fact to compute

‖xn‖W 1,2([m,m+1]) = [
∫m+1

m
x2
n(ξ) + ẋ2

n(ξ)dξ]
1/2 = [

∫m−n+1

m−n x2
n(ξ + n) + ẋ2

n(ξ + n)dξ]1/2

≤ [
∫m−n+1

m−n (xn(ξ + n)eεξ)2 + (eεξẋn(ξ + n))2dξ]1/2e−ε(m−n)

≤ e−ε(m−n) ‖Tnxn‖fW 1,2
−ε

≤ Cεe
−ε(m−n) ‖Tnxn‖W 1,2

−ε

≤ Cε

∥∥∥Λ−1
(−ε)

∥∥∥ e−ε(m−n) ‖Tnfn‖L2
−ε
≤ Cε

∥∥∥Λ−1
(−ε)

∥∥∥ e−ε(m−n)eε ‖Tnfn‖L2

≤ Cε

∥∥∥Λ−1
(−ε)

∥∥∥ e−ε(m−n)eε ‖χnf‖∞
≤ Cε

∥∥∥Λ−1
(−ε)

∥∥∥ e−ε(m−n)eε ‖f‖∞ .

(4.18)
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In a similar fashion, we obtain

‖xn‖W 1,2([m,m+1]) ≤ [
∫m−n+1

m−n (xn(ξ + n)e−εξ)2 + (e−εξẋn(ξ + n))2dξ]1/2e+ε(m−n+1)

≤ eε(m−n+1) ‖Tnxn‖fW 1,2
ε

≤ Cε

∥∥∥Λ−1
(ε)

∥∥∥ eε(m−n)eε ‖f‖∞ .

(4.19)

Using a Sobolev embedding it now follows that there exists a constant C > 0, independent of n and

m, such that ‖χmxn‖∞ ≤ Ce±ε(m−n) ‖f‖∞. Summing this identity over n ∈ Z, we obtain

‖χmx‖∞ ≤ C ‖f‖∞
[∑

n≥m e
ε(m−n) +

∑
n<m e

ε(n−m)
]

≤ 2C
1−e−ε ‖f‖∞ .

(4.20)

This bound does not depend on m, hence x ∈ L∞(R,Cn), as desired. The differential equation now

implies that in fact x ∈W 1,∞(R,Cn).

5 The state space

The main goal of this section is to analyze solutions to the homogeneous equation Λx = 0 and to

provide a pseudo-inverse for Λ that projects out these solutions in some sense. We start by using the

Laplace transform to characterize any solution x that satisfies Λx = f , even though x may no longer

be unique. As a preparation, we introduce the cutoff operators Φ± : L1
loc(R,Cn) → L1

loc(R,Cn),
defined via [Φ+f ](ξ) = 0 for all ξ < 0, [Φ−f ](ξ) = 0 for all ξ ≥ 0 and Φ+f + Φ−f = f .

Proposition 5.1. Consider a linear equation of the form (4.3) that satisfies the assumption (HL)

and admits no Floquet exponents λ on the lines Reλ = γ±, for some constants γ±. Fix a pair

γ− < µ < ν < γ+, consider any function x ∈ BX1
µ,ν(R,Cn) and write Λx = f . Then the following

identity holds,

x = Λ−1
(γ+)Φ+f + Λ−1

(γ−)Φ−f + Pγ−,γ+x0, (5.1)

in which Pγ−,γ+ : X → BX1
γ−,γ+(R,Cn) is given by

(Pγ−,γ+φ)(ξ) = 1
2πi

∫ γ−+i∞
γ+−i∞ ezξev0(I −∆zBz)−1∆zJzhφ(·)dz

+ 1
2πi

∫ γ−−i∞
γ−+i∞ ezξev0(I −∆zBz)−1∆zJzhφ(·)dz,

(5.2)

with

hφ(z′) = φ(0) +
N∑
j=0

ez
′rj

∫ 0

rj

e−σz
′(
Ajaut +Bj(σ − rj)

)
φ(σ)dσ. (5.3)

In addition, we have the representation

(Pγ−,γ+φ)(ξ) = [Λ−1
(γ+)gφ − Λ−1

(γ−)gφ](ξ) + [G(γ+)(0, ξ)−G(γ−)(0, ξ)]φ(0), (5.4)

in which gφ ∈ L2(R,Cn) has compact support, is continuous on [−rmax,−rmin] and is given by

gφ(ξ) =
∑
rj>0

(
Ajaut +Bj(ξ)

)
φ(ξ + rj)χ[−rj ,0](ξ)

+
∑
rj<0

(
Ajaut +Bj(ξ)

)
φ(ξ + rj)χ[0,−rj ](ξ).

(5.5)
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Proof. First note that Φ±f ∈ L2
γ±(R,Cn)∩L∞γ±(R,Cn). Hence defining x± = Λ−1

(γ±)Φ±f ∈W
1,2
γ± (R,Cn) ⊂

L∞γ±(R,Cn), the differential equation implies x+ + x− ∈ BX1
γ−,γ+(R,Cn). However, this means that

also Px0 = x− x+ − x− ∈ BX1
γ−,γ+(R,Cn), hence P is well-defined. Taking the Laplace transform

of Λx = f yields

zx̃+(z) = x(0) +
∑N
j=0A

j
aut

∫∞
0
e−zux(u+ rj)du

+
∑N
j=0

∫∞
0
e−zuBj(u)x(u+ rj)du+ f̃+(z)

= x(0) +
∑N
j=0A

j
aute

zrj
(
x̃+(z) +

∫ 0

rj
e−zσx(σ)dσ

)
+ f̃+(z)

+
∑N
j=0 e

zrj
( ∫∞

0
e−zuBj(u− rj)x(u)du+

∫ 0

rj
e−zσBj(σ − rj)x(σ)dσ

)
= x(0) +

∑N
j=0A

j
aute

zrj
(
x̃+(z) +

∫ 0

rj
e−zσx(σ)dσ

)
+ f̃+(z)

+
∑N
j=0 e

zrj
[∑

k∈Z e
−ikrjBjkx̃+(z − ik) +

∫ 0

rj
e−zσBj(σ − rj)x(σ)dσ

]
(5.6)

and thus after rearrangement we have

∆(z)x̃+(z) = x(0) +
∑
k∈Z

∑N
j=0 e

(z−ik)rjBjkx̃+(z − ik) + f̃+(z)

+
∑N
j=0 e

zrj
∫ 0

rj
e−zσ

(
Ajaut +Bj(σ − rj)

)
x(σ)dσ.

(5.7)

Upon defining y(ξ) = x(−ξ) a similar identity may be obtained for ỹ+(z). Similarly as in [18], an

application of the inversion formula (3.7) now yields the desired result (5.2), upon observing that∫ γ++i∞

γ+−i∞
eξz

∫ 0

ξ

e−zσx(σ)dσdz +
∫ γ−−i∞

γ−+i∞
eξz

∫ 0

ξ

e−zσx(σ)dσdz = 0. (5.8)

We now establish the representation (5.4), by writing g = gx0 and computing g̃+ and g̃−. This

yields
g̃+(z) =

∫∞
0
e−zξg(ξ)dξ =

∑
rj<0

∫ −rj

0
e−zξ

(
Ajaut +Bj(ξ)

)
x(ξ + rj)dξ

=
∑
rj<0 e

zrj
∫ 0

rj
e−zξ

′(
Ajaut +Bj(ξ′ − rj)

)
x(ξ′)dξ′,

g̃−(z) =
∫∞
0
ezξg(−ξ)dξ =

∑
rj>0

∫ rj

0
ezξ

(
Ajaut +Bj(−ξ)

)
x(−ξ + rj)dξ

=
∑
rj>0 e

zrj
∫ 0

rj
e−zξ

′′(
Ajaut +Bj(ξ′′ − rj)

)
x(ξ′′)dξ′′,

(5.9)

in which we used the substitutions ξ′ = ξ + rj and ξ′′ = −ξ + rj . The result follows using Corollary

4.2, together with the observation that the bounded function gx0 has compact support, which means

gx0 ∈ L2
γ±(R,Cn).

We now study the set of solutions to the homogeneous equation (2.4) that have controlled expo-

nential growth. We will therefore consider the spaces

Nµ,ν =
{
x ∈ BX1

µ,ν(R,Cn) | Λx = 0
}
,

Xµ,ν = {φ ∈ X | φ = x0 for some x ∈ Nµ,ν} .
(5.10)

From the representation (5.1) it follows immediately that for every φ ∈ Xµ,ν there is a unique

x ∈ Nµ,ν with x0 = φ, which we will denote as x = Eφ. Using a standard shifting argument, it is clear

that for all x ∈ Nµ,ν and any k ∈ Z, we also have T2kπx ∈ Nµ,ν . We can hence define the monodromy

operators M±2π : Xµ,ν → Xµ,ν by φ 7→ ev±2πEφ, which satisfy M2πM−2π = M−2πM2π = I.
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Lemma 5.2. Consider a homogeneous linear equation (2.4) that satisfies (HL). Suppose further

that for two constants γ− < γ+, this equation (2.4) admits no Floquet exponents λ on the lines

Reλ = γ±. Then for any pair γ− < µ < ν < γ+, we have that M2π is a compact operator on Xµ,ν

and Nµ,ν is finite dimensional.

