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Abstract

In this paper we consider a spatial discretization scheme with an adaptive grid for the Nagumo PDE and
establish the existence of travelling waves. In particular, we consider the MMPDES grid update method that
aims to equidistribute the arclength of the solution under consideration. We assume that this equidistribution
is strictly enforced, which leads to a non-local problem with infinite range interactions.

For small spatial grid-sizes, we establish some useful Fredholm properties for the operator that arises
after linearizing our system around the travelling wave solutions to the original Nagumo PDE. In particular,
we perform a singular perturbation argument to lift these properties from the natural limiting operator.
This limiting operator is a spatially stretched and twisted version of the standard second order differential
operator that is associated to the PDE waves.
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1 Introduction

In this paper we consider adaptive discretization schemes for a class of scalar reaction-diffusion
equations that includes the Nagumo PDE

Ut = Ugg + chb(w Cl), (11)
with the bistable cubic nonlinearity
Jeub(v) = u(l — u)(u — a), 0<a<l. (1.2)

In particular, we discretize (1.1) on a time-dependent spatial grid and add an extra equation that
aims to distribute the gridpoints in such a way that the arclength of the solution is equal between
any two consecutive gridpoints.
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Our main contribution in this paper is to show that the resulting coupled semi-discrete system
admits solutions that can be interpreted as travelling waves. In particular, our results here are part
of an ongoing program that aims to systematically explore the impact of commonly used spatial,
temporal and full discretization schemes on the dynamical behaviour of dissipative PDEs.

Reaction-diffusion systems Reaction-diffusion PDEs have been extensively studied in the past
decades. Indeed, their rich pattern-forming properties allow many intriguing localized structures that
can be observed in nature to be reproduced analytically and numerically. For example, the classical
paper by Aronson and Weinberger [1] shows how (1.1) and its higher-dimensional counterparts can
be used to model the spreading of a dominant biological species throughout a spatial domain. Upon
adding a slowly-varying second component to (1.1) by writing

U = Uggy + g ub(u; a) -0,
¢ (1.3)
vy = e(u—v),

Fitzhugh [27, 28] was able to effectively describe the propagation of signal spikes through nerve fibres.
Sparked by his interest in morphogenesis, Turing [62] described the famous bifurcation through which
equilibria of general two-component reaction-diffusion systems can destabilize and generate spatially
periodic structures such as spots and stripes.

These early results led to the development of many important technical tools that today are
indispensable to the field of dynamical systems. For example, comparison principle techniques have
been used to study the global dynamics of (1.1) in one [26] and two [9] spatial dimensions. The
rigorous construction of the pulses observed by FitzHugh for (1.3) led to the birth of geometric
singular perturbation theory [14, 32, 47]. The development of Evans function [44] and semigroup
theory [59] was heavily influenced by the desire to analyze the stability of many of these localized
structures.

The systems (1.1) and (1.3) are both still under active investigation. For example, the behaviour
of perturbed spherical [56] or planar [50] fronts has been investigated for higher-dimensional versions
of (1.1). In addition, in [15, 16] the authors consider (1.3) in the a | 0 limit and describe the birth
of pulse solutions with oscillating tails.

Travelling waves It is well-known that travelling waves play an important role in the global
dynamics of (1.1). Such solutions have the form u(z, t) = ®(z+ct), which implies that the waveprofile
® and wavespeed ¢ must satisfy the travelling wave ODE

c® =" + geun(P;a). (1.4)

Using a now standard phase-plane analysis [26], one readily shows that (1.4) coupled with the
boundary conditions

B(—00) = 0, B(+00) =1 (1.5)

admits a unique solution pair (®,c) = (®(a), c(a)), with

sign(c(a)) = sign(% —a). (1.6)

Such solutions provide a mechanism through which the fitter biological species (corresponding to
the deepest well of the potential — f geub) can become dominant throughout a spatial domain. For
this reason they are sometimes referred to as invasion waves.

Using a squeezing technique based on the comparison principle, one can show that these waves
are nonlinearly stable under a large class of perturbations [26]. This can be generalized to planar
travelling wave solutions to

Ut = Ugg + Uyy + gcub(u; 0,) (17)



by carefully constructing appropriate sub- and supersolutions [9].

Travelling waves have been used extensively as building blocks to construct general time depen-
dent solutions of reaction-diffusion systems. For example, (1.7) supports travelling corners [10, 30],
expansion waves [56], and scattering waves [9]. Changing the nonlinearity g, (1.1) supports modu-
lated waves [21] that connect periodic travelling waves of nearby frequencies.

Uniform spatial discretizations Introducing the approximants U;(t) ~ u(jh,t) and applying a
standard discretization to the second derivative in (1.1), one obtains

Uj(t) = e

33 lUi-1(t) + Uja () = 2U5 ()] + geu (uy)- (1.8)

This lattice differential equation (LDE) can be seen as the nearest-neighbour uniform spatial dis-
cretization of the PDE (1.1) on the grid hZ.

Mathematically speaking, the transition from (1.1) to (1.8) breaks the continuous translational
symmetry of the underlying space. Indeed, (1.8) merely admits the discrete group of symmetries
j+— j+k with k € Z. As a consequence, travelling wave solutions

U;(t) = ®(jh + ct) (1.9)

can no longer be seen as equilibria in an appropriate comoving frame. Instead, they must be treated
as periodic solutions modulo the discrete shift symmetry discussed above. The resulting challenges
occur frequently in similar discrete settings and general techniques have been developed to overcome
them [8, 17, 29].

Naturally, the 0 < h < 1 regime is the most interesting from the perspective of numerical
analysis. However, we remark here that many physical and biological systems have a discrete spatial
structure for which it is natural to take h ~ 1. Indeed, genuinely discrete phenomena such as phase
transitions in Ising models [5], crystal growth in materials [13], propagation of action potentials in
myelinated nerve fibers [7] and phase mixing in martensitic structures [63] have all been modelled
using equations similar to (1.8). The list of applications will undoubtedly expand over time as the
mathematical tools for analyzing LDEs are improved.

Substituting the Ansatz (1.9) into (1.8), we obtain the travelling wave equation

(€)= 15 [B(E — ) + BE+B) — 2(E)] + g (B(E): ). (1.10)
Due to the presence of the shifted arguments such equations are known as functional differential
equations of mixed type (MFDEs). Mathematically speaking, the unbounded second derivative op-
erator in (1.4) has been replaced by a bounded second-difference operator. In addition, the transition
¢ — 0 is now singular since it changes the structure of the equation. As a consequence, there is a
fundamental difference between standing and moving wave solutions to (1.8).

In the anti-continuum regime h > 1, the second-difference operator can be treated as a small
perturbation to the remaining ODE. An elegant construction pioneered by Keener [45] allows one
to construct standing waves for a # % that satisfy the boundary conditions (1.5) and block the two
stable background states ® = 0 and ® = 1 from invading the domain. In particular, the simple
geometric condition (1.6) is violated in this setting. This phenomenon is often referred to as pinning
or propagation failure and has attracted a considerable amount of attention [3, 20, 22, 23, 34, 39].

In the intermediate h ~ 1 regime the shifted terms cannot be handled so easily and one needs to
understand the full MFDE. Such equations are ill-posed as initial value problems and hence must be
handled delicately. Several important tools have been developed to accomplish this, such as Fredholm
theory [48] and exponential dichotomies [31, 49, 57, 58].

Using a global homotopy argument together with the comparison principle, Mallet-Paret con-
structed a branch of solutions (®(a),c(a)) to (1.10) with (1.5), in which c(a) is unique and ®(a)



is unique up to translation when ¢(a) # 0. For the uniform spatial discretization of the FitzHugh-
Nagumo PDE (1.3), a generalization of Lin’s method can be used to establish a version of the
exchange Lemma for MFDEs and construct stable travelling pulses [40, 41].

In the continuum regime 0 < h < 1, a natural first step is to construct spatially-discrete waves
as small perturbations from the PDE waves (®,,c.). As explained above however, the transition
between (1.4) and (1.10) is highly singular. Nevertheless, Johann [43] developed a version of the
implicit function theorem that can achieve this in some settings. Our inspiration for the present
paper however comes from the spectral convergence approach developed by Bates and his coauthors
in [4].

A key role in this approach is reserved for the linear operator

[Chsunirt]() = /() + 2 [v(€ +R) +v(€ — ) — 20(6)] + gl (Ba(€:a0(€),  (11)

which can be seen as the linearization of (1.10) around the PDE wave ®.,. This operator is a singularly
perturbed version of the PDE linearization

[Lew](§) = —cv'(€) + 0"(£) + Geun (4 (§); @)v (&) (1.12)

The main contribution in [4] is that Fredholm properties of Ly, are transferred to L unit. The latter
operator can then be used in a standard fashion to close a fixed-point argument and construct a
solution to (1.10) that is close to (®., c.).

Stated more precisely, the authors fix a constant § > 0 and use the invertibility of Ly, + d to
show that also Lp.ynir + ¢ is invertible for small ~ > 0. In particular, they consider bounded weakly-
converging sequences {v;} C H' and {w;} C L? with (Lp.unif + 6)v; = w; and set out to find a
lower bound for w; that is uniform in ¢ and h. This can be achieved by picking a large compact
interval K and extracting a subsequence of {v;} that converges strongly in L?(K). Special care must
therefore be taken to rule out the limitless transfer of energy into oscillatory or tail modes, which
are not visible in this strong limit. Spectral properties of the (discrete) Laplacian together with the
bistable structure of the nonlinearity g provide the control on {v;} that is necessary for this.

The results in [4] are actually strong enough to handle discretizations of the Laplacian that have
infinite range interactions. In addition, this approach was recently generalized [60] for use in multi-
component reaction-diffusion problems such as the FitzHugh-Nagumo system (1.3). We emphasize
that this generalization also allows one to establish the stability of the constructed waves, which is
an important reason for us to pursue this line of thought in the present paper.

Uniform spatial-temporal discretizations A natural next step is to study the impact of tem-
poral discretization schemes. In order to set the stage, we apply the backward-Euler discretization
with time-step At to the temporal derivative in (1.8), which leads to the fully discrete system

ﬁ [U] (TLAt) — Uj ((n — 1)At)] = # [Uj_l(nAt) + Uj+1(nAt) — 2Uj (nAt)]

(1.13)
+Jeub (Uj (nAt); a) .
This type of system is commonly referred to as a coupled map lattice (CML). Such systems are used
as stand-alone models across a wide range of disciplines, from the construction of hash functions [65]
to the study of population dynamics [19].

The backward-Euler discretization is part of a family of six so-called backward differentiation
formula (BDF) schemes for discretizing the temporal derivative. These are well-known multistep
methods that are appropriate for parabolic PDEs due to their numerical stability properties. In [42]
we analyzed these BDF methods and constructed fully discretized travelling wave solutions

U;(nAt) = ®(j + ncAt), O(—o0) =0, O(+o00) =1 (1.14)



for (1.13) and its five higher order counterparts. This continued the program that was initiated in
[23-25] to study the impact of temporal and full discretization schemes on various reaction-diffusion
systems. Indeed, these papers studied versions of (1.1) with various smooth and piecewise linear
bistable nonlinearities. The authors used adhoc techniques to obtain rigorous, formal and first order
information concerning the change in the dynamics of traveling wave solutions. In addition, in [17]
the authors considered the forward-Euler counterpart of (1.13) and used Poincaré return-maps and
topological arguments to obtain the existence of fully-discretized waves.

We note that the fully discrete front solutions (1.14) to (1.13) must satisfy the difference equation

P(E) =P —cA)] = 7z[P(E—h)+ P(E+ D) = 2D(E)] + geun (P(€): ). (1.15)
In view of the discussion above it is natural to ask whether the ¢(a) relation can become multi-valued.
This question is answered affirmatively by the numerical and theoretical results in [42]. Related
phenomena have been observed in monostable KPP systems [51] in the presence of inhomogeneities.

The key technical ingredient in our construction of the front solutions (1.14) is the understanding
of the fully discrete operator

[Lhav](€) = —2z[() —v(€ — A + 7z [v(€ — 1) +v(€ + 1) — 20(€)]
F9eun(2(£); @)v(8),

in which (®, ¢) is the spatially-discrete travelling wave (1.10). The main contribution in [42] is that
we modified the approach of [4] that was discussed above in such a way that Fredholm properties
can be transferred from the spatially-discrete operators Ly, unit to the fully-discrete operators Ly a¢.
In our view this presents a further reason for focussing on this spectral convergence approach here.

(1.16)

Arclength equidistribution Most efficient modern solvers do not use fixed spatial grids but
concentrate their meshpoints in areas where the solution under construction fluctuates the most. In
particular, let us write {z;(t)} for the positions of the grid points. Introducing the approximants

U;(t) = u(x;(t),t), (1.17)
we may use (1.1) to compute
wUi(t) = ua(z;(t),0)d;(t) + e (z;(t), 1)
= g (x;(t), 1)@ (t) + tga (x;(£), ) + geun (u(acj(t), t);a)

in the special case that the approximation (1.17) is exact. Using central differences to discretize the
spatial derivatives in (1.18) on the grid x;(t), we obtain the LDE

(1.18)

U, = [—Uf‘“‘”j-l}j:j b2 (Yl UnitUi) g (U a). (1.19)

Tjp1—Tj—1 Tjpr1—Tj-1 LTj—j1 Tjr1—T;

This system should be compared to [38, Egs. (1.12)-(1.13)] where a similar procedure was applied
to Burgers’ equation.

In order to close the system, we need to describe the behaviour of the gridpoints. For illustrative
purposes, let us consider the so-called MMPDE5 method that was originally developed by Huang,
Ren, and Russell [36, 37, 55]. This method is efficient and relatively easy to formulate for our
problem. In particular, inspecting [38, Eqs. (2.52), (2.53), (2.57)], the gridpoint behaviour can be
described by

Ti‘j = \/($j+1 — .23]')2 + (Uj+1 — Uj)2 - \/(Z‘j_l - l‘j)z + (Uj_l — Uj)27 (120)

in which 7 > 0 is a tunable speed parameter. In the terminology of [38], we are using the arclength

monitor function
pla,t) = /1 +u2. (1.21)

Indeed, the update rule (1.20) acts to equalize the arclength of the solution profile between grid-
points.




Adaptive meshing Numerical techniques involving non-constant grids have attracted tremendous
attention in the search for accurate and efficient approximation procedures for differential equations.
The first method of this type that is based upon an equidistribution principle was described by de
Boor [18]. The method was developed to efficiently solve boundary value problems for ordinary
differential equations. After each step in the numerical iteration scheme, the error is computed in
a pointwise fashion. One can subsequently choose new gridpoints in such a way that this error is
equally distributed over each subinterval in the new mesh. This technique turned out to be very
effective and has also been used for time dependent (parabolic) PDEs in one space dimension.

The MMPDES method described above is an r-adaptive refinement scheme in the terminology of
the finite element community, since the mesh is continuously relocating as it adapts to the solution
of the PDE being solved. The equations that determine the movement of the mesh are generally
independent of the PDE being solved, but are dependent on the solution of the underlying physical
PDE. Several approaches have been developed that are relatively simple to program and robust
with respect to the choice of adjustable parameters. The recent book [38] contains a comprehensive
treatment of the most important moving mesh methods, including the MMPDEDH scheme described
above. Further references can be found in the review articles [12] and [33].

The literature concerning convergence results for moving mesh methods is somewhat limited.
Results have been obtained [6, 53, 54] for finite difference methods applied to singularly perturbed
two-point boundary value problems and reaction-diffusion equations. However, these require a-priori
knowledge of the mesh behaviour and explicitly use the singular part of the exact solution. Results
that do not require such a-priori knowledge are available for linear one-dimensional elliptic equations
[2] and one-dimensional quasi-linear convection-diffusion problems [46]. For combustion PDEs that
feature blow-up behaviour, one can use scaling invariance and moving mesh methods to recreate
the scaling laws inherent in the exact blow-up solutions [11]. Finally, the behavior of moving mesh
schemes for travelling wave solutions of the Fisher equation, which is the monostable counterpart of
(1.1), was investigated in [52].

Results and broader goals Inspection of the coupled system (1.19)-(1.20) shows that one loses
the comparison principle, even if z is treated as a known function. Such drastic structural changes
are a common feature when applying discretization schemes and we refer to [61] for an interesting
discussion. For our purposes here, this means that we will have to consider perturbative techniques to
analyze (1.19)-(1.20), viewing the speed parameter 7 and the average arclength between gridpoints
as small parameters.

In this paper we focus on the singular case 7 = 0, which allows us to rewrite (1.20) as

h= \/(%‘H —z;)? + (Ujr —Uj)* = \/(%'71 —z;)* + (Uj-1 = Uj)? (1.22)

for some constant h > 0 that we take to be small. In particular, we obtain

Tjp1— T = \/h2 = (Uj+1 = Uy)? (1.23)

for all j € Z. In order to fix the absolute positions of the gridpoints, we impose the boundary
condition

lim z;(t) —jh=0 (1.24)

J——0o0

at each time ¢ > 0. Our main results state that the resulting system is well-posed and admits
travelling wave solutions

U;(t) = ®(a; (1) + ct) (1.25)

that satisfy the boundary conditions (1.5). These travelling waves (®, ¢) are small perturbations of
the PDE waves (®,, c.).



We view our work here as a first step towards understanding the impact of adaptive discretization
schemes on travelling waves and other patterns that exist for all time. In particular, we believe that
the waves constructed here can be seen as a slow manifold for the dynamics of the full system (1.19)-
(1.20). Using the Fredholm theory that we develop in this paper one should be able to effectively
track the fast grid-dynamics in the 0 < 7 < 1 regime. A further step in the program would be to
also handle temporal discretizations, inspired by the approach developed in [42] that we described
above. Finally, we feel that it is important to understand the stability of the discretized waves under
the full dynamics of the numerical scheme.

We are specially interested here in the pinning phenomenon. Indeed, numerical observations
indicate that the set of detuning parameters a for which ¢(a) = 0 shrinks dramatically when using
adaptive discretizations. Understanding this in a rigorous fashion would give considerable insight into
the theoretical benefits of adaptive grids compared to the practical benefits of increased performance.
Preliminary results in this direction can be found in [35].

Let us emphasize that the application range of our techniques does not appear to be restricted
to the scalar problem (1.1) or the specific grid-update scheme (1.20). Indeed, using the framework
developed in [60], it should be possible to perform a similar analysis for the FitzHugh-Nagumo equa-
tion PDE (1.3) and other multi-component reaction-diffusion problems. In addition, any numerical
scheme based on the arclength monitor function will share (1.23) as the instantaneous equidistribu-
tion limit.

Reduction procedure The first step in our program to construct the travelling waves (1.25) is
to eliminate the variable z from (1.19). In view of the boundary condition (1.24), we can repeatedly
apply (1.23) to obtain

zr — kh = Z?;iw(\/}ﬂ — (Ujs1—Uj)? = h)

_ Zl?_l (Ujs1-U,)? (1.26)
I=70 /R —(Uj1=Uj)2+h
Upon introducing the discrete derivative
[0;U); = h 'Uj11 — Uj), (1.27)
we note that this expression is well-defined if we impose the conditions
o). <1, opU e . (1.28)
A direct differentiation yields
k-1
) Uiy — Us ) .
=y L Uy — U), (1.29)

V= (Ui = Uj)?

which is well-defined if also 9;”U € f2. Using (1.19) to eliminate 9;'U, we obtain the implicit
expression

k—1
Ty = Z f(UjflaUj+1,Uj,Uj+2,i’j+1,{tj). (130)

j=—o00

This equation has a unique solution that can be written as

T = Vi ({Uj}jgim {0, U3} j<r {0 05 Uy Yj<i1, W;Taialij}jsmz) (1.31)



for some function Y that we compute explicitly in §8. Using (1.23) to eliminate the remaining terms
involving x from (1.19), this allows us to write

Uy = Gr <{Uj}j5k’ {05 U} i<k {05 05 U} j<i,s {3;T3§3;TU1}J'§1«—2) (1.32)

for some function G that we describe explicitly in §9. We note that the partial derivatives of G can
be controlled uniformly for small h, so the representation (1.32) isolates all the terms that have the
potential to blow up as h | 0. By choosing an appropriate space for the sequences U, we show in
§12 that (1.32) can be seen as a well-posed initial value problem.

The discrete third derivative in (1.32) arises directly from (1.29), which forces us to take a discrete
derivative of our second-order original system. Fortunately, one can use a discrete summation-by-
parts technique to eliminate this derivative. The price that needs to be paid is that the right-hand-side
of (1.32) becomes rather convoluted, containing terms of the form (8, 9, U)2. Using PDE terminol-
ogy, the equation becomes fully nonlinear rather than semi-linear and this requires considerable
care.

We are aided by the special structure of G, which is a product of two sums. More precisely, taking
a discrete derivative of G does not involve fourth-order discrete derivatives of U. In fact, taking a
discrete derivative of (1.32) leads to a semi-linear third-order equation that plays a major role in our
construction. The main purpose of §6 and §10-§13 is to build a framework that allows us to control
the convoluted expressions that arise from this procedure.

Computational frame Based on the discussion above, it appears to be much more natural to
construct wave-like solutions to the scalar LDE (1.32) in the computational coordinate 7 = jh + ct
rather than the physical coordinate £ = z;(t) + ct. Indeed, attempting to use { will lead to an
equation for the waveprofile ® with shifts that depend on the waveprofile ® itself. In particular, the
resulting wave equation is a state-dependent MFDE with infinite range interactions. At the moment,
even state-dependent delay equations with a finite number of shifts are technically very challenging
to analyze, requiring special care in the linearization procedure [64]. Indeed, linearizations typically
involve higher order (continuous) derivatives, making it very hard to close fixed-point arguments.

It turns out that the two points of view described above are closely related. In order to see this,
let us assume for the moment that we have found a triplet (®, ¢, z) for which z and the function U
defined in (1.25) satisfy (1.19) together with (1.23)-(1.24). Let us also assume that for each ¥ € R
there is a unique increasing sequence ;.9 with yo,9 = ¥ for which

(@(j41:0) — @(W30))” + Wj410 — Yji0)* = B (1.33)

holds for all j € Z. This can be arranged by imposing a-priori Lipschitz bounds on ® and & and
picking h > 0 to be sufficiently small. Finally, let us assume for definiteness that ¢ > 0 and that the
wave outruns the grid in the sense that @o(t) + ¢ > € > 0.

A direct consequence of this inequality is that

2o(T) + T = x1(0) (1.34)
for some 7' > 0, which implies
Uo(T) = U1 (0) = @(21(0)). (1.35)
The uniqueness property discussed above hence implies that

Uij(T) = ®(Yjia,(0)) = ®(2541(0)) (1.36)



for all j € Z. Since
(€j11(T) — 2 (1)* = h>— (Ujsa(T) — U;(T))°

h? — (@(xj+2(0)) — <I>(:r,j+1(0))>2 (1.37)
= (2j42(0) — 2;41(0))7,

we see that in fact
xj (T) —|— CT = l‘j+1(0) (138)

for all j € Z. Taking the limit 5 — —oo, the boundary conditions (1.24) imply that ¢T' = h.
Exploiting the well-posedness of our dynamics in forward and backward time, we conclude that

zj(t) = zo(JT +1) + jh (1.39)
holds for all j € Z and t € R. Writing ¥, (¢) = z¢(¥/c), we hence find
xj(t) — jh = Yy (jh + ct), (1.40)
which implies that
Uj(t) = ®(z;(t) + ct) = ®(jh+ Y, (jh + ct) + ct) (1.41)
for all j € Z and t € R. Upon introducing the function
Uy (1) = @7+ U, (7)), (1.42)
this allows us to obtain the representation
(U; (), 2;(t) — jh) = (Yu(jh + ct), Vo (jh + ct)). (1.43)

Motivated by these considerations, the main focus of this paper is to construct the waveprofiles
Uy directly in the computational coordinates. We treat these profiles as small perturbations from
the function ¥, that is defined as the arclength reparametrization of the PDE waveprofile ®,. In
fact, we show that for arbitrary solutions U to (1.32) for which U(¢g) is close to W, (hZ + ¥), we
indeed have the pointwise inequalities |Z(to)| < |c| whenever c is sufficiently close to c,. This can be
used to show that the coordinate transformation (1.42) can be inverted, allowing us to reconstruct
the profile (&) from Uy (7).

In §3 we show that the stretched profile ¥, satisfies the ODE

—1/2

e[l =W ()% V(1) = [1 - W, (7)?] 72\1’;’(7) + goub (Vs (7);a). (1.44)

Linearizing this equation around V¥,, we obtain the operator
’ 21-3/2 ’ 2172
[Lompv](T) = —cufl = W (r)?] 770/ (1) + [1 = WL(1)?] "0"(7)

- (1.45)
HA[1 = WL (1)) W) T ()0 (7) + Gl (T (7); @) 0(7).

In §3.2 we analyze this operator in some detail and recast it back into the original physical coor-
dinates. In fact, we show that it is not equivalent to the standard linearization L, introduced in
(1.12). It contains an extra term related to the stretching procedure that vanishes when applied to
0¢®.. On the other hand, in the limits 7 — oo the differences between Ly, and Ly, disappear.
The essential spectrum hence remains unchanged. In addition, we explicitly show that the kernel of
Lemp is also one-dimensional.



The singular perturbation The travelling wave equation in the computational coordinates can
be written as

V' =G(W,0;W,0; 0, ,0{ 0 0, V), (1.46)

in which the discrete derivatives now act on functions instead of sequences. Linearizing around the
stretched wave U,, we obtain operators Ly that in the formal h | 0 limit reduce to

[L.v](T) = [1 - (7)2] [ﬁcmpv] (1) + V. (1) f_TOO V(T [Lempv] (") d7'. (1.47)

The twisted structure is a direct consequence of the procedure that we used to eliminate the & terms
from the LDE (1.19). In §3.3 we study the integral transform present in (1.47), which allows us to
transfer key properties of the operator Lemp to L.

In §12 we compute the precise expression for L, which is too convoluted to present here. We
remark however that it is a version of £, where the integral has been replaced by a sum and all
derivatives except —c,v’ have been replaced by their discrete counterparts.

A crucial step in our program is to establish Fredholm properties for the operator £;. In par-
ticular, we generalize the spectral convergence approach described above to understand the singular
transition from L, to Lp. This is a delicate task, since the structure of the operators L, is significantly
more complicated than that of £j,,uni¢. In particular, the integral transform and the non-autonomous
coefficients generate several new terms that were not present in [4].

Our approach hinges on the fact that the new terms can all be shown to be localized in an
appropriate sense. Nevertheless, recalling the sequences {v;} C H' and {w;} C L? with (£, +8)v; =
wj, we need to extract subsequences for which the discrete derivatives of v; also converge strongly on
compact intervals. We accomplish this by carefully controlling the size of the second-order discrete
derivatives. This requires frequent use of a discrete summation-by-parts procedure to isolate this
derivative from the convoluted expressions.

We believe that our understanding of the operators L£; will turn out to be very helpful when
carrying out the broader program discussed above. Indeed, following the approach in [60], we can
obtain information on the linearization around the actual adaptive travelling waves constructed in
this paper. Such information is crucial in order to understand the stability properties of the waves
and could be very helpful towards understanding the 0 < 7 < 1 regime for the full coupled system
(1.19)-(1.20).

Overview This paper is organized as follows. Our main results are formulated in §2. In §3 we
discuss the impact on the PDE wave (@, ¢,) caused by the transition from the physical coordinates
to the computational coordinates. We develop some basic tools that link discrete and continuous
calculus in §4-85. We continue in §6-§7 by building the framework that we use to obtain our estimates
on G and discussing the properties of several important error functions.

The behaviour of the gridpoints is discussed in §8, where we derive an equation for the nonlinearity
Y that describes . We use this expression in §9 to analyze the function G that appears in the reduced
scalar LDE (1.32). In particular, we perform an initial summation by parts procedure to eliminate
the third discrete derivative. In §10-11 we obtain estimates on all the nonlinear functions that appear
as factors in the product structure of G. These estimates are used in §12-§13 to compute tractable
expressions for the linearization of G around ¥, and obtain errors on the residuals.

In §14 we analyze the structure of the linearizations £, and generalize the spectral convergence
method to establish Fredholm properties for these operators. Finally, in §15 we combine all these
ingredients and establish our main results. In particular, we construct the desired travelling waves
by setting up an appropriate fixed-point argument.

Acknowledgements. Hupkes acknowledges support from the Netherlands Organization for Sci-
entific Research (NWO) (grant 639.032.612). Van Vleck acknowledges support from the NSF (DMS-
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1419047). Both authors wish to thank W. Huang for helpful discussions during the conception and
writing of this paper.

2 Main results
The main results of this paper concern adaptive-grid discretizations of the scalar PDE

In particular, we fix h > 0 and consider a sequence of gridpoints that we index somewhat unconven-
tionally by hZ, in order to highlight the scale of their spatial distribution and prevent cumbersome
coordinate transformations.

For any j € Z, we write x5, (t) for the time-dependent location of the relevant gridpoint and U (t)
for the associated function value, which ideally should be a close approximation for u(xjh(t), t). The
adaptive scheme that we study here can be formulated as

Ontt) = [ | 0 22
e St + S o).
in which z(t) is defined implicitly by demanding that
(zG0n®) — 2n ) + Ugron(t) = Uin(®)? = b2 (2.3)
and imposing the boundary constraint
lim [z;n(t) — jh] = 0. (2.4)

j——o00

Throughout the paper, we assume that the nonlinearity g satisfies the following standard bistability
condition.

(Hg) The nonlinearity g : R — R is C3-smooth and has a bistable structure, in the sense that there
exists a constant 0 < a < 1 such that we have

9(0) =g(a) =g(1) =0,  ¢'(0)<0, ¢'(1) <0, (2.5)
together with

g(u) <0 for u € (0,a) U (1,00), g(u) >0 for u € (—o0,—1) U (a,1). (2.6)

In §2.1 we introduce a scalar lattice differential equation for U that is equivalent to (2.2)-(2.4) in
an appropriate sense, but much more suitable for analysis. In §2.2 we exploit this reduced equation to
describe a bifurcation result that allows us to obtain travelling wave solutions to (2.2) for 0 < h < 1.