Proof. The representation (5.4) implies that for some C > 0 we have a bound ‖M2πφ‖ ≤ C ‖φ‖
for all φ ∈ Xµ,ν , which using the differential equation implies that also ‖DM2πφ‖ ≤ C ′ ‖φ‖. An

application of the Ascoli-Arzela theorem shows that M2π is compact. However, since M2π has a

bounded inverse, the unit ball in Xµ,ν is compact and hence this space is finite dimensional.

Since M2π is invertible, we can define a matrix W such that e2πW = M2π. Consider any ψ ∈ Xµ,ν ,

then the continuous function Pψ : R → Cn given by Pψ = Ee−ξWψ is periodic, since

Pψ(ξ + 2π) = [Ee−(ξ+2π)Wψ](ξ + 2π) = [Eev2πEM−2πe
−ξWψ](ξ)

= [EM2πM−2πe
−ξWψ](ξ) = Pψ(ξ).

(5.11)

Consider a Jordan chain φ0, . . . , φ` of length `+ 1 for W at some eigenvalue λ, i.e., Wφ0 = λφ0 and

Wφi = λφi + φi−1 for 1 ≤ i ≤ `. Recall that eWξφi =
∑i
j=0

1
j!ξ

jeλξφi−j . Writing xi = Eφi, we now

obtain that

eλξPφi(ξ) =
i∑

j=0

1
j!

(−ξ)jxi−j(ξ). (5.12)

This can be inverted, yielding x0 = eλξPφ0 , which implies that λ is a Floquet multiplier. Similarly,

we have

xi(ξ) = eλξPφi(ξ)−
i∑

j=1

1
j!

(−ξ)jxi−j(ξ). (5.13)

We hence conclude that Nµ,ν is spanned by functions of the form eλξξjp(ξ), with p ∈ Cper
2π (R,Cn)

and λ a Floquet exponent with µ ≤ Reλ ≤ ν. This important observation gives a criterion for the

existence of an inverse for Λ : W 1,∞
η (R,Cn) → L∞η (R,Cn), merely in terms of Floquet exponents.

Proposition 5.3. Consider an equation of the form (4.3) that satisfies (HL). Consider any η ∈ R
and ε0 > 0 such that (4.3) has no Floquet exponents λ in the strip η− ε0 < Reλ < η+ ε0. Then the

operator Λ is an isomorphism from W 1,∞
η (R,Cn) onto L∞η (R,Cn). For any 0 < ε < ε0, the inverse

is given by

Λ−1f = Λ−1
(η+ε)Φ+f + Λ−1

(η−ε)Φ−f. (5.14)

Proof. Notice first that the assumptions of Proposition 4.3 are satisfied. Indeed, for any function

g ∈ L2
η+ε(R,Cn) ∩ L2

η−ε(R,Cn), write x = Λ−1
(η+ε)g − Λ−1

(η−ε)g, then x ∈ BX1
η−ε,η+ε(R,Cn) with

Λx = 0, i.e., x ∈ Nη−ε,η+ε. However, the condition on the Floquet exponents implies thatNη−ε,η+ε =

{0}, hence x = 0 as desired. Proposition 4.3 now shows that Λ−1 defined above indeed maps into

W 1,∞
η (R,Cn). The injectivity of Λ again follows from the condition on the Floquet multipliers.
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The finite dimensionality of Xµ,ν can be exploited to define a projection from X onto this

subspace, using the operator P appearing in (5.1).

Lemma 5.4. Consider any set of constants γ̃− < γ− < γ+ < γ̃+ such that the equation (4.3) has no

Floquet exponents λ with Reλ ∈ {γ±, γ̃±}. Suppose further that (HL) is satisfied. Then the operator

P = Pγ−,γ+ : X → X defined by Pφ = ev0Pγ−,γ+φ is a projection, with R(Pγ−,γ+) = Xγ−,γ+ .

Proof. Notice first that the set of real parts of Floquet exponents between γ̃− and γ̃+ is dis-

crete, hence there exist γ− < µ < ν < γ+ such that Xγ−,γ+ = Xµ,ν . Now (5.4) implies that

R(Pγ−,γ+) ⊂ Nγ−,γ+ = Nµ,ν , hence R(Pγ−,γ+) ⊂ Xµ,ν . In addition, for any φ ∈ Xµ,ν write

x = Eφ ∈ BX1
µ,ν(R,Cn) and notice that (5.1) implies x = Pγ−,γ+φ, yielding

φ = x0 = ev0Pγ−,γ+φ = Pγ−,γ+φ. (5.15)

This shows that indeed R(Pγ−,γ+) = Xµ,ν = Xγ−,γ+ and hence also P 2 = P .

From now on fix γ > 0 such that there are no Floquet exponents with 0 < |Reλ| < γ. For

any 0 < µ < γ, define X0 = X−µ,µ, N0 = N−µ,µ and Q0 = P−µ,µ. Note that these definitions are

independent of the particular choice of µ. In addition, for any 0 < η < γ, define the pseudo-inverse

K = Kη : BCη(R,Cn) → BC1
η(R,Cn) by

Kηf = Λ−1
(η)Φ+f + Λ−1

(−η)Φ−f. (5.16)

Notice that if 0 < η0 < η1 < γ, then (Kη1)|BCη0 (R,Cn) = Kη0 . This can be verified by means of

the same reasoning used to established Proposition 5.3. In combination with (5.1), this allows us to

compute

Kη0f = Kη1ΛKη0f + P−η1,η1ev0Kη0f = Kη1f + P−η1,η1ev0Kη0f = Kη0f + P−η1,η1ev0Kη0f (5.17)

and hence

Q0ev0Kη0f = 0. (5.18)

6 Time dependence

For any τ ∈ R, consider the shifted mixed type functional differential equation

ẋξ = Lτ (ξ)x(ξ) + f(ξ) = L(ξ + τ)xξ + f(ξ) (6.1)

and write Xτ
0 , N τ

0 , Λτ , Qτ0 and Kτ for the spaces and operators associated to (6.1) that are the

counterparts of those defined for the original unshifted equation (4.3).

Lemma 6.1. Consider the homogeneous equation (2.4), suppose that (HL) is satisfied and fix two

constants τ0, τ1 ∈ R. Then for any φ ∈ Xτ0
0 , we have that Tτ1−τ0Eφ ∈ N

τ1
0 , i.e.,

Qτ10 evτ1−τ0Eφ = evτ1−τ0Eφ. (6.2)
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In addition, for any function f ∈ BCη(R,Cn), the following identity holds,

Kτ0+τ1η Tτ1f = Tτ1Kτ0η f − EQτ0+τ10 evτ1Kτ0η f. (6.3)

Proof. First, consider any φ ∈ Xτ0
0 and write u = Eφ, then u̇(ξ) = L(ξ+τ0)uξ. Defining ψ = uτ1−τ0 ,

notice that the function v = Eψ has v(ξ) = u(ξ + τ1 − τ0) and satisfies v̇(ξ) = L(ξ + τ1)vξ, showing

that ψ ∈ Xτ1
0 as required. Now consider the function y defined by

y = Tτ1Kτ0η f −Kτ0+τ1η Tτ1f. (6.4)

It is easy to compute

ẏ(ξ) = L(ξ + τ0 + τ1)yξ + f(ξ + τ1)− f(ξ + τ1) = L(ξ + τ0 + τ1)yξ (6.5)

and hence y ∈ N τ0+τ1
0 . The final statement now follows from y = Ey0, together with the computation

y0 = Qτ0+τ10 y0 = Qτ0+τ10 evτ1Kτ0η f −Qτ0+τ10 ev0Kτ0+τ1η Tτ1f

= Qτ0+τ10 evτ1Kτ0η f,
(6.6)

where (5.18) was used in the last identity.

An elementary observation that follows from this result and the uniqueness of continuations, is

that if y ∈ N τ
0 for any τ ∈ R, then

evξEevξ′y = evξ+ξ′y. (6.7)

We will need the ability to relate the different subspaces Xτ
0 to one another in a natural fashion.

To this end, we recall the matrix W ∈ L(X0) that is related to the monodromy operator M2π

by M2π = e2πW . For all τ ∈ R, we define the bounded linear operators Πτ
→ : X0 → Xτ

0 and

Πτ
← : Xτ

0 → X0, via
Πτ
→φ = evτEe−τWφ,

Πτ
←ψ = eτW ev−τEψ.

(6.8)

In addition, we define a mapping Π : R → L(X,X0) by

Π(τ) = Πτ
←Q

τ
0 . (6.9)

Using the definition of W and the identity (6.7), it is clear that all three operators defined above

are periodic, i.e., Πτ+2π
← = Πτ

← and similarly for Π→ and Π. Notice also that Πτ
→Πτ

← = I and

Πτ
←Πτ

→ = Π(τ)Πτ
→ = I.