2.1 The reduced system

Our main results in this first part show how the implicit requirements (2.3)-(2.4) can be made
explicit. In particular, we introduce the equilibrium grid

[eq;n)jn = jh (2.7)
together with the sequence space

X, = {z:hZ— Rfor which ||z[y, = [T — Teqnll o = sup;ez |70 — jh| < 0o} (2.8)
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and write

z(t) ={z;jn(t)}jez € Xn. (2.9)
Our goal is to formulate a well-posed equation for the dynamics of
U(t) = {Ujh(t)}jeZ € foc(hZ,R) (2.10)

from which the dependence on x and & has been eliminated.
As a preparation, for any U € £*°(hZ;R) we introduce the notation

otU € £ (hZ;R), 0~ U € (= (hZ;R), U € 1°°(hZ;R) (2.11)
for the sequences
0+ Uljn = A~ [Ugsnn — Ujnl,
[87U]jh = hil[Ujh _U(j—l)h]7 (2.12)
0°Ulin = (2h) " [UGnyn = U—nyn)-
In addition, for any U € ¢>°(hZ;R) for which [|07U||, < 1, we define the sequences
Fo*=(U) € £°(hZ; R), Foo(U) € £°(hZ;R), Foo(U) € £°(hZ; R) (2.13)
by means of the pointwise identities
O _ o~ U
U = e
For(U) = _o'u
v Vi-@re (2.14)
fOO(U) _ 20°U :
V1-(0+U)2+4/1-(8-U)2’
]:<><>O(U) — 1 FH(U)=F°—(U)

h\/1=(0+U)2+4/1-(8- V)"

We also introduce the Heaviside sequence H € ¢°°(hZ;R) that has

1 for j >0
Hin=90  forj<o0 (2.15)
Finally, we introduce the formal expression
Q) =Y [m [1+ P23 () F 1 (0)] — In [1+]—‘;,7L(U)]-";?,3L(U)”, (2.16)
J3'<J
together with
Vin(U) = —expl-Qu(U Z o f e ihigi] OHRFW) + U] (217)

Upon imposing a summability condition on U it is possible to show that these expressions are
well-defined.

Lemma 2.1 (see §8). Suppose that (Hg) is satisfied, fit h > 0 and consider any U € £°(hZ;R)
for which U — H € (*(hZ;R) and ||07U||, < 1. Then the sequences

QW) ={Qjn}jez, Y(U) ={Vin}tjez (2.18)
are both well-defined and we have
Q(U) € ¢=(hZ;R), V(U) € £ (hZ;R). (2.19)
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Our first main result shows that the expression Y(U) can be used to replace the & term appearing
n (2.2). The remaining terms involving x can be eliminated using the implicit relation (2.3).

Proposition 2.2 (see §8). Suppose that (Hg) is satisfied and fiz h > 0 together with T > 0.
Consider two functions

x:[0,T] — X, U:[0,T] — £°(hZ;R) (2.20)
that satisfy the following properties.
(a) We have the inclusions

t—Ult)—H € CY[0,T);2(hZ;R)),

t a(t) — zeqn € C'(0,T];6(hZ:R)). (2.21)
(b) For every j € Z and 0 <t < T we have the identity
2
T(j+1)n(t) — zjn(t) V%? Ugienn(t) — Ujn(t)) " (2.22)
(¢) For every 0 <t <T we have the limit
lim  [2;,(t) — jh] = 0. (2.23)
j——o0
(d) For every 0 <t <T we have the strict inequality
inf [2G+0n(t) — 2 ()] > 0. (2.24)
(e) For every 0 <t <T and j € Z we have the identity
T _ UG+nn(®)=Ug-na®) ] .
Upnlt) = | Semmaeiety | 2an )
2 UGi-nr®)=U;jn() | Ug+nyn(t)=Ujn(t) ]
+x(j+1)h(t)_$(j—l)h(t) [xjib(t)_m(jfl)h(t) x(j+1)h(t)_$jh(t):| + (Ujh(t))'
(2.25)
Then the function U satisfies the system
Ut)=Fo(U®)Y(U(t) +2F(U®) +g(U)) (2.26)

forall0<t<T.

Conversely, once a solution to (2.26) has been obtained, it is possible to construct a solution to
the full problem (2.2). Indeed, the following result shows how the position of the gridpoints can be
recovered from U (t).

Proposition 2.3 (see §8). Suppose that (Hg) is satisfied and fit h > 0 together with T > 0.
Consider a function U : [0, T] — £>°(hZ;R) that satisfies the following properties.

(a’) We have the inclusion

t—U(t)— H € C'([0,T); ¢*(hZ; R)). (2.27)
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(b’) The strict inequality

|otu@)],, <1 (2.28)
holds for every t € [0,T].
(¢’) For everyt € [0,T] the identity
U(t) = F U (U W) + 27 (U1) +9(U () (229)
is satisfied.
Then upon writing
2
) = ey g 230)

the properties (a), (b), (¢), (d) and (e) from Proposition 2.2 are all satisfied.

We conclude our general analysis of the full problem (2.2) by showing that the reduced system
(2.29) is well-posed in an appropriate sense. Indeed, we establish the following short-term existence
result for a class of summable initial conditions. We remark that the restriction (2.31) on the initial
condition is a natural and unavoidable consequence of the requirement (2.3).

Proposition 2.4 (see §12). Suppose that (Hg) is satisfied and fir h > 0. Consider any U® €
0>°(hZ;R) for which U° — H € (?(hZ;R) and for which

|otu°| <1 (2.31)
Then there exists 67 > 0 and a function U : [0,07] — £°(hZ;R) that has U(0) = U° and that
satisfies the properties (a’), (b°) and (c¢’) from Proposition 2.3 with T = 7.

2.2 Travelling waves

It is well-known that the PDE (2.1) admits a travelling wave solution that connects the two stable
equilibria of g [26]. The key requirement in our next assumption is that this wave is not stationary,

which can be arranged by demanding fol g(u)du # 0.
(H®,) There exists a wave speed c, # 0 and a profile ®, € C°(R,R) that satisfies the limits

lim ®,(¢) =0, lim @,(¢) =1 (2.32)

g——o0 =400
and yields a solution to the PDE (2.1) upon writing

u(z,t) = @u(x + cit). (2.33)

The physical wave coordinate £ = z + ¢.t appearing in (H®,.) is not well-suited for our purposes
here, since the reduced equation (2.29) is formulated in terms of the grid-coordinates hZ. In order
to compensate for this, we introduce the arclength

13
A() = /0 1t ed. (@) de (2.34)

Lemma 2.5. For every 7 € R, there is a unique &.(7) for which

A(&(n) = . (2.35)
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Proof. The existence of the right-inverse &, for A follows from

DeA©) = /1 + (08 ())2 > 1. (2.36)

We are now in a position to introduce the stretched waveprofile ¥, : R — R that is given by

(1) = @, (Eu(7)). (2.37)

This profile ¥, can be seen as the arclength parametrization of the graph of the physical wave ®.,.
The main result of this paper states that for sufficiently small & > 0, the reduced problem (2.29)
admits a travelling wave solution

Uj (t) = \I’h(]h + Cht) (238)

with (Up,cp) = (¥,,c,) in an appropriate sense. These waves are locally unique up to translation.
We note that items (iv) and (v) use the notation d; v = h=[v(- + h) — v(-)] for functions v. In
addition, we use the shorthands L? = L?(R;R) and H' = H'(R;R).

Theorem 2.6 (see §15). Suppose that (Hg) and (H®,) are satisfied. Then there exists a constant
op > 0 together with pairs

(Tp,cn) € CHR;R) x R, (2.39)
defined for 0 < h < dy, such that the following properties are satisfied.
(i) For every 0 < h < 0y, we have the limits

lim W,(¢) =0, lim W,(¢) = 1. (2.40)

£——o0 E—+o0

(ii) For every 0 < h < 6y, we have the strict inequality

sup |Up (T + h) — Up(7)| < h. (2.41)
TER

(iii) For every 0 < h < 6y, the function U : R — £>°(hZ;R) defined by
Ujn(t) = Wi(jh + cpt) (2.42)
satisfies the inclusion
t—U(t)— H € C'(R; *(hZ;R)). (2.43)
In addition, the identity (2.29) and the strict inequality |01 U (t)|| . < 1 both hold for allt € R.
(iv) We have ), — U, € H' for every 0 < h < &, and the limit
len = cul + 1 Wn — Wl o + |0 [ W0 — O] || 0 + 10550 05 [Oh — 0L]|| . =0 (2.44)
holds as h | 0.

(v) Pick any 0 < h < &), and consider a pair (¥,¢) € L x R that has ¥ — ¥, € H* with

IE— e + H\Tff\lf

mt o (@ - w.] |+ lororarte—w|  <wr )

A
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Then the function U:R— 0°(hZ;R) defined by
Uin(t) = Uy, (jh + ét) (2.46)
satisfies the inclusion

te U(t) — H € C°(R; (*(hZ;R)), (2.47)
together with the strict inequality H&*ﬁ”oo <1 for allt € R. In addition, zfﬁ is a solution to
the system (2.29) for allt € R, then we must have

(U(-),8) = (Ya(- +0),cn) (2.48)
for some ¥ € R.

We emphasize that the location of the gridpoints for the waves (2.38) can be determined by
using (2.30). In fact, our final result shows how these waves in the computational coordinates can
be interpreted as wave-like objects in the original physical coordinates.

Corollary 2.7 (see §15). Consider the setting of Theorem 2.6. Then there exists a constant 0 <
0p < Oy so that for all 0 < h < §p, there exist pairs

(W' ®,) € CYR;R) x C'(R; R) (2.49)
that satisfy the following properties.
(i) Upon writing

zin(t) = jh+ U Gh+ ent),

(2.50)
Uin(t) = Wn(jh+cnt),

the adaptive grid equations (2.2) - (2.4) are satisfied for all t € R.
(i) For everyt € R and j € Z, the functions defined in (2.50) satisfy the relation
Ujn(t) = @p(zn(t) + cnt). (2.51)
We remark that if (2.38) and (2.51) both hold, simple substitutions yield the identity
Uy (jh+cnt) = Ujn(t)
= &, (jh+ U (G + ent) + ent) (2.52)
= By (jh+ ent + U (h + ent)).
In particular, the main assertion in Corollary 2.7 is that the perturbed coordinate transformation
En(r) =7+ U (7) (2.53)

is invertible for sufficiently small & > 0, allowing us to transfer the waves back to the original physical
framework.
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3 Stretched PDE waves

We recall the functions A(§) and &, introduced in Lemma 2.5, which are related to the arclength
parametrization of ®,. We also recall the stretched waveprofile

W, (r) = 0. (€.(7)) (3.1)

and introduce the notation

1(7) = V1= [0:-0.](1)2 = V1 - Wi(r)2. (3-2)

Our first main result shows that ~y, is well-defined and that it can be used to translate the travelling
wave equation for the continuum model (2.1) into the stretched computational coordinates.

Proposition 3.1. Suppose that (Hg) and (H®.) are satisfied. Then we have ¥, € C3(R,R) and
there exists kK > 0 so that the bounds

0< V(1)< 1—r, VE <7(1) <1 (3.3)

hold for all T € R. In addition, there exists a constant K > 0 together with exponents n_ >
max{0,c.} and ny > max{0, —c.} for which the bound

0. (7)] + [0+ )+ ()] + |9 () + [0 ()| < kel 3.9)

holds whenever T < 0, while the bound

A
° |
3
¥
2
—
w0
ot
S~—"

1= 0 (7) 4+ (L) + [0 + [0 ()] + |98 ()| + ()|
holds for all T > 0. Finally, for every T € R we have the identity
cATH W) = AW + g(Wa(r), (3.6)
together with the differentiated version
AT MWIT) = ATHRWY() + A (WL () + ¢ (B()W(r). (3.7)
Inspired by (3.7), we introduce the linear operator Lomp : H 2 — L? given by
Lompt = —cy30 + 97" + 4700 070 + ¢/ (0w, (3.8)

which corresponds with the linearization of (3.6) around W,. We also define the formal adjoint
£adl: H? — L? that acts as

Lahw = 0 [y w] + O [y w] = 0- (47 WL T w] + ¢ (T )w. (3.9)

Indeed, one may easily verify that for any pair (v, w) € H? x H? we have

(LompV, W)z = (v,Eé‘Sljpw)Lz. (3.10)
Finally, we introduce the function
. R ! -1 R .
wii(r) = [ [art e e @tuyar| e e dw ), (3.11)

We note that the exponential bounds (3.4)-(3.5) together with (3.3) imply that U2 is a well-defined
function that decays exponentially as 7 — £o0o0. The second main result in this section shows that

we have now encountered all the kernel elements of Lcmy, and E?ﬂfp.
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Proposition 3.2. Suppose that (Hg) and (H®.) both hold. Then the operators Lem, : H? — L?
and £24 - H? — L? are both Fredholm with index zero. In addition, we have the identities

cmp
Ker (ﬁcmp) = span{¥.},
_ 4 (3.12)
Ker <£§$p> = span{¥2Y},

In §14 we will see that the linearization of the adaptive grid problem leads naturally to a twisted
version of Lemp. To account for this, we introduce the notation

[/,f}(ﬂ /TOO () dr', [/+f}(7) /Toof(T')dT/ (3.13)

for the bounded continuous functions that arise after integrating a function f € L'. This allows us
to define the integral transforms

T.f = v2f =Y [,

TV = AR2[f =yt [ L], (314
now for any f € L2
We give a detailed discussion of these transforms in §3.3 below. For now, we compute
TV, = 7 2[V, =V, [ 300 ]
= 2L Vit - 1] (3.15)
= v,
which means that we have normalized ¥2Y in such a way that
(U2, T0L) = (T8, o) = 1. (3.16)
In particular, we see that A = 0 is a simple eigenvalue for the twisted eigenvalue problem
Lempv = AT, (3.17)

This allows us to obtain the following essential estimate on the behaviour of [Lemp —67,] 7! as § | 0,
which will allow us to transfer the Fredholm properties of L. to its discrete twisted counterpart
in §14.

Corollary 3.3. Suppose that (Hg) and (H®,) both hold. Then Lewmp — 6T, and L33, — ST are
both invertible as linear maps from H? into L? for all sufficiently small § > 0. In addition, there
exists K > 0 so that the bounds

| emp = 0T f 467 @ s < K e
dj adj)—1 —1yadj /gyt (3.18)
icadi, ozt 4 0w e < KIS

hold for all f € L? and all sufficiently small § > 0.

3.1 Coordinate transformation

Consider two functions femp : R — R and fonys : R — R. We introduce the stretching operator S,
and the compression operator S ! that act as

[8* fphys] (T) = fphys (f* (7—)) ’ [nglfcnlp] (5) = fcmp (-’4(5)) . (319)
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In particular, for any 7 € R and £ € R we have the identities

[Szlfcmp] (5*(7—)) = fcmp(T)a [S*fphyS] (-A(f)) = fphyS(f)- (3.20)

In order to understand the effect of these coordinate transformations on integrals and derivatives,
we first need to understand &..

Lemma 3.4. Suppose that (Hg) and (H®, ) are satisfied. Then we have &, € CH(R;R). In addition,
for any 7 € R we have

—1/2

&) = [+ 0. ()] (3.21)
= (7).

Proof. The first identity in (3.21) follows by differentiating 7 = A(&,(7)) with respect to 7. Using
the chain rule we compute

WL(7)

8, (@ (£.(7))]
[06®.] (&(T))€L(T) (3.22)
= [0e®.] (6 (7)) [1+ 0D (€(7)] 2

Squaring this identity yields

WL(r)? = 1= [140:0.((7)°] (3.23)

which gives
[140c@, (6.(7))7] " =1 - W (r)? =5 (r)?, (3.24)
as desired. O

Corollary 3.5. Suppose that (Hg) and (H®.) are satisfied. Then for any femp € C(R,R) N L? and
Jonys € C(R,R) N L? we have the identity

<fphySaS;1mep>L2 = <S*fphy577*fc1np>L27 (3'25)
together with
<S*fphyS7 fcrnp>L2 = <fphysa8;1 [7;1fcmp]>L2- (326)
In particular, S. and S7' can be interpreted as elements of L(L?; L?).
Proof. The substitution rule allows us to compute
<fphys»8;1fcmp>L2 = ffphys(g)fcmp(A(g)) d§
= [ fotys(&(7)) femp (A(4(7))) €L(7) dT

(3.27)
f fphys (f* (T)) fcmp (7—) V= (T) dr
= <5* fphysa Vx fcmp>L2 .
The second identity follows in a similar fashion. O

Corollary 3.6. Suppose that (Hg) and (H®.) are satisfied. Then for any fomp € H', we have
S*_lfcrnp S I{1 with

aE [S;Ifcmp} = 5;1 [7;18chmp] . (328)
In addition, for any fonys € H', we have Sy fonys € H' with
0r S fonys) = 1+Si[O¢ fonys]- (3.29)
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Proof. For femp € C*(R;R) we may use the chain rule to compute

O [ femp (A())] = [0r femp] (A(£)) D A(E) = [0 femp) (A(€)) [€1(A©)] - (3.30)

In addition, for fonys € C*(R;R) we compute
8‘r[fphys (5*(7))] = [aEfphyS] (f*(T)) ;(T) (3'31)
The desired identities now follow from (3.19), (3.20) and (3.21). The final remark in Corollary 3.5
can be used to extend these results to fomp € H' and fphys € H' O

The physical wave @, satisfies the travelling wave ODE

€4 0¢ @ (§) = Oee 4 (8) + 9(24(6)) (3.32)

for all £ € R. It is well known that the limiting behaviour of ®, as £ — 400 depends on the roots
of the characteristic functions

As(n) = —cn+17° + ¢ (9.(£0)). (3.33)
In particular, upon writing
1 1 1 1
_ = 2 2 A hl -
- = 50 + 5V 4¢'(0) > 5 Cr + 5 |cx| (3.34)
and
1 1 1 1
ne == |50~ 3VE—4gM)] > —5e + 5 e, (3.35)
we have the bounds
|0¢®.(6)| < Ke 1l (3.36)

for £ € R4. In order to transfer this exponential bound to ¥/,, we need to understand the differences

Eu(T) — 7.

Lemma 3.7. Suppose that (Hg) and (H®.) are satisfied. Then there exists K > 0 so that the
inequality

|€(T) = T| < K (3.37)
holds for any T € R.

Proof. For any x € R we have the standard inequality

1
Vitaz-—1< 57 (3.38)

In particular, we see that

_ 1 fa /(I)* / 2d /
A =€l < 350 2(5) 3 (3:30)
< 5 10:2]e
which gives
1
€e(7) = 7] = [€(r) = A(&()| < 5 10 @7 - (3.40)
O
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Proof of Proposition 3.1. Using ®, = S; 1V, together with the commutation relation
g(S1w) = S g(w.), (3.41)
we can apply Corollary 3.6 to the travelling wave ODE (3.32) to obtain
ST L] = S [ 0 [ L] + S g (W) (3.42)
Using the identity
Vi == WL (3.43)

together with the definition 2 = 1 — [¥]?, this gives

CAT WL = AW (WL 4 (W) 54
= 71U+ g().
A further differentiation yields
Yy O e ULV = N 4 Ay SO g (0,) T, (3.45)

which can be simplified to (3.7).
The exponential bounds (3.4)-(3.5) now follow from Lemma 3.7 and (3.36), using (3.6) and its

derivatives to understand the derivatives of order two and higher for g (1) for 2 < ¢ < 5. The
inequality (3.3) for ¥/, follows directly from (3.23) and the fact that d¢®, is uniformly bounded.
Finally, the inequalities (3.3) for v, follow from

1> /1-0(1)2>/1-(1-kK)2=V2k—k2> k. (3.46)
O

3.2 Linear operators

In principle, most of the statements in Proposition 3.2 can be obtained by an appeal to standard
Sturm-Liouville theory. We pursue a more explicit approach here in the hope that it can play a role
towards generalizing the theory developed in this paper to non-scalar systems.

Our first two results highlight the fact that our coordinate transformation does not simply map
Lemp and £24  onto the standard linear operators

cmp
Loy = =0y + ey + 9 (Du)y, (3.47)
L2V = e Dez+ Oez 4 ¢/ (PL)2 .

obtained by linearizing the travelling wave ODE (3.32) around ®.. Indeed, the correct operators to
consider are given by

2 Oee®s
Lonysty = Lowy + (024 1+(£3§§¢*)285[3§%*}’ (3.48)
adj adij 2 B, .
Limez = Lotz = 06| (00.) 7]

Lemma 3.8. Suppose that (Hg) and (H®.,) are satisfied. Then for any v € H* we have the identity

Lompv = 7' SelpnysS: i M) (3.49)
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Proof. We write y = S, [y, 1v], so that v, 'v = S,y. Using Corollary 3.6 we get
Si0ey = 7,10 [ 1]
= %WV + %

In particular, (3.7) allows us to write

Suey = eV WL 4 Ay T ()2 (W) + g (T (1 — 7)o,

In addition, we compute
S0y = 77'0-[S.0¢y]
— 4'7_7(\I/l) (\I];/) v +")/_5(\I’”\I/” + \11/ \I’”/)’U +’Y_5\I’I \I/// /
A2 WL 4y

We hence see
VIS Ly = e () 4 3O W T 4 g (W)
= Lompt + 75 8(W)20 — 77 OWLUL
We now write

_ Oge P e Py )?
['physy - »thy + agq’* 1+(£3iq>*)2 3§y - 1&5&@02 Y.

Exploiting the identities

S, [0:9. ] = 7o,
S[1+(9:2.)2] = 772,

together with (3.50), we may compute
V'S Lpnysy = e SeLliwy + s LY [y ALY 4y 2]
=7 T [y ]
Vo ' SiLlewy — vi O (UY) P + 9 WL W

= Ccmpvv

as desired.

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

O

Lemma 3.9. Suppose that (Hg) and (H®. ) are satisfied. Then for any w € H? we have the identity

£adiy = 8L Sy,

cmp phys
Proof. Pick v € H?. Applying Corollary 3.5 twice, we compute
<£cmpv,w>L2 = <7;1$ ‘Cphyssilf}/;lv w>L2
<8 /:phbe Y v ’Y* > 2
(L physS v, 87 [ w]>L2
= (87 e L ST i)
(0,8, L2 S v2w]) e,

phys

The result now follows from (3.10).
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The explicit form (3.48) allows one to immediately verify that

LohysOc Py = L0 Py = 0. (3.59)
Upon defining
(I)idj;tw(g) _ efc*gagq)*(f), (3.60)
it is a standard exercise to verify that Efgj@idj;tw = 0. We now construct a kernel element for Ezijys
by writing
(I)idj;phyS(g) — 1+ (3§q>*(§))2¢idj;tW(§). (3.61)
Lemma 3.10. Suppose that (Hg) and (H®,) are satisfied. Then we have
dj dj;phys __
Lo PLTPE = 0. (3.62)
Proof. We first compute
[’adj(bidj;phys _ ) O Py O0ce s q):dj;tw+ |: 0P 0ce D :|(I>idj;tw
tw O 11 (0c3.) ¢ /1109, )2 (3.63)
49 O P Oge P 9 q)adj;tw .
1+ (8 ®)2 £ '
Upon writing
o 1 2 Oee®. adj;phys
T = 540 {(35@*) Toayr &Y } (3.64)
we also compute
. 1 2 Oee P adj;twi|
T = 7% {@5@*) ERE R 3.65
_ [ O P Oge o @adj;tw} n (9ee®.)? padistw e P, Dee P 9 PRdistw (3.65)
11(0:0.)2 Jit(0:202 * VIt (@@ )2
In particular, we find
adj adj;phys e PuOce Py xadjtw e P Oce P adj;tw (9ee®4)? adj;tw
‘Cphys@* - % \/W * + 1+(85<I>*)27 f(p* \/W * . (366)
The result now follows from the computation
0D, 0D = 0c®.0¢[e” 0cD.] (3.67)
= 00, Y 4 GV, '
O

Lemma 3.11. Suppose that (Hg) and (H®,) are satisfied and recall the definition (3.11). Then the
identity

. R, —1 ‘
witl = [ [ nwi (e S e O by ) ar] s v (3.68)

holds. In particular, we have Cigfplllidj =0.
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Proof. This follows directly from

S.[0:®.] = 7',
SIVIFE)) = 7, (3.69)
together with the computation
Sl et n) = ees
R (3.70)
= e % ¢ ’y*(s)ds.
Here we used £,.(0) = 0 and &,(s) = v.(s). O
Lemma 3.12. Suppose that (Hg) and (H®.) are satisfied. Then we have
Ker Lyhys = span{®’ }. (3.71)

Proof. A potential second, linearly independent kernel element can be written as ad:®. for some
function a. We hence compute

Ephys[a8§q>*] = —C*agaag(b* + 85504‘95@* + 28504855(1)* + (35@*)2%(1%0& (372)
Setting the right hand side to zero, we find
Oee Py O P Oce P
Oeeav = [c* -2 afcb* - 11(6535*)2}85a (573
= O¢|e€ —2m0e®.] — S In [1+ (962.)?] | oo
Choosing an integration constant a, € R, this can be solved to yield
1
et = (0P, ) 2 ———— . 3.74
ke = (0] P s (3.71)
For a, # 0 it is clear that one can choose x > 0 in such a way that
()] = meretess (3.75)
holds for all sufficiently large £ > 1. This prevents ads®. from being bounded. O

Proof of Proposition 3.2. Viewing Lemp, Lphys and Ly, as operators in £(H?; L?), we observe that
their essential spectral are equal. Indeed, the differential equations arising in the £ — 4oo and
7 — too limits agree with each other. In particular, all these operators are Fredholm with index
zero. The description of Ker Lepp follows directly from (3.71) and the correspondence (3.49). The
description of Ker £24  follows directly from Lemma 3.11 and the fact that

cmp

cmp

0 = ind(Lemp) = dim (Ker ccmp) _ dim (Ker £adi ) (3.76)

O

3.3 Integral transforms

Our goals here are to discuss the integral transforms introduced in (3.14) and to prove Corollary
3.3. In particular, the integral transforms can be used to solve two integral equations that appear
naturally when linearizing the adaptive grid equations around the stretched wave W.,.
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Lemma 3.13. Suppose that (Hg) and (H®.) are satisfied. There exists K > 0 so that the bound
[Zefll e < KNI fll 2 (3.77)
holds for any f € L?, while the bound
12| o < KN £l 2 (3.78)
holds for all f € H?.

Proof. The estimate (3.77) follows from the uniform bound (3.3) together with the inclusion ¥, € H?
and the inequality

|| < e e, (3.79)
Writing w = 7Y f, we note that
w o= [ - P [T L s e,
w' = = P L A LS (3.80)

F L) f s

Exploiting the inclusion ¥, € H* and the bound

H/+v:1\111f

we see that indeed w € H? and that the estimate (3.78) holds. O

< v oo 122 £ e (3.81)

‘ ')

Lemma 3.14. Consider any pair (w, f) € L? x L?. Then the identity
¥2w + \1/;/ V' = f (3.82)
holds if and only if

w=T*f=%?2f—7;1‘I’L/ 7wl S (3.83)

Proof. Assuming (3.82) holds, we write

X = / U (3.84)
and compute
X = Vw
= 7*2\:[///f _ 772\1,/ U’ X. (385)

Recalling v, = —v; 10, U” we see that
ot X) =l (3.86)

Using the fact that X (7) — 0 as 7 — —oo, this implies

X =7 / VR f (3.87)
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and hence

Pw=f-wX = [ ey (3.8)

On the other hand, assuming (3.83), we compute

Jowtw = [l - [yt [yt
S R A W A et (3.8
= [V e [TV = [y B
= % [ PLf

Multiplying by ¥’ we hence see
L R R (3.90)

which yields (3.82). O

Lemma 3.15. Consider any pair (w, f) € H? x H?. Then the identity

Yiw + ‘Ifi’/ Vow=f (3.91)
+
holds if and only if
w= T = 2 - [ atg) (3.92)
+

Proof. Assuming (3.91) holds, we write

Y = / U w (3.93)
+

and compute
Y = —Jw
— N2 -2/ @ (3'94)

In particular, we see that

(1Y) = = LS (3.95)
We hence find
Y =%T1/ VL, (3.96)
+
which yields
w=n2[f - 0lY] =7*‘2[f—%?1\lfi'/ v L] (3.97)
+
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On the other hand, assuming (3.92) we compute
Joww = [oarwlf - [, e [ ey
— 2.7/ _ —1717 —1\ry/

e e A A Y R T A Al [N A i A
STl I T A

Multiplying by ¥/, we find
v [ ww—art [ = -t (399)
+ +
which yields (3.91). O
Proof of Corollary 3.3. We introduce the notation
aclf] = (U3, f) 2 (3.100)
and note that the normalization (3.16) implies that a.[7. U] = 1. In particular, the operator
rof = [TV ]a.f (3.101)
is a projection on L?. Writing m = I — 7, this yields the splitting L? = R ® R, with
R =m(L?) = Lemp(H?), R. = me(L?). (3.102)
Upon choosing a splitting
H? = span{V’} © K, (3.103)
we note that the linear map
Lomp: Ko — R (3.104)
is invertible, which implies that the perturbed operators
[Lomp — 07T, : K. — R (3.105)
are also invertible for small § > 0. For any f € R, we introduce the function
Lolf] = [Lemp — 07T " f — Wa, [T [Lomp — 07T:] f} (3.106)
and observe that

[[/Cmp - 67—*]L§f = f - 57;‘1’;040[['0111[) - 6777;]_1f + 67;@;0[0 |:Ik I:‘Ccmp - 677—7;] _1f:|

(3.107)
= f.
For any f € L2, this allows us to compute
_ _ S5y _ /
[Lomp = 0T] | = 67 Walf] + Lomlfl] = TWlaclf] + /] (5.108)
= f,

which provides an inverse for L¢mp, — 07,. An analogous procedure can be used to obtain the result
for £24] O

cmp*
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4 Preliminary identities

In this section we provide some basic identities concerning discrete differentiation and integration. In
addition, we introduce notation for the gridpoint spacing functions y/1 — (+U)? and derive several
useful identities for their discrete derivatives. This allows us to obtain expressions that are uniform
in h for the derivative operator F°% defined in (2.14) and the terms appearing in (2.16)-(2.17). This
will turn out to be very convenient when performing estimates.

4.1 Discrete calculus

For any sequence a € £>°(hZ;R) we introduce the notation T*a € £>°(hZ;R) to refer to the trans-
lated sequences

[T*aljn = ag+1yn, [T~ aljn = ag—1yn- (4.1)

In addition, we introduce the notation S*a € £>°(hZ;R) and P*a € (*°(hZ;R) to refer to the sum
and product sequences

S*a=a+T*a, P*a =aT*a (4.2)
Writing
[0°0a) 1, = %[8"'@ — 0 aljn = % [ag+1)n + ag—1)n — 2a;n], (4.3)
it is not hard to verify the basic identities

9a = 3070,

(4.4)
070% = S5+[0%a).
Consider two sequences a € £*°(hZ;R) and b € £>°(hZ;R). One may easily compute
O%[ab] = O0TaTTb+adtb
la] = 0%TTb+ T~ ad’b, (4.5)
o-[ab] = [0 alb+ [T‘a]a‘b,
which yields
2°0[ab) = L [a+ [ab] — &~ [ab}] (s
—  (3°0a)b+ 10+ adth + 10~ a0~ b+ ad 0b. '
In addition, if bj, # 0 for all j € Z then we have
+ray _ bdta—adth A
9 [b} - P+b . ( '7)
We often use the symmetrized versions
otlab) = 10%TaSTb+ 35TadTh,
4.8)
a Stbofa  STadfb (
ot [E} = T2Pfb  T2P¥bh °
For any sequence a € ((hZ;R), we define two new sequences
> aer®(hLZ;R), Y acl®(hZ;R) (4.9)

—sh +;h
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by writing

[Zf;h a]jh = k>0 %G—R)h

(4.10)
[24*;}1 a’}jh = D=0 A(+k)h
Using the fact that limg_, 1+ axp = 0, one may readily verify the identities
O naly = am (4.11)
o~ [h D a]jh = —ajp.

Finally, consider two sequences a € ¢2(hZ;R) and b € ¢2(hZ;R). Since ab € (*(hZ;R), we may
exploit (4.11) together with the identity

ot [aT~b] = [0%alb+adT [T7b] =bdta+ad b (4.12)
to obtain the discrete summation-by-parts formula

hYy b0ta=aT b—h» ad b. (4.13)
—:h —sh

In addition, we see that
ho* [aT~b] =b(TTa—a)+a(b— T b) =bSTa—aS™b, (4.14)
which gives a second summation-by-parts formula

hY bSta=haT b+hY aSb. (4.15)
—;h —sh

4.2 Gridpoint spacing
We first define

r JI— @070,

o= VIZOTUR (4.16)
ry = L/1-(0tU)2+3/1—(07U)?
= 3lrf +ryl
Notice that
Trry =rf, T rf=rg. (4.17)
In particular, we see that
0 ;TE =0 rf =0Ty (4.18)

Lemma 4.1. Consider any U € (> (hZ;R) for which |0TU||, < 1. Then we have the identities
ofrg = =2[r}]1o°Ud°aU,

+,.0 +1{1,.,01—-1507790 (4'19)
ot = st teuatau).
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Proof. We compute

+
v —Tu

from which the first identity follows.
ho*[ry)]

Using (4.18) we conclude 9+ [ry)] = 1

V1-(0TU)? = y1-(0-0)?

(0~U)>—(8"U)?

= T
AP TGN (4.20)
_ 72h808U(2;;[(J])
- 2rY ’
In addition, we see that
= THd —rY
= 3 [T"‘?ﬂ +THr; —rf — r{,}
= % [T+T$ + r§ —Trr; — 7"(;} (4.21)
— ATVl ]+ il
= 1870t -5
S*[0Try], which yields the second identity. O

In order to break the directional biases appearing in the discrete derivatives in (4.16), it is

convenient to define the sequence

A short computation shows that

TYu@ —Yumw

_ \/1_
—[’}/Uu) + VU@]‘l(aOU(l) + 8OU(2))(6OU(2) — 801](1))7

w o= /11— (0°0)>. (4.22)
VI= (@PUD) - \/1— (0T M)?
(BOU(2))27(80U(1))2 (423)

(aoU(l))2+\/l_(30U(2))2

which allows us to readily compute several useful discrete derivatives.

Lemma 4.2. Consider any U € (> (hZ;R) for which |0TU||, < 1. Then we have the identities

Proof. Writing U®®) = T+U and UM
hot

which yields the desired identity for
identities

ST18°U)ST[8°0U] ST [vi]
P+l P[]’
St [8°U)sT[8°0U]
P+l
SH[8°U)sT[8°0U]
StvulPt[vu]
_ St[p°Ujste®au]
S+7U

—S+[8°U)S+[9°0U].

)

(4.24)

)

)

= U, we use (4.23) to compute
—[STy] ST [0 UIhoT0°U

(4.25)

0%y upon remembering (4.4). We can now use the general

—[P*a]"10"a,

(4.26)
0Tal a+adta=0TaS"a,
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together with

S*ta
Stla™'] = 4.27
0l = 22 (427)
to obtain the remaining expressions. O
4.3 Discrete derivatives
The definitions (4.16) allow us to rewrite the discrete first derivatives in (2.14) as
For(U) = 2L,
i (4.28)
FoU) = 2V
U
This means that the identities (4.19) can be restated in the form
otry; = —2F>(U)0°0U,
+,.0 +| 7o 0 (4.29)
o1y = -8 [f o(U)8°8U |.
We also introduce the second discrete derivatives
Fooit(U) = 9tFe(U),
Fo-it(U) = 0TF°-(U), (4.30)
Fovt(U) = 9tFe+(U).
Using the identities
TYF-(U) = F°+(U), T-F°+(U) = F°(U), (4.31)
we readily see that
Fer(U) —F-(U .
) h @) _ Fo-(U), (4.32)
which allows us to write
FooU) = goFoH(U) (4.33)
for the function F°°° appearing in (2.14). Finally, we introduce the third discrete derivative
FotU) = 9HFO(U)) (4.34)

Lemma 4.3. Consider any U € ((hZ;R) for which |0*U||_, < 1. Then we have the identities
Fo-t(U) = % (14 Fe=(U)F>(U)]0°U,
FOt(U) = gy [1+ FoU)F )| 10°0U] (4.35)
iy [1 + Foo(U)T+ [f<>o(U)]}T+ [9°9U].
Proof. Using (4.4), (4.7) and (4.29) we compute
Ft ) = [Prrg] Tt rgoto U - om vty
S [27{,606U + 20" UFo (U)aOaU} (4.36)
= ) 20000 + 275~ () F ()00
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together with
Fort(U) = [PHry] 7 [rot0°U — U0
= YT RS 00U + 9°UST [Foo (U)oU) |
= [TH] 7 [S 000U + Foo () st [Feo (U)oU),
from which the desired identities follow.

In order to restate our result concerning F°°%+, we introduce the expressions
i+ _
I U) = e PO L4+ 7o (0)F (U)

+— 2 TH[F(U)](1 + F°= (U)F°(U))

roToTh
+ﬁf°*(U)(l +FeU)?),
2rY +TFrd

Ptry Ptrf T {}—OO(U)(I +70_(U)]:00(U))}

U

o (U) (14 P ) THFR ),
IHNU) = e (P (U)FU),

T (U) =

These allow us to define the two components
Feeot(U) = zfo;+(U)a+[aOaU]7
FOTU) = I (U)0°oUTH (00U + I0H(U)TH[0°0U T+ [0°0U).

(4.37)

(4.38)

(4.39)

Lemma 4.4. Consider any U € (>°(hZ;R) for which ||0TU||, < 1. Then we have the identity

_7:<><>o;+(U) — f§°°;+(U)+‘7'—Z°°;+(U).

Proof. Using (4.33) we may compute

OFFU) = oL (14 o (U)F (U))2°0U |

0 .+
Tu"u

= Za+ZIp+Zc,

in which

Ty = OF[ AT+ [(1 + Fo- (U)f%(U))aOaU],
(

Ip = i (FH(U)THFOU) + Fo- (U)Foot(U)) T+ [6°9U],
TuTu

Ic = —+(1+F(U)F*(U))o"[0°0U].
TuTu

We immediately see that
Ic = I (U)a+[9°0U).

In addition, we may use (4.7) and (4.29) to compute

8+[ 1 +] = —[P*rOUPJrT?}]*l [5‘+TOUT+T+ + T0U3+r+]

[P+T%P+T?J']—l [S+ [Foo (U)606U]T+T[J'J_ + TOUT+ [Foo (U)aoaU]}

= [ Few)]evou + [M}W [Feo(U)9°0U].

+ 0 0 +
ri; Pry, PHrd, Ptrf
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Finally, Lemma 4.3 allows us to expand

Ip = 20drfrd] 1+ Fo- (U)F(U)][0°0U]T+ [Foo (U)d°0U |
+r PHrd] 1+ Foo(U)F(U)]Fo- (U)[0°0U]T+[9°0U] (4.45)
+Hrg P71+ Foo(U)TTFoo (U)| Fo- (U)TT[8°0U] T+ [9°0U].

The splitting (4.40) can now be read off directly. O

5 Sampling techniques

In order to link the continuum theory developed in §3 to the discrete setting of the adaptive grid,
we often need to extract sequences from continuous functions and relate discrete derivatives to
their continuous counterparts. In this section we collect several tools that will be useful for these
procedures.

For any h > 0, we first introduce the Hilbert space 6,21 that is equal to £2(hZ;R) as a set, but is
equipped with the rescaled inner product

(VW) =h> VisWin (5.1)
JEL

that compensates for the gridpoint density. In particular, for V' € 3 we have

VIl =Ry Vi (5.2)
JEZL

For convenience, we also introduce the alternative notation

2 = {V:hZ — R for which ||V||qu :=sup,ez |Vaj| < oo} (5.3)

for the usual set £°°(hZ;R) with the supremum norm. For any V € 3, it is clear that also V € £3°
and that we have the bound

IVl <B72 V]l - (5.4)

In order to reduce the length of our expressions, we introduce the higher order norms

Wlas = IVilg + 10V,
WVl = [Vig + 107Vl + 10707V . (5.5)
Wiga = [Vig + 10Vl + 1050V, + 0400 V]],s

together with

||V||z;°?1 - ||Vth?O + ||3+V||z;° )

(5.6)
Vilger = [Vllge + 107 Vgoe + 107 0TV poc -

We caution the reader that for fixed h > 0, these norms are equivalent to the norms on £ respectively
£5°. However, they do allow us to conveniently formulate estimates that are uniform in kA > 0.
For any f € L? and h > 0, we formally write

[0 (7)) = W= f(r + h) = f(7)], [0, F)(7) = WM [f(7) = f(7 = h)], (5.7)
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which obviously satisfy 8,? f € L2. In a similar fashion, for any f € L' and h > 0 we formally write
(DA =D f(r—kh), [D A1) =D f(r+kh), (5.8)
—h k>0 +;h k>0

noting that these functions are in Llloc'

In §5.1 we obtain several useful results that relate the ¢} -norms of sequences v(hZ + ) sampled
from a function v back to L9-norms of v and its derivatives. In §5.2 we introduce exponentially
weighted norms on L? and discuss their impact on the summed functions (5.8). Finally, in §5.3 we
discuss sequences of differences (5.7) and sums (5.8) for which & | 0. Upon taking weak limits, it is
possible to recover the usual continuous derivatives and integrals.

5.1 Sampling estimates

For any bounded continuous function f, any ¥ € R and any h > 0, we write evyf € £;° for the
sequence

leveflin = f(O+ jh). (5.9)

When the context is clear, we often simply write f to refer to the sampled sequence evgf. In this
subsection we explore the relation between such sampled sequences and the original function.

Lemma 5.1. Pick q € {2,00} and consider any u € W19, Then the estimates
05 ullpa < N1l o (5.10)

hold for any h > 0. If ¢ = 2, then we also have

|0 ull oo < BTV (1] (5.11)
for all h > 0.
Proof. For ¢ = oo the statement is immediate, so assume that ¢ = 2. We may then compute
2
2 (G+Dh)—u(h)
Jopully, = 15, Lelxe0n)
- hzg‘ez [fo "(jh + s) ds]
< thez th '(jh+s)?ds (5.12)
= deZ o (]h+3) ds
= HU/HL? :
In addition, the identity (5.11) follows directly from (5.4). O

Lemma 5.2. For any u € H' and any h > 0 we have

lulle < (24 h) llufl g - (5.13)
Proof. We compute
lll = B3 u(in)?
ez Jy ulih)? ds (5.14)

2
= GZfo [ (jh+s) — fsu/(jh-l-o)da} ds.
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Using the standard bound (a — b)? < 2(a? + b?) we hence obtain
2
lulle < 235e fo u(jh + 5)* ds

2
+2dezfo [fo "(jh + o)? da] ds

< 2||U||L2 +2> ez fo 5f0 "(jh+0)?do ds (5.15)
= 2||u||L2+2ZJEZfO ]h+0‘) fngSdJ
< 2||U||L2 + h? diez fo W' (jh + 0)?do
= 2|ull7. + B2 ][] .
O

Corollary 5.3. There exists K > 0 so that for any 9 € R, anyv € H' and any 0 < h < 1, we have
the bounds

levovllee < K0,
||eV19UHef?1 < K[ V]l g2 + ||82_UHH1 ]’ (5.16)
||ev19v\|g;°;2 < K[l + 2210500 ],
together with
||eV79”U||Zi;1 < Klollg:,
. (5.17)
||ev19U||e,2L;z < K[ollg + (|85 4 ]-

Proof. For convenience, pick ¥ = 0. Using Lemma 5.1 and the standard Sobolev bound ||v[|,, <
C1 |||l g1 for some C; > 0, we find

e < Cillol s
0| e < 1 l|of )
e < ol
(L P A P
< W20l
In addition, using (5.13) we find
[[]]2 < 3ol
ool < Wi
< ollge s (5.19)
lononolly < llonv'll.
< llowollgn -
O

We remark that the results above shows that we automatically have evyu € £2 whenever u € H'.
We exploit this in the next result, which shows how to recover L? norms from the individual grid
evaluations. We note that a direct consequence of (5.10) and (i) below is that we have

105 ull Lo < NIl o (5.20)

for any u € H' and q € {2, 00}.
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Lemma 5.4. Consider any f € C(R;R) and any g € H'. Then the following properties hold for all
h > 0.

(i) If the bound
levafllee < N9l (5.21)
holds for all ¥ € [0,h], then f € L? with
12 < N9l - (5.22)
(ii) If the bound
levaflle < llevaglle (5.23)
holds for all ¥ € [0, h], then f € L? with
112 < llgllz2 - (5.24)
(#ii) If the bound
HeVﬁfHei < Hewg\lggz (5.25)
holds for all ¥ € (0,h), then f € L? with
1£llz2 < llgllge + (|08 Ox gl .- - (5.26)
(iv) If the bound
levo < llevogllzs (5.27)

holds for all ¥ € [0,h], then f € L? with

1Nz < llgllgn + (|08 all o + 1|05 5 05 9] - (5.28)
Proof. We first note that
Il = Jaf@)?de
= Yyer Jy F(Eh+0)? v (5.29)

_ h
ht o ||ev19f||§i 4.

Item (i) and (ii) follow immediately from this.
For (iii), we note

2
112

IN

WL fy llevoglfe do
= W7 [llevogllts + levodi glzs + llevody o gl ] o (5.30)
lollz> + 195 allz- + 1w arrall .

Exploiting (5.20), we obtain

12 < gl + |07 05l 2 (5.31)
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as desired.
To see (iv), we apply (5.20) to 9; g to obtain

19 93 all 2 < 109l -

This yields the desired bound

1152 < lolze + 197 oll e + 1030 ol 2 + 107 05 03 ol
< ol + 1ol + 1193 0/ + 127 03 0o o
< ol + 1103 ol + 19307 05 ol

Lemma 5.5. Pick g € {2,00} and consider any u € W9, Then the estimates
00— < Bl
hold for all h > 0.
Proof. Fix h > 0 and write ZF € £3¢ for the sequences
T35, = [0 ul (i) — /(D).
We may compute
I;;L = hf() "(jh+s) —w(jh)]ds
= fo uw'(jh + sh) —u'(jh)] ds
= fo sh u”’(jh + s') ds' ds.

For ¢ = oo we hence see

1 sh 1
Th] < e [ [ s s = Gnla
0 0

For ¢ = 2 we obtain the estimate

||I+||ji = h)liez [fo S (jh + ') ds’ ds]2
< hYje fo . u"(jh + ') ds']? ds
< B Ji sh [ G+ R ds' ds
< 0P Yjez fo "(jh+8")]? ds'

S

Similar computations can be used for Z~.
Corollary 5.6. Pick q € {2,00} and consider any u € W34, Then the estimates
H2[808}hu — u”qu
h
|27+ [8°0]hu — v

IN

2h [ s

ly < 200

hold for all h > 0.
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Proof. We first compute

2[0°0]u — v = 00, u—u" (5.40)
= 00, u— 0, u + 0, u —u.
Applying Lemma 5.5 and (5.20) to 0, u shows that
|6 0y u — 8}:1/”@% <oy || e < I L. (5.41)
Similarly, applying Lemma 5.5 to u’ shows that
|05 ' = u"[l,g < Bl |l (5.42)
from which the first estimate follows. Upon writing
2T+ 00 pu — v’ = O Ofu—u” (5.43)
OFofu—ofu + 9w —u”,
the second estimate can be obtained in a similar fashion. O
Corollary 5.7. Pick q € {2,00} and consider any u € W44, Then the estimate
|20 100N — " o < 3™ (5.44)
holds for all h > 0.
Proof. Splitting up
20,7 [0°0)pu — " = 000, u—u"
OO 0, u— 0 0, u (5.45)
+0; 0, w' — 9, u”’
+0, u" —u",
we can apply Lemma 5.5 to obtain
1205 10°00hu — ||y < 2|0 O || o+ P[0 0| o+ Pl e (5.46)
We can now repeatedly apply (5.20) to obtain the desired estimate. O

We recall the definitions (3.13). Our final result here is a standard approximation bound for
discrete integration.

Lemma 5.8. For any f € Wbt and h > 0, we have the bounds

h — |l | A7
gf /if <hIfI, (5.47)

e
Proof. Fixing 7 € R, we compute
i f = [ 1)@ = Siso o F (T +kh) = f(r + (k= 1)h +0)] do
Z,Mfo (14 (k+1)h) = f(r+ kh+o0)]do
= Y0 fo Iy f'(t + kh+0')do’ do
S0 Jo S5 F/(7 + kh + ') do do’.

(5.48)
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In particular, we obtain the estimate

B f = [ 0| € Sisoh Jy 1+ kh+ o) do”
< hfUf(r 4+ o) do’ (5.49)
< Rl
O

5.2 Weighted norms

For any 1 > 0 we define the exponential weight function
en(r) =7, (5.50)

This allows us to define an inner product

(a,b)rz = (ena, e;b) 12 = (e29a,b) 12, (5.51)
together with the associated Hilbert space
Ly ={f € L : Hf“ig = (f, f)rz < oo} (5.52)
Since 0 < e,;, < 1, we see that
(a,a)r2 < (a,a)rz (5.53)

for every a € L?. In particular, we have the continuous embedding
2 2
L*CL,. (5.54)

In addition, for any pair (a,b) € L% x L?, we have ena € L? and hence also eana € L2. This
allows us to estimate

[(ezna,b) 2l = |(a,b)zz | < llall s D] s (5.55)
This weighted norm is very convenient when dealing with sampling sums.

Lemma 5.9. Fiz n > 0. There exists K > 0 so that for any f € L% and any 0 < h < 1, we have
the estimate

syt

v < K|l - (5.56)

Proof. Using Cauchy-Schwartz, we compute
= [ez(1) [h Z_;h 62nf] (1)?dr

= [ea(r) [h Ekzo w?](T —kh)f(r — kh)} ’ dr

s

2
Ly

< Jean(P) [ Eysg ean(r = kB)] [B Esg 20 (7 = BR)F (7 — kD) dr.
(5.57)
We note that there exists C; > 0 so that for all 0 < h < 1 and all 7 € R we have
h) ksoen(T—kh) = h) 5 e~ 2nlr=kh|
< WY geg e 2niTkh (5.58)
< (.
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Using the substitution 7/ = 7 — kh, this allows us to compute

|5 eznf| i < C1 f ean(7) [0 ysg ean(r = KR)F(7 — kh)?| dr
R B S s0 20 (7' + k)| 2 () ()2 (5.59)
< CF [ean(r)f (') dr’
= CEIfIZ: -
O

5.3 Weak Limits

Our results here show how weak limits interact with discrete summation and differentiation. The
first result concerns sequences that are bounded in H! and have bounded second differences, as
described in the following assumption.

(hSeq) The sequence
{(hj,vj)}j>0 € (0,1) x H' (5.60)

satisfies h; — 0 as j — oo. In addition, there exists K > 0 so that the bound

sl + |05 05 05

2 < K (5.61)

holds for all j > 0.

The control on the second differences allows one to show that the weak limit is in fact in H?. In
addition, the first differences converge strongly on compact intervals.

Lemma 5.10. Consider a sequence
{(hy,v;)} € (0,1) x H' (5.62)

that satisfies (hSeq). Then there exists V. € H? so that, after passing to a subsequence, the following
properties hold.

(i) We have the weak limit

v; = V. € H. (5.63)

(i) We have the weak limits
0y vy =~ V] e L*. (5.64)

(iii) We have the weak limit
2[0°0],v; = V! € L*. (5.65)

(iv) For any compact interval T C R, we have the strong convergences
v; — Vi € L*(T), a,ﬂ;_ v; — V! € L*(T) (5.66)

as j — o0.
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Proof. Using (5.20) we obtain the uniform bound

Ha;; vj] <K (5.67)

L2
for all 7 > 0. In particular, after passing to a subsequence we can find a triplet

Vi, VE V) e H x L2 x L2 (5.68)
so that we have the weak convergences

v~ VieH',  Ofv,~VFel? 20000 —~V® erL? (5.69)

J

as j — oo.
Pick any test function ¢ € C°. We note that

Jorc ¢

Lt 12(6°0]n,¢ — ¢"|| ., — 0 (5.70)

as j — oo by Lemma 5.5 and Corollary 5.6.
We now compute

(Oh v, Oz = —(v,0, ()12
= —(v, N2 + (v, ¢ =9, e (5.71)
= <U§7C>L2 +<’Uj7cl_8}:jc>[/2a

together with
(2[0°0)h,v;, Q)2 = (v5,2[0°0]n,¢) L2

(07, ¢") e + (07, 200°0C]n,C — ¢ (5.72)
= () e+ (05, 200000, — e

The weak convergences v — V/ € L? and (5.69) imply that

<a]:Uj7C>L2 - <‘/*/a<>L2a <6}—7,:Uj7<>[/2 - <V+?<>L27

(@A0°0Nn, v, Qe — (VL C)1e, 200,05, e — (V2,010 (5.73)

as j — oo. The density of C2° in L? now implies that V' = V/ and that V/ € H! with V! = v,
This yields (i), (ii) and (iii).

Turning to (iv), we pick a compact interval Z C R. The compact embedding H(Z) C L*(Z)
allows us to pass to a subsequence for which

lv; = Villpozy = 0 (5.74)
as j — oo. We compute
= @jﬂj - Vafaaf{jvj = Vi
= (3,21)]- - v;,a;jvj — 0" Vi) 2y + <82;'Uj - Vj,@,fjv* V2@
= 7<3};32'jvj =0, Viiv; = Vi)
+<62_j'Uj - V!,@;{J,V* — Vi)

Ha;:j’l}j — V*/

L2(Z)

(5.75)
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Using (5.20) we see that

lom vz L = vne (5.76)
Together with (5.61), (5.67) and the identity
8};(9}:’% = 2[808]hjvj, (577)
this implies the uniform bound
— a9+ ,,. + ... — !/ /
Hahjahjv] . H@hjv] . Hahj Vi oy Wil < & (5.78)

for some C; > 0. In particular, using Lemma 5.5 and (5.74), we see that

| =ve] Ly, < 20 [y = Villiagn + O v = v, ]
< 21 lloy = Vel gz + by 1V 2] (5.79)
— 0
as j — oo, as desired. A standard diagonalization argument now completes the proof. O
Lemma 5.11. Consider a bounded sequence
{(hj, fi, 014, @y ) bis0 € (0,1) x L2 x H' x H* x H! (5.80)
that satisfies the following properties.
(a) There exists C >0 and n > 0 so that
|5 ()] + [z (7)] < Cean(7) (5.81)

for all T > 0.
(b) There exists a triplet (a1, 2.4, a3.) € H' x H' x H' so that we have the strong convergence
(1.4, a2, 3.5) — (1, Qon, 3.4) € H x H' x H* (5.82)
as j — oo.
(c) We have h; — 0 as j — 0.

Then, after passing to a subsequence, there exists f, € L? so that we have the weak convergences

fj — f* S L2, Oég;jfj — O3« € LQ, (583)
together with
ah; Z oz fi = 041;*/ g fu € L (5.84)

as j — oQ.
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Proof. Writing

95 = a1h; > az;fy,

we see that
lgsll e < €2 |leanhs X, eanlfl, |,
< 7 Henhjz:—;hj €2 |f|j} L
= 02“hj2_;hj62n|f|j L
<GSl "
< Gl

(5.85)

(5.86)

In particular, after passing to a subsequence we have the weak convergences f; — f. € L? and

g; — g« € L2
Pick any ¢ € C2° and write

Teyj = asihy Y o — 02;*/ e
+:hj *
which can be expanded as
Iy = [azy —agulhy E+;hj a135¢
Faophy 3, [onyg — ansC
+a2;* |:h/] Z+;hj al;*C - f+ al;*C:I .
Using the estimates (5.13) and (5.47) we see that
1Zeillpe < lloog; — ol pe ol g ICH g
+ ||a2;*||L2 ”al;j - O‘1;*”1171 HCHHl

+llazgll L2 Ry | €)'l o -

Observing that

Mol < [l e + el
< ol 2 G ze + ol 2 1 22
< 2lanll g € s

we see that ||Z¢ j||,. — 0 as j — oo. In addition, we see that

||(O‘3;j - 0‘3;*)<”L2 < ”0‘3;]' - O‘3;*”1,00 ”C”]ﬂ < ||a3;j - O‘3;*”}'-11 HCH[% —0

as j — oo.
We now compute

(9:Qrz = (ay;h; X 02f5, Q) re
= (firoz5h; 3oy, 010 L
= (fjr a0 [ Q)2 + (£, T j) 12,
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together with
(ag;;fj, Qre = (fj, 0350 12

5.93
= (e + (0 — a5 )) (593
In particular, the weak convergence f; — f. implies that
(97, Q2 = (fu, oz [ 0132
- <a1;* f_ a2;*f*7C>L2 (594)
together with
(s.f5, Oz —  (fe,as)re
= g fu, Qs (5.95)
as j — 0o. The density of C2° in L? now implies the desired weak limits. O

6 Estimation techniques

In this section we introduce the basic framework that we use throughout the paper to estimate the
terms featuring in our main equation (2.26). In particular, we introduce the sequence spaces on which
the nonlinear terms can be conveniently estimated in a fashion that is uniform in A > 0. We also
introduce several bookkeeping and approximation results that are essential to control convoluted
expressions such as (2.17) in a feasible manner.

The Heaviside function H has |07 H|| o = h~!, which makes it unsuitable for the bifurcation
arguments used in ths paper. In order to smooth out the transition between the two stable equilibria
of g, we pick a function Uyer.. € C%(R, [0, 1]) for which we have the identities

0 for all 7 < =2,

Uret« (1) = 1 forall 7 > 2 (6.1)
and for which the bounds
0< Ulya(r) < 1, Utea()] <1 (6.2)
hold for all 7 € R.
For any x > 0 we subsequently write
Uretyc (T) = Usety (KT) (6.3)
together with
Viw = AV EL Vlge+[Vige + 11010V | e < 3571 (6.4)
and |07V <1-2k}.
As a consequence of the estimate (5.4), we see that V., is an open subset of 6,21.
Combining these two definitions allows us to introduce the sets
Qi = Uret;n (RZ) + Vi C 657 (6.5)

Our first three results highlight the important role that these sets €., will play in the sequel.
Indeed, the initial conditions referenced in the well-posedness result Proposition 2.4 can all be taken
from such a set. In addition, we obtain a-priori bounds on almost all the terms that appear in the
discrete derivatives defined in §4.3. The one exception is the third derivative 8+9°0U, which will
play a special role in our estimates.

44



Proposition 6.1. Fizh >0 and 0 < kK < % Then for any U € Qy,,, we have the bound

1Ullgze + 107U |2 + [|070%U | 2 + 0707V || o < 57 (6.6)
together with
07U, <1k (6.7)
h
In addition, we have
lg@llg < 4]supjyener o' ()] |57 (6.8)

Proposition 6.2. Fiz h > 0 and consider any U € (5° for which 07U, <1 and U — H € (3.
Then there exist g > 0 and kg > 0 so that for any Ue £5° that has Hﬁ — UH@2 < €9, we have

B
U e U (6.9)
for all 0 < k < Ky
Proposition 6.3. Consider any u € C(R;R) for which we have the inclusions
u' € H?, U — Upex € L?, (6.10)

together with the bound ||u'|| < 1. Then there exist ¢ > 0 and k > 0 so that for any 0 < h <1
and any v € H' that has

[0l 2 + B2 ][0T 0] 0 < €0, (6.11)
we have
evylu +v] € Qppe (6.12)

for all 9 € [0, h].

We provide the proofs for these results in §6.3. In §6.1-§6.2 we introduce three convenient ap-
proximation results that allow us to considerably simplify the expressions that arise when linearizing
(2.26) around the continuum wave U,.

Convention Throughout the remainder of this paper, we use the convention that primed constants
(such as C1, C etc) that appear in proofs are positive and depend only on &, the nonlinearity g and
the wave U,, unless explicitly stated otherwise.

6.1 Approximate substitution

In this subsection, our goal is to consider composite functions fo¢ in situations where it is convenient
to approximate ¢ and D¢ by ¢apx and ¢uin. These two approximants should be thought of as simplified
versions of ¢ and D¢ that are much easier to handle in computations, while still accurate to leading
order in h. Our typical setup is described in the following assumption.