In the remainder of this section we will show that the operator Π inherits the Cr-smoothness of

the linear operator L. In [26] this was obtained directly, using an equivalence between the Floquet

spectrum and the spectrum of an operator Λ′per, that in our setting should be seen as the restriction

of Λ to the space W 1,1
loc (R,Cn) ∩ C2π

per(R,Cn). In particular, any eigensolution Λ′peru = −λu would

lead to a Floquet exponent λ via x(ξ) = eλξu(ξ). However, this last observation is only valid in

the absence of delayed and advanced arguments in (2.2). This fact forces us to pursue an alternate

approach.
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Lemma 6.2. Consider a linear equation of the form (4.3) that satisfies the assumption (HL) and

suppose that this equation admits no Floquet exponents on the imaginary axis. Then the function

Λ−1 : R → L(L2(R,Cn),W 1,2(R,Cn)) given by τ 7→ (Λτ )−1 is C1-smooth, with derivative given by

DΛ−1(τ) = Λ−1(τ)[DLτ ]Λ−1(τ). (6.10)

In addition, for any ξ ∈ R, the function G : R → L2(R,Cn×n) given by τ 7→ Gτ (ξ, ·) is C1-smooth,

with derivative given by

DG(τ) = Λ−1(τ)[DLτ ]G(τ). (6.11)

Proof. Consider for 0 ≤ j ≤ N the operators B̃j,τ ∈ L(`2, `2), given by

(Bj,τw)n =
∑
k∈Z

ei(n−k)rjeikτBjkwn−k. (6.12)

We claim that τ 7→ B̃j,τ is differentiable at τ = 0 and that the derivative is generated by the operator

DBj ∈ L(X,Cn). Indeed, a similar estimate as in (4.7) yields∥∥∥[B̃j,τ − B̃j − τD̃B
j
]w

∥∥∥2

2
=

∑
n∈Z

∣∣∑
m∈Z e

i(n−m)rj [eiτm − imτ − 1]Bjmwn−m
∣∣2

≤ (
∑
m∈Z

∣∣[eiτm − imτ − 1]Bjm
∣∣)2 ‖w‖22 . (6.13)

Now fix ε > 0 and choose ε′ = ε[2
∑
m∈Z

∣∣mBjm∣∣]−1 > 0. Since the exponential function is differen-

tiable, there exists a δ′ > 0 such that

|ez − z − 1| < ε′ |z| (6.14)

for all |z| < δ′. Now let M > 0 be so large that ( 2
δ′ + 1)

∑
|m|>M

∣∣mBjm∣∣ < ε
2 . Finally, fix δ = δ′

M .

For any 0 < |τ | < δ, write ∆ =
∑
m∈Z

∣∣[eiτm − imτ − 1]Bjm
∣∣ and compute

∆ =
∑
|m|≤ δ′

|τ|

∣∣[eiτm − imτ − 1]Bjm
∣∣ +

∑
|m|> δ′

|τ|

∣∣[eiτm − imτ − 1]Bjm
∣∣

≤
∑
|m|≤ δ′

|τ|
ε′ |τ |

∣∣mBjm∣∣ +
∑
|m|> δ′

|τ|
(2 + |m| |τ |)

∣∣Bjm∣∣
≤ |τ | ε′

∑
m∈Z

∣∣mBjm∣∣ +
∑
|m|> δ′

|τ|
( 2
δ′ + 1) |m| |τ |

∣∣Bjm∣∣
≤ ε

2 |τ |+ |τ |
∑
|m|>M ( 2

δ′ + 1)
∣∣mBjm∣∣ < ε |τ | .

(6.15)

This proves the differentiability of τ 7→ B̃j,τ at τ = 0 and analogously for all τ ∈ R. Since ∆z does

not depend on τ , this shows that τ 7→ I −∆zB
τ
z ∈ L(`2) and hence the inverse are differentiable in

the variable τ , uniformly for z ∈ iR. We find

D
[
τ 7→ (I −∆zB

τ
z )−1

]
= τ 7→ [I −∆zB

τ
z ]−1∆z[DB]τz [I −∆zB

τ
z ]−1. (6.16)

An estimate analogous to (4.13) now completes the proof.

The explicit forms (6.10) and (6.11) allow repeated differentiation of Λ−1 and G, up to the point

that the differentiability of L is lost. This observation leads to the following result.
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Corollary 6.3. Consider a linear equation of the form (4.3) that satisfies the assumption (HL) and

suppose that this equation admits no Floquet exponents on the imaginary axis. Then the functions

Λ−1 : R → L(L2(R,Cn),W 1,2(R,Cn)) and G : R → L2(R,Cn×n) are Cr-smooth and for any

1 ≤ ` ≤ r we have

D`Λ−1(τ) =
∑

(f1,...,fq) c(f1,...,fq)Λ−1(τ)[Df1Lτ ]Λ−1(τ) . . .Λ−1(τ)[DfqLτ ]Λ−1(τ),

D`G(τ) =
∑

(f1,...,fq) c(f1,...,fq)Λ−1(τ)[Df1Lτ ]Λ−1(τ) . . .Λ−1(τ)[DfqLτ ]G(τ),
(6.17)

in which the sum is taken over tuples (f1, . . . , fq) with fi ≥ 1 and f1 + . . .+ fq = `.

We will use the representation (5.4) in order to establish the smoothness of Π. We hence need to

extend the results above to show the differentiability of Λ−1 acting as an operator into the space of

Cr+1-smooth functions. To do this, let K ′ ⊂ R be a compact interval and consider the set C0(K ′,Cn)
of continuous functions f with support contained in K ′, i.e., supp(f) ⊂ K ′. Fixing any bounded

open interval Ω ⊂ R, we now define operators Γ = Γ(η) : R → L(C0(K ′,Cn), Cr+1(Ω,Cn)) and

H = H(η) : R → Cr+1(Ω,Cn×n) via

Γ(τ)f = Λ−1
(η)(τ)f − Λ−1

(−η)(τ)f,

H(τ) = G(η)(τ)−G(−η)(τ).
(6.18)

Notice that indeed Γ(τ)f ∈ Cr+1(Ω,Cn), since ΛτΓ(τ)f = 0. Throughout the remainder of this

paper, we will use the symbol Dξ to exclusively represent differentiation with respect to a time-like

real-valued variable. The details should be clear from the context. We will also write Dτ for the

derivative with respect to the variable τ .

For any suitable integer s, a quick calculation shows that Ds
ξD

`
τΛ−1(τ) can be written as a sum

of elements of the form

D(e1,...ep)Λ(f1,...fq), (6.19)

for integers 0 ≤ p ≤ s, ei ≥ 0 and fi ≥ 1 that satisfy f1+. . .+fq ≤ ` and p+e1+. . .+ep+f1+. . .+fq =

s+ `, in which

D(e1,...ep) = [De1Lτ ] . . . [DepLτ ],

Λ(f1,...fq) = Λ−1(τ)[Df1Lτ ]Λ−1(τ) . . .Λ−1(τ)[DfqLτ ]Λ−1(τ),
(6.20)

together with elements of the form

[De1Lτ ] . . . [DepLτ ]Df
ξ , (6.21)

with ei ≥ 0, f ≥ 0 and p + e1 + . . . + ep + f + 1 = s + `. Now for any tuples (e1, . . . , ep) and

(f1, . . . , fq), define the sets

(e1, . . . , ep)⊕ 1 = {(e1 + 1, e2, . . . , ep), (e1, e2 + 1, . . . , ep), . . . , (e1, . . . , ep + 1)} ,
(f1, . . . , fq)� 1 = (f1, . . . , fq)⊕ 1 ∪ {(1, f1, . . . , fq), (f1, 1, . . . , fq), . . . , (f1, . . . , fq, 1)} .

(6.22)
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If q ≥ 1, an easy calculation shows that

DξD(e1,...,ep)Λ(f1,...,fq) = D(e1,...,ep)⊕1Λ(f1,...,fq) +D(e1,...,ep,0)Λ(f1,...,fq)

+D(e1,...,ep,f1)Λ(f2,...,fq)

DτDξD(e1,...,ep)Λ(f1,...,fq) = D(e1,...,ep)⊕1⊕1Λ(f1,...,fq) +D(e1,...,ep)⊕1Λ(f1,...,fq)�1

+D(e1,...,ep,0)⊕1Λ(f1,...,fq) +D(e1,...,ep,0)Λ(f1,...,fq)�1

+D(e1,...,ep,f1)⊕1Λ(f2,...,fq) +D(e1,...,ep,f1)Λ(f2,...,fq)�1,

(6.23)

upon understanding that Λ∅ = Λ−1(τ) and noting that for any set E , one should readDE =
∑
e∈E De.

If q = 0, then the same identity holds if one writes f1 = 0, Λ(f2,...,fq) = id and Λ(f2,...,fq)�1 = 0. The

important observation, which can be verified by a simple calculation, is that Dτ and Dξ commute

on elements of the form (6.19), i.e.,

DτDξD(e1,...,ep)Λ(f1,...,fq) = DξDτD(e1,...,ep)Λ(f1,...,fq). (6.24)

Lemma 6.4. Consider a linear equation of the form (4.3) that satisfies the assumption (HL) and

suppose that for some γ > 0 this equation admits no Floquet exponents λ with 0 < |Reλ| < γ.

Consider an integer 0 ≤ ` ≤ r and a parameter η ∈ (0, γ). Then the maps Γ` = Γ(η),` : R →
L(C0(K,Cn), Cr+1−`(Ω,Cn)) and H` = H(η),` : R → Cr+1−`(Ω,Cn×n) are C`-smooth.

Proof. We will only treat the map Γ`, since the differentiability of H` follows in a similar fashion.