(h¢) The set Ky C R™ is compact and we have the inclusion Q4 C B, in which B is a Banach space.
In addition, the function

¢:Q¢CB—>KJC (613)
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is Lipschitz continuous in the sense that there is Kj;p, > 1 so that

[p(w1) — P(w2)| < Kiip [lwr — wallp (6.14)
holds for all wy,ws € Q. Finally, we have the inclusions

Papx(w) € Ky, Dlinw € L(B;R™) (6.15)
for every w € {14, together with the uniform bound

SUPyeq, ||¢1in;w||£(B;R,L) < 00. (6.16)

Lemma 6.4. Consider two triplets (¢, dapx, b1in) and (g, B, Ky) and suppose that (h¢) is satisfied.
Suppose furthermore that there exists an open set Oy C R™ and a compact set Ky C R™ for which

K;CO;CRy. (6.17)
Pick any f € C*(K ¢;R) and consider the map
P:QyCB—R, w i f(o(w)). (6.18)
For any w € Qg and 8 € B, write

Popx(w) = f(¢aPX(w))v

(6.19)
Hin;w[/@] = Df ((bapx(w))(blin;w[ﬁ]-
In addition, for any w € Qg and B € B for which w4 3 € Qg, write
¢n1;w (B) = ¢<w + 6) - ¢(w) - ¢1in;w[ﬁ]7 (620)
Puw(B) = Plw+8) - Pw) = Pinwl[A].
Then there exists a constant K > 0 so that for any w € Qg the bound
|P(w) = Papx(w)] < K |¢p(w) — Papx(w)] (6.21)
holds, while for any w € Qg and B € B for which w+ B € Q4 we have the estimate
|Patzo (B)] < K| 18115 + [dn1r (8)] + [6(w) = apx ()] 181l |- (6.22)

Proof. The geometric condition (6.17) implies that f and Df are Lipschitz on Ky and that there is
C1 > 0 for which

If(y) — f(x) = Df(x)(y — 2|
ly — |

<C (6.23)

holds for all (z,y) € Ky x Ky with o # y. Indeed, we can cover K; completely with open balls in
which the local versions of these properties follow from the C?-smoothness of f on the larger set
K.

The inequality (6.21) follows directly from the fact that f is Lipschitz. Turning to (6.22), we
decompose

Pnl;w(ﬂ) = ~.71 + j2 + jS (624)
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in which

Ji = f(éw+p)) = f(6(w)) — Df(¢(w))[¢(w + B) = d(w)],
T2 = Df( ( ))¢n1 w(ﬂ)a (6'25)
J3 = [Df( ) (¢apx )] ¢hn w [/8]

The bounds (6.14) and (6.23) imply

Al < Crlow+B) — o)l
X ) (6.26)
< CiKG, (1815
while the Lipschitz smoothness of D f yields
| T3] < Ca |9(w) = apx (W) l|d1ino |l £, 1515 (6.27)
for some Cy > 0. The desired estimate (6.22) now follows from the uniform bound (6.16). O

Corollary 6.5. Consider two triplets (¢, Papx, d1in) and (Qy, B, Ky) and suppose that (he) is sat-
isfied. Suppose furthermore that there exists an open set Oy C R™ and a compact set Ky C R™ for
which

KfCOfCFf. (6.28)
Pick any f € C*(K ¢;R), any Banach space By, any L € L(Br;R) and consider the map
P Q¢ X B — R, (w,wL) = f(qﬁ(w))L[wd (629)
For any (w,wr) € Qy x By, and (8, 0L) € B x Br, write
Rl x (W, W == (253 x \W Llw s
p( L) f( p( )) [ L] (6.30)

Plin;w,wL [ﬂ7 ﬂL] = Df(¢apx(w))L[wL]¢lin;w[6} + f((ybapx(w))L[/BL}-
In addition, for any (w,wr) € Qg X By, and (8, 81) € B x By, for which w + 3 € Qg, write

Paww, (8:8L) = Plw+B,wr+ ) — Pw,wr) — Pinw,w, |6, BLl- (6.31)
Then there exists a constant K > 0 so that for any (w,wr) € Qy x By, we have the bound
|P(w,wr) = Papx(w,wr)| < K |¢(w) = Gapx ()| [lwLllg, » (6.32)

while for any for any (w,wr) € Qy x By and (8,01) € B x By, for which w + € Qy we have the
bound

| Patrr (B:8)] < K | 18115 lwzlls, + 18115 182lls, + |bare(B)] lwr 5,

+1o(w) = Gapx ()| [ 1815 lwells, + 18Llls, H-

Proof. The bound (6.32) follows immediately from (6.21) together with the fact that L € L(Br;R).
Upon writing P(w,wr,) = P(w)L|wr], we see that

Pty (8.02) = Puw(B)Llwi] + [f(8(w + 8)) = f(apx(w)) ] L[5
Pao(B)Llwr] + [f (6w + B)) — f(¢(w))] LIBe ] (6.34)
+[f(0(w)) = f(Sapx(w))] L[BL].
In particular, exploiting the Lipschitz continuity of f and ¢, we can find a constant C; > 0 for which
Patoiwr (3.0 < Ct|Pua®)| Izl + C1l1Bl5 1825,
+C1|¢(w) = apx (W) 1Bl 5, -

(6.33)

(6.35)
Substituting the estimate (6.22) for ﬁnl;w(ﬁ) yields the desired bound (6.33). O
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6.2 Approximate products

For any integer £ > 1 and any sequence

a=(q1,92--.,q) € {2,00}, (6.36)
we introduce the notation
Cr =00 x 02 < ..ox 0. (6.37)
Writing
Ar = (Gri1s Gri2s - 5 Gmsk) € {2,00}7, (6.38)
we are interested in maps
Tl — 0 (6.39)

that are bounded and multi-linear in the following sense.
(hm) Consider any set
v =(v1,...,0) €. (6.40)
Then we have the estimate
Invllly < K llonll e [l (6.41)

for some constant K > 0 that does not depend on v and kA > 0. In addition, if there is an
integer 1 < < k for which the decomposition

v; = Aavi + ApvP (6.42)
holds, with v¥ € £} and Ay € R for # € {A, B}, then we have
7[v] = Mam[vr, ... 08, oe] + ApTv, .. 0B o] (6.43)

We say that any sequence (6.36) is admissable for 7 if there is a constant K > 1 so that the bound

Imfolll < K lfoallgn . x ol (6.44)
holds for any
vely N (6.45)
and any h > 0.
As an example, we note that the two sequences
Ar, = (2,00), A, = (2,2,00,2) (6.46)
with the accompanying maps
mi[v1,va] = viva,  malv1,v2,v3,04] = V1A Y vavgvs (6.47)
_;h

both satisfy (hr). In addition, (oo,2) and (2, 00) are both admissable sequences for 71, while
(2,00,2,2), (2,2,00,2),  (2,2,2,00) (6.48)

are all admissable for .
Our goal is to study nonlinear functions of the form

Q. U — 7[f1(U),..., f(U)], (6.49)

in which each nonlinearity f; has zero-th and first order approximants f,px and fiin in the sense of
(h¢). In particular, we impose the following condition on each of the nonlinearities.
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(hf) We have Q¢ C {2,00}. For any U € Qp,,,. and ¢ € Q¢ we have the inclusions
fU e,  fux(U) €L, funy € LG L]). (6.50)

In addition, for each ¢ € Qy there exists a constant K, > 0 and a semi-norm [-|,,.5 on % so
that the following properties are true.

(a) The inequality
LF@)lleg + [ faps(U)llps < Ky (6.51)
holds for all A > 0 and U € ..
(b) The inequality

Vlfan < Kq (6.52)

holds for all A > 0 and V' € Vj,..
(b) The Lipschitz estimate

|y = )|, < KUD = U] g0n (6.53)

q
4 h

holds for all h > 0 and all pairs (U, U®)) € QF .
(¢) For every h > 0, the inequality

”flin;U[V]”zz < Kq[v]f;q,h (654)
holds for all U € Qp,, and V € @L.

To obtain sharp estimates it is sometimes necessary to decompose the approximate linearization fi,
into two parts. Both parts can be evaluated in their own preferred norms, which do not necessarily
have to be an element of the set Qs discussed in (hf) above.

(hf)1n We have Q?;hn C {2,000} and Q]fa;lin C {2,00}. For all h > 0, U € Qp,; and V € £2, we can
make the decomposition

Sinu[V] = flﬁq;U[V] + fljiBn;U[V]v (6.55)
in which flﬁl;U[V] € (] for every ¢ € Qf;hn and flﬁ;U[V] € (] for every g € Qﬁhn.
Our final condition concerns the residual term
Juu(V) = f(U+V) = f(U) = fimu[V], (6.56)
which at times also needs to be decomposed into two parts that require separate norms.

hf)u We have Q4  C {2,00} and QB | € {2,00}. For all h > 0, U € Q. and V € ¢3 for which
finl finl ; h
U+V € Qp,y, we can make the decomposition

faw (V) = fao (V) + fRo(V), (6.57)

in which fi.;(V) € £} for every q € Q7. and f,(V) € €] for every ¢ € QF,,-
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Lemma 6.6. Fiz k > 1 and 0 < k < 15, consider the pair (q,7) defined in (6.58)-(6.39) and
assume that (hw) holds. In addition, consider a set

{fiv fi;aan fi;lin7 Qfm Q"j&"i;lina Q?i;nla Qﬁ;lina Qﬁ;nl}éﬁ:l (658)

of nonlinearities with their associated approzimants and exponents that satisfy the following proper-
ties.

(a) Foreveryl <i <k, the set {fi, fi.apx, fim1, @y, } satisfies (hf) and the set { fi.iin, Q?ﬁlin, Qﬁ;hn}
satisfies (hf)in. In addition, recalling the definition (6.56), the set { fi.n1, Q;‘i;nl, Qﬁ;nl} satisfies
(hf)nl-

(b) We have ¢r; € Qy, for 1 <i<k.
(c) For every 1 < i <k, there are O’;?nl € Q?i;nl and o € QF .,y together with sets
A A A B B B
Qi,nl = (Qi,nl;h s aQi,nl;k)7 qi,nl - (Qi,nl;la s 7Qi,nl;k) (659)
that are admissible for w, which have
A A B B
qi,nl;i = ai;nl’ qi,nl;i = Ji;nl (660)
and
A B
qi,nl;j € ij’ qi,nl;j € Qf] (661)
for all j # 1.
(d) For every pair (i,7) € {1,... ,k}? withi # j , there are
A A A B B B
Oiiin € QF,ilins Tiain € Qf; Oiiin € QFilins Tijain € Qf; (6.62)
together with two sets
A A A B B B
ijlin = (Qij,lin;lv cee a%‘j,lin;k)v 45 lin = (Qij,lin;la e aqij,lin;k) (6.63)
that are admissible for w, which have
A A A A B B B B
Qijin;i = Oij;lins Qijlin;5 = Tijilin Qijlin;i = Oij;lins Qijlin;5 = Tijilin (6.64)
and
A B
Gjainkr € Qrf %ijainskr € @t (6.65)
for all k' ¢ {i,j}.
Consider the map
P:Qp,. — 03, U rlfi(0),..., frU)]. (6.66)
For any U € Q.. and V € 02, write

Popx(U) = 7 frapx(U), -+ s frzapx(U)]
Pinu[V] = 7lftinulV]; f2apx(U)s - -+ s friapx(U)]
+7 [ frapx(U), f2inu V] - -+, friapx (U)]
+7 [ friapx(U); - -+ fe—tsapx(U), frstingu [V]]-

(6.67)
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In addition, for any U € Qp,, and V € f% for which U +V € Qy.c, write
Puu(V) = P(U+V) = P(U) = Runu[V]. (6.68)
Then there exists a constant K > 0 so that for any h > 0 and U € Qp,,, the bound
k
IP(U) = Papx(U) 2 < K Y 11fi(U) = Firape(U)l,,., (6.69)
i=1
holds, while for any h >0, U € Qp,, and V € K% for which U +V € Q... we have the estimate
HPnl;U(V)Hgi < KInu (V) 4+ KJeross;v (V) + K Tapxiv (V). (6.70)

Here we have introduced the expressions

k
TuwV) = T [|ram)|| , +|lr2o] L 1. (6.71)
Tiinl Oiinl
together with
T V) = S S [l W pirtn
i B“”‘“ (6.72)
T i1 2 i;lin[v]‘ 5 [V]fj;Tglin,h
ij;lin
and finally
T (V) = Ly S [FalVI]| . I50) = Frape@) s
i B”*““ ' (6.73)
S S |V MO = L@

ij;lin

Proof. Pick 1 <i<k,any h>0,U € Qp,, and V € E,QL for which U +V € Q... We remark that
all the primed constants below are independent of these specific choices.
By definition, the condition on V' means that

V =y _y® (6.74)
with V#) € V.. for # € {a,b}. Exploiting (6.52), this shows that we have the uniform bound
Vg < C (6.75)
for any ¢ € Qy,. In addition, we may use (6.53) and (6.54) to obtain the rough estimate

”fi;nl(v)ng < ||fi(U"‘V)_fi(U)”q"‘”fi;lin[v]”e;l1

(6.76)
< Go[Vlign,
which gives
eV lg + oo Vllg < V] (6.7
In addition, using (6.51) and (6.75), we obtain the uniform bound
1O + sVl + | Fssr (Vg < G+ CV g < . (6.79)
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Observe that
PU+V)-PU) = a[fi(U+V),....fs(U+V)] —7[AU),..., fx(U)]
= 7[f1(0) + franu V] + frmo (Vs fo(U) + fringu [V] + frso (V)]
—n[fi(U),..., f(U)].

(6.79)
In particular, writing
PinurlV] = 7[framo[V], f2(0), ..., fi(U)]
+7[f1(U), foinu[V],- - ., fu(U)] (6.80)
+. 4w [i0),. ., fee1(U), frenu[V]],
together with
Pou(V)=PU+V) = PU) = Pinu;1[V], (6.81)
the bounds (6.77) and (6.78) allow us to expand out Pyy.i7;7[V] and obtain
| Pay;ur;1 [V] ||g}2 < CJnu (V) + CgTerossiu (V). (6.82)

Upon writing
Ji = wlfuinulV] f200), . fe(U)] = 7l friinu V], f2apx (U)o s frsapx(U)], (6.83)
we see by multi-linearity that
T = wlfuinu V] 2(U) = frapx(U), - .., fi(U)]
7 [ 1m0 [V]s foiapx(U), f3(U) = faiapx(U), -, fu(U)] (6.84)
+oo A+ v V] foapx(U)s - - fi—15apx (U), fo(U) = frsapx (U))].
In particular, exploiting (6.51), we obtain the bound
171z < C7Tapxv (V) (6.85)
Repeating this computation for the remaining indices shows that also
1Pin: [V] = Ao [Vl < CyJapsu (V), (6.86)

which establishes (6.70). The estimate (6.69) can be obtained in a similar, but much easier fashion.
O

6.3 The reference function

We conclude this section by establishing Propositions 6.1-6.3 . The proofs are relatively direct,
exploiting the following scaling results.

Lemma 6.7. For any 0 < k <1 and h > 0, we have the bounds

Oretinllge <1, (|0 Uretinlyme <1 (|07 0 Urorin | o < 17, (6.87)
together with
107 Vsetin| o <2612, (070" Ureriu]| ;2 < 2677 (6.88)
and finally
Ureti — Hllpz < 2V2671/2. (6.89)
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Proof. The uniform bound on Uer.,; follows directly from the definition (6.1)-(6.2). Upon computing

;ef;rc(f) = I{Urlef;*(’ié-)a r/éf;/{(g) - Ii ref *(Iif) (690)
the properties (6.2) immediately yield
|| reanLoo < K, H I‘efl{HLoo = 2 (691)

The bounds (6.87) now follow from (5.10) and (5.20).
It is easy to verify that

2
HUrlef§*HL2 S 47 H ref *HLQ (692)
This allows us to compute
! 2 2
’ ref;k 12 = f K [ ref;* HT)] dr
= K e (T dr
f [ ef; (693)
_ / 2
- ‘ Uref *|| 2
< 4k.
In a similar fashion, we obtain
2
|| ref KHLZ = K HUI/‘ef;*HLQ < 4r3. (6.94)
We may now apply (5.10) and (5.20) once more to obtain (6.88).
Since Usef, is an increasing function, we see that
h‘Zj<0 Uref;n(jh)Q < f Uref K T + h) dr
— f Uref * + h))2 dT
— k1 fnh Uref-*('r/)2 dr’ (695)
< K f Uref * dT’
< 4r~1L.
In a similar fashion, we find
thzo(Uref;n(jh) -1 < 4kt (6.96)
and hence
||Uref;m - H”@i < 2\/51“6_1/2, (697)
as desired. O

Proof of Proposition 6.1. Write U = Uset.,, + V with V' € V},.... Note that Lemma 6.7 implies that

||Uref;/€H@go + Ha—i_Uref;nHe% + Ha+8+Uremeg}21 + ||a+a+Uref;n S 6. (698)

lese
In particular, we see that
[0l + 107Ul + 050+ Ulls + 070 Ul e < 6+ 357"

- (6.99)
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since 0 < kK < % In addition, we see that:
07U < (|0t Uretinl[ e + [0V ]| <+1 =26 =1k, (6.100)

as desired.
Finally, we note that

9(U) = g(H) + 9(Uretss) = 9(H) + 9(Uretis + V) = 9(Uret;r)- (6.101)
Writing
M= SUpjy| <=t/ ()]s (6.102)
we see that
I9(Uret;) — 9(H)|l 2 < M |[Uretis — Hl| 2
< 2V2MkTY2,
(6.103)
l9Wretn +V) —gUnetdllz < MIVie
< %Mli_l.
The desired bound now follows from g(H) = 0. O

Proof of Proposition 6.2. Notice first that " H € ¢3, which with U — H € ¢7 implies that 97U € (3.
Pick k > 0 to be so small that

07U, <1—45 (6.104)
h
and also
1 _
1Ullge + 107U 2 + [[0*07 U] + 0707 U] +6 < g7 (6.105)
In addition, pick ey > 0 to be so small that

_<1-3k (6.106)

h

Haﬂ?

L

and also

1
o +6< R (6.107)

|71 SN

+ Ha*ﬁ

,+|oroto
e ¢

+ Ha 8 INJ
02
h

oo
eh

whenever H(j' -U

p < €9, which is possible because of the continuous embedding 3 C £5°.
h

For any such (7, we write

Ve = U — Uset.n- (6.108)
We immediately see
CRA Haﬂ}HZ? + [Vsetinllye < 1= 3+ =125, (6.109)
In addition, we have:
Vicllge + 0% Vil + 104 0F Vil + 1070 Vil e < 3871 =6+6=Fr". (6.110)
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Finally, we note that

WVellg = |7 = Vet

€2

IA

U-U|, + U= Hlg +|Uretss — Hl 12 (6.111)
g% ‘eh eh
eo+ U = Hllz +2v2[s]71/2.

A

By decreasing x > 0 even further, which does not destroy the estimates above, we can hence obtain

Vil < in*l. (6.112)
This shows that V,, € V.., as desired. O
Proof of Proposition 6.3. Pick k > 0 to be so small that
u'l| e <1—4k (6.113)
and also
ull g + e + "l e + "l 6 < grt (6.114)
Using Lemma 5.1 and the inequality (5.20), we obtain
||ev198,fu’|zzc < ||| poe <1 —4kK (6.115)
together with
llevul|pee + Hew@f{u“ei + He"ﬂa;[a;[uuzi + Hevﬁa}ja}juuzf +6 < g (6.116)

for any ¥ € R.
Corollary 5.3 implies that we can pick a small constant ¢y > 0 in such a way that

. 1 _
||erL9'U||Z}oLo;2 + ||eV19UHzi?2 < min{x, 3" 1} (6.117)

holds for every ¥ € R and any v € H' that satisfies (6.11). Upon writing w = u + v for any such v,
we see that

||ev19w||t,;o <l—-4r+rK<1-3k (6.118)
together with
levoully + llevody ull +llevadyt o5 wlls + llevodyf oyl +6 < 75~ (6.119)
for any ¥ € R.
For any such w, we write
Vi = evgw — Urefy- (6.120)

We immediately see

0% Visoll e < [levody w]| e + (|04 Usetin]| e < 1= 3K+ =1~ 2. (6.121)

[
In addition, we have

HVH;ﬁHe;O + ||6+VH;19||4$1 + ”a+a+vfi;ﬂ”ei + ||6+6+Vn;19”420 < %’171 —6+6= %’471- (6.122)
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Finally, we note that

HVH;ﬁHzi = |evyw — Uref;ﬁ”gi
< levyw — ev19u||€i + |leveu — eVﬂUref;*”Z%L
+ ||eV19Uref;* - Uref;*”g% + HUref;* - HH@;A’L + HUref;fi - H”gi

< e+ 3|u— Uretiell g1 + 3 1Uretss (- +9) = Urety ()| 1 + 22 + 2v/2[K] /2.
(6.123)
By decreasing k > 0 even further, which does not destroy the estimates above, we can hence obtain
Viollez < in‘l (6.124)
for all ¥ € [0, h]. This shows that V,.y € V)., for all 9 € [0, h], as desired. O

7 Preliminary estimates

In this section we exploit the bounds in Proposition 6.1 to obtain a number of technical estimates on
useful expressions that will help to streamline the arguments in the rest of the paper. In particular, in
§7.1-87.2 we derive preliminary estimates on the gridpoint spacing functions and discrete derivatives
that were introduced in §4. In §7.3 we discuss two important error functions and in §7.4 we study
several U-dependent linear operators on E%L that are encountered when linearizing our main equation
(2.26).

7.1 Gridpoint spacing estimates

Our first result here is crucial as it shows that the inverse functions [r%]’l and 751 can be uniformly
bounded on €2y, for all A > 0 simultaneously. We use it to simplify the expressions for ’y[}k defined
in Lemma 4.2 at the cost of an O(h) error term.

Lemma 7.1. Firh >0 and 0 < k < % Then for any U € Qy,.,., we have the pointwise estimates

VR <rg <1, VE <y <1 (7.1)

Proof. We compute
1>/1-(0 02 >/1-(1—k)2=V1-1+42k—k2> k. (7.2)
0

Corollary 7.2. Fiz 0 < k < % Then there exists K > 0 so that for any h > 0 and any pair

(UM, U@) e Q... we have the estimates

IN

o — 7U(2)||€;>L° K H8+U(2) o 8+U(1)H£g€ ’

(7.3)
o — '7U(2>||ei < K H‘%U@) o 0+U(1)He§ :

Proof. These bounds are a direct consequence of the lower bounds in (7.1) and the representation

(4.23). O

Corollary 7.3. Fiz 0 < k < 11—2 Then there exists K > 0 so that for any h > 0 and any U € Qp,,
we have the bounds

oty < K|otou],
09| < K[|0°0U|+ T+ |0°0U]]. (7.4)
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Proof. These estimates follow directly from Lemma 4.1. O

Lemma 7.4. Fiz 0 < k < % Then there exists K > 0 so that for any h > 0 and any U € Qp,,
we have the pointwise estimates

|0+ [12] + 20°U S*[°0U| < Kn||o%u]* + T+ 00U ],
0% ] + 45 0°US*H%U)| < Kh[|%U | + T+ |0%U| |,
0+ '] — AgP00USsHotou)| < Kh[|a%ou|® + T+ |o%U| |, (7.5)
0+ 1% - 205 00U sHp'ou)| < K| |o°ouU]” + T+ |900 )|,
0+ gt - 4y taUsta%au)| < Kh||a%U|* + T+ oo’ ].
Proof. Using the representation in Lemma 4.2, we see that
o%] < ci[ o°ou] + T+ [o°au] |, (7.6)
together with
|070°U| = |sT[0°0U]| < |9°U| + T |0°0U| . (7.7)

This implies that

IA

|5+[0°U] — 20°U |
1S*[vu] = 2vu| + | STE] — 243

h[|0°0U| + T+ |8°0U| ],
h|0°0U]| + T+ |8°0U]| ], (7.8)
h[|0°0U| + T+ |8°0U]| ].

AN

IN

[Pyl =8| + |PThE] — 6]

Since the explicit expressions on the left hand side in (7.5) can be obtained from Lemma 4.2 by
making the replacements

St[0°U] — 20°U, Sty — 2y, STyE — 29, Pty —~% Pty =g, (7.9)

the desired estimates follow from the lower bounds for vy stated in (7.1). O

7.2 Discrete derivative estimates

In this subsection we obtain several preliminary estimates concerning the discrete derivatives intro-
duced in §4.3 and the mixed expressions 7,;’“60U . We also consider approximations for three sums
that can be seen as discrete versions of the integral identities

[ fiar = 1 T,
(7.10)
JT EE D 4 = L[l —w/(7)?],
together with
T u/(T/),U//(T/) B u/(T),U/(T) T U//(TI)’U/(TI) ,
/ — = ——— 2—/ ey (7.11)
oo /1= W(T) V1—u(r) oo ( (7)?)
Lemma 7.5. Firh >0 and 0 < k < % Then for any U € Qy,.,., we have the inclusions
{Fox(U), Foo(U), Foo(U), Foort(U), Fo=H(U), Feoot(U)} C 63 (7.12)
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Proof. Proposition 6.1 implies that 0*U € /%, Together with Lemma 7.1 and the identity (4.28),
this implies the inclusions

FEU) ey,  Fo(U)els. (7.13)

Since 0% (¢£2) C £2, the remaining inclusions can be read off from the definitions (4.30), (4.33) and
(4.34). O

Corollary 7.6. Fiz 0 < k < % Then there exists K > 0 so that for any h > 0 and any U € Q.
we have the pointwise bounds

0T F-(U)| < K|8°U],
0T Fo(U)] < K[|o%U|+T+|8%U]|].

(7.14)

Proof. This follows directly from Lemma 4.3. O

Lemma 7.7. Firh >0 and 0 < k < % Then for any U € Qy,,., we have the pointwise bounds

1 3
3h < FOU)F=U)+1< 55—1. (7.15)
Proof. We compute
FOU)F(U)+1 = 1420000
r+(f+i+)f(a+UI)J2+a* votu (7.16)
— v\"y Ty .
r;; (T[;-"-Tg)
Since (r{7)? + (87U)? = 1, we obtain
+.— _
00 ot _ gy 140~ U8 U
Fr)FeU)+1 O B s S (7.17)
Observe that |0~ U||0TU| < 1. In addition, Lemma 7.1 implies
26 < rii(rg + 1) <2, k<riry <1 (7.18)
We hence find
K o o 3
—<FOMOFHU)+1< —, (7.19)
2 2K
as desired. The estimate involving F°-(U) can be obtained in the same fashion. O

Lemma 7.8. Fiz 0 < Kk < % Then there exists K > 0 so that for any h > 0 and any U € Qp,,
we have the pointwise estimate

0
o+ [87(]] —gPsH[000U)| < Kh[|0%0U] + T+ [0 ). (7.20)
U

Proof. Using 070°U = ST9°0U and the definition (4.22) for 7, we compute
ot [ZY] = OthGTTU + 0t e0U
= 010U + &(U) + 010U
= 7;20°USH[0°0U)0°U + &(U) + &(U) + ;' SH[0°0U]
= S H[0%U] + & (U) + &(U),

(7.21)
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in which

aU) = hothylloron,
(7.22)
&U) = [a+ ] — 500U s+ [aOaU]}aOU.
The estimate (7.5) now yields the bounds
1EL(U)] + |&(U)| < Cih[|0°0U | + T |8°0U| ], (7.23)
which establishes (7.20). O

Lemma 7.9. Fiz 0 < k < % Then there exists K > 0 so that for any h > 0 and any U € Qp,,
we have the pointwise estimate
+ U —4 2\ a+a0 0 + 140
o) [7] — (2 =75)ST%U | < Kh[|0°0U |+ T |8°0U]|]. (7.24)
U

Proof. Using 070°U = ST9°0U and the definition (4.22) for 77, we compute

ot [80_U]

et

= It A THOU + 420U

= 9Tz H0U + &(U) + 520U

= 91U STPOU)U + £,(U) + E(U) + 7525 T[0°0U]
= (2 -13)ST[0°0U] + £1(U) + &(U),

(7.25)

in which
&(U) = hot[y?oTo'U,

-2 —4 90 0 0 (7.26)
&U) = [awU | — 295400U S+ [0°aU] | 9°U.

As in the proof of Lemma 7.8, the desired estimate now follows from the bounds (7.5). O

Lemma 7.10. Fiz 0 < Kk < % Then there exists K > 0 so that for any h > 0 and any U € Qp,.,

the two linear expressions

SaulVl = hY_ 7' [0°U]°0V, 72
' 7.27
SpulV] = $75'[0°U10°V — hY_, vy 10°0U]0°V

satisfy the pointwise estimate
ISpulV] = SauV]] < Kh [T— 0"V + 107V +[0°0V[ + [0V ]z + 070V ]|p | (7.28)
for all V € ¢3.
Proof. Using (4.11) we first observe that
|T*SauV] = SaulV]| = h|0TSaulV]| < C1|8°0V]. (7.29)
The summation-by-parts identity (4.13) allows us to compute
T+SuulV] = T+ [h Eﬁh'y(}l[aoU}ﬁ‘)@V}
- Tt [%h > o 751[80U]8+8_V} 30)
= T[T gt u]o v - hS_, 07 gt ohuloY
= 3 [O°UIOTV = 3h 35, Oty U0V
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Upon writing
1
SavalVl = 57 1a° hZa+ 51U (7.31)
we use the identity

otV — 0V = hd°oU (7.32)

together with (7.20) to obtain

|SawlV] = TTSau[V]] < C3h[0°0V | + Coh 0% 07V || 4 (7.33)
We now write
SanlV] = 575 10010V — 5h S04 S [00U10"V, (7.34)
—h
which gives
SavnilV] — SavalV] = —5h Y [0 0] s 0P0u)| oV (7.35)

—sh
In particular, (7.20) yields
SwvintlV] = SaalVI] < Cih|0+ 07U |0°V ] o < Cin [0V 0 (7.36)

We now transfer the ST using the summation-by-parts identity (4.13) to obtain

1
Sav.alV] = 570 LUV — %hT* [ 20°V]oPoU — %h § S~ [v;?0°V]°ou. (7.37)
—:h

We hence see that
SpwlV] = SavarlV] = hT~ [ °0°V] + 3h 3, ho~ [1°0°V]0°0U. (7.38)

Using the fact that
107 [0 V] |2 < Cs[[|07V 2 + [|070%V ] 2 ] (7.39)
the desired estimate follows. O

Lemma 7.11. Fiz 0 < k < 1—12 Then there exists K > 0 so that for any h > 0 and any U € Qp,.,
we have the pointwise estimate

1
by g tetuletou — 5(1—w)| < Kh. (7.40)
Proof. Since [yy];n — 1 as j — —oo, we have
w—-1 = hY _,0"w. (7.41)
In particular, writing

St = hY_, vy °UST[0%0U] (7.42)
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we may use the estimate (7.5) to obtain

IS — (1 =)

IN

2KA |0+ 07U 7
< Clh.

Using the summation-by-parts identity (4.15), we can transfer the ST to obtain
S = hY _, 5 [ '0°U]0°0U + hd"oUT~ [, 0°U].
In particular, writing
I=38—-2hY._,v;'[0°Ud°0U,
we see that
I = —hY _,hd [ 0°U]0°0U + hd°OUT™ [, 9°U].
Using Lemma 7.8 we see that
Z| < Cih 0% 04 U7, + Cih,

from which the desired estimate follows.