For any τ ∈ R, consider the map Φ`(τ) : C0(K,Cn) → Cr+1−`(Ω,Cn) given by

Φ`(τ)f = [D`
τΛ
−1
(+η)](τ)f − [D`

τΛ
−1
(−η)](τ)f. (6.25)

In order to see that indeed Φ`(τ)f ∈ Cr+1−`(Ω,Cn), notice first that due to the special form of

Φ`(τ) we can ignore all the terms of the form (6.21) in the expansion of [Dr+1−`
ξ D`

τΛ
−1
(±η)](τ). We

hence need only consider the terms of the form (6.19) with s = r + 1− `. However, since ei ≤ r for

all 1 ≤ i ≤ p, these terms will yield a continuous function when applied to f , as desired.

For convenience, we will treat each of the r + 1 − ` components of Γ`f separately in order to

show that Φ` is indeed the `-th derivative of Γ`. To this end, define for all 0 ≤ s ≤ r + 1 − `, the

map Γ(s)(τ) : C0(K,Cn) → C(Ω,Cn), given by Γ(s)(τ)f = Ds
ξΓ`(τ)f . Observe first that due to

the Sobolev embeddings W 1,2
±η (R,Cn) ⊂ L∞±η(R,Cn), Corollary 6.3 implies that D`

τΓ
(0) = Φ` when

viewing Φ` as a function mapping into C(Ω,Cn). Now due to the commutation relation (6.24), one

may use a similar argument to show that for all 0 ≤ s ≤ r + 1− `, Γ(s) is `-fold differentiable, with

[D`
τΓ

(s)](τ)f = [Ds
ξD

`
τΛ
−1
(+η) −Ds

ξD
`
τΛ
−1
(−η)](τ)f ∈ C(Ω,Cn). (6.26)

The continuity of Φ` follows from the continuity of Λ−1
(±η) as maps R → L(L2

±η(R,Cn),W
1,2
±η (R,Cn)).

Corollary 6.5. Consider the setting of Lemma 6.4. The function τ 7→ Π(τ) is Cr-smooth as a map

from R into L(X,X0).
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Proof. It is sufficient to show that τ 7→ ev−τEQτ0 is Cr-smooth as a map from R → L(X). For an

appropriate open Ω′ ⊂ R, notice that the evaluation function Ω′ → L(C`+1(Ω,Cn), X) defined by

ξ 7→ evξ is C`-smooth. In view of Lemma 6.4 and the representation (5.4), the Cr-smoothness of Π

now follows from Lemma A.3.

7 The center manifold

We are now ready to construct the center manifold for the nonlinear equation (2.1). As a preparation,

we need to modify the nonlinearity R so that it becomes globally Lipschitz continuous. This can

be realized by choosing a C∞-smooth cutoff-function χ : [0,∞) → R with ‖χ‖∞ = 1, that satisfies

χ(ξ) = 0 for ξ ≥ 2, while χ(ξ) = 1 for ξ ≤ 1. We subsequently define for any δ > 0 the nonlinearity

Rδ : R×X → Cn, given by

Rδ(ξ, φ) = χ(‖Π(ξ)φ‖ /δ′)χ(
∥∥∥(I −Qξ0)φ

∥∥∥ /δ)R(ξ, φ), (7.1)

in which δ′ = δ supξ∈R
∥∥Πξ
→

∥∥. As in [18], one can show that this map is bounded and globally

Lipschitz continuous in the second variable. In particular, the Lipschitz constant Lδ is independent

of ξ ∈ R and satisfies Lδ → 0 as δ → 0, while one has the estimate |Rδ(ξ, φ)| ≤ 4δLδ for all ξ ∈ R
and φ ∈ X. Associated to Rδ one can define the substitution map R̃δ : BCη(R,Cn) → BCη(R,Cn),
given by [R̃δx](ξ) = Rδ(ξ, xξ). The Lipschitz constant associated to this substitution map R̃δ is

given by wηLδ, in which we have introduced the quantity

w = max(e−rmin , ermax) ≥ 1. (7.2)

Following these preliminaries, we introduce the operator G : BC1
η(R,Cn)×X0×R → BC1

η(R,Cn)
that acts as

G(u, φ, τ) = Ee−τW
[
φ−Π(τ)evξKR̃δ(u)

]
+KR̃δ(u). (7.3)

Notice that any fixpoint u = G(u, φ, τ) will satisfy the equation u̇(ξ) = L(ξ)uξ + Rδ(ξ, uξ), with

Qτ0uτ = Πτ
→φ. For this reason, we set out to show that for any fixed pair (φ, τ) ∈ X0 × R, the map

G(·, φ, τ) is a contraction on BC1
η(R,Cn), yielding a fixpoint u = u∗η(φ, τ).

Theorem 7.1. Consider the nonlinear equation (2.1) and assume that the conditions (HL), (HF),

(HR1) and (HR2) are all satisfied. Pick any γ > 0 such that there are no Floquet exponents λ with

0 < |Reλ| < γ and consider any interval [ηmin, ηmax] ⊂ (0, γ) with min(k, r)ηmin < ηmax. Then there

exist constants 0 < ε < δ such that the following properties hold.

(i) For all η ∈ [ηmin, ηmax] and for any pair (φ, τ) ∈ X0 × R, the fixpoint equation u = G(u, φ, τ)

has a unique solution u = u∗η(φ, τ) ∈ BC1
η(R,Cn).

(ii) For any pair ξ, ξ ∈ R with ξ − ξ ∈ 2πZ, we have

u∗
(
Π(ξ)evξu∗(φ, τ), ξ

)
= Tξ−ξu

∗(φ, τ). (7.4)
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(iii) For any pair ηmin ≤ η1 < η2 ≤ ηmax, one has the identity u∗η2 = J 1
η2η1u

∗
η1 .

(iv) For any pair (φ, τ) ∈ X0 × R, we have the inequality∥∥∥(I −Qξ0)evξu
∗
η(φ, τ)

∥∥∥ < δ, (7.5)

for all ξ ∈ R.

(v) Consider a pair (φ, τ) ∈ X0 × R that has ‖φ‖ < ε. Then the following inequality holds for all

rmin ≤ θ ≤ rmax, ∥∥Π(τ + θ)evτ+θu∗η(φ, τ)
∥∥ < δ. (7.6)

(vi) For all η ∈ (min(k, r)ηmin, ηmax], the mapping J 1
ηηmin

◦ u∗ηmin
: X0 × R → BC1

η(R,Cn) is of

class Cmin(k,r).

We need a preparatory result to prove this theorem, which allows us to restrict the parameter τ

to the interval [0, 2π]. This in turn will enable us to choose the parameters δ and ε independently

of τ ∈ R, simplifying the analysis considerably.

Proposition 7.2. Let u satisfy u = G(u, φ, τ). Consider any τ with τ − τ ∈ 2πZ and let v = Tτ−τu.

Then v satisfies the fixpoint equation v = G(v, φ, τ).

Proof. First note that Lemma 6.1 implies

KR̃δ(v) = Tτ−τKR̃δ(u)− EQ0evτ−τKR̃δ(u), (7.7)

using which we compute

Tτ−τG(v, φ, τ) = Tτ−τEe
−τW [

φ−Π(τ)evτ [Tτ−τKR̃δ(u)− EQ0evτ−τKR̃δ(u)]
]

+KR̃δ(u)− Tτ−τEQ0evτ−τKR̃δ(u)
= Ee−τW

[
φ−Π(τ)evτKR̃δ(u)

]
+KR̃δ(u)

+Ee−τWΠ(τ)evτEQ0evτ−τKR̃δ(u)− Ee(τ−τ)WQ0evτ−τKR̃δ(u)
= u+ Ee−τWΠτ

←Q0(τ)Πτ
→e

τWQ0evτ−τKR̃δ(u)
−Ee(τ−τ)WQ0evτ−τKR̃δ(u)

= u.

(7.8)

We are now ready to prove items (i) through (v) of Theorem 7.1. The remaining item (vi) will

be treated in Section 8, where the necessary machinery is developed.

Partial proof of Theorem 7.1. In view of Proposition 7.2, we may assume throughout the proof that

τ ∈ [0, 2π].
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(i) Choose δ > 0 in such a way that for all η ∈ [ηmin, ηmax] and all σ ∈ R, we have

wη ‖Kη‖Lδ
[
1 + ‖E‖η e

2π|W | ‖Π(σ)‖wηe2πη
]
<

1
4
. (7.9)

Then for any pair (φ, τ) ∈ X0 × [0, 2π] and all η ∈ [ηmin, ηmax], we have the inequality

‖G(u1, φ, τ)− G(u2, φ, τ)‖BC1
η
≤ 1

4
‖u1 − u2‖BC1

η
. (7.10)

In addition, if ρ ≥ 2 ‖E‖η e2π|W | ‖φ‖, then G(·, φ, τ) maps the ball with radius ρ in BC1
η(R,Cn)

into itself. We can hence use the contraction mapping theorem to define the unique solution

u = u∗η(φ, τ) of the fixpoint equation u = G(u, φ, τ) for τ ∈ [0, 2π].

(ii) We first write ψ = Π(ξ)evξu∗(φ, τ) and compute

ψ = Π(ξ)evξEe−τWφ−Π(ξ)evξEe−τWΠ(τ)evτKR̃δ(u∗(φ, τ)) + Π(ξ)evξKR̃δ(u∗(φ, τ))
= e(ξ−τ)Wφ− e(ξ−τ)WΠ(τ)evτKR̃δ(u∗(φ, τ)) + Π(ξ)evξKR̃δ(u∗(φ, τ)).