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

O

Lemma 7.12. Fiz 0 < k < 1—12 Then there exists K > 0 so that for any h > 0 and any U € Q.

we have the pointwise estimate
Y g2 PUSH°OU] + )| < Kh.

Proof. We first compute

Oty = $WnTHyy — 4 Inqy
= %ln T;’/VU.
The bounds in Lemma 7.1 imply that
Ty > Vi
U

We recall that
In(1 + ) — x| < Cf |z
holds for all € R that have 1+ 2 > /k > 0. Applying this estimate with

Tty
r=—""

—1=hy;'0 [l
YU

we conclude that the sequence
Ty = 0t Inyy] — 510" [y

satisfies the pointwise bound

2
Tl < cint gt otholl]
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Using the explicit expression for 8% [yy] in Lemma 4.2, we conclude
Tl < skl |ovoult + 1t oou]? . (7.55)
Writing
Ty = 0T [lnvy] +;20°UST[0°0U], (7.56)
the estimate (7.5) implies that also
Tl < cyh[|otou) + T+ 00U . (7.57)

In particular, we see that

2
WY LT < 20snlotorUl (7.58)
< Chh.
Since [yy]jn — 1 as j — —oo, we conclude that
Infyy] =hY 0T [Inyy] (7.59)
—h

must hold pointwise. The desired estimate follows directly from this identity and the bound (7.58).
O

7.3 Error functions

In the sequel we will encounter two error functions that are small when applied to V., but that need
to be controlled for arbitrary U € Q. In particular, we define the function

Ean(U) = h0™ [15*(2 = 13) s+ [0%001]], (7.60)
which measures the smoothness of U in some sense. In addition, we define
— 0
Ew(U) = 2v5'0°0U +g(Usa) - c. 2L, (7.61)

which measures the error when U is substituted into a discretization of the travelling wave equation
(3.6). Finally, we introduce the function

Etapx(U) = 8y;°0°USH[0°0U|T+[0°0U] + 2y 0+ 9°0U

(7.62)
+¢' (U)°U — ey ?ST[0°0U],

which can be used to approximate the discrete derivative of (7.61).

Proposition 7.13. Assume that (Hg) and (H®.) are satisfied and fix 0 < k < . There exists
K >0 so that for any h > 0 and U € Qy,.,, we have the a-priori bounds
1Ew (D)llge + 1€ (Dllz < K '
together with the estimate
0% (U] = Edsape (D) e + 10F (€ (V)] = Efapu (D] o < KR, (7.64)
h h
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while for any UM € Qp, and U® e Q. we have the Lipschitz bounds

IA

[Ean (UD) = Equ(UP)]]
h
||5tW(U(1)) - StW(U(2))H[ﬁ

K|[lotu® — oru ||, + |ototu® —otoru ]|, |,
h h
K@ U0z
h

A

(7.65)

Proof. The bounds in (7.63) and (7.65) follow directly from ||h0~ Hc(é}z 2 < 2, the Lipschitz bounds
in Corollary 7.2, the estimate (6.8) on g(U) and the pointwise inequality

g(U®) = g(U)] < [supjyyepmr Ig' ()| | [U@ =T, (7.66)
In order to establish (7.64), we compute
I Ew(U)] = 20 [y TT[0°0U] + 27, 070°0U + 07 [g(U)] — .0t [y 0°U] (7.67)

and notice that

*g(U)] = ¢'(U)°U = 9*[g(U)] — ¢'(U)d*U + hg'(U)0°0U. (7.68)
Upon estimating
0% [g(U)] - ¢ (U)O*U| = h~'g(U+hotU) - g(U) - g'(U)hd*U|
< Afsuppyyces o) Bt poTUP (7.69)
= Sh[supuee lg" ()] | 107U,

we can use (7.5) together with (7.20) to obtain the desired bound. O

Proposition 7.14. Assume that (Hg) and (H®,) are satisfied. Then there exists K > 0 so that for
any h > 0 we have the estimates

[[€om (W)l g + 1| Eom (W)l 2 Kh,
[€ew (W)l g + 1€ (Pl 2 Kh, (7.70)
107 [Eow (W)l ge + 107 [Ere (T)]ll 2 < K.

IN

IN

Proof. We have ¥, € W3 for ¢ € {2, 00}, which allows us to apply Lemma 5.1 and (5.20) to obtain

[Pl < CHR[0~00 Wl

(7.71)
< Ch|[WY |-
This yields the first bound.
Since v, and 7y, are both uniformly bounded away from zero, we can estimate
R e i Il T (o IRl e P (i I S 170 R A (7.72)

Exploiting the fact that W/, ¥/,  ~ 1 7\;37 0°V, and 9°0¥, are all uniformly bounded, we now see
that

[ WQEaO\D*HeZ < Gglo°w. - \I’;He;{
ol =2yl < Ga[[00W. — W], + [[20°0W, — 0], ] (7.73)
|27g 0T 0%00., — %TWQ{’HZZ < oyf||o°w. — \I/;H[Z + |20 0%0®, — \11;"H£%]
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for g € {2, 00}.
Since ¥, € W32 N W3, we may apply Lemma 5.5, and Corollary 5.6 to obtain

1w, — 45 lo0w, ||€q+||774\1,u 2510000, H€q+”,}/74qj!// 27‘;?306\114][2 < Cih

for g € {2,00}. The travelling wave equation (3.6) allows us to write
Eon(Wy) = 2957000, — 4 W) — vy 000, + ey WL, (7.75)
which using (7.74) yields the second bound.

Using the fact that ¥, € W42 N W4 which allows us to apply Corollary 5.7, we may argue in
a similar fashion as above to conclude

[ WL WY — 275,900, 5F[000W, )T [0V, ]|, < Cih,
h
el —glstieton.|,, < Cih, (7.76)
|yt — 27;:18‘*'808\1’*”[1 < Cjh,
h

for ¢ € {2,00}. The differentiated travelling wave equation (3.7) allows us to write

Eva(Wa) = 8732000, SF [P0, TH[0°0W,] — 4y SW/ W, W/
+27v5 207000, — y A
(7.77)
+g' (V)00 — g (V)T
—7g 2SO0V, ] + ey BV
Using (7.76) together with (7.64) we may hence conclude
0% 6w (Pl < Pl + 0% 60w (0] = En @y
< Csh,
which yields the third bound. O
7.4 The M terms
In the sequel we will often encounter the quantities
My;alV] = 810U [0°0U]0°V, MyclV] = g U)V,
MuslV] = 2v520°V, MuplV] = eV, (7.79)
The discrete derivatives of these terms can be approximated by
M eV = 16(475° = 3y, 4)[0°0U120°V + 8y, *0°U[0+0°0U10°V
+167;10°U[0°0U10°0V,
M papx V] = 87,10°U[8°0U10°0V + 27,2000V, (7.80)
M coape[V] = —40°U[0°0U)g' (U)V + 9" (U)[0°UIV + 9" (U)0V,
M papxlV] = —20.75°0°U[0°0U10°V — 2¢,7y;,' 0°0V.
We are specifically interested in the combinations
Myl[V] = MyalV]+ My;s[V] + My,c[V] + My.p[V], (7.81)
MgV = M agap VI + M piape V] 4 Mo V14 M, i [V]:

for which we obtain the following bounds.
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Proposition 7.15. Assume that (Hg) is satisfied and fix k > 0. There exists K > 0 so that for any
h>0,U € Q. and V € 3 we have the a-priori bounds

1My V]l K[Vilg=,
10 Mu (V]2 < K|Vgs + K[|07070 U e 07V 2, (7.82)
10T My[V] = My[0*V]l < K|[Vlge + K070 07 Ullpee 07V ]|z ,

IN

together with the estimate

H8+MU[V] ~ M

Ujapx

VI, < ERIVIgs +KR[9" "0 Ul [V (7.83)
h

In addition, for any h > 0, any pair (UM, UR)) ¢ in and any V € (2, we have the Lipschitz
bound

1My [V] = Myo Vil < [U® = UO| e [Viigen +[[US = U] oo [Vi[22 . (7.84)

We will also encounter the expressions

My V] = 75" M5y V] + 4751 0°U 10000 | My 4V ] (7.85)
for # € {A, B,C, D}, together with
My.[V] = 8y5°8°U[078°0U10°V + 2+ 10 0°0V. (7.86)

The relevant combinations are evaluated explicitly in the second main result of this subsection.

Proposition 7.16. For any £ >0, h > 0, U € Qp.,, and V € 2, we have the identities

My a[V]+ Mup[V]+ Muc[V] = 16[64;° — 595°)[0°0U120°V
+327;,%0°U[0°0U)0° 0V
+¢"(U)[0°U)V + ¢/ (U)d°V, (7.87)
+MU;E[V]

My.p[V] = 6.5 00U 000UV — 2¢,47 2000V

In the remainder of this subsection we set out to establish these results. We will treat each of
the components separately, using the estimates (7.5) to approximate the & [’yljk] terms.

Lemma 7.17. Fiz k > 0. There exist K > 0 so that for any h >0, U € Qp,,, and V € 03 we have
the bound

10 My alV] —~ My alotVlls < K07Vl + K [0407 0 Ullye [0°V]a . (7.89)
together with the estimate

o MualV) = M gV

< KR[07V g + 1040V + 04070 V| ]

“ (7.89)
+KR||0YOTOTU || e |07V |2 -
h h
Proof. We compute
Ot My.alV] = sawgﬂw[aOU[aOaU]aOv
8y, 1St [°oUITH([0%oU | TV
+8yy ST |7 ] (7.90)

+8v; 10U [0°0UT+0OV
+8v; 10U 00U SH [ oV ],
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together with
My Al0tV] = 8y, *0°U0°0U|SH [0 aV]. (7.91)

The estimate (7.88) now follows directly from inspection.
Upon making the replacements

It e 8y f0UoU), T e, St 21, (7.92)

we readily see that 9 [MU; A [V]] agrees with M, J; Acapx [V]. In particular, applying these replacements
to each of the four terms in (7.90) separately, we may write

Ot [MyalV]] = M gV = T + To + T + T, (7.93)
in which
Jo = 8 [a+ Y] — 4y 800U S+ [aOaU]} T+ [aOU[aOaU]aOV}
32y 500U O [90OU| T [aOU[aOaU] aOv}
+64hn; 00U (800U S [8°0U T+ [0°9U| T+ [0V ] (7.94)
+64hy; 00U [0°0U10°U 0+ [0°0U T+ [0°V]
+64hy;°0°U[0°0U10° U [0°0U]S* [0 0V ],

together with

T = Shy;'0T[0°0U)T+[0°0UT+[0°V]
+16hy;*[8°0U )0+ [0°0U T+ [0°V] (7.95)
+16hy;*[0°0U][0°0U] S+ [0°0V ]
and finally
Je = 8hy;'o°Uo+[0%0U]S+ [0V, (7.96)
Ji = 8hy'oUaoulot([0oV).
The desired estimate (7.89) follows from (7.5) and inspection of the above identities. O

Lemma 7.18. Fiz k > 0. There exist K > 0 so that for any h >0, U € Qp,,, and V € 03 we have
the bound

10 My s[V] ~ Mus[0* VIl < K [040+V]),s (7.97)
together with the estimate

"6+MU§B[V] - M(JJF;B;apx[V]

< Kh[[07 0"Vl + 00707V |

e (7.98)
+ER (00T 07U | geo 10707V |2 -
Proof. We compute
Ot My.g[V] = 2072 |TH[0°0V] + 27,2070V, (7.99)
together with
My.p[0tV] = 2y;2070%V. (7.100)
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The estimate (7.97) now follows directly from inspection.
Upon making the replacements

It g2 w4y t0U 00U, Tt 1, (7.101)
we readily see that 07 [My,5[V]] agrees with MJ;B;apx[V]. In particular, we may write
0" [Mu;sV]] = M papx[V] = T (7.102)
in which
Jo = 2 [a+ 2] — 275480US+[808U}]T+ 909V
4y AU (800U T+ [0V ] (7.103)
+8hyto0U 00U oF [0 0V].
The desired estimate (7.98) follows from (7.5) and inspection of the above identity. O

Lemma 7.19. Assume that (Hg) is satisfied and fix k > 0. There exist K > 0 so that for any
h>0,U € Q. and V € {2 we have the bound

10" My e [V] = Muclo*Vily < K[V (7.104)
together with the estimate

|0+ MusclV] = Mg amlV]

< Kh[[Vlg + 104Vl + 10404V

g (7.105)
FER 00T Ul V]2
h “h
Proof. We compute
Ot Myc[V] = 0ThglT g (U)V]
+750T [/ (U)]TTV (7.106)
+tg' (U)OTV,
together with
My,clotV] = ~5g'(U)I*V. (7.107)
The estimate (7.104) now follows directly from inspection.
Upon making the replacements
It = g totuptou),  TT— 1, 9t (U)]— ¢ (U)OU (7.108)

we readily see that 0 [My,c[V]] agrees with MJ;C;apX [V]. In particular, applying these replacements
to each of the three terms in (7.106) separately, we may write

Ot [My.clV]] = M papx V] = Ta + To + T (7.109)
in which
Jo = [a+ 2] + 200U 8+ [aOaU]} T+ [g’(U)V]
—2hOUH[°OU| T+ [g’( U)V}
—4hdOU 8" [¢'(U)|T+V
—4hdOU[8°0U ¢ (U)D+V,

(7.110)
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together with
Jo = [0tg(U) - g"(U)PUITHV
+42g"(U)[0tU — 0°UITHV (7.111)
+hyég" (U)0°UOTV
and finally
J. = g (U)0TV - V]
= hyEg' (U)3°0V.

In order to estimate || 7,z , we recall that 0tU — 0°U = hd°0U and compute

(7.112)

079" (U) = g"(U)0*U| = h7'|g'(U+hotU) —g'(U) — g"(U)ho* U]
< S[suppugeet L @) |0t pot U (7.113)
= h[suppce lg" @) 107U
The desired estimate (7.105) now follows from (7.5) and inspection of the above identities. O

Lemma 7.20. Fiz k > 0. There exist K > 0 so that for any h >0, U € Qp.,, and V € (2 we have
the bound

||8+MU;D[V] - MU;D[8+V}H43L < K ||8+V||e§, ) (7.114)
together with the estimate

H3+MU;D[V} MV

< KR[0V g + 10407V + 0%0 0V ]

e (7.115)
+EKh||0T0t0 U oo |07V ]| 12 -
h h
Proof. We compute
Ot My.plV] = —c.0 [y TTOV — eyt ST 0V, (7.116)
together with
My.pl0tV] = —coyy'ST[0%0V]. (7.117)
The estimate (7.114) now follows directly from inspection.
Upon making the replacements
It = 295200 0%0U), T I, ST 21 (7.118)

we readily see that 07 [My,p[V]] agrees with M, (JJF; Deapx | V]- In particular, applying these replacements
to each of the two terms in (7.106) separately, we see that

8+ [MU7D[VH - MJ;D;apx[V} = ‘-7@ + jb7 (7119)
in which
Jo = —c.[07g"] =g 0°US 000U TH[V ]
—chy 200U O (000U T+ [0V ] (7.120)

—20*h75380U[80(9U]S+[808V},
together with
Ty = —c.hot[0%0V]. (7.121)

The desired estimate (7.115) now follows from (7.5) and inspection of the above identities. O
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Proof of Proposition 7.15. The bound for | My[V] ”[i and the Lipschitz bound (7.84) follow directly
by inspecting the definitions (7.79). The remaining bounds follow from Lemma’s 7.17 - 7.20. O

Proof of Proposition 7.16. Direct computations yield
My.alV] = 16(4v5° — 3v5°)[8°0U)20°V
+8v,00°U [0+ 8°0U 10"V
+167;50°U[0°0U10°0V
+327;,80°U[0°0U10°U [0°0U10°V (7.122)
= 16(67° — 57;,°)[0°0U120°V
+8v, 000U+ 0°0U 0V

+167;50°U[0°0U10°0V,
together with
My.plV] = 8y;°0°U[0°0U)8°0V + 27510tV + 8v;,50°U [0°0U )00V (7.123)
= 167;°0°U[0°0U)0°0V + 2+, 000V
and finally
My.clV] = —4y520°U[8°0U)g (U)V + ¢"(U)[0°UIV + ¢'(U)d°V
+4v; 200U 00U g (U)V (7.124)

= gDV +g'(U)"V.
The first identity follows directly from these expressions. To obtain the second identity we compute
My.plV] = —2c.9;°8°U[0°0U)0V — 2¢,7;,20°0V
—de,yP0U 00UV (7.125)
6,75, °0°U[0°0U) 0V — 2¢,y20°0V.

8 Gridpoint behaviour

In this section we derive the reduced equation (2.26) by analyzing the function Y(U) defined in
(2.17) and showing that the speed of the gridpoints satisfies

&= Y(U). (8.1)

In particular, we establish Lemma 2.1 together with Propositions 2.2 and 2.3.
In order to clean up the expressions (2.16)-(2.17), we introduce the functions

pU) = TrErmreo (8.2)
p(U) = F+U)p(U), '

together with
qU) = h7'In[1+ hp(U)Fost(U)]. (8.3)
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In addition, we introduce the functions
ZH(U) = exp[QU)],
Z-(U) = exp[-Q(U)].

Our first main result states that these expressions are well-defined, allowing us to obtain reasonably
compact expressions for Y(U) and its discrete derivative.

(8.4)

Proposition 8.1. Assume that (Hg) is satisfied and fixr 0 < k < % and h > 0. For any U € Q.
we have the inclusions

p(U) € >°(hZ;R),  p(U) € £2(hZ;R), q(U) € 1 (hZ;R), (8.5)
together with
Q(U) € £*(hZ;R),  ZHX(U) e (*(hZ;R),  Y(U) € £>(hZ;R). (8.6)
In addition, we have the identity
QU) = hx ,q), (8.7)
together with
Y({U)
oY)

—Z7(U)h S, p(U)ZH(U)DT[2F°(U) + g(U)]
—3TH[27(U)]p(U)Fort(U)STET(U)Y(U))] (8.8)
—$STET(U)pU)ZH(U)D* [2F°0(U) + g(U)].

Finally, for every U € Q... we have the limit
Jdim Y (U) = 0. (8.9)
Jj——00

Our second main result shows that we indeed have & = Y(U), irrespective of whether the full
equation (2.2) or the reduced system (2.26) is satisfied.

Proposition 8.2. Suppose that (Hg) is satisfied. Consider a function U : [0,T] — £7° for which
U—HeCY[0,T);¢3) and

|0FU@)||, <1 (8.10)
h
for all0 <t <T. Write
z(t) = Teqh + hzﬁh(@(ﬂ -1)
oru )’ (8.11)

Suppose furthermore that at least one of the following two conditions holds.
(a) The function U satisfies (2.26) on [0,T].
(b) The pair (U, z) satisfies (2.2) on [0,T].
Then there exists 0 < k < % so that for every 0 <t <T we have the inclusion
U(t) € Ui, (8.12)
together with the identity
i(t) =Y(U(1)). (8.13)



8.1 Basic properties for Z and Y

In this subsection we show that the definitions above are well-posed. In addition, we establish some
basic identities for the discrete derivatives of Z and ) that allow us to establish Proposition 8.1.

Lemma 8.3. Fiz 0 < k < ﬁ and h > 0. For any U € Qy.,, we have the identity
ha(U) = I |1+ Fo+(O)TTFRU)] —In [1 4+ F+(U)F(U)],

together with the inequality

exp[hg(U)]

1+ hp(U)Foor+ ()

K2.

v
W=

Proof. We compute

explhq(U)]

1+ hp(U)0TFoo(U)
_ FO+ (U)hdT Foo(U)
= 1+ 1+F°+ (U)F°o (U)
14+ F %+ (U) FO0 (U)+F°+ (U)hdt Fo0 (U)
1+F°+ (U)F%o (V)
14+ F°+(U)TH FOo(U)
1+F+(U)Foo(U)

which directly implies (8.14). In addition, we may use Lemma 7.7 to conclude

Tr {1+]—'°— (U)F°o (U)}
exp [hQ(U)] = 1+F°+(U)F°o (U)

Lemma 8.4. Fiz 0 < k < % and h > 0. For any U € Qy.,;, we have the inclusions
pU) € £=(hL;R),  p(U) € P(WL;R),  q(U) € £'(hL;R),
together with the identity
QU) = hy _,q).
Proof. Note that Lemma 7.7 yields
pU) =14+ F+(U)F(U)|"" € £°(hZ;R).

Together with Lemma 7.5 this shows that p(U) € (?(hZ;R).

(8.14)

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

Since -L[In(x)] can be uniformly bounded on sets of the form z > x? > 0, the bound (8.15)

implies that there exists C] > 1 for which

|hq(U)| < CihIp(U)| [F = (U)] .

(8.21)

Lemma 7.5 implies that F°0T(U) € ¢2(hZ;R), allowing us to apply Cauchy-Schwartz to conclude

that ¢(U) € ¢1(hZ;R). Finally, the identity (8.19) follows directly from (8.14).
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Lemma 8.5. Assume that (Hg) is satisfied and fixr 0 < k < 1—12 and h > 0. For any U € Qy,,., we
have the inclusions

QU) € 1°(hZ;R),  ZX(U) € (>(hZ;R),  Y(U) € £°(hZ;R). (8.22)
together with the identity
YU) = —Z (U)hY_, p(U)ZH(U)dT [2F°%0(U) + g(U)). (8.23)
In addition, the limit (8.9) holds.

Proof. The inclusions (8.22) for @ and Z* follow immediately from Lemma 8.4 and the definitions
(8.4). The expression (8.23) follows immediately from the definition (2.17).

We note that we have the inclusions p(U) € ¢2, F°°°(U) € ¢3 and g(U) € ¢2 by Lemma 8.4,
Lemma 7.5 and Proposition 6.1 respectively. In particular, writing

H(U) = p(U)ZT (V)T [2F7°*(U) + g(U)] (8.24)

we may use the fact that 0% is a bounded operator on ¢2(hZ;R) to conclude by Cauchy-Schwarz
that H(U) € ¢*(hZ;R). The inclusion Y(U) € £>°(hZ;R) and the limit (8.9) follow directly from
this. O

We remark that we explicitly constructed Z+(U) with the aim of satisfying the first identity in
(8.26). Indeed, writing Z = Z* and attempting to solve this equation, we compute

hOTIn(Z) = In(T+Z) —In(Z) = n(1 + hZ 710" Z) = In[1 + p(U)hF>(U)), (8.25)

which leads naturally to (8.4). This choice will allow us to use Z as a discrete version of an integrating
factor; see Lemma 8.10 below.

Lemma 8.6. Fiz 0 < k < % and h > 0. For any U € Qp,,., we have the identities

o [ZHU)] = ZTU)pU)FT(U),
042 (U)] = ~TH[Z-O)]pU)FH (V). (8:20)
Proof. For any U € (>°(hZ;R) we observe that
ot [explU]] = h~lexp[U] [exp [T+ [U] - U] - 1} .
= h7lexp[U] [exp [hoT[U]] — 1] .
This allows us to compute
OrZHU) = hTZHW) |exp[hOt[QU)] 1]
= KlZHU) [ex [In[1 + hp(U)Fo+(U)]] — 1] (8.28)
= WIZHU) () Ft )]
which yields the first identity. Using (4.7) we compute
W) = 0*[z]
_ ZHU)p)FoH (U) (8.29)
= PTET ) )
which yields the second identity. O
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Lemma 8.7. Assume that (Hyg) is satisfied and fixr 0 < k < 1—12 and h > 0. For any U € Qy,,., we
have the identities

IHEZHOVWU)] = —p(U)ZT(U)IF [2FU) + g(U)], 0
OF[F(U)Z-(U)] = BOTT[Z7O)]F* (). ’

Proof. The first identity follows from ZT(U)Z~(U) = 1 together with the expression (8.23) for
Y(U). In addition, using (8.26) and (4.5) we compute

IFF>(U)2=(U)] = FoHU)THZ™(U)] - Fo(U)T*[27(U)]pU)F>+(U) (8.31)
= (1= FoU)pU))TT[Z2~(U)]Foot(U). '
The second identity follows from
FoU)pU) =1-pU). (8.32)
O

Proof of Proposition 8.1. In view of Lemma’s 8.4 and 8.5, it suffices to establish the identity for
01Y. Exploiting (4.8), (8.26) and (8.30), we compute

oY) = oT[ZT(U)ZH(U)Y(U)]
= 0727 U)STZTU)YU)]
—LSHE)pU) 2+ () 27 (U) + g(U)] (5.33)
= L |THE OpO)F )] $HEF O]
—38T 27 O)p(U) 2+ (U)0* 27 (U) + g(U)],

as desired. O

8.2 Gridpoint speed

In this subsection we use the discrete derivatives (8.26) and (8.30) to analyze the discrete differential
equations that govern the behaviour of the gridpoints. This allows us to establish Proposition 8.2
and the first three main results from §2.

Lemma 8.8. Consider the setting of Proposition 8.2, but without requiring (a) or (b) to hold. Then
there exists 0 < Kk < 1—12 for which the inclusion

U(t) € Qnye (8.34)

holds for all 0 <t < T. In addition, we have

2 — Teqn € O ([0, T7; zzo), (8.35)
with
& = —hY_,F+(U)ITU. (8.36)
Finally, we have the limit
dim 25,(6) =0 (8.37)
j——o00

for every 0 <t < T.
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Proof. Since U(t) — H is continuous in ¢7, and the interval [0, T is compact, the existence of the

constant k > 0 can be deduced from Proposition 6.2.
Taking a pointwise derivative, we may compute

it = —F°+(U)OTU.
Writing
U _9tU
VI—@0T0)2 +1  rf+1

and taking a pointwise derivative, we obtain the identity

nU) =

. +7 :
nU) = ifﬁﬁﬁ Fer(U)otU

FHIHOTUF+ (U) ot
00
+ 1 +y2 .
rg ST A () o
(7‘++1) U
= 0.

'rU(rU—i-l)

The embedding éi C {5 together with the smoothness assumption on U implies that
t = p(U®) € CH0.T]E),
t — otU@®) e CY[0,7T];¢3).

In particular, since the map

Tl X 2 0P, (VW vE) sy vy®
—h

is a bounded bilinear map, we see that
t | (U(1), 07U ()] € (10, T): 652).
Since we have

z(t) = Teqin — 7r[p1 (U(t)), 8+U(t)}7

we may compute

()

m|p (U D). 0T U ()]
= [ U)oU) 7 [p (U), 07T 0)]
a+U(t),a+U(t)} - [‘9 0]

o [—
"0y 5y H1) s+l

- —7r_[ L ]a+U()a+U( )}

T T
"o (Tom T U(f)Jrl

= —r[Fes(U),0t0 ),

(8.38)

(8.39)

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

(8.45)

which gives the desired expression. Finally, the limit (8.37) follows directly from the fact that

Fo+(U(t)) € £7 and dtU(t) € £3, which means that the product is in £'(hZ;R).

O

Lemma 8.9. Consider the setting of Proposition 8.2 and suppose that (a) holds. Then we have

(t) =Y(U®)) for all0 <t <T.

74



Proof. Exploiting the identity (8.36), we compute

&= —hY L, Fer(U)ITU
—h Y, FoH(U)OT [F(U)V(U) + 2F°*(U) + g(U)]
—h 32 FoH U)o [Fo(U) 27 (U)ZHU)V(U) + 2F°(U) + g(U)]
= —zhX_,, FHU)T[Fo )2~ (U)]ST[ZHU)V(U)]
—3h X W FrU)SH[Fe(U) 2 (U)] o [2H ()Y (U)]
—hY_, FoH(U)T[2F0 (U) + g(U)].

Using the definition (8.2) and the identities (8.30), we find
&= —zh3_,p(U)TH[27(U)|Ft(U)SHZHU)YU)]
+5h 3, For(U)ST[F> (V)27 (U)|p(U) 2 (U)0F [2F°(U) + 9(U))]
—h 3, FH(U)OT [2F°0(U) + g(U)].
Writing
HU) = 3STFCO)Z-(O)pU)Z2H(U) -1,
Po= —3h X, pU)TH[Z7(U)]F2HU)STZT(U)Y(U)]
+h Y, For(UYHU)OT [2F°% (U) + g(U)].

Using (8.30) we now compute

2H(U) = |SH[FU)2-(U)lp(U) - 22—(U)}Z+(U)

i

2F(U)Z=(U)p(U) + ho+[Fo(U)Z(U)p(U) — 22‘(U)}Z+(U)

= 2P0 )2 (O)pU) + EU)THE () FH (U)p(U) - 227 (U)] 24(U).

Exploiting (8.32) we obtain

~—

PH(U) = | = 25(U)Z"(U) + hp(U)TH[Z~(U)F+ (U)p(0)]| 2+ (),
which using (8.26) yields

H(U) = [f 22~ (U) — hd* [Z*(U)]} BU)Z+H(U)
= =ST27O)pU)Z*(U).
In particular, recalling (8.8) we see
& = —3hy_,p(U)TH[Z(U)]Fot(U)ST[ZHU)Y(U)]
—zh >, STZ(U)p(U)2H (U)o [2F°(U) + g(U)]
= h)_,0"OU).

The desired conclusion ¢ = Y(U) now follows from the limit (8.9).
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Lemma 8.10. Consider the setting of Proposition 8.2 and suppose that (b) holds. Then we have

i(t)=Y(U(t)) for all0 <t <T.
Proof. Exploiting the identity (8.36), we compute
i o= —hY_, FH(U)OU
= —hY _, For(U)dt [FoU)i +2F(U) + g(U)].

Taking a difference, we obtain
Oti+ For(U)oH[Fo(U)i] = —Fo+ (U)o [2F°(U) + g(U)].
Using (8.26), we now observe that
Ot ZH ()] = OT[ZT0)|TTe+ ZT (U)o [1]
= ZTO)pU)Fot(U)Tri+ ZH (U)o (1]

XU [0 [Fo(U)i] - Foo(U)0 i
+ZF(U)9* 4]

= ZHU) (1= p@)F*(U)) 9] + p(U)H F ()]

In particular, recalling (8.32) we see that

OZHUNE] = ZHU) [FU)0* ] + p(U)0F [Fo (V)]

= ZTUR) |0 [i] + F )0 FR ()i
Substituting (8.55), we find
GHET(U)E] = —ZFUPW)T 270 (U) + g(U)).
The limit (8.37) together with the inclusion Z7(U) € £ implies that
jgr_noo Z5 (U)ijn = 0.
In particular, we obtain
ZHO)NE = —hE, ZHO)p(U)0F [2F () + g(U)],

as desired.

Proof of Propostion 8.2. The result follows immediately from Lemma’s 8.8-8.10.