(7.11)

Now writing u = u∗(φ, τ) and v = Tξ−ξu, it suffices to show that u = Tξ−ξG(v, ψ, ξ). We can

closely follow the computation (7.8) in Proposition 7.2 and substitute (7.11) to obtain

Tξ−ξG(v, ψ, ξ) = Ee−ξW
[
ψ −Π(ξ)evξKR̃δ(u)

]
+KR̃δ(u)

= Ee−τW [φ−Π(τ)evτKR̃δ(u)] +KR̃δ(u) = u.
(7.12)

(iii) This follows immediately using the fact that Kη1 and Kη2 agree on BC0(R,Cn), together with

the estimate |Rδ(ξ, evξu∗(φ, τ))| ≤ 4δLδ.

(iv) If δ > 0 is chosen sufficiently small to ensure that for some 0 < η0 < γ and all σ ∈ R we have

wη0Lδ < (4
∥∥Kση0∥∥)−1, (7.13)

then we may use Lemma 6.1 to compute

(I −Qξ0)evξu
∗(φ, τ) = (I −Qξ0)evξEe

−ξW [
φ−Π(ξ)evξKη0R̃δ(u∗(φ, τ))

]
+(I −Qξ0)evξKη0R̃δ(u∗(φ, τ))

= (I −Qξ0)evξKη0R̃δ(u∗(φ, τ)) = ev0Kξη0TξR̃δ(u
∗(φ, τ))

(7.14)

and hence∥∥∥(I −Qξ0)evξu
∗(φ, τ)

∥∥∥ ≤ wη0
∥∥Kξη0∥∥∥∥∥TξR̃δ(u∗(φ, τ))∥∥∥

η0
≤ wη0

∥∥Kξη0∥∥ 4δLδ < δ. (7.15)

(v) Choose δ > 0 and ε > 0 sufficiently small to ensure that for some 0 < η0 < γ and all τ, τ ′ ∈ R,

w2η0e2πη0 ‖E‖η0 e
2π|W | ‖Πτ

←‖ ε < 1
2δ,

4Lδ ‖Kη0‖w2η0e2πη0
[
‖Π(τ)‖+ e2π|W | ‖Π(τ ′)‖ e2πη0wη0 ‖E‖η0 ‖Π

τ
←‖

]
< 1

2δ.
(7.16)
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Recalling that τ ∈ [0, 2π] and writing ∆ = ‖Π(τ + θ)evτ+θu∗(φ, τ)‖, we compute

∆ =
∥∥∥Πτ+θ
← evτ+θEe−τW

[
φ−Π(τ)evτKη0R̃δ(u)

]
+ Π(τ + θ)evτ+θKη0R̃δ(u)

∥∥∥
≤

∥∥Πτ+θ
←

∥∥wη0wη0e2πη0 ‖E‖η0 e2π|W |[ε+ ‖Π(τ)‖ e2πη0wη0 ‖Kη0‖ 4δLδ
]

+ ‖Π(τ + θ)‖wη0wη0e2πη0 ‖Kη0‖ 4δLδ
< δ

2 + δ
2 .

(7.17)

In the remainder of this section we will derive an ODE that is satisfied on the finite dimensional

center manifold. To this end, we consider an arbitrary pair (φ, τ) ∈ X0 × R, and introduce the

function Φ : R → X0, given by

Φ(ξ) = Π(ξ)evξu∗(φ, τ). (7.18)

Notice that we can apply the identity (7.4) to invert this and express u∗(φ, τ) in terms of Φ(ξ). In

particular, for any ξ for which ξ − ξ ∈ 2πZ, we find

u∗(φ, τ) = Tξ−ξu
∗(Φ(ξ), ξ

)
. (7.19)

Setting out to obtain an ODE for Φ, we introduce the shorthand u = u∗(τ, φ) and differentiate

(7.18) to find

Φ̇(ξ) = [DΠ(ξ)]evξu+ Π(ξ)D[evξu]

= [DΠ(ξ)]evξu+ Π(ξ)evξDu

= [DΠ(ξ)]evξu+ Π(ξ)evξLu+ Π(ξ)evξR̃δ(u)

= [DΠ(ξ)]evξu∗(Φ(ξ), ξ) + Π(ξ)evξLu∗(Φ(ξ), ξ) + Π(ξ)evξR̃(u∗(Φ(ξ), ξ))

= [DΠ(ξ)]evξEe−ξWψ + Π(ξ)evξLEe−ξWψ + f(ξ,Φ(ξ)).

(7.20)

Here the nonlinearity f(ξ, ψ) is of order O(‖ψ‖2) as ψ → 0 and is explicitly given by

f(ξ, ψ) = [DΠ(ξ)]evξ[u∗(ψ, ξ)− Ee−ξWψ]

+Π(ξ)evξL[u∗(ψ, ξ)− Ee−ξWψ]

+Π(ξ)evξR̃δ(u∗(ψ, ξ)).

(7.21)

Using Proposition 7.2 one easily sees that f is 2π-periodic in the first variable, i.e., f(ξ + 2π, ψ) =

f(ξ, ψ) for all ξ ∈ R and ψ ∈ X0. In addition, the Cr-smoothness of Π and the Cmin(r,k)-smoothness

of u∗ imply that f ∈ Cmin(r−1,k)(R×X0, X0).

It remains to treat the linear part of (7.20). Defining y = Ee−ξWψ ∈ N0, notice that

[DΠ(ξ)]evξy + Π(ξ)evξLy = [DΠ(ξ)]evξy + Π(ξ)evξDy

= [DΠ(ξ)]evξy + Π(ξ)Devξy = D[Π(ξ)evξy]

= D[eξW ev−ξEevξy] = D[eξW ev0y] = WeξW ev0y = Wψ.

(7.22)

We have hence established the following result.
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Proposition 7.3. Consider the setting of Theorem 7.1. For any (φ, τ) ∈ X0×R, define the function

Φ : R → X0 given by Φ(ξ) = Π(ξ)evξu∗(φ, τ). Then Φ is Cmin(r,k+1)-smooth and satisfies the

ordinary differential equation

Φ̇(ξ) = WΦ(ξ) + f(ξ,Φ(ξ)). (7.23)

Here the function f : R ×X0 → X0, which is explicitly given by (7.21), is Cmin(r−1,k)-smooth and

satisfies f(ξ+2π, ψ) = f(ξ, ψ) for all (ξ, ψ) ∈ R×X0. Finally, we have f(ξ, 0) = 0 and Df(ξ, 0) = 0

for all ξ ∈ R.

In a standard fashion [15, 18], one may now use the ODE derived above in conjunction with

the properties of u∗ established in Theorem 7.1 to prove our main results in Theorem 2.2. As

a final remark, we observe that in the constant coefficient situation where L(ξ) = L, we have

Tξu
∗(·, ξ) = u∗(·, 0) and Π(ξ) = Q0 for all ξ ∈ R, which shows that the definition of f reduces

correctly to the form derived in [18].

8 Smoothness of the center manifold

In this section we address the smoothness of the center manifold established above. In particular, we

set out to prove item (vi) of Theorem 7.1. Throughout this section we consider a fixed system (2.1)

that satisfies the conditions (HL), (HF), (HR1) and (HR2) and recall the corresponding integers r

and k. In addition, we fix an interval [ηmin, ηmax] ⊂ (0, γ) as in the setting of Theorem 7.1. In order

to ease notation we will assume that r ≥ k, but we remark that upon interchanging k and r all

our arguments here remain valid when in fact r < k. Our arguments here are based on the strategy

developed in [9, Section IX.7] and will extend the proof given in [18] for autonomous versions of

(2.1).

Due to the presence of the cutoff function on the infinite dimensional complement of X0, the

nonlinearity Rδ loses the Ck-smoothness on X and becomes merely Lipschitz continuous. To correct

for this situation, we introduce for any η > 0 the Banach space

V 1
η (R,Cn) =

{
u ∈ BC1

η(R,Cn) | ‖u‖V 1
η

:= sup
ξ∈R

e−η|ξ| ‖Π(ξ)uξ‖+ sup
ξ∈R

∥∥∥(I −Qξ0)uξ
∥∥∥ + ‖u̇‖η <∞

}
,

(8.1)

which is continuously embedded in BC1
η(R,Cn), together with the open set

V 1,δ
η (R,Cn) =

{
u ∈ BC1

η(R,Cn) | sup
ξ∈R

∥∥∥(I −Qξ0)uξ
∥∥∥ < δ

}
⊂ V 1

η (R,Cn). (8.2)

We start by establishing conditions under which the substitution maps R̃δ : V 1,δ
σ (R,Cn) →

BC1
ζ (R,Cn) are smooth. Notice that Rδ is of class Ck on the set Bhδ , in which

Bhδ =
{
(ξ, φ) ∈ R×X |

∥∥∥(I −Qξ0)φ
∥∥∥ < δ

}
. (8.3)
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Considering any pair of integers p ≥ 0, q ≥ 0 with p+q ≤ k, observe that the norms ‖Dp
1D

q
2Rδ(ξ, φ)‖

are uniformly bounded on Bhδ . Thus, for any u ∈ C(R,Cn) for which supξ∈R

∥∥∥(I −Qξ0)uξ
∥∥∥ < δ and

for any 0 ≤ p ≤ k, we can define a map R̃(p,q)
δ (u) ∈ L(q)(C(R,Cn), C(R,Cn)) by

R̃
(p,q)
δ (u)(v1, . . . , vq)(ξ) = Dp

1D
q
2Rδ(ξ, uξ)

(
(v1)ξ, . . . , (vq)ξ

)
. (8.4)

Here the symbol L(q)(Y, Z) denotes the space of q-linear mappings from Y ×. . .×Y into Z. Note that

the map R̃
(p,q)
δ (u) defined above is well-defined, since Dp

1D
q
2Rδ is a continuous map from Bhδ ×Xq

into Cn, as is the map ix : R → X which sends ξ 7→ xξ, for any x ∈ C(R,Cn). Throughout the

remainder of this section we will adopt the shorthand BC1
ζ = BC1

ζ (R,Cn), together with analogous

ones for the other function spaces. The following two results are stated without proof, as they are

very similar to their counterparts in [18].

Proposition 8.1. Let p ≥ 0 and q ≥ 0 be positive integers with p+ q ≤ k. Pick η ≥ qζ > 0. Then

for any u ∈ C(R,Cn) such that supξ∈R

∥∥∥(I −Qξ0)uξ
∥∥∥ < δ, we have

R̃
(p,q)
δ (u) ∈ L(q)(BC1

ζ , BCη) ∩ L(q)(V 1
ζ , BCη), (8.5)

where the norm is bounded by∥∥∥R̃(p,q)
δ

∥∥∥
L(q)

≤ wζ sup
ξ∈R

e−(η−qζ)|ξ| ‖Dp
1D

q
2Rδ(ξ, uξ)‖ <∞. (8.6)

Furthermore, consider any 0 ≤ ` ≤ k − (p + q) and any σ > 0. If η > qζ + `σ, then in addition

the map u 7→ R̃
(p,q)
δ (u) from V 1,δ

σ into L(q)(BC1
ζ , BCη) is C`-smooth, with D`R̃

(p,q)
δ = R̃

(p,q+l)
δ . The

same holds when considering u 7→ R̃
(p,q)
δ (u) as a map from V 1,δ

σ into L(q)(V 1
ζ , BCη).

Finally, if p+ q < k, consider any u ∈ V 1,δ
σ . Then for any q-tuple of functions v1, . . . , vq ∈ BC1

ζ ,

we have R̃(p,q)
δ (u)(v1, . . . , vq) ∈ C1(R,Cn), with

DξR̃
(p,q)
δ (u)(v1, . . . , vq) = R̃

(p+1,q)
δ (u)(v1, . . . , vq) + R̃

(p,q+1)
δ (u)(u̇, v1, . . . , vq)

+R̃(p,q)
δ (u)(v̇1, v2, . . . , vq) + . . .+ R̃

(p,q)
δ (u)(v1, v2, . . . , v̇q).

(8.7)

Proposition 8.2. Consider integers p ≥ 0 and q ≥ 0 with p+ q < k. Let η > qζ+σ for some ζ > 0

and σ > 0. Let Φ be a mapping of class C1 from X0 × R into V 1,δ
σ . Then the mapping R̃(p,q)

δ ◦ Φ

from X0 × R into L(q)(BC1
ζ , BCη) is of class C1 with

D(R̃(p,q)
δ ◦ Φ)(φ, τ)(v1, . . . , vq, (ψ, ξ)) = R̃(p,q+1)(Φ(φ, τ))(v1, . . . , vq, DΦ(φ, τ)(ψ, ξ)). (8.8)

For convenience, we introduce for any η ∈ [ηmin, ηmax] the function E : V 1,δ
η ×(X0×[0, 2π]) → BC1

η

via

E
(
u, (φ, τ)

)
= Ee−τW

[
φ−Π(τ)evτKR̃δ(u)

]
. (8.9)

One may compute the partial derivatives

D1E
(
u, (φ, τ)

)
= −Ee−τWΠ(τ)evτKR̃(0,1)

δ (u),

D2E
(
u, (φ, τ)

)
= Ee−τW ×

(
− EWe−τW [φ−Π(τ)evτKR̃δ(u)]

−Ee−τW [DΠ(τ)]evτKR̃δ(u) + Π(τ)evτ [LKR̃δ(u) + R̃δ(u)]
) (8.10)
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and easily conclude that these are both continuous functions. This means that E is at least C1-

smooth and in addition enables us to define the continuous auxiliary functions F1 : X0 × [0, 2π] →
L(V 1

η , BC
1
η) ∩ L(BC1

η , BC
1
η) and F2 : X0 × [0, 2π] → L(X0 × R, BC1

η) by

F1(φ, τ) = D1E
(
u∗(φ, τ), (φ, τ)

)
,

F2(φ, τ) = D2E
(
u∗(φ, τ), (φ, τ)

)
.

(8.11)

Notice that Proposition 8.1 implies that F1 is indeed well-defined as an element in L(BC1
η , BC

1
η).

We will employ an induction approach towards establishing the smoothness of u∗. The next result

serves as a starting point by obtaining the C1-smoothness.

Proposition 8.3. For all η ∈ (ηmin, ηmax], the function J 1
ηηmin

u∗ηmin
: X0 × [0, 2π] → BC1

η is C1-

smooth. In addition, for each 1 ≤ p ≤ k and all η ∈ (pηmin, ηmax], the function

(φ, τ) 7→ J 1
η pηmin

Dp
ξu
∗
ηmin

(φ, τ), (8.12)

which maps X0 × [0, 2π] into BC1
η , is continuous.

Proof. Consider any η ∈ (ηmin, ηmax]. We will apply Lemma A.2 in the setting Y0 = V 1
ηmin

, Y =

BC1
ηmin

and Y1 = BC1
η , together with their natural inclusions. Furthermore, we choose Ω0 = V 1,δ

ηmin
⊂

V 1
ηmin

and let Λ = X0×R with Λ0 = X0× [0, 2π]. For any (φ, τ) ∈ X× [0, 2π], the operators featuring

in Appendix A are defined by

F (u, φ, τ) = E(u, (φ, τ)) +KηminR̃δ(u), u ∈ BC1
ηmin

,

F (1)(u, φ, τ) = D1E(u, (φ, τ)) +Kηmin ◦ R̃
(0,1)
δ (u) ∈ L(BC1

ηmin
), u ∈ V 1,δ

ηmin
,

F
(1)
1 (u, φ, τ) = D1E(u, (φ, τ)) +Kη ◦ R̃(0,1)

δ (u) ∈ L(BC1
η), u ∈ V 1,δ

ηmin
.

(8.13)

In the context of Lemma A.2 this means that G : V 1,δ
ηmin

×X0 × [0, 2π] → BC1
η is defined by

G(u, φ, τ) = E(u, (φ, τ)) + J 1
ηηmin

KηminR̃δ(u)

= E(u, (φ, τ)) +KηR̃δ(u),
(8.14)

in which the final equality follows from the fact that Kηmin and Kη agree on BC0.

Conditions (HC1), (HC3) and (HC4) are satisfied due to the C1-smoothness of E , together with

Proposition 8.1. The inequality (7.9) implies (HC2) and (HC5), while (HC6) follows from (7.13). We

conclude that J 1
ηηmin

◦ u∗ηmin
is of class C1 and that D(J 1

ηηmin
◦ u∗ηmin

)(φ, ξ) = J 1
ηηmin

◦ u∗(1)ηmin(φ, ξ) ∈
L(X0 × R, BC1

η), where u∗(1)ηmin(φ, ξ) is the unique solution of the equation

u(1) = [F1(φ, τ) +Kηmin ◦ R̃(0,1)(u∗ηmin
(φ, τ))]u(1) + F2(φ, τ) (8.15)

in the space L(X0 × R, BC1
ηmin

). We compute

Dξu
∗
ηmin

(φ, τ) = Lu∗ηmin
(φ, τ) + R̃δ(u∗ηmin

(φ, τ))

D2
ξu
∗
ηmin

(φ, τ) = [DL]u∗ηmin
(φ, τ) + L[Du∗ηmin

(φ, τ)]+

R̃(1,0)(u∗ηmin
(φ, ξ)) + R̃(0,1)(u∗ηmin

(φ, τ))Du∗ηmin
(φ, τ)

(8.16)
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and hence (φ, τ) 7→ J 1
ηηmin

Dξu
∗
ηmin

(φ, τ) is continuous. It is easy to see that (8.16) can be differen-

tiated another k − 1 times, showing that in general (φ, τ) 7→ J 1
η `ηmin

D`
ξu
∗
ηmin

(φ, τ) is continuous for

1 ≤ ` ≤ k.

In the interest of clarity, we specify in some detail the induction hypothesis that we use prior

to performing the induction step, To this end, consider any integer ` that satisfies 1 ≤ ` < k and

suppose that for all 1 ≤ q ≤ `, there exist mappings

u∗(q)ηmin
: X0 × [0, 2π] → L(q)(X0 × R, BC1

qηmin
), (8.17)

such that the following properties are satisfied.

(IH1) For all 1 ≤ q ≤ ` and for all η ∈ (qηmin, ηmax], the mapping J 1
ηηmin

◦ u∗ηmin
is of class Cq with

Dq(J 1
ηηmin

◦ u∗ηmin
) = J 1

η qηmin
◦ u∗(q)ηmin

. (8.18)

(IH2) For all integer pairs (p, q) with 0 ≤ q ≤ ` and 1 ≤ p ≤ k − q and all η ∈ ((p + q)ηmin, ηmax],

the function X0 × [0, 2π] → L(q)(X0 × R, BC1
η), defined by

(φ, τ) 7→ J 1
η (p+q)ηmin

Dp
ξu
∗(q)(φ, τ), (8.19)

is continuous.