Proof of Lemma 2.1. The statements follow directly from Propositions 6.1 and 8.1.

Proof of Proposition 2.2. Suppose that (b) and (c) are satisfied. Writing
yin(t) = zjn(t) = jh
we see that

lim yn(t) =0
j——oo
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and

OTy(t) = /1 —[0TU(1)]? — 1. (8.63)

This means that

y(t) =hY_ oty(t)=hY_ [VI-[0*UD)] - 1] (8.64)
—sh —sh

and hence x must satisfy (8.11). Together with (a) and (d), this allows us to apply Proposition 8.2
and conclude that ¢ = Y(U). Item (e) now directly implies that (2.26) holds. O

Proof of Proposition 2.3. ITtems (a’) and (b’) together with (8.11) allow us to apply Proposition 8.2
and conclude that & = Y(U). Together with (c’) this implies that (2.25) holds. Item (a) follows
from Lemma 8.8, (b) and (d) are immediate and finally (c) follows from the fact that rf; — 1 €
(M (hZ;R). O

9 The full nonlinearity
In this section we study the function
Ggu) = FoWU)IU)+2FU)+gU), (9.1)

which contains all the terms on the right-hand side of our main reduced equation (2.26). In addition,
we study the discrete derivative

Gt(U) =a[GgU)]. (9.2)

In principle the results in §4 and §8 provide explicit expressions for all these terms, but the main
issue here is that the expression (8.8) features a third order derivative that cannot be controlled
uniformly for U € ., and h > 0. This is particularly dangerous since we can only except our linear
operator to generate two derivatives, in line with the continuous theory developed in §3.

This can be repaired by a discrete summation-by-parts procedure that we carry out in this
section. Naturally, the term G (U) will feature third derivatives, but as a consequence of the discrete
differentiation the linear operator also generates an extra derivative.

In order to state our results, we need to introduce the three auxiliary functions

o _ STR+F+(U)FoU)]
pa(U) = IPT[I+FoT (U)F0 (D)’
o _ ST F+(U)STFoo(U)
s U) = —ipirrtmae o) (9.3)
_ STF+(U)STF+(U)
p*WU) = —ipmrrr @7 )

together with the convenient shorthand
p+(U) = p5 (U) +p5 (U). (9.4)
Our first main result here shows how these functions can be used to describe 9T p(U).

Proposition 9.1. Fiz 0 < k < % and h > 0. Then for any U € Qp,,, we have the inclusions
pat (U) € 42(hZ;R),  py (U) € 2(WZ;R),  p*(U) € 3(hZ;R). (9.5)
In addition, we have the identity

Ot p(U) = p** (U)F+7(U) +p* (U)F* 7 (U). (9-6)
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We now have all the necessary ingredients to define the functions

W) = FoU)Z=(U),

No(U) = 2F°(U) +g(U),
together with

Xa(U) = pU)ZF(U),

Xp(U) = SH[ZHU)p*+ (V)

Xo(U) = STZHU)p> (),

Xp(U) = STp@)ZTU)p).

(9.8)

Our second main result shows that these functions can be used to split G(U) into the four components

GaU) = [1=(O)T [Xa] | 3:(0),

Gu(U) = SMWIRS_, Va(U)T~ | Xp(U)Fo++(U)],

Go(U) = MUY, Ya(U)T~ [Xo(U)F+(U)],

Gp(U) = IS, I(U)T~ [Xp(U)F+(U)].
nd

Proposition 9.2. Suppose that (Hg) is satisfied and fir 0 < k < %
U € Qp,. we have the identity

GWU)=6aU)+G(U) +Gc(U)+ Gp(U).
Turning to G*(U), we introduce the functions
VEW) =0, V(W) =0t Pu(U).
Using (8.30), one readily obtains the identities
VEW) = BU)FeHU)THEZ (U)),
VE(W) = 270t (U) +at[g(U)].
In order to isolate the third derivative in Y, we write
Vo, (U) = 2157 (U)o 0%,
VHWU) = 2]Feert(U) = T2 (U)+ 000U | +0F[g(U)].
Our third main result shows that G*(U) can be decomposed into the components
Gha(U) = [1=20)Xa(U)|¥5,0),
Thy(U) = 1= )| ¥5W),

GhoU) = —Df U)X+ %),
together with
GH(U) = YVHUINTT S, MaU)T~ [Xs(U)F++(U)),
GaU) = IVFONTT S, Ma(U)T~ [Xe(U)F+ ()],
Gh(U) = S9F OIS, %a(U)T [Xe(U)F(U))].
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Proposition 9.3. Suppose that (Hg) is satisfied and fix 0 < k < % and h > 0. Then for any

U € Q.. we have the identity
GHU) = GhaU) + G (U) + GholU) + G5 (U) + G5 (U) + G, (U).  (9.16)

We provide the proof for these three results in §9.1. We conclude in §9.2 by analyzing the structure
of our decompositions. In particular, each term can be written as a sum of products that can be
described in the terminology of §6.2.

9.1 Summation by parts

Proof of Proposition 9.1. The inclusions follow directly from Lemma’s 7.5 and 7.7. In addition, we
may use (4.8) to compute

_ Fo+(U)
o p(U) = O [mFrmrem)
_ Stp+re+@Feo ot [F+ )] _ STF+(W)]ot [F+ (U)Fo0 (U)]
- 2PFH[1+F°+ (U)F°0(U)] 2P+ [1+F°+ (U)F°o(U)] (9.17)

= S[PTRU)TN ST L+ For (U)F(U)] Forit (U)
YRS [Fe )]0t [Fo ) F ).

Applying (4.8) once more we obtain the desired decomposition

tp(U) = [PTRU)TIST[L+ For (U)F(U)]Fo++(U)
LIPS [Fo (U] SHF () Fo+H(U) (9.18)
=3[P [Fo+(U)] S [Fo+ (U)]Fo (U).
O
Lemma 9.4. Fiz 0 < k < % and h > 0. Then for any U € Qp,,, we have the identity
OT[XA(U)] = %XB(U)]”*?*(U) + %XC(U)F°0‘+(U) + %XD(U)]”O;*(U). (9.19)

Proof. Appying (4.8) and (8.26), we compute

o [xXA(U)] = O0F[p(U)ZF (V)]
= 30T [pU)]ST[2F(U)] + 5SF (V)]0 (27 (V)]
= 3% (U) +pg (U))F+HH(U)SHZH(U)] (9.20)
+3p% (U)FoH (U)SH 2 (U))]
+3S* pO)p(U) 2+ (U)FooH(U),
which yields the desired result. O

Proof of Proposition 9.2. Applying the discrete summation-by-parts formula (4.13) to the expression
(8.8) for YV, we obtain

yU) = —2-O)T [pU)2*H(U)][2F°*(U) + g(U)]

+Z7(U)RY_, [2F°(U) + g(U)] 0~ [p(U) 2 (U)]. (9.21)
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Exploiting the definitions (9.7)-(9.8), this allows us to write

GU) = -NWU)nU)T[Xa(U)]
V1 (U)h Y, Vo(U)0~ X (9.22)
+Ys(U).
Applying (9.19), we find
GU) = [1=-NOT [XO)]]%0)
U Va(U)T [ X (U)Fo++(U) (9.23)

IR, YolU) [Xo(U)F0 (U) + Xp (U)F+ (U),

as desired. O

Proof of Proposition 9.3. We use the preliminary expression (9.22) together with (4.5) to compute

otGU)] = -V (OTH(U)XAU) = i(U)Y3 (U)Xa(U) = Y1 (U) V2 (V)0 [Xa (V)]
AV (U)RTH Y Vo(U)0™ Xa + V1(U)Va(U)0~ Xa
+Y5(U)
= W (O)XA()THN(U) + (1 = W1 (U)Xa(U)) V5 (U)
+VHO)RTT Y, Vo (U)X
(9.24)
Applying (9.19) now yields the desired decomposition. O

9.2 Product structure

The first two results below describe the two types of products that appear in our decompositions of
G(U) and G*(U). Both types can be covered by the theory developed in §6.2.

Lemma 9.5. Pick k > 1. Assume that
Ar = (Grits -+ Q) € {2, 001K (9.25)
is a sequence containing precisely one 2 and suppose that the map
7l — (9.26)
is given by
woL, ... U] = V102 - Ug. (9.27)
Then the pair (Qr, ™) satisfies (hr).
Proof. This follows directly from the bound
vy - UkHeg < ||U1He,21 ||U2||e;° T ||UkHegc (9.28)

and rearrangements thereof. O
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Lemma 9.6. Pick k1 > 1 and ko > 2 and write k = k1 + ko. Assume that
qQr = (%r;lv cee 7(]7r;k) S {27 Oo}k (929)

is a sequence containing precisely one 2 in the first ki positions and precisely two 2’s in the last ko
positions. Assume also that the map

Tl — 0 (9.30)
is given by

v, ... ,vk]:vl---vkthvkl+1-~-vk. (9.31)
—h

Then the pair (Qr, ™) satisfies (hm).
Proof. This follows directly from the bound
[m[vs, ... avk]”zi < ||Ul||eﬁ ||'UZ||@;°L° Hvklnego ||Uk1+1||ei ||Uk1+2||zi;b ||Uk1+3He;° ||”k||e;° (9.32)
and rearrangements thereof. O
We now define the set of nonlinearities
Sn1 = {F°0, p, p®0, p°t, Fooo Fooit Fo-it zt ZT gl (9.33)
In addition, for each f € S, we define a set of preferred exponents Q f.prer C {2, 00} via
{2} for f € {Fo0, Foort, Fo-it g},
Qfipret = § {00} for f € {p,p®,p*+, 2%, 27}, (9-34)
{2, 00} for f e {F}.
Introducing the notation g*(U) = 9+ g(U), we also define
Sul = Su U {p, Zge ™+, T30, g7, 0°0}, (9.35)
together with the preferred exponent sets
{2} for f e {Fo%, Fo=, 9,97},
Qfipret = {00} for f € {B,p,p™,p°+, T5" " Ios " 27, 27, (9.36)
{2,000} for f € {F°0,0°9, Fooit}.

Comparing with (9.34), we remark that oo was added to Q zoq;+,prer- This is motivated by the fact
that the QX,C(U) term contains a product of this nonlinearity with F°°0. In any case, we note that
for any f € S, we have

Qfipret C Q fpret- (9.37)
Notice that we are excluding the third derivative from the set Spj. Recalling the identity
Z-(ZHU) =1 (9.38)
and using (8.32), we obtain the simplification
Gi,(U) = 2[1=FU)pU)IL (U)ata°ou

, (9.39)
= 2p(U)I (U)o 9°0U.
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The third derivative requires special attention, but appears here in a relatively straightforward
fashion. For this reason, we exclude it from our general statements here and analyze it directly in
the sequel.

The following two results state that G(U) and G+ (U)—GJ,,(U) can be decomposed into products
of the two types discussed above. In addition, every product can be estimated in 6}% by only using
norms ||f(U)||z§L for which ¢ € Q f.pret-

Lemma 9.7. Fiz 0 < k < % and h > 0. There exists an integer N > 1 together with integers

k; > 1, sequences

qr; = (qm;17-~~ ,(Im;ki) S {2700}]67
. (9.40)
£; = (fi;lv"' 7fi;ki) € Snl
and maps
w02 (9.41)
each defined for 1 < i < N, so that the following properties hold true.
(i) For each U € Qp.,. we have the decomposition
N
GU) = m[fir(U), ..., i, (U)]. (9.42)

i=1
(i) For each 1 < i < N the pair (qx,, ;) satisfies the conditions of either Lemma 9.5 or Lemma
9.6.

(iii) For each 1 <i < N and 1 < j < k; we have the inclusion
Qr;;5 € sz‘;j%PTef' (9'43)
Proof. The desired decomposition can be read off directly from the structure of the terms defined
in (9.9). O
1

Lemma 9.8. Fiz 0 < K < 55 and h > 0. There exists an integer N > 1 together with integers
k; > 1, sequences

qﬂ'i = (qm;17~-~ 7q7'(7',;k57;) e {2700}]67
. (9.44)
. = (fir-oo fie) € Su
and maps
m O — 02 (9.45)
each defined for 1 <i < N, so that the following properties hold true.
(i) For each U € Q... we have the decomposition
GHU) = GL,(U) =Y mi[fiaU),..., fiw, (U)]. (9.46)

i=1

(i) For each 1 < i < N the pair (qx,, ;) satisfies the conditions of either Lemma 9.5 or Lemma
9.6.



(iii) For each 1 <i < N and 1 < j < k; we have the inclusion
Qr;;5 € @fi;j;prcf' (947)

Proof. The desired composition can be read off directly from the structure of the terms defined in
(9.14) and (9.15). O

Our final result allows us to construct admissable sequences for our multi-linear maps by simply
swapping suitable exponents. This will allow us to deviate from the exponents Q) f,prer defined above
in a strategic fashion, which is crucial to obtain useful error bounds.

Lemma 9.9. Consider the setting of either Lemma 9.5 or Lemma 9.6. Pick any integer 1 < i, <k
for which qr,;, = oco. Then there is an integer

L<jufie] <k (9.48)
that has
Qrijfin] = 2 (9.49)
and for which the swapped sequence
di, = (Gt 5 Qisik) (9.50)

defined by

qr;j Zf] ¢ {i*aj*},

Ginj =14 2 if j =i, (9.51)
00 if J = Jx,
is admissable for .
Proof. This follows directly by inspecting (9.28) and (9.32). O

10 Component estimates

Our goal in this section is to analyze the nonlinearities f € Sy U Sy and introduce the terminology
that allows the conditions (hf), (hf)in and (hf)n to be verified. In particular, we construct suitable
approximants fapx and fiin that are accurate to leading order in h, but also tractable to use in our
subsequent computations.

In order to apply Lemma 6.6 in a streamlined fashion, we state our estimates that are relevant
for (6.72) in terms of the quantities

Sean(V) = Vg2 + 107V ]y . Sean(V) = Sean(V) + 070V o 10.1)
S26x(V) = V=, Sasx(V) = Saax(V) '
related to the seminorms in (hf), together with the expressions
Tsafe(v) = HVH@??Z 3 Tsafe(‘/) = Tsafe(V)7
o - oy (10.2)
Tooiopt(V) = |0 VHE’;LC ) Toosopt(V) = Tosiopt(V) + 070 V”z;o
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associated to the linear terms in (hf);,. Finally, we use the functions

En(V) (IVllgza + 1Vl gon +2) [V 22

V) = En(V) (10.3)

On|

to control the nonlinear terms (6.71).

We divide our nonlinearities into five distinct groups that are fully described by Propositions
10.1-10.5 in §10.1. In Corollaries 10.6-10.9 we subsequently discuss a number of bookkeeping issues
that in §12 will allow us to control the cross-terms (6.72) for G(U) by

jcross;U(V) = Tsafe(v)sfull(v) + Too;opt(V)SZ;ﬁX(V)~ (104)

Naturally, the related estimate for G (U) — G}, (U) will also hold.
The proofs for our estimates can be found in §10.2-§10.6. The main idea is to apply the substi-
tution techniques from §6.1 to the explicit identities derived in §4.

10.1 Estimate summary

The first set of nonlinearities is given by
Sur = {F} (10.5)
We define
FaaU) = 2500, FinolVl = g0V (10.6)
For any f € Sui;1, we write
Qr = {2, 00}, Q}?;nn = Q?;lin = {2, 00}, Qj};nl = Q]L“?;nl ={2} (10.7)
and recall that Q f.pret = Q f.prer = {2, 00}

Proposition 10.1. Assume that (Hg) is satisfied, fir 0 < k < % and pick any nonlinearity f €
Sni;1- Then there exists a constant K > 0 so that the following properties are true.

(i) Upon introducing the seminorms

Vifen = 107Vl < San(V), (108)
Vifioon = 107Vl < Srn(V), '
the conditions in (hf) are all satisfied.
(ii) For every q € Qf, U € Qe and h > 0 we have the estimate
1F(U) = fapx (U g < K. (10.9)
(i) Upon writing flﬁ;U =0, the conditions in (hf)in are satisfied. In addition, the bounds
|fao, < KIoVIe < KTu(V),
) h (10.10)
|faov,. < KOV < KTaon()
h

hold for all U € Qp.s, h >0 and V € (3.
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(iv) Upon writing f5 v =0, the conditions in (hf)m are satisfied. In addition, we have the bound

A

+ + + +o+
QoW < KITVILI0Vlg + KR VIg + 1070 ViG] o
< Kgnl(V)
forallU € Qp.e, h >0 and V € E,%,
The second set of nonlinearities is given by
Snl;]] = {ﬁ’p’pOo’p0+ IQQO7+aI;>§O + 1—0007 } (1012)

We remark that Ii°°;+ ¢ Su1, but we do need the bounds stated below in order to estimate gj,a.
We write

Papx(U) = 7%, Pinv[V] = —200U8°V,

Pax(U) = w0, pinu[V] =t (29E - 1),

pU) = (g - 1), PVl = (2-493)0°US"V,

pax(U) = A, pinolVl = UV, (10.13)
Lot (U) = 4yg%0°0, IVl = 46y® — 57 %10V,

[0 (U) = 44°0°0, oVl = 4[6n5° — 5510V,

IS = ISVl = 4y %0°UaV.

In addition, we write
Qf = {OO}’ Q?;lin = Q?;lin = {2’ OO}’ Q?;nl = Q?;nl = {2} (1014)

for each f € Suirr. We recall that Qf.pret = {00} for f € Snyrr N S and Gf;pref = {oo} for
f S Snl;][ N 3nl-
For later use, we recall the definitions (4.39) and remark that we can formally write

Fogd (U) = aptorotou,
FEOHU) = 4y 00°UST[000U) T+ (000U, (10.15)
together with
Fomt Ve = 4y°0°U[0+0°0U0°V + 0+ 0%V,
FomulVl = 467" = 5y°)SH[0°0UIT* [0°0U10°V (10.16)

+4v;,°0°U [T+ [8°0U]SH[8°0V] + ST[a°0U|T+[0%0V]|.

Proposition 10.2. Assume that (Hg) is satisfied, fir 0 < k < 1—12 and pick any nonlinearity f €
Sni;r1- Then there exists a constant K > 0 so that the following properties are true.

(i) Upon introducing the seminorm
Voo = 107Vl < Sran(V), (10.17)

the conditions in (hf) are all satisfied.
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(ii) For every q € Qf, U € Q. and h > 0 we have the estimate

Hf(U) - faPX(U)”Z;IL < Kh. (10~18)

(iii) Upon writing fl?n;U =0, the conditions in (hf)in are satisfied. In addition, the bounds

IN

K07Vl

IN

Hflﬁl;U[V] 2 KTsafe(V)a

|#0), (10.19)

IN
IN

K0V < Kloop(V)

hold for all U € Qp.e, h >0 and V € E,Ql.

(iv) Upon writing fﬁ;U =0, the conditions in (hf)n are satisfied. In addition, we have the bound

oW, < KNV 10Vl + KR{I0VIg +10°0*VIig] 00
< Kgnl(V)
forallU € Qp.e, h >0 and V € E,zl,
The third set of nonlinearities is given by
Sutrrr = {F°00, Foort Fo-it 909}, (10.21)
We write
Fa(U) = ~p'oou, FawlVl = 4y 0°Ula°ouo°V + a5 oV,
FRirU) = ap’stetou, FiwlVl = 3y 0°UST[°0U1V + S H[0°0V],
Fami T (U) = 24,2090, Fimt V] = 6y,°00U[0°0U1OV + 2v;,20°9V,
[0°0]apx (U) = 8°0U, [0°0in,u[V] = 0°0V.
(10.22)

In addition, for each f € Syi.r7r7 we write
Qf = {27 OO}, Q?;lin = Q?;lin = {2a OO}, Q?;nl = Q?;nl = {2} (1023)

We recall that Q fipref = Q f.prer = {2} for f € {F°%0, Fo=F}  For f = F°ot we have Q pipref = {2}
and for f € {F°0F,8°0} we have Q.o = {2, 00}

Proposition 10.3. Assume that (Hg) is satisfied, fix 0 < k < 1—12 and pick any nonlinearity f €
Snt;rrr- Then there exists a constant K > 0 so that the following properties are true.

(i) Upon introducing the seminorms

Vigen = 107V + 8%V, < min{San(V), Szx(V)},
" " _ (10.24)
Vifioom = 107Vl + 1070 V] pee < Sran(V),
the conditions in (hf) are all satisfied.
(i1) For every q € Qs, U € Qp.e and h > 0 we have the estimate
IF(U) = fapx(U)lgg < KD (10.25)
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(iii) Upon writing fffl;U =0, the conditions in (hf)un are satisfied. In addition, the bounds

IA
IA

|#,0 1]
|#s0 V)]

< K0Vl +1070 V] < KTae(V),
e g ' B (10.26)
K05V + 10407V ] < KTaop(V)

IN
IN

o
hold for allU € Qp.e, h >0 and V € E%,

(iv) Upon writing fﬁ;U =0, the conditions in (hf)n are satisfied. In addition, we have the bound

[rem,, = BIo Vi [0Vl + 10t 0+ Vil
R[0TVl + 00TV 5 ] (10.27)
< Ké&a(V)
for allU € Qpe, h >0 and V € K,%,
The fourth set of nonlinearities is given by
Surv = {27,271 (10.28)
We write
Zh(U) = ', ZiwlVl = UV + 5 h Y, Eam(U)OOV,
zo.(U) = A, ZaplV] = G OUPV — b Y Gy, (102

In addition, for every f € Sni.yv we write
Qs = {oo}, Q?;lin = {oo}, Q}B;nn = {2, 00}, Q‘?;nl = {oo}, Qﬁnl ={2} (10.30)
and recall that Q fipret = Q f.prer = {00}

Proposition 10.4. Assume that (Hg) is satisfied, fir 0 < k < % and pick any nonlinearity f €
Snt;rv. Then there exists a constant K > 0 so that the following properties are true.

(i) Upon introducing the seminorm
V]fioow = ||8+V|\£}21 + ||3+V||Zi.o + ”8+8+V”zﬁ < Srn(V), (10.31)
the conditions in (hf) are all satisfied.
(i1) For every q € Qf, U € Qp.c and h > 0 we have the estimate

1F(U) = fap(D) g < K. (10.32)

(i4i) The conditions in (hf)in are satisfied. In addition, the bounds

|fao . < KIoVIe < KTuw(V),
h

Hflﬁl;U[V] PR K[0"V]e < EKTae(V), (10.33)
h

|80V . = K10V < KTaom(V)
h

hold for allU € Qp,.s, h >0 and V € (3.
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(iv) The conditions in (hf)n are satisfied. In addition, we have the bounds

|£aom)|, . < ELIO*VIE + 107 Vi ]
h
+ER[[0* Vg + 0404V | |
< Ké&u(V), (10.34)
|fRem)|, < KnIoVIL
h
< Kgnl(v)

forallU € Qp.e, h >0 and V € E,zl,
Recalling the notation g*(U) = 0T g(U), the final set of nonlinearities is given by

Sy = {g,9"}- (10.35)
We write
Japx(U) = g(U), ginu[V] = ¢(O)V,
GinU) = ¢(U)U, gVl = ¢TIV + ¢/ (U)3°V. (10.36)

In addition, for every f € Sy, we write
Qr ={2,00}, Q?;hn = QJ]‘?;lin = {2}, Q?;nl = Q}]"B;nl ={2}. (10.37)

We recall that Qgpret = @ gpror = {2} and Qg+ prer = {2}
1

Proposition 10.5. Assume that (Hg) is satisfied, fir 0 < k < 15 and pick any nonlinearity f €

Sni;v - Then there exists a constant K > 0 so that the following properties are true.

(i) Upon introducing the seminorms

Vigen = WVl +107VI]e < min{San(V), Szax(V)}, (10.38)
[V]f;oo,h = HVHz;;O + HaJrVHe;;O ) .
the conditions in (hf) are all satisfied.
(it) For every q € Qf, U € Q. and h > 0 we have the estimate
IF(U) = fapx(U)l g < Kh. (10.39)
(#ii) Upon writing fﬁ;U =0, the conditions in (hf)un are satisfied. In addition, the bound
|faov|, < K[V +107Vie] < KTuw(V) (10.40)
h

holds for all U € Qp.e, h >0 and V € (3.

(iv) Upon writing fﬁU =0, the conditions in (hf)u are satisfied. In addition, we have the bound

|racm||, < K[Vl + 10 Vil [[IVILe + 107V ]3]
h
Eh[|[Vlgz + 1104Vl + 110407V ] (10.41)
< KEu(V)

for allU € Qps, h >0 and V € 3.
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Corollary 10.6. For every f € Su we have co € Qf together with @ fprer C Q?;hn and Q fipref C
Qﬁlin. The same properties hold upon replacing (Sui, @ f.pref) bY (gnl,@f;pref).

Proof. The result can be readily verified by inspecting the identities above. O

Corollary 10.7. Assume that (Hg) is satisfied and fiz 0 < k < 5. For every f € Sy and q € Q fpret
we have

[V]f;q,h < Sfull(v) (1042)

for any h >0 and V € £3. In addition, if 2 € Q f.pref then at least one of the following two properties
hold true.

(a) We have
Vlfan < Sauax(V) (10.43)
for every h > 0 and V € £2.
(b) We have
Voo < Sun(V) (10.44)

for every h >0 and V € (2.
The same properties hold upon replacing (Sni, Q f;pref, Stull, S2:ix) bY (gn],@f;pref,gfun,gz;ﬁx).
Proof. The result can be readily verified by inspecting the identities and estimates above. O

Corollary 10.8. Assume that (Hg) is satisfied and fix 0 < k < {3. For any f € Su, any # € {A, B}
and any q € Q f.pret, 0t least one of the following two properties hold true.

(a) There exists K > 0 so that
Hfﬁ;U[V]qu < KTare(V) (10.45)
h

holds for every h >0, U € Qp.,; and V € (3.

(b) We have ¢ = 0o and there exists K > 0 so that the bounds

|#to) .

it

IN

KTsafe(V)7 ( )
10.46

IN

h
- KToosopt(V)
“h
hold for every h >0, U € Qp.,c and V € (3.
The same properties hold upon replacing (Sni, Q f:prefs Tsates Tociopt) bY (31117@f;pref,Tsafe7TOO;opt).

Proof. The result can be readily verified by inspecting the identities and estimates above. O

Corollary 10.9. Assume that (Hg) is satisfied and fix 0 < k < 1—12 Consider any f € Sy and any
# € {A,B}. Then if 2 € Qpref, there exists a constant K > 0 so that

holds for all h >0, U € Qp,..; and V € €3 for which U +V € Q..

fhu (V)

L < Kea(v) (10.47)
h
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Otherwise, there exists q € {2,00} together with a constant K > 0 so that

holds for all h > 0, U € Qs and V € 2 Jor which U +V € Qp,. The same properties hold upon
Teplacmg (th Qf;prefv gnl) by (th Qf;prefa gnl) .

Proof. The result can be readily verified by inspecting the identities and estimates above. O

fﬁU(V)H o S Kéa(V) (10.48)

10.2 Gridpoint spacing

We define the approximate derivative

rinu [V] = =5 09UV (10.49)
together with the nonlinear residuals
rav(V) = iy =5 = o[V, (10.50)
Tgl;U(V) = 7"?]+V - TOU — Tin;u [V]-

Lemma 10.10. Fiz 0 < k < 1—12 Then there exists K > 0 so that the pointwise bounds

IN

)

Kh|0°0U

rYy —wl|+ |rh —w| + |y —wl
P+ i) + i) < k[104vE + 107V (10.51)
+Kh[|a+V| +1V] + |303v|]

N

hold for any h >0, any U € Q... and any V € €3 for which U +V € Qpy,.

Proof. We consider only the statements concerning r§ as the functions r;; and r{; can be treated in
a similar fashion. Writing f(z) = v/1 — 22 and ¢(0~U,0"U) = 91U, we see that

= f(¢(07U,070)). (10.52)

We include the redundant variable 9~ U here because it will be used for our approximate function

Gapx(0~U,0TU) = %3+U + %3_(U) (10.53)
= U
and our approximate derivative
Plinyu [0V, 0TV] = 9V, (10.54)
An easy computation shows that
PO U, 0MU) — ¢apx(0~U,0TU) = 07U —3°U (10.55)
= hddaU,
together with
G (0~V,0TV) = 9N (U+V)—-0tTU -3V
= 0tV -9V (10.56)

= ho%IV.
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The a-priori estimate (6.7) ensures that the geometric condition (6.17) can be satisfied.
the bounds now follow directly from Lemma 6.4 and the observations

f((bapx(a_ U, 6+U)) = U,
Df (6un(@U.070)) = "0,

10.3 Discrete derivatives

We write
Fax(U) = Fax(U) = Fp(U) = 7;'00,
fi?r_:;U[V] = fi?r:,U[V] = Fl?g;U[V] = 75380‘/

and introduce the nonlinear residuals
Faw(V) = FxU+V)-F=U) - FirylV],
Firo(V) = FoU+V)—-FoU) - Fo.plV]-

In particular,

(10.57)

(10.58)

(10.59)

Lemma 10.11. Fiz 0 < k < 1—12 Then there exists K > 0 so that the pointwise bounds

| Fo0(U) = Feg(U)] + |F+(U) = Fagu(U)| + |Fo= (U) = Fax(U)| < KR|°OU| (10,60

apx

and

]:I?IO;U(V)‘ +

fﬁﬁfu(V)‘ +

FawW| = K107V +10vI*]
+Kh[|a—V| 1otV + ]aOav”

hold for any h >0, any U € Qp.., and any V € €3 for which U +V € Qp.y..

(10.61)

Proof. We consider only the statements concerning F°+ as the functions F°- and F°° can be treated
in a similar fashion. Recalling the fact that r;} depends only on 97U, we abuse notation slightly to

write
p(0"U,0TU) = (07U, rfy).
Upon introducing f(x,y) = x/y, we see that
FoH(U) = f(o(0~U,0M0)).