(IH3) For any pair (φ, τ) ∈ X0 × [0, 2π], the map u∗(`)ηmin(φ, τ) is the unique solution at η = ηmin of an

equation of the form

u(`) = F
(`)
η (u(`), φ, τ) (8.20)

in the space L(`)(X0 × R, BC1
`η), with

F
(`)
η (u(`), φ, τ) =

[
F1(φ, τ)+K`η ◦ R̃(0,1)

δ (u∗ηmin
(φ, τ))

]
u(`) +D`−1F2(φ, ξ)+H

(`)
η (φ, τ). (8.21)

Here we have H(1)(φ, τ) = 0 and for ` ≥ 2 we can write H(`)
η (φ, τ) as a finite sum of terms of

two different forms, the first of which is given by

Kqη ◦ R̃(0,q)
δ (u∗ηmin

(φ, τ))(u∗(e1)ηmin (φ, τ), . . . , u∗(eq)
ηmin (φ, τ)), (8.22)

with 2 ≤ q ≤ ` and integers ei ≥ 1 such that e1 + . . .+ eq = `. The second form can be written

as

Df1F1(φ, τ)u
∗(f2)
ηmin (φ, τ), (8.23)

with integers f1 ≥ 1 and f2 ≥ 1 that satisfy f1 + f2 = `.

Using Proposition 8.3 it is easily verified that the assumptions above are satisfied for ` = 1.

Before proceeding with the remaining cases, we need to study the smoothness of the operators F1

and F2.
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Proposition 8.4. Suppose that for some integer 1 ≤ ` < k the induction assumptions (IH1) through

(IH3) all hold. Then for any η ∈ [ηmin, ηmax], the functions F1 : X0 × [0, 2π] → L(BC`η, BC
1
η) and

F2 : X0 × [0, 2π] → L(X0 × R, BC1
η) are C`-smooth.

Proof. Upon defining E ′(u, (φ, τ)) = E(u, (φ, τ))−Ee−τWφ, we remark that it is sufficient to establish

the claim for the operators F ′1 and F ′2 associated to E ′. Observe first that for i = 1, 2 we can write

D`F ′i(φ, τ) as a sum of terms of the form

Dα1
1 Dα2

2 E ′(u∗(φ, τ), (φ, τ))u∗(β1)(φ, τ) . . . u∗βnβ (φ, τ), (8.24)

in which βj ≥ 1 for 1 ≤ j ≤ nβ . If i = 1, then we have in addition that α1 ≥ 1, nβ = α1 − 1 and

α2+β1+. . .+βnβ
= `. If however i = 2, then we have α2 ≥ 1, nβ = α1 and α2+β1+. . .+βnβ

= `+1.

Now notice that the only nonzero component of Dα1
1 Dα2

2 E ′(u, (φ, τ)) can be written as a sum of

terms of the form

EW γ0e−τW (Dγ1Π)(τ)evτD
γ2
ξ KR̃

(0,α1)
δ (u), (8.25)

in which γj ≥ 0 for 0 ≤ j ≤ 2 with γ0 + γ1 + γ2 = α2. Setting out to compute the derivatives with

respect to ξ appearing in (8.25), notice first that

DξKR̃(0,α1)
δ (u) = LKR̃(0,α1)

δ (u) + R̃
(0,α1)
δ (u). (8.26)

Generalizing, we obtain that Dγ2
ξ KR̃

(0,α1)
δ (u) can be written as a sum of terms of two different forms,

the first of which is given by

[De1L] . . . [DeneL]R̃(p,α1+q)(u)(Df1u, . . . ,Dfqu)(Dg1 , . . . Dgα1 ), (8.27)

in which we have p ≥ 0, q ≥ 0 and ne ≥ 0, together with ej ≥ 0 for all 1 ≤ j ≤ ne, fj ≥ 1 for all

1 ≤ j ≤ q and gj ≥ 0 for all 1 ≤ j ≤ α1. In addition, we must have

1 + (1 + e1) + . . .+ (1 + ene) + p+ f1 + . . .+ fq + g1 + . . .+ gα1 = γ2. (8.28)

The second form is given by

[De1L] . . . [DeneL]KR̃(0,α1)
δ (u), (8.29)

in which ne ≥ 0, ej ≥ 0 for all 1 ≤ j ≤ ne and

(1 + e1) + . . .+ (1 + ene) = γ2. (8.30)

Indeed, this can be verified directly for γ2 = 1 and differentiation of the terms in (8.27) and (8.29)

again gives terms of these forms.

It remains to show that the terms (8.27) and (8.29) are continuous after substituting u = u∗(φ, τ).

In view of Proposition (IH2), it suffices to check that we have α1 + p+ q ≤ k, ej ≤ r for 1 ≤ j ≤ ne,

fj ≤ ` for 1 ≤ j ≤ q and gj + βj ≤ ` for 1 ≤ j ≤ nβ . If in fact we have i = 1, i.e., we are considering

D`F ′1, then we in addition need gα1 ≤ ` − 1 to ensure that BC`η is mapped into BC1
η under the

operator Dgα1
ξ . All these inequalities can easily be verified by using the conditions (8.28) and (8.30).
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Proof of item (vi) of Theorem 7.1. Assume that for some 1 ≤ ` < k, the induction assumptions

(IH1) through (IH3) are satisfied. Notice that these conditions ensure that F (`)
η : L(`)(X0, BC

1
pη)×

X0 → L(`)(X0, BC
1
`η) is well-defined for all η ∈ [ηmin,

1
` ηmax] and, in addition, is a uniform contrac-

tion for these values of η. We now fix η ∈ ((` + 1)ηmin, ηmax] and choose σ and ζ such that ηmin <

σ < (`+ 1)σ < ζ < η. We wish to apply Lemma A.2 in the setting Ω0 = Y0 = L(`)(X0 × R, BC1
`σ),

Y = L(`)(X0 × R, BC1
ζ ), Y1 = L(`)(X0 × R, BC1

η) with the corresponding natural inclusions, with

the parameter space given by Λ0 = X0× [0, 2π] with Λ0 ⊂ Λ = X0×R. For any (φ, τ) ∈ X0× [0, 2π],

we define the functions

F (u(`), φ, τ) = [F1(φ, τ) +Kζ ◦ R̃(0,1)
δ (u∗ηmin

(φ, τ))]u(`) +D`−1F2(φ, τ) +H
(`)
ζ/`(φ),

F (1)(u(`), φ, τ) = F1(φ, τ) +Kζ ◦ R̃(0,1)
δ (u∗ηmin

(φ, τ)) ∈ L(L(`)(X0 × R, BC1
ζ )),

F
(1)
1 (u(`), φ, τ) = F1(φ, τ) +Kη ◦ R̃(0,1)

δ (u∗ηmin
(φ, τ)) ∈ L(L(`)(X0 × R, BC1

η)),

(8.31)

in which we take u(`) ∈ L(`)(X0 × R, BC1
ζ ) in the definition of F and u(`) ∈ L(`)(X0 × R, BC1

`σ) for

F (1) and F (1)
1 . To check (HC1), we need to show that the map G : L(`)(X0×R, BC1

`σ)×X0×[0, 2π] →
L(`)(X0, BC

1
η) given by

G(u(`), φ, τ) =
[
F1(φ, τ)+J 1

ηζ ◦Kζ ◦ R̃
(0,1)
δ (u∗ηmin

(φ, τ))
]
u(`) +D`−1F2(φ, τ)+J 1

ηζH
(`)
ζ/`(φ, τ) (8.32)

is of class C1. In view of the linearity of this map with respect to u(`), together with the smooth-

ness of F1 and F2 as established in Proposition 8.4, it is sufficient to show that (φ, τ) 7→ Kζ ◦
R̃

(0,1)
δ (u∗ηmin

(φ, τ)) is of class C1 as a map from X0 × R into L(BC1
`σ, BC

1
ζ ) and, in addition, that

(φ, τ) 7→ H
(`)
ζ/`(φ, τ) is of class C1 as a map from X0×R into L(`)(X0×R, BC1

ζ ). The first fact follows

from Proposition 8.2 using ζ > (`+1)σ and the C1-smoothness of the map (φ, τ) 7→ J 1
σηmin

u∗ηmin
(φ, τ).

To verify the second fact, we again use Proposition 8.2 to differentiate the components of H(`) given

in (8.22) and (8.23). The first component yields

DKζ ◦ R̃(0,q)
δ (u∗ηmin

(φ, τ))(u∗(e1)ηmin (φ, τ), . . . , u∗(eq)
ηmin (φ, τ))

= Kζ ◦ R̃(0,q+1)
δ (u∗ηmin

(φ, τ))(u∗(e1)ηmin (φ, τ), . . . , u∗(eq)
ηmin (φ, τ), u∗(1)ηmin(φ, τ))

+
∑q
j=1Kζ ◦ R̃(0,q)(u∗ηmin

(φ, τ))(u∗(e1)ηmin (φ, τ), . . . , u∗(ej+1)
ηmin (φ, τ), . . . , u∗(eq)

ηmin (φ, τ)),

(8.33)

in which each occurrence of u∗(j)ηmin is understood to map into BC1
jσ. An application of Proposi-

tion 8.1 with ζ > (` + 1)σ, shows that the above map is indeed continuous from X0 × R into

L(`+1)(X0 × R, BC1
ζ ). The second component can be treated using similar arguments in conjunc-

tion with Proposition 8.4. These arguments immediately show that also (HC4) is satisfied. Condi-

tions (HC2), (HC3) and (HC5) can be verified much as before. (HC6) follows from the fact that

L(`)(X0 × R, BC1
`ηmin

) ⊂ L(`)(X0 × R, BC1
`σ).