We now define the approximants

Gapx(0~U,0TU) = (8°U,vp),
¢lin;U[a_Vv, 8+V} = (80‘/, _7[;180(]80‘/)
and compute
$(0~U,07U) — bape(0-U,0%U) = (07U — 8°U, 1 — )

= (h@oaU, TJUF — 'VU)
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together with

¢n1;U(87 Va 8+V) = (a+v - 80‘/’ r:lU(V))
0 N ’ (10.66)
= (h’a 8V’ rnl;U(V))'
In particular, Lemma 10.10 provides the bound
6(07U,0%U) — ¢upe(0-U,0%U)| < C1h|[8°0U| (10.67)

together with
b (07 V, 0V < C{[|a—V|2+|a+V|2]+cgh[|a—w+|a+V|+|aOavy] (10.68)

Upon computing

[ (bapx(07U,070)) = ',
DI (uan(0" U0 UD)ouns 0 V0] = o510V — QUG g PURV)
= [w' 4+ 0°U)%y;]0°V
= 15’0,
the desired bounds follow directly from Lemma 6.4. O
Proof of Proposition 10.1. The results follow directly from Lemma 10.11.
Turning to second derivatives, we recall the definitions
Fam T(U) = 2y5°0°0U, 1070)
Fimt VI = 635°0°U[0°0U)0°V + 29,00V '
and write
For V) = Foot(U+V) = Foot(U) = Fp V], (10.71)

Lemma 10.12. Fiz 0 < k < =+

i5- Then there exists K > 0 so that the pointwise approximation
estimate

‘;o_;+(U)_f;5,g+(U)’ < Kh|0°0U]| (10.72)

and the residual bound

f;;(;*(V)\ < K[1o7VE 4100V + 10V [000V] + o+ V] |oov]]

(10.73)
+Kh{|8*V| +10MV] + |aOaV|}
both hold for any h > 0, any U € Qu.x and any V € €3 for which U +V € Q...
Proof. Motivated by the identity
. 2
Fot(U) = = [1+ F-(U)F*(U)]0°0U (10.74)

Tu
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derived in Lemma 4.3, we write

[y, z2—,20) = 3[1 + 2z
together with
o(0~U,0%U) = (rf;, F°-(U), F(U))
and finally
P(0™U,0%U,0°9U) = f(¢(0~U,07U))d°0U.
One readily verifies that
Fo=H(U) = P(0~U,0%U,0°0U).

We now define the approximants

¢apx(37 U7 8+U) (7U7 ’Y(;laOUv ’Y(;laOU) )

Pinu[07V,0TV] = (=751 0°UV, 720V, 7,2 0°V)
and compute
PO U, 0VU) = ¢papx(0-U,01U) = (rff =", Fo-(U) = Fos FOU) — Fioy)
together with
S (07V.0TV) = (. (V) Fip(V), Fip (V).

In particular, Lemma’s 10.10 and 10.11 provide the bound
|p(0~U,0%U) — dpapx (0~U,0TU)| < Cih|8°0U|,
together with
b0 (@V,0TV)| < G107V 4+ 0V
+C{h[|6*V| + 107V + 0%V | ]
Introducing the compressed nonlinearity

T0.2) = £(3222) = ~(1+ )
together with the compressed approximants
Gapx(07U,0MU) = (w75 0°U),
P [07V,0TV] = (=g 00UV, 42 0V),
we see that

f(apx(0-U,07U))
Df (¢apx(8_ U, 6+U))¢1in;U[8_V, otV]

f (¢apx(a_ U7 8+U)) ?

93
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(10.75)

(10.76)

(10.77)

(10.78)

(10.79)

(10.80)

(10.81)

(10.82)

(10.83)

(10.84)

(10.85)

(10.86)



Upon computing

_ 2 z

Df(y,z)= (- ?(1+22),4§), (10.87)

we hence see that the functions defined in (6.30) satisfy

Pupx(U) = 295" (14 (8°U)*y;?)0°0U (10.88)
= 2v;%9%9U, ’
together with
Pinu[V] = —295%(1+ (0°U)27;?) (=7 1 0°U)0°V (9°0U)
+47520°U (72 0°V) (8°0U
v (7o )(2 ) (10.589)
+2v5 (1 + (0°U) ;%) 00V
= 67;,°0°U0°0UV + 2+;°9°0V.
The desired estimates now follow directly from Corollary 6.5. O
We also recall the definitions
Fo(U) = 00U,
b - \ (10.90)
,ﬁfﬁoU[V] = 4y;°0°U[8°0U)0°V + it 0%V
and write
frfﬁ“U(V) = FooU+4V)—FU) — }'ﬁﬁ?U[V]. (10.91)

Lemma 10.13. Fiz 0 < k < 11—2 Then there exists K > 0 so that the pointwise approrimation
estimate

|Fooo(U) — Foo(U)| < Kh|d°0U| (10.92)

apx

and the residual bound

Fp )| < K[loVE+ 10tV +jomvi|eov|+ otV ooV ]

(10.93)
+Kh[|a—V| 1otV + ]608\/”
both hold for any h > 0, any U € Q. and any V € 03 for which U +V € Q..
Proof. Motivated by the identity
1
Foo(U) = —[1+ F°~ (U)F*(U)]0°U 10.94
V)= e 1+ 7 )P )] (10.99
derived in Lemma 4.3 and (4.33), we write
f(era Yo, 2—, ZO) = []— + Z*ZO] (1095)
Y+Yo
together with
(O~ U,0TU) = (rf, vy, Fo-(U), F(U)) (10.96)
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and finally

P(07U,0%U,0°9U) = f(¢(0~U,07U))d°0U. (10.97)
One readily verifies that
Foo(U) = P(O~U,0%U,0°0U). (10.98)
We now define the approximants
Gapx(0~U,0YU) = (v, w75 0°U,~;'0°U), (10.99)
Pinu[0V,01V] = (=75 0UV, =5 00UV, 7200V, v 2 00V).
This allows us to compute
GO U,04U) = gapx (07U, 01U) = (rf ="l = 15" FO (U) = Fp FO(U) = F)s
(10.100)
together with
Sup (07V,0TV) = (rhy (V) e (V) Fop (V) Faip (V). (10.101)

In particular, the bounds (10.82)-(10.83) remain valid.
This allows us to repeat the procedure in the proof of Lemma 10.12 with the compressed ap-
proximants (10.85) and the compressed nonlinearity

— 1
J:2) = [(w.y.22) = 501+ 2%, (10.102)
for which we have
— 2
Df(y,2) = (- E(1+22),2;—2). (10.103)
The functions defined in (6.30) hence satisfy
Puox(U) = ~5%(1+ (8°U)?y;;2) 00U
p(U) o (L @UP) (10.104)
= ~;'0%0U,
together with
Pinu[V] = —295°(1+ (0°U)?;?) (=75 ' 0°U)0°V (9°0U)
+27;°0°U (7, °0°V) (8°0U
UG PY)EO0) 0105,
+752 (1 + (8°U) )"0V
= 4y, °0°U[0°0U)0°V + 100V
The desired estimates again follow directly from Corollary 6.5. O
We now recall the definitions
FRif () = ~g’stetoul, (10.106)
FGV] = 3y°00U[SHa%0U)0OV + ;2 SH[0°0V] '
and write
]_-::lo[jr(v) = Foot(U 4 V) — Foit(U) — fﬁg;[‘/] (10.107)

)
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Lemma 10.14. Fiz 0 < k < % Then there exists K > 0 so that the pointwise approrimation
estimate

| Feot(U) — Fit(U)| < Kh[]0°0U| + T+ |0°0U| ] (10.108)

apx
and the residual bound
00| < K[107VE+ otV T 0V
+K[|a—V| oV + T |a+V|} [yaOaV\ + Tt \aOaV” (10.109)
+Kh{|8*V| 0TV + THOHV | 4 000V + T+ |a°av|}
both hold for any h >0, any U € Q.. and any V € €3 for which U +V € Q..

Proof. Motivated by the identity

FOt(U) = gy [L+ FoU)Fo0(U)] [0°0U] o
ey |1+ F(U)TH [Fo0 (U)]| T+ [8°0U] Ho-1o)
derived in Lemma 4.3, we write
Al zz) = ) (10.111)
folys, z25) = - [1+ 22
together with
(0~ U, 0TU, TTOYU) = (THrl, Foo(U), TTF>(U)) (10.112)
and finally
P (0~U, 07U, TT0TU,8°0U) = fi(¢(0~U,0 U, TTo1U))0"0U, (10.113)
Py(0~U, 0 U, TTO U, TT0°0U) = fo(p(0~U,0 U, TTOVU))TT00U.
For convenience, we introduce the shorthand
wy = (07U, 0TU, TToTU). (10.114)
One readily verifies that
Foot(U) = Py (wy,0°0U) + Pa(wy, TT0°0U). (10.115)
We now define the approximants
bapx(wrr) = (0,75 0°U, v, 0°U), (10.116)
dimvlwv] = (—15'0°UV, 20V, 753801/).
This allows us to compute
$wv) = bapx(wr) = (THrg =0, FoO(U) = Fpu(U), THF(U) = Fp(U))
= (rf =W, FoU) = Fip(U), Foo(U) = Fg(U) (10.117)

+(hOT[ry], 0, hFo(U)),
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together with

Puiu(wy) = (T+T21;U(V)a]:§f);u(v)aT+f§ﬁU(V))
+h( — 0ty UV, 0,8 [7,;3301/]).

(10.118)

In particular, Lemma’s 10.10 and 10.11 together with Corollaries 7.3 and 7.6 provide the bound

lp(wu) = bapx(wu)| < Cih[|0°0U| + T+ |8°0U| ],
together with
[mu(v)l < G0V + 10tV + T+ o4V
+01h[|a—m + 0TV + T 04V + 000V | + T+ |0°0V | ]
Introducing the compressed nonlinearity

_ 1
f(y7z) = fl(y7zaz) = fQ(yaZaZ) = 5(1 + 22)5
together with the compressed approximants

Gapx(Wr) = (v, 75 0°U),
biulov] = (—ap'UV.A;00V),
we see that the identities
fi(Gapx(wrr)) F(@apx(wr)),
D fi(¢apx(wv)) Prinulwv] = Df(Pupx(wvr)) rinrlwv]

hold for ¢ = 1,2. Upon computing

Df(y,z): (_

1 z
—(1+2%),25),
y? y)

we hence see that the functions defined in (6.30) satisfy
P1apx(wrr, 0°0U) = ;' (1+ (0°U)%y;%) 00U
= 753808U,
753T+808U,

Poapx(wir, TTO0U)
together with

Piiin.u[wy, 8°0V] —v5> (1 + (0°U)25?) (=5 " 0°U ) 0°V (9°0U)
+27;20°U (2 0°V) (8°0U)
+y5 ' (14 (0°U)25%) 00V

375, °0°U UV + ~; 200V,

Poinu|wy, THO0V] = 37;°0°UT+[0°0U]0V + 2T+ [00V].

The desired estimates again follow directly from Corollary 6.5.
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Proof of Proposition 10.3. The results follow directly from Lemma’s 10.12, 10.13 and 10.14. O

We recall the definitions

L) =
e . (10.127)
I—T—;lin;U[V] = 4y 0°UOV
and write
IEn (V) = I U V) - I U) - I8 V] (10.128)
Lemma 10.15. Fiz 0 < k < 11—2 Then there exists K > 0 so that the pointwise approzimation
estimate
| ZS0T(U) - IS (U)| < Kh|d°0U| (10.129)

and the residual bound

]r?o;f (V)’ < K[|8*V|2+\8+V\2}

(10.130)
+KR[ 07V + [0V + [0V ]
both hold for any h >0, any U € Q.. and any V € €3 for which U +V € Qp,.
Proof. Motivated by the identity
. 1
I (U) = = (14 F°-(U)F>(U)] (10.131)
uu

derived in Lemma 4.4, we may reuse the functions f, ¢, ¢apx and ¢uy, defined in the proof of Lemma
10.13. Writing

P(O~U,0TU) = f(¢(0~U,07U)), (10.132)
one readily verifies that
I37N(U) = P(9™U,070). (10.133)

Reusing the computations in the proof of Lemma 10.13, we see that the functions defined in
(6.19) satisfy

Papx(U) = 757 (14 (0°U)?,?

: v 4( o) (10.134)

= ’YU 9

together with
Pinu[V] = =295 (14 (0°U)*3%) (= 0°0)0°V

+29;,20°U (7 20°V) (10.135)

= 4y, %0°U0"V.
The desired estimates now follow from Lemma 6.4 and the bounds (10.82)-(10.83). O
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We recall the definitions

Tow(U) = Ii(U) = 4%, (10.136)
fgjcl)lljU[V] = ',F::(l)erU[V] = 4[6’758 - 57(}6]80‘/
and write
Tooiv(V) = I (U +V) = I (U) = Ik V), (10,137
Lo (V) = ot (U+V) =I5 (U) = L5 V-
Lemma 10.16. Fiz 0 < k < % Then there exists K > 0 so that the pointwise approzimation
estimate
|Z55° 7 (U) = Tgogid (U)| + | Zeeot(U) = Tgegid (U)| < KR[[0°0U| + T [8°0U| ] (10.138)

and the residual bound

i+
[Tosoiu (V)| +

Ijso(l)’;lU( )’ S K|:|8_V‘2+‘6+V|2—|—T+ |8+V|2:|
+Kh[|6—V| + |0tV +TT 0TV |+ ]8081/\ Lt |808V|}

(10.139)
both hold for any h >0, any U € Q.. and any V € €2 for which U +V € Qp..
Proof. For convenience, we introduce the shorthand
wy = (07U, 07U, TToTU). (10.140)
Motivated by the identities derived in Lemma 4.4, we write
fos (Y0, Yos, Y, Yss 205 208, 2—, 24) = y+yty0 20 (1—|—z+z05)
yoy+y+ Z0s(1 + 2-20)
oo - 1+ 23), (10.141)
Fos (Y0s Yoss Ybs Y 205 205, =1 24) = %z s(1+ z4205)
y+y0y0 z_(1+ zoz0s),
together with
d(wy) = (rg, THrg, rf, THrd, Fo(U), TTF(U), 7o~ (U), Fo+(U)) (10.142)
and finally
Pos(wu) = fos(¢(wr)), (10.143)
Py(wy) = fes(d(wr)).
One readily verifies that
Ios" H(U) = Pos(wo), (10.144)

I3 (U)

PSS (wU).
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We now define the approximants
d)apx(wU) = (’Yva)/U,’yUa’YUa’YI;laOUa ’yalaOUa ’yl;laOUa ’Y[}laOU)v
dinvlwyv] = (=75 00UV, =5 0°UV, —; UV, —v; ' 00UV, (10.145)
Y OV, OOV, P OV, 4 P00V ).

This allows us to compute

d(wu) = Papx(wr) = (T% — U, T =0T = s T = 0,
Foo(U) = Fagx(U), Fo(U) = Figi(U),
. N (10.146)
Fo=(U) = FelU), 7o+ (U) = Fa(U))
+h(0,0%[19),0,0% [5),0. 70+ (1), 0,0).
together with
duvr) = (o) T (V) (V) Tk (V),
fr?l(:U(V%T+‘7:r<1>10;U(V)7fr?l?U(‘/)?]:rTlJ;rU(V))
(10.147)

+h(0, — &[5 OU V], 0, -8 [y ' 9OU OOV,
0,0+ [753801/},0,0).
In particular, Lemma’s 10.10 and 10.11 together with Corollaries 7.3 and 7.6 provide the bound
9(wv) — buplw)| < Cih|[0°0U| + T |0P0U] (10.148)
together with

burw@)l < C[107VE 104V + T otV

(10.149)
+C{h[|8—V\ +[0FV| 4+ T+ |01V + 000V | + T+ [8°0V | }
Introducing the compressed nonlinearity
_ 4z 423
f(y,Z) = fOS(y7y7yayaZaZ,Z’z) = fss(yvyayay7zazaz72) = E + ?7 (10150)
together with the compressed approximants
5 X((UU = 7U77_180U )
o : \ y ) (10.151)
¢lin;U[wV] = ( - FY(; aOUaO‘/a 7(;360‘/)7
we see that the identities
f# (Papx(wrr) = ?53 <(wr)),
#(@apx(07) (_ v ) _ (10.152)
Df# ((,bapx (CUU))(,b]jn;U [WV] = Df (¢apx (wU)) ¢1in;U [wv]
hold for # € {0s, ss}. Upon computing
_ 3 441222
Df(y,z) = (— 127 +4Z h S ) (10.153)

Yy y3
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we hence see that the functions defined in (6.19) satisfy

POs;apx (WU> = Pss;apx<wU)
4y U + 4y 5(0°U)3 (10.154)
= 4dy;%0U,

together with
Postinu[wv] = Pssiinu[wy]
= —129;°0°U (1 + 72 (0°U)?) (= 100U V)
+(4753 + 12%75(80U)2)7§33°V (10.155)
(129551 = 73) + 415 + 12955 (1 = 92)| 0V

- [— 2075 + 24%;8} 8oV

The desired estimates now follow from Lemma 6.4. O

10.4 Auxiliary functions

We recall the definitions

Papx(U) = 7%, Pinu[V] = —20%)V,
Papx(U) = 00U, P V] = A5l (292 — 1)V (10.156)
and write
5HI;U(V) = 5(U+V)75(U)7ﬁlin;U[v]7
10.157
pau(V) = p(U+V)—=pU) — pinuV]: ( )

Lemma 10.17. Fiz 0 < k < =+

i5- Then there exists K > 0 so that the pointwise approximation
estimate

P(U) = Papx (V)] + [p(U) = papx(U)| < Kh|8°0U]| (10.158)

and the residual bound

P (V)] + [pasp (V)] < K| \6*V|2 + |8+V|2]

(10.159)
+KR[[07V|+|07V] + |0°0V]]
both hold for any h > 0, any U € Qu.x and any V € €3 for which U +V € Q...
Proof. Motivated by the definitions (8.2), we write
f (20’Z+) = %7
? e (10.160)
folz0,24) = Thzgz0°
together with
(0~U,07U) = (Fo(U), F°+(U)) (10.161)
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and finally
PO~U,8TU) = fo(0(0-U,87U)),

10.162
PO-U,O'T) = f,((0°U,07T)). (10.162)
One readily verifies that
pU) = PO7U0M),
10.1
p(U) = PO-U,0+U). (10.163)
We now define the approximants
Gapx(0-U,0TU) = (750U, 7' 8°U),
b [0V, 0TV = (35PVAg V). (10.164)
This allows us to compute
60U, 0MU) = 9upe (07U, 07U) = (Fo0(U) = Fep(U), Fo+(U) = Feful0)), (10.165)
together with
v (0V,0TV) = (Fotu (V). Faty (V). (10.166)
In particular, Lemma 10.11 provides the bound
9(07U,0%U) — ¢ape(07U,07U)| < Kh|8°0U| (10.167)
together with
(0 V,07V)| < K[[07VI +107V]]
(10.168)
+KR][07V] + [0tV + [0V ] ].
Introducing the compressed nonlinearities
7 < = f Z, % = %7
_ﬁ( ) ol(22) - (10.169)
fp(Z) = fp(Z,Z) = ﬁ:
together with the compressed approximants
¢, (07U, 0TU) = ~,0°U,
o ( ) v (10.170)
Sunu0"V.0TV] = 570,
we see that the identities
F#($apx(07U, 01 0)) = F4(up(07U,0%0)), (10.171)
Df# (d)ﬂpx(ai U7 8+U)) ¢1i11;U[87 Va a+ V} = D?# (aapx(ai U7 6+l]))$lin;U [87‘4 a+ V]
hold for # € {p,p}. Upon computing
—
fp(z) = 7(14_2#)27
— e (10.172)
fp(Z) = 1+22)2>
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we hence see that the functions defined in (6.19) satisfy

Popc(U) = [L+75%(0°U)°] !
=
PalU) = 75 U1 +75%(0°0)2) (10173
= wad'l,
together with
Pinu[V] = =275 0°U[1 +~52(0°U)%) 24200V
= —20000"V,
PuulV] = (1=752@0U))[L +752(0°U) 2y 0V (10.174)
= 2-w)wo'V
= ' (2 -1V
The desired estimates now follow from Lemma 6.4. O
We recall the definitions
paU) = (- 1), PiolV]l = (2= 493)0°Ud"V,
Px(U) = b, prtylV] = —4420°U8°V (10.175)
and write
Pt (V) = p*(U+V)=p*(U) - piulV];
(10.176)

Paip (V) = p*+(U+V) = p°(U) = piplV].

Lemma 10.18. Fiz 0 < k < 11—2 Then there exists K > 0 so that the pointwise approzimation
estimate

[+ (U) = page(U)| + [p* (U) = pp(U)] < Kh[[0°0U| + T+ |0°0U| ] (10.177)
and the residual bound

piij(V)‘ +

PaeW)| < K[07VE 107V 41 0V
HEKR[|07V|+[07V] + T |94V | + [0°0V| + T+ [0°0V|]

(10.178)
both hold for any h > 0, any U € Qu.x and any V € €3 for which U +V € Q...
Proof. For convenience, we introduce the shorthand
wy = (07U, 07U, TToTU). (10.179)
Motivated by the definitions (9.3), we write
Fat (20, 208, 24, 245) = zuiiiéi(i(ﬁi*if?iog ’
5 (20, 208, 24, 245) = —qiiasiette) (10.180)
F0(20, 2085 245 24s) = —4(1+Z(+ZZDJ)F(21TZSZOS)7
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together with

$lwy) = (F*U), TTF*(U), F+(U), T F+(U))

and finally
Pi(wr) = fif (¢(ww)),
Py (wv) = f5 (¢(wr)),
Po(wy) = f*(wr))
One readily verifies that
pi (U) = Py (wo),
vy (U) Pyt (wo),
pU) = P*(wp).
We now define the approximants
Gapx(wr) = (750U, 750U, v 0°U, v 0°U ),
dinvlwv] = (520,152 00V, v P00V, 4200V

This allows us to compute

6(wv) = upslwv) = (F(U)

—%h(owf“m+(LU,0,}”+*+(U)>,

together with

bmu(wv) = (Fu V)T, (V). Faiy (V). THFi (V)
+h(o, O [y 300V, 0,0 [%;3301/}).

In particular, Lemma 10.11 provides the bound
|p(wu) = bapx(wu)| < Kh[|0°%U|+ T+ |8°0U]|],

together with

— FapU), FU) - Fiy
Fo(U) = FaelU), o+ (U) = Feil0))

o)l < K107V + [0V + T+ 04V

+J(h“a—vw+|a+v¢+zﬂwa+v¢+ya%ﬂq+-T+ﬁWav1]

Introducing the compressed nonlinearities

Fa(2)

To(2)

7 (2)

fZJr (Z,Z,Z,Z)

_1
14222

EJF(Z?ZVZ,Z)

ZZ

1+z2)7

1 1
T T aEey
foo (z7 Z7 Z’ Z)

T (2),
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(10.183)

(10.184)
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(10.186)

(10.187)

(10.188)
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together with the compressed approximants

aapx (wU) = 75180 U’
alin;U[wV] = 7[;380‘/7
we see that the identities
—on —
f;: ((bapx (WU)) = f#Jr (¢apx (WU)),
o — _
Df;;r (¢3PX(WU))¢“H§U[MV] = Df#+ (¢apx(wU))¢lin;U[wV]
hold for # € {A, B}, together with similar identities for f°°. Upon computing
s s
DfA+ (2) = ﬁ’
+° z z
l)fB+ (Z) = (1-‘322_)2 - —(1fz2)3a

we hence see that the functions defined in (6.19) satisfy

PiinU) = [L4+75°(0°U)2
=
Pitox(U) = Po.(U)

= =@V + 7 (0°U)]

= =1 -17)
= W
together with
PimulV] = =295 0°U[L +45%(0°U)%) 2y ° 0%V
= —20°U8"V,
P;J;rlin;U[V] = ‘PITS;U[V]

= 950U 2L+ 952000 2 — 4L+ 952U 2 a0V
= [2-49%]0°U8"V.
The desired estimates now follow from Lemma 6.4.

Proof of Proposition 10.2. The results follow directly from Lemma’s 10.15-10.18.

10.5 Estimates for Z

We introduce the function

q(U) = p(U)F* (V)

and write
Gapx(U) = ~;20°UST[0°0U],
Ginu[V] = 75" (2 = 23)ST[0°0U]8°V + ;200U S T80V,
together with
E]an;U(Vv) = EJV(U + V) - qu(U) - (Fjlin;U[V]'
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(10.195)
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Lemma 10.19. Fiz 0 < k < % Then there exists K > 0 so that the pointwise approrimation
estimate

V)~ G ()] < Kn[107U] + [0°0U] ] [|0°0U | + T+ |0°0U] (10.198)
and the residual bound
G (V) < K07V + 107V + T 07V |
+K[ 0-V| +9+V| + T+ |a+v@ [|a°av| LT |a°av”

(10.199)
+Kh[|a—U| +|0FU| + T+ 0+U| +|0°0U | + T+ \aOaU”
x [|a—V| + 0TV + T |04V + 0%V ] + T+ |a°av”
both hold for any h > 0, any U € Qu.x and any V € €3 for which U +V € Q...
Proof. We first note that
Papx(U)F5it (U) = qud°Uny®ST[0°0U]
= ~;2°UST[0°0U] (10.200)
= aapx(U)a

while also
Papx DVFSE V] 4+ pino VIFSGF(U) = qwd®U (3957600 SH[0P0U)0V + S+ [0V ]|
+ (2% — DOV P STH[000U)]

- (2%‘1 + 3754 (8°U)?) ST [9°0U]0°V
+7520°U S+ [0V ]

= GimulV]
(10.201)
Lemma 4.3 and the definition (8.2) yield the bound
p(U)| + |FoH(U)| < Ci[|o1U| + [0°%0U | + T+ |0°0U| ]. (10.202)
Observing that
4(U) = Gapx(U)] < [P(U) = papx (U) | |F0 (V)]
HlpapeU)] |77 (U) = Figit ()], (10:209)
we may hence exploit Lemma’s 10.14 and 10.17 to obtain the first desired estimate.
In addition, the computation
G (V) = p(U +V)FOHU + V) = p(U)F0(U) = Giin[V]
= [P(U) + pins [V] + pary (V)][FH (U) + Fb i VI + Farf (V)]
—p(U)F* 7 (U) = Ginw[V]
= D VI(FH ) = P ) + (r0) =m0 Fiipv) 102
+puiu (V)FH(U) + p(U) FE (V)
(Prinst V] + porcw (V) (Fosig V] + Fopir (V)
together with the bounds in Lemma’s 10.14 and 10.17 yields the second desired estimate. O
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We now write

Qapx(U) = aapx(U)a
- 10.205
qinu[V] = qinu[V], ( )
together with
(V) = qU+V)—=qU) - qinulV] (10.206)

Lemma 10.20. Fiz 0 < k < =+

i5- Then there exists K > 0 so that the pointwise approximation
estimate

a(U) = aapx(U)| < KR[[0%U|+[0°0U]][[|0°0U | + T+ |9°0U]| ] (10.207)

and the residual bound
g (V) < K107V + 107V + T 07V
+K[ 0-V| +|0+V] + T+ |a+V\} [\aOaVy + T+ 0%V }]

(10.208)
+Kh[|8*U| +[0FU| + T+ (04U | + |0%0U | + T+ |303U|}
X [|afv| + 0TV 4 T 07V | + 0%V |+ T+ |a°av|}
both hold for any h >0, any U € Q. and any V € €3 for which U +V € Q..
Proof. We recall that for every 7 > 0 there exists C; > 0 so that the inequalities
i +2) - +9) - -9 < Clo—of, (10209
|[1+a]7t —1] < Crlzl
hold whenever x +1 > 7and y+ 1> 7.
We now write
To=qU+V)—qU)—qU+V)+qU). (10.210)
Recalling the definition
qU) = h7'In[1+ hp(U)Fot(U)] (10.211)
= h'In[1+ hg(U)], '
we may compute
Ty = ht [ln[l +hq(U+ V)] —In[1+ hq~(U)]} —h7 1+ hq(U)])7Lhq(U + V) — hq(U))
+[1+ RG] = 1] (U + V)~ G
(10.212)
The uniform estimate (8.15) allows us to apply (10.209) with 7 = 1x? to obtain
Zol < hTICRRZ QU+ V) - q(U) (10.213)

+Coh|q(U) (U + V) — q(U)].
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Exploiting Lemma 10.19 and inspecting (10.195), we see that

Zo| < cgh[|a—V|2 |0tV 4T |0V + [0V + T |aOavﬂ

+C3h[|0°0U | + T+ |0°0U| ][0~ V| 4+ |0TV|+ T[0TV |+ |0°0V| + T+ [0°V]].

The bound (10.208) now follows from the observation
v (V) = Zo+qU+V)—q(U) - qinu[V]
= z-0 + a(U + V) - a(U) - alin;U[V]
= I(] + Z]an;U(Vv)~
Applying (10.209) with y = 0 and using
g(U)| < Ciymin{|0TU|, |0°%U| + T |8°0U|},
we find
hLOER? [q(U)?
hCg|0TU| [|0°0U| + T+ |0°0U| .

¢(U) —q(U)]

IN

IN

The desired bound (10.207) now follows from the identity

4(U) = qapx(U) = q(U) = Gapx(U) = q(U) = @(U) + ¢(U) = Gapx (V).

We now turn our attention to the function

QU) =h>_q(U).
—:h

Recalling the definition (7.60), we write

Qapx(U) —In YU,
Qlin;U[V] = 7[}280(]80‘/"' h’Z—;h gsm(U)ao‘/a

together with
in;U(V) = Q(U + V) — Q(U) - Qlin;U[V].

Lemma 10.21. Fiz 0 < k < 11—2
estimate

|Q(U) - Qapx(U)| < Kh
holds for all h > 0 and all U € Q..
Proof. Writing

QapX;I(U) = hz_;hQapx(U)
hy_ v 0°USTe0U),
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(10.216)

(10.217)

(10.218)

(10.219)

(10.220)

(10.221)

Then there exists K > 0 so that the pointwise approrimation

(10.222)

(10.223)



Lemma 10.20 implies that

|Q(U) - Qapx;I(U)| < hZ—;h |Q(U) - Qapx(U)|
< G101 Ul + 10707 Ul g | 10707 U (10.224)
< Chh.