We thus conclude from Lemma A.2 that J 1
η `ηmin

◦u∗(`)ηmin is of class C1 withD(J 1
η `ηmin

◦u∗(`)ηmin)(φ, τ) =

J 1
ηζ ◦ u∗(`+1)(φ, τ), in which u∗(`+1)(φ, τ) is the unique solution of the equation

u(`+1) =
[
F1(φ, τ) +Kζ ◦ R̃(0,1)

δ (u∗ηmin
(φ, τ))

]
u(`+1) +D`F2(φ, τ) +H

(`+1)
ζ/(`+1)(φ, τ) (8.34)
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in L(`+1)(X0 × R, BC1
ζ ), with

H
(`+1)
ζ/(`+1)(φ, τ) = Kζ ◦ R̃(0,2)

δ (u∗ηmin
(φ, τ))(u∗(`)(φ, τ), u∗(1)(φ, τ)) +DH

(`)
ζ/`(φ, τ). (8.35)

However, the definition (8.35) remains valid upon writing ζ = (`+ 1)ηmin. This allows one to define

H
(`+1)
ηmin ∈ L(`+1)(X0 × R, BC1

(`+1)ηmin
) in a natural fashion, with H

(`+1)
ζ/(`+1) = J 1

ζ (`+1)ηmin
H

(`+1)
ηmin .

We hence conclude that the fixed point u∗(`+1)(φ, τ) of (8.34) is also contained in L(`+1)(X0 ×
R, BC1

(`+1)ηmin
). We can hence define u∗(`+1)

ηmin = u∗(`+1)(φ, τ) ∈ L(`+1)(X0×R, BC1
(`+1)ηmin

). In order

to complete the proof, it remains only to consider the statements in (IH2) that involve the Dξ

derivatives. However, these follow from inspection, repeatedly using DξKf = LK+ f together with

(8.7).

A Embedded Contractions

In this appendix we outline a version of the embedded contraction theorem that we used to prove

that the center manifold is Ck-smooth. The presentation given here contains slight adaptations of

results given in [32], therefore the proofs are omitted.

Let Y0, Y , Y1 and Λ be Banach spaces with norms denoted respectively by

‖·‖0 , ‖·‖ , ‖·‖1 and |·| , (A.1)

and suppose that we have continuous embeddings J0 : Y0 ↪→ Y and J : Y ↪→ Y1. Let Ω0 ⊂ Y0 and

Λ0 ⊂ Λ be two open convex open subsets of Y0 respectively Λ. We consider the fixed-point equation

y = F (y, λ) (A.2)

for some F : Y × Λ → Y . Associated to F we define a function F0 : Ω0 × Λ0 → Y via

F0(y0, λ0) = F (J0y0, λ0) (A.3)

and also a function G : Ω0 ×Λ0 → Y1 by G = J ◦F0. We shall need the following assumptions on F

and G.

(HC1) The function G is of class C1. Fix any ω0 ∈ Ω0 and λ0 ∈ Λ0 and consider the partial derivative

D1G(ω0, λ0) ∈ L(Y0, Y1). Then there exist F (1)(ω0, λ0) ∈ L(Y ) and F (1)
1 (ω0, λ0) ∈ L(Y1) such

that for any v0 ∈ Y0 we have

D1G(ω0, λ0)v0 = JF (1)(ω0, λ0)J0v0,

JF (1)(ω0, λ0)y = F
(1)
1 (ω0, λ0)Jy.

(A.4)

(HC2) There exists some κ1 ∈ [0, 1) such that for all ω0 ∈ Ω0 and λ0 ∈ Λ0 we have∥∥F (1)(ω0, λ0)
∥∥
L(Y )

≤ κ1 and
∥∥∥F (1)

1 (ω0, λ0)
∥∥∥
L(Y1)

≤ κ1. (A.5)
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(HC3) The mapping (ω0, λ0) → J ◦ F (1)(ω0, λ0) is continuous as a map from Ω0 × Λ0 into L(Y, Y1).

(HC4) The function F0 has a continuous partial derivative

D2F0 : Ω0 × Λ0 → L(Λ, Y ). (A.6)

(HC5) There exists some κ2 ∈ [0, 1) such that for all y, y ∈ Y and all λ0 ∈ Λ0 we have

‖F (y, λ0)− F (y, λ0)‖ ≤ κ2 ‖y − y‖ . (A.7)

It follows from (HC5) that (A.2) has for each λ0 ∈ Λ0 a unique solution Ψ = Ψ(λ). We assume that

(HC6) For some continuous Φ : Λ0 → Ω0 we have Ψ = J0 ◦ Φ.

We define κ = max(κ1, κ2).

Lemma A.1. Assume that assumptions (HC1) through (HC6) hold, except possibly (HC3). Then

Ψ is locally Lipschitz continuous.

Assuming that (HC1) through (HC6) hold, we can consider the following equation for A ∈
L(Λ, Y ),

A = F (1)(Φ(λ0), λ0)A+D2F0(Φ(λ0), λ0). (A.8)

Since
∥∥F (1)

∥∥
L(Y )

≤ κ < 1 by (HC2), we see that I −F (1)(Φ(λ0), λ0) is invertible in L(Y ) and hence

for each λ0 ∈ Λ0 (A.8) has a unique solution A = A(λ0) ∈ L(Λ, Y ).

Lemma A.2. Assume that (HC1) through (HC6) hold. Then the mapping J ◦Ψ is of class C1 and

D(J ◦Ψ)(λ0) = J ◦ A(λ0) for all λ0 ∈ Λ0.

We conclude with the following result on differentiation in nested spaces.

Lemma A.3. Consider an integer ` > 1 and a sequence of Banach spaces Y0 ⊂ Y1 ⊂ . . . ⊂ Y`, in

which each inclusion Jji : Yi → Yj with j > i is continuous. Let Z0 and Z1 be Banach spaces and

[a, b] ⊂ R be an interval. Consider functions M : [a, b] → L(Z0, Y0) and L : [a, b] → L(Y`, Z1) with

the following properties.

(i) For each 0 ≤ j ≤ `, we have that the map [a, b] → L(Z0, Yj) given by ξ 7→ Jj0M(ξ) is

Cj-smooth.

(ii) For every 0 ≤ q ≤ j, we have that

DqJj0M(ξ) = JjqDqJq0M(ξ). (A.9)

(iii) For each 0 ≤ j ≤ `, we have that the restriction map [a, b] → L(Yj , Z1) given by ξ 7→ (L(ξ))|Yj

is C`−j-smooth.

Then the map [a, b] → L(Z0, Z1) given by ξ 7→ L(ξ)J`0M(ξ) is C`-smooth.
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Proof. For convenience, define the maps Lj = L|Yj
and Mj = Jj0M . Notice first that for any p ≥ 0

and q ≥ 0 with p+ q ≤ `, we have that the function W p,q : [a, b] → L(Z0, Z1) defined by

W p,q(ξ) = DqLp(ξ)DpMp(ξ) (A.10)

is well-defined and continuous. Associated to a given Cj-smooth operator S : [a, b] → Ω, we define

the usual remainder functions R(j)
S : [a, b]× [a, b] → Ω by

R
(j)
S (ξ, ξ′) = S(ξ′)−

j∑
k=0

DkS(ξ)
(ξ′ − ξ)k

k!
(A.11)

and observe that
∥∥∥R(j)

S (ξ, ξ′)
∥∥∥ = o(|ξ − ξ′|j).

Now notice that

L(ξ′)M`(ξ′) = L(ξ′)R(`)
M`

(ξ, ξ′) +
∑`
k=0 L(ξ′)DkM`(ξ)

(ξ′−ξ)k

k!

= L(ξ′)R(`)
M`

(ξ, ξ′) +
∑`
k=0 L(ξ′)J`kDkMk(ξ)

(ξ′−ξ)k

k!

= L(ξ′)R(`)
M`

(ξ, ξ′) +
∑`
k=0 Lk(ξ

′)DkMk(ξ)
(ξ′−ξ)k

k! .

(A.12)

Recalling that

Lk(ξ′) = R
(`−k)
Lk

(ξ, ξ′) +
∑`−k
m=0D

mLk(ξ)
(ξ′−ξ)m

m! , (A.13)

one can write

L(ξ′)M`(ξ′)− L(ξ)M`(ξ) =
∑

(p≥0,q≥0)|1≤p+q≤` cp,qW
p,q(ξ′ − ξ)p+q

+
∑`
k=0R

(`−k)
Lk

(ξ, ξ′)DkMk(ξ)(ξ′ − ξ)k 1
k!

+L(ξ′)R(`)
M`

(ξ, ξ′),

(A.14)

for appropriate constants cp,q, which shows that indeed D`[LJ`0M ] can be properly defined in a

continuous fashion.
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