On the other hand, Lemma 7.12 yields the bound

an;U+1n = an;U_anU
| Qapx; 1 (U) + In[yo]| | Qapx:1 (U) px(U)] (10.225)
< Cih,
which completes the proof. O
Lemma 10.22. Fiz 0 < k < 1—12 Then there exists K > 0 so that the the residual bound
Quw (V)| < K[18°VIly +8] [0V + 1%V, | + KR [0V (10.226)
holds for any h >0, any U € Q. and any V € €3 for which U +V € Q..
Proof. Writing
Qunu;r[V] = k3, qinu(V]
10.227
- WY, [%;4(2 — 42)SH[B°OU)OOV + 520U S+ [aoavﬂ , ( )
we compute
QU +V) = QWU) = QunwuVIl < k3 lguiu (V)]
) . o (10.228)
< K[ua Vi +8] [ 10Vl + 10707Vl |.
Recalling the definition (7.60), we see that
Qinu;r[V] = hz_;h [T* [754(2 —E)ST [808UH80V + “@230US+ [5‘08‘/}} (10.229)
+h S Ean(U)OOV. '
The summation-by-parts identity (4.13) implies that
hZ_;h ’75280U5+[808V] = h) _ YU [ Ujoto'v
= T~ [*0'U]o°V
~h3S_,, 0 [ ?0°U]°V (10.230)
= ;20U V — ho~ [y;20°U] 0V
~h Y, T [0F gtou] oy
In particular, upon writing
mus[V] = 2T g2 = ~3)SH[0%0U] — ot [ 20°U] |9V
QuiarlV] = X T |15 (2 - 13)§*0°0U] - 9* [15°0°U] 10231

+7 20UV + Y, Ean(U)DV,
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we see that

|Quin;vr;11[V]) — Qiims:1 [V h|o~ [ 20°U] V|

e ’80V|. (10.232)
Observing that
Quin;v;11[V]) — Qunu[V] = ZTﬁ {754(2 —E)St[e%U] —oF [75230U]]80V, (10.233)
—:h
we may apply Lemma 7.9 to conclude
|Qlin;u:11[V] — Quinw[V]] < hCj ||8+V||gi , (10.234)
as desired. O
We now recall the definitions
z5U) = v ZholVl = 200UV h Y, Em(U)OV,
_ _ 10.235
2o U) = . ZmolV] = =" VPV —gh Y, Em(@pty (10259)
and write
ZE,(V) = ZEU+V)-2Z5U) - Z, V] (10.236)
Lemma 10.23. Fiz 0 < k < 11—2 Then there exists K > 0 so that the pointwise approrimation
estimate
|Z7(U) = Z4x(U)| + |27 (V) = 250 (U)] < KB (10.237)

and the residual bound

25|+ |20 < K[104VIE + [0+0t VG ]

(10.238)
FEB[ 0%Vl + 10707Vl | + KR[°V]
both hold for any h > 0, any U € Qp.c and any V € €3 for which U +V € Q...
Proof. Motivated by the definitions (8.4), we write
fH(z) =explz], [~ (x) = exp[—a], (10.239)
together with
#(01U,0°0U) = Q(U) (10.240)
and finally
PE(01U,0°0U) = f*(p(07U,8°00)). (10.241)
One readily verifies that
ZE(U) = PE(07U,0°00). (10.242)
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We now define the approximants

Gapx(0TU,0°0U) = —lny,
i [0TV,0°0V] = 420UV + hY,_, Ean(U)O"V.

Lemma 10.22 provides the pointwise bound

|p(0TU,8°0U) — ¢papx (07U, 8°0U)|

1Q(U) = Qapx(U))]
Cih,

IN

together with

o[Vl = 1Quu (V)]

IN

Noting that Df*(z) = £f*(x), we see that the functions defined in (6.19) satisfy

PEU) = [fH5($apx(0TU,8°9U))
= exp[:Fln[fyU]]
= %,

together with

PholVl = £f*(=tnbw)) [¢umu(V]]
= 473! [7[}280U80V +hY ., €Sm(U)8OV}
= i,y[;(zil)aOUaOV + ,Y[:}:lh Zf;h é;m(U)@OV

The desired estimates now follow from Lemma 6.4.

Proof of Proposition 10.4. The results follow directly from Lemma 10.23.

10.6 Estimates for g
We recall the notation g7 (U) = 8% g(U) together with the definitions

gapx(U) = g(U)7 glin;U[V] = g/(U)‘/v
g (U) = ¢'(U0)d°U, gholVl = ¢"(U)[°UIV + ¢ (U)0°V
and write
guv(V) = gU+V)—=g9U) = ginu[V],

Jo(V) = g U+V)=g*(U) - giuu(V]-

L1067Vl +h][10¥Viig + 1070V z | + Cin |00V,

(10.243)

(10.244)

(10.245)

(10.246)

(10.247)

(10.248)

(10.249)

Lemma 10.24. Suppose that (Hg) is satisfied and fix 0 < k < % Then there exists K > 0 so that

the pointwise approximation estimate

lgt(U) — g (U)] < Khn[]0°0U| + |07 U]
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and the residual bounds
|gnl;U(V)|

Gho )| < K[VE+THVE+ otV )] (10.251)
+ER[|V]+TT V| +[0tV] + [0°0V]]

K|V,

IN

A

all hold for any h >0, any U € Qp.c and any V € €3 for which U +V € Q...
Proof. We first note that
guw (V) = g(U+V)—gU)-g UV

o 252
Jo I3 9" (U +0'V)V? do'do, (10.252)

which yields the desired estimate for gy. In addition, for any pair (UM, U®) ¢ Q;..» the C°-
smoothness of g implies the pointwise bound

‘gnl;U(l) (V) — In,Uu®@ (V)| < Ci ’U(l) - U(2)| vz, (10253)
Finally, upon writing
g (V) =g (U+V)-¢U)-g"(U)V, (10.254)

the C3-smoothness of ¢ implies the bound

g )| < IV (10.255)
We now compute
gt(U) = ng(TTU) - g(U)]
= J(U)IU + h~ gnu (hO+U) (10.256)
g (U)3U + hg' (U)3°0U + h™ g (hOTU),
which yields (10.250). In addition, we compute
gt U+V) = h Y gTtU+T+V)—g(U+V)]
= W' g(TTU+TTV)—g(U+THV)]

10.257
+h1 [g(U +TTV) —g(U + V)} (10.257)
= 1Ia+1g,
in which we have
Za = h7Hg(U+THV)hOTU + gaupr+v (hOTU)],
10.2
Is = W' g(U+ VIRV + guwrav (hOTV)]. (10.258)
We compute
Ia = gUITU+[¢(U+THV) g (U))0TU + h™ guw (hOTU)
+h 7 [gusur+v (hOTU) = guio (h0TU)]
(10.259)

G+ (U) + gl (THV)OHU + ¢ (U)o UTHV
+h ™ guur+v (hOTU) = guu (hOTU)],
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together with
Ip = gV +[g(U+V) ~ g OOV +h gugrav (V). (10.260)
In particular, we see that

ghe(V) = ¢'(U) [a+UT+V - [aOU]V] + g U)oV — V]

+9$3U(T+V)3+U + b guusr+v (hOTU) = guo (hOTU)] (10.261)
Ho'(U+V) =g (U)]0V + b guiuv (ROTV).
Using (10.253) and (10.255), the desired estimate can now be read off from this identity. O
Proof of Proposition 10.5. The results follow directly from Lemma 10.24. O

11 Component estimates - II

In this section, we are interested in the set of nonlinearities
Snl;short - {y1,y2,foO;+7.7:07;+7XA,XB,XC,XD}, (111)

which contains all the components featuring in the decomposition (9.9) for G. In addition, we consider
the set

gnl;short = Snl;short U {yi‘ra y;;,}a (112)

which contains all the components that feature in the decompositions (9.14) and (9.15) for G+ (U),
with the exception of y;a.
Exploiting the definitions (9.7) and (9.11), we define the standard approximants

Viapx(U) = Fp(U) 20 (U),
Voapx(U) = 2F50(U) +9(U),
ViapeU) = Papx (D) F5 ()T [20,(U)), (11.3)
Vawapx(U) = 2255 (U),
ViaU) = 2F0 5 (U) + g (),
together with
VoVl = FnulVIZ0xU) + FigU) 25,0V,
Veanw[V] = 2F5w[VI+4g'(U)V,
ViolVl = Binu[VIFi (U)TH[Z0(U)] + Paps (U) Fip i [VITH [ 20 (U)] (11.4)
HPapx (U) Fesit ()T [ 25,0 [V]], '
y;:z;lin;U[V} = 2‘7:2??;;]“/}7
y;l;;lin;U[V] = 2}-;%;;%[‘/]4‘911@[”-
In addition, exploiting the definitions (9.8), we write
Xasapx(U) = papx(U) 25 (0),
Xpapx(U) = ST[Z5(U)]pasx(U),
XoupclU) = ST U)lpignlU), (1)
Xpsapx(U) = ST [Papx(U)] 2 (U)Papx (U),
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together with

Xaainu[V] = Pinv[VIZ5(U) + pape(U) 2,0 V],
Xpanw[V] = ST[Z5.0VI]pai(U) + ST[Z8(O)]pyto V],
Xeamu[V] = ST[Z0.0 V1P (U) + STIZ5, (U)o V], 1L6)
Xpainv[V] = S [Pinv[V]] 2 (U)papx(U) + S+[papX(U)]Zl—i‘rn;U[V]papx(U)
5T [Papx (V)] 25 (V) prin [V

These approximants can be used as building blocks for the expressions P,px and Py, defined in
(6.67) that arise when applying Lemma 6.6 to G and G(U).

Using the expressions introduced in §10 all these approximants can be explicitly evaluated. How-
ever, as we shall see in the sequel, the resulting identities are not always easy to handle. Our goal
in this section is to introduce a framework that allows us to keep track of the errors that arise when
simplifying these expressions. In particular, for any f € Sui;short U gnl;short we introduce decomposi-
tions

fapX(U) = fapx;expl(U) + fapx;sh(U) + fapx;rem(U)a

(11.7)
flin;U[V] = flin;U;expl[V} + flin;U;sh[V] + flin;U;rem[V}~

The expressions with the label ‘expl” are the actual simplifications. The label ‘sh’ is used for terms
which are always small, while the label ‘rem’ is used for terms which are small when using U = U,,.
In addition, we define sets

@ fipret C {2, 00} (11.8)
for f € Sniishort, together with sets
Qf;pref c {2700} (119)

for f € S .short, SO that the decomposition Lemma’s 9.7 and 9.8 remain valid upon replacing
(Snl»Snl) by (Snl,shorty Snl,short) Flnauy» for each f S Snl ;short ) Snl ;short, W€ define sets

Qf - {2700}5 Q?;lin c {2,00}, Q?;lin c {2700} (1110)

so that the main spirit of the framework developed in §10 transfers directly to the estimates consid-
ered here. Indeed, for f € {F°ot Fo-iT} these sets are identical to those defined earlier.

11.1 Summary of estimates

In order to state our results, we introduce the expressions

St (U) =, Sen2aix(U) = 0,
Ssntan(U) = h[1+”8+8+8+U”[2’,+”8+8+8+U”1€;§]a Sens2:ix(U) = 0, (11.11)
together with
Sremstun(U) = 1€ (U2 + [Eew (Ul gee Sremzix(U) = 0,
S g 11.12
Sremtat(U) = Sremtan(U) + 10 [ (V)] 5 Sremaix(U) = 0 (11.12)
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and finally

Sdiff;full(U(l)a U(Q)) = ||U(2) - U(I)Hew + ||U(2) - U(l)Hz"‘”l )
h h

Sait2ix(UD,UP) = |[U®D —UW| . (11.13)
h

These expressions are all related to the f,px functions and play a very similar role as the quantities
Stan and So.gx that were defined in §10.
We state our estimates for the approximants fi;, in terms of the quantities

(V) = h|V]ze,

— 11.14
Eaw(V) = hlIVlga+ [[070+0+U ] + 05070+ U] ] [V, (1L14)

together with

Eremu (V) = [Vige [ 1€w(@)llg + 1€l ge + 1Em(@) 2 |-
Erentr (V) = Vg | 16Ol + 1w (@)l + €usaD)lls | (11.15)
+ IV 12 107 [ (U]l e
and finally
gprod(W(l)’W(2)) = HW(1)||12,21'72HW(2)H[‘;;2

(11.16)
[ gz ([ g+ [V it [W P 22

These expressions should be compared to &, in §10.

Our main results summarize the structure that the decompositions described in the sequel will
adhere to. Propositions 11.1 and 11.2 state that the approximants fapx# are all uniformly bounded
and that the full linear approximants fiin,y share the structure and estimates of the nonlinearities
in Sy U Syi. Propositions 11.3-11.4 should be seen as the equivalents of of Corollary 10.7, while
Propositions 11.5-11.6 are the equivalents of Corollary 10.9.

Proposition 11.1. The statements in Corollary 10.6 also hold upon replacing (Sn1, Sn1) by their
counterparts (Snlshort Snlishort)- In addition, for every f € Sy U S there exists K > 0 so that for
each g € Qf, the bound

| apsesot @)llgg + g (@) lg + [ Frpsrem(@lgg < K (11.17)

holds for all h > 0 and U € Q..

Proposition 11.2. The statements in Corollary 10.8 also hold upon replacing (Sn1, Su1) by their
counterparts (Snl;shorbsnl;short) and Pwkmg fl?n;U = flin;U;rem~

Proposition 11.3. Assume that (Hg) is satisfied and fixr 0 < k < 1—12 Then there exists K > 0 so
that for every f € Sni, ¢ € Qf.pref and # € {sh,rem}, we have

[ fapse(U)llgs < K Sgnn(U) (11.18)
forany h >0 and U € Q..

In addition, if 2 € Qf,pref then for every # € {sh,rem} at least one of the following two properties
hold true.
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(a) There exists K > 0 so that
[ fapxtt Dl < K Sy (U) (11.19)
holds for every h > 0 and U € Qp,..
(b) There exists K > 0 so that
[ fopst@llge < KSyssan(U) (11.20)

holds for every h > 0 and U € Qp,..
The same properties hold upon making the replacement
(Snl;shorta Qf;preﬁ S#;fulla S#;Q;ﬁx) — (gnl;shorta @f;preﬁ §#;full; g#;Q;ﬁ)()- (1121)

Proposition 11.4. Assume that (Hg) is satisfied and fir 0 < k < 1—12 Then there exists K > 0 so
that for every f € Sni, ¢ € Qf.pret and # € {expl,sh,rem}, we have

||faPX;#(U(2)) - faDX;#(U(l))HZZ = KSdiﬁ";full(U(l)a U(Q)) (11.22)

for any h > 0 and any pair (UD,UP) Qfm.
In addition, if 2 € Qf,pret, then for every # € {expl,sh,rem} at least one of the following two
properties hold true.

(a) There ezists K > 0 so that
[Fapsit (UP) = fapsp UV p - < K Saimraunx (UD,UP) (11.23)
holds for every h > 0 and any pair (UMD, U®P) € Q%w-e'
(b) There exists K > 0 so that
[ fapxit (UP) = fapsepUD) | o < K Saigrnn (U, UP) (11.24)

holds for every h > 0 and any pair (UMD, U®P) € Q%w-e'

Proposition 11.5. Assume that (Hg) is satisfied and fiz 0 < k < % Consider any f € Sy and
any # € {sh,rem}. Then if 2 € Q.pret, there exists a constant K > 0 so that

[ frinsw (V)ll e < KEu (V) (11.25)

holds for all h >0, U € Q. and V € K,Ql for which U +V € Qp.,..
Otherwise, there exists g € {2,00} together with a constant K > 0 so that

[ frinswr (V)llge < K& (V) (11.26)

holds for all h > 0, U € Qp.,c and V € €3 for which U +V € Q... The same properties hold upon
making the replacement

(Snlgshorta Qf;prefv 5#) = (gnl;shortv @f;pref? g#) (1127)

Proposition 11.6. Assume that (Hg) is satisfied and fiz 0 < k < % Consider any f € Sy and
any # € {expl,sh,rem}. Then if 2 € Q f.pret, there exists a constant K > 0 so that

||flin;U(2);#(V) - flin;U(l);#(‘/)H@%1 < Kgprod(U(Z) - U(l)a V) (1128)

holds for all h > 0, any pair (UM, U®R)) € Qfm and any V € £3.
Otherwise, there exists q € {2,00} together with a constant K > 0 so that

||f1in;U(2);#(V) - flin;U(U;#(V)HgZ < K‘Sprod(U(z) - U(l)a V) (11-29)

holds for all h > 0, any pair (UM, U®R)) € Q,zl;,.i and any V € 03.
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11.2 Decomposition for ); and X4
Identities for ), Substituting the relevant expressions from §10 into (11.3)-(11.4), we compute

yl;ﬁpX(U) = ’Y&laoU"/U
= 90U,
yl;lin;U[V] = ’YI}SaOVryU - 7[72(80[])260‘/ (1130)

=5 OUAh Y, ), En(U)OV
= OV -0UhY_,, Em(U)0V].

We realize the splittings (11.7) by writing

yl;apx;expl(U) = aOUa yl;lin;U;expl [V] = 80‘/7
yl;apx;sh(U) = 07 yl;lin;U;sh[V] = 07 (1131)
yl;apx;rem(U) = 07 yl;lin;U;rem[V] = _80U[h Z—;h gsm(U)GOV} .

In addition, we introduce the sets

le;PTEf = @yl;pref = {2a 00}7 (1132)

together with
le = {27 OO}, Qﬁl;lin = le;lin = {27 OO} (1133)

Identities for X4 Substituting the relevant expressions from §10 into (11.5)-(11.6), we compute

Xaapx(U) = ’YaOU'Yl;l
= 0,
Xaginw[V] = 15" (295 = DV +wd°Ung U8V (11.34)

+y0 U (R Yy Em(U)OV]
= PV +ULY_,, Em(U)V].

We realize the splittings (11.7) by writing

XA;apX;expl(U) = 80U, XA;lin;U;expl[V] = 80‘/7
XA;apx;sh(U) = 07 XA;lin;U;sh[V} = O’ (1135)
XA;apx;rem(U) = 07 XA;lin;U;rem [V] = +80U [h Zf:,h gsm(U)80V] .

In addition, we introduce the sets

QXA;pref = GXA;pref = {OO}, (1136)

together with

QXA = {00}7 Q:’?{'A;lin = {OO}? QEA;MH = {27 OO} (1137)
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Estimates

Lemma 11.7. Fiz 0 < sk < % and pick f € {V1,Xa}. Then the conditions in (hf)un are satisfied
with ffﬁl;U = flin;urem and there exists a constant K > 0 so that the bounds

f]ﬁl;U[V] e < K ||6+V||zi < KTae(V),
h
fino V|| . < K07Vle < KTaw(V),
- b (11.38)
flin;U[V] 02 S K”a+v”[’2l S KT%afe(V),
h
flliBn;U[V] yoo S K ||8+V||é:° S KToo;opt(V)
h
hold for all h >0, U € Qp., and V € K%.
Proof. Writing flﬁ;U[V] = flin;Usexp1[V], the bounds follow from inspection. O

Lemma 11.8. Fiz 0 < k < % and pick f € {Y1,Xa}. There exists a constant K > 0 so that the
following properties are true.

(i) For any h >0 and U € Qp,,c we have the bound

||fapX;exp1(U)||gzh>/+||fap><;eXpl(U)||e:é < K (11.39)

(ii) For any h > 0 and any pair (UM, UP)) € Qy,..., we have the bounds

HfaPX;expl(U(l)) - faPX;expl(U@))Hlfi < K H8+U(1) B 8+U(2) Hzi
< KSaigran(UD,UP),
(11.40)
Hfapx;expl(U(l)) - fapx;expl(U@))HZoo < K “8+U(1) - 8+U(2) H£m
h h
< KSaigran(UD,UP).
Proof. These estimates follow by inspection. O

Lemma 11.9. Fiz 0 < k < % and pick f € {Y1,Xa}. There exists a constant K > 0 so that the
following properties are true.

(i) For any h >0, any pair U € Q.. and any V € (2, we have the bound

[finvzem [Vl < K l&m@)le 107V 2

(11.41)
S Kgrem;U(V)~
(ii) For any h >0, any pair (UM, UP) ¢ Q... and any V € 03, we have the bounds
Hflin;UU);expl[V] - flin;U(Q);expl[V} H[i = O’
||flin;U(1);rem[V] - flin;U(z);rem[Vv]HzgL < K ||8+VHZi [Ha+U(1) - 8+U(2) ||€}21
11.42)
+[|o0ou® — U@, | (
h
< K&poa(U? —UM V).
Proof. Recalling the Lipschitz bound (7.65), the estimates follow by inspection. U
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11.3 Decomposition for ),
Substituting the relevant expressions from §10 into (11.3)-(11.4), we compute
Voupx(U) = 2v"0°0U + g(U),
Vouin[V] = 8y;°0°U[0°0U10V + 2v;0°0V + ¢/ (U)[V] (11.43)
= " MylV]+ ey 20V

Recalling the function &y, introduced in (7.61), we realize the splittings (11.7) by writing

yQ;apx;expl(U) = 6*7(;16(]U7 y2;lin;U;exp1 [V] = VEQMU [V] + 6*75360‘/7
y2;apx;sh(U) = 0, y2;1in;U;sh[V] = 0, (1144)
yQ;apx;rcm(U) = gtw(U)a y2;lin;U;rcm [V] = 0.
In addition, we introduce the sets
ng;pref = @yg;pref = {2}’ (1145)
together with
Qyz = {27 OO}, Q;Z;lin = Qgg;lin = {2} (1146)

Lemma 11.10. Fiz 0 < k < % and write f = Yo. Then the conditions in (hf)n are satisfied with
flﬁq;U = fiin;urem = 0 and there exists a constant K > 0 so that the bound

|B0V|, < KIVige < Klu(V) (11.47)
h
holds for all h >0, U € Q.. and V € Z%.
Proof. This follows from Proposition 7.15. O

Lemma 11.11. Fiz 0 < K < % There exists a constant K > 0 so that the following properties are
true.

(i) For any h >0 and U € Qp,,c we have the bound

”y?;apX;BXPI(U)”ei + ||y2;aPX;exr>1(U)H£fLo + ”y?;ap)(;rem(U)”4’21 + HyQ;apX;rem(U)”zio < K.

(11.48)
(ii) For any h >0 and U € Qy,.,., we have the bounds
||J}2;3«I)X§1Vem(Uv)He?7 < ||gtw(U)||zi < Srem;full(U)a
' (11.49)
||y2;apx;rcm(U)Hg;oLo S ||gtw(U)||[Zo S Srcm;full(U)'
211 or any > ana any parr 5 € Yp.x, we have the bounds
jii) F h >0 and ir (UMD, UR) € Q. have the bound
HyZ;apx;expl(U(l)) - y2;apx;exp1(U(2))HZi < K HaJrU(l) - 8+U(2) ||€}2
< Kmin{Sdiff;2;ﬁx(U(1)a U(Z))a
Saittsean (U, U@, (11.50)
HyQ;apx;rem(U(l)) - yQ;apx;rem(U(Q))HZ}z S K HU(l) - U(z) He’21;2 .
< Kmin{Sdiff;2;ﬁx(U(1)7 U<2))7

Sdiﬁ;full(U(1)7 U@
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Proof. Recalling (7.65), these bounds follow by inspection. O

Lemma 11.12. Fiz 0 <k < % There exists a constant K > 0 so that we have the bound

HyQ;Iin;U(l);cxpl[V} - yZ;lin;U(2>;cxpl[V]Hg%L < K HU(U - U(Q)Hgi?2 ”VHZ;L'Ol
+K HU(l) — U(2)||é:o;1 ”VHZ}%Q (1151)
< K&poa(UM —UP V)

for any h > 0, any pair (UM, URP) ¢ Qfm and any V € (2.

Proof. This bound follows directly from Corollary 7.2 and Proposition 7.15. O

11.4 Decomposition for F°ot and F°-it

For both functions f € {F°0t Fo-it} we write fapxish(U) = fapxirem(U) = 0 and fiin;sn(U) =
fiinrem(U) = 0. Besides the Lipschitz estimates below, all the estimates we require here can be
found in Proposition 10.3.

Lemma 11.13. Fiz 0 < r < 15 and pick f € {F°ot, Fo=i+}. There exists a constant K > 0 so
that the following properties are true.

(i) For any h >0 and any pair (UD, UP)) € Qy,.., we have the bounds

fameesst ) = fummen @) < KLU0 =070 + 04070 —0%0- U ]
K min{sdiff;Q;ﬁx (U(1)7 U(Q))a

Saitrseat (UD, U@},

IN A

(11.52)

(ii) For any h >0, any pair (UM UP) ¢ Q.. and any V € (3, we have the bound
Hflin;U(l);cxpl[V] - flin;U(z);cxpl[V]Hgi < K ||8+V||£z° Ha+a+U(1) - a+a+U(2)H[i
+E[ (|04 V] + 1070V | |lotu® — 8+U(2)||Z?
< Ké&uoa(U® —UM V).
(11.53)

Proof. These bounds follow by inspecting the definitions (10.22). O

11.5 Decompositions for X, X- and Xp
Identities for X Substituting the relevant expressions from §10 into (11.5)-(11.6), we compute
Xpapx(U) = S+['V(}1]'V?h

Xpanu[V] = S*[Wasaon)OV+751[h2_;h€sm(U)60V]}vé (11.54)
+S T [ 1(—403)0°U V.
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We realize the splittings (11.7) by writing
Xpiapxexpl(U) = 21 ['7?]]7
Xpapxsn(U) = —hSTg 10T — kot vy 1T ), (11.55)
XB;apx;rem(U) = Oa
together with
XpgnvoplV] = —6TF[pd°UV],
XpiinushV] = —hot [VZ}SBOU@OV} v
—hST GOt =443 0°V] — hot [y 1T H | — 4420°V],

XBjinUpem[V] = ST [Val[hzf;h 5sm(U)3OVHV?J~

(11.56)

Identities for X> Substituting the relevant expressions from §10 into (11.5)-(11.6), we compute

Xewp(U) = SThg'10vE = 12),
Xoamu[V] = ST [%7330(/30‘/ +75 h Y Ean(U)OV | (v — ) (11.57)
+5* gt [2 — 49310°U V.

We realize the splittings (11.7) by writing

XC;apx;expl(U) = 27U (7[2] - 1)7
XC;apx;sh(U) = hot [7(}1]7[21 (7(2] - 1), (11.58)
XC;apx;rem(U) = 0,

together with

2v5' (1 = 348)0°U°V,

XC;lin;U;expl [V]

Xetingussh [V] = hot [7(}360(]80‘/] ng('YIQJ -1) (11.59)
+hot hal] [2 — 44%]0°U 8"V, .
XC;lin;U;rem [V] = S+ [7[}1}1 Zf;h gsm(U)aov] (7211 - 7(2])

Identities for Xp Substituting the relevant expressions from §10 into (11.5)-(11.6), we compute

Xpapx(U) = Sty Ul vwo'U
— S5t [d'Ue°T,
Xpainw[V] = Sty (293 — 1)0°V]yg 'ywdU

+SH U 70UV + 45 h Y _ ), Ean(U)OOV |7p0°U  (11.60)
+5F [y Ulhyg gt (298 — 1)V

= Sthyg' (g — 1)VIOU + St UV
+SF [y d°UNOUR Y. ), Ean(U)O°V.
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We realize the splittings (11.7) by writing

Xpsapxiexpt(U) = Q’YU(l—’Y[QJ)a
Xpiapxsn(U) = hdt[ypd°U]OU, (11.61)
Xp.apxrem(U) = 0,
together with
Xpamuvep[V] = 25" (395 — 1)0°U"V,
Xpjpinusu[V] = hot[vg (29¢ — 1)0°V]0°U + hot [vy9°U)0"Y, (11.62)
XpiinUiwem V] = S+[7U80U]80UhZﬂhé’sm(U)aoV.

Exponent sets For any f € {Xp, Xo, Xp}, we introduce the sets

Qf;pref = Gf;pref = {00}7 (1163)

together with
Qr = {0}, Qfaim = {00}, QFtin = {2, 00} (11.64)

Estimates

Lemma 11.14. Fiz 0 < k < % and pick f € {Xp,Xc,Xp}. Then the conditions in (hf)un are
satisfied with flﬁl;U = flin;urem and there exists a constant K > 0 so that the bounds

|iom],. = KWVIg < KTuem),
|#Eom], = KWoVIg < KTaem), (11.65)
[, < KWVl < KTaon()

hold for all h >0, U € Q.. and V € E%.

Proof. Writing flﬁ;U[V] = fiin;expl[V] + fiin;u:sn[V], the bounds follow by inspection. O

Lemma 11.15. Fiz 0 < s < % and pick f € {Xp,Xc,Xp}. There exists a constant K > 0 so that
the following properties are true.

(i) For any h >0 and U € Qp,,,c we have the bound

HfaPX;eXPl(U)Hgfﬁé+Hfap>c;sh(U)”ezo < K. (11.66)

(i1) For any h >0 and U € Qp,., we have the bound

||fapX;sh(U)||g? < Kh < KSaa(U). (11.67)

(iii) For any h > 0 and any pair (UM, UR)) € Qy..., we have the bounds

||fapx;cxpl(U(1)) - fapX;CXPl(U(z))HP‘J = K Ha*U(l) B 8+U(2) HZOO
Py h
< KSaigran(UD,UP),
(11.68)
||fapx;sh(U(l)) - fapx;sh(U(z))Heoo < K H8+U(1) B 8+U(2) Hem
s h
< KSdiff;full(U(l)a U(Z))
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Proof. These bounds follow from the discrete derivative expressions (4.2) and the Lipschitz bounds
for vy in Corollary 7.2. O

Lemma 11.16. Fiz 0 < s < % and pick f € {Xp, Xc,Xp}. There exists a constant K > 0 so that
the following properties are true.

(i) For any h >0, any pair U € Qp.,c and any V € (2, we have the bounds

”flin;U;sh[V]”gi < Kh| ||5+V||z§ + ||3+8+V||¢%]
< K&nu(V),
< KeawlV) N (11.69)
”flin;U;rem[V”‘ghoo < K HSSIH(U)Hei ”8 V”ei
S Kgrem;U(V)~
(ii) For any h > 0, any pair (UM U®?) ¢ Q.. and any V € (3, we have the bounds
Hflin;U(U;expl[V] - flin;U(z);expl[V]HZi = K "8+U(2) - 6+U(1) HEZC Ha-‘rVHZ%
< K&uoa(UP —UM V),
Hflin;U(1>;sh[V] - flin;U(Q);sh[V]Hgi < K ‘|8+U(2) - 8+U(1)||gﬁ@ Ha—i_VHZ%
S KeomoalUD ULV, (11.70)
Hflin;U(l);rem[V] - flin;U(2);rem[VH|£? < K ||8+V||[i |:||U(1) - U(2)HgiQ
+]jorU®m —atU®||,., }
h
< K&poa(U® —UM V).
Proof. Recalling the Lipschitz bounds (7.65), these estimates follow from inspection. O
o, +
11.6 Decomposition for )]
Substituting the relevant expressions from §10 into (11.3)-(11.4), we compute
MapxU) = 1575 8H8°0U] Ty
= 5 ST°UT w,
VimoVl = —200U8°V~;*ST[0°0U Ty
+92 [3v 20U [STO00UTOOV + v;* S+ V| TH (11.71)
— 23S [00U T [yglaanoV +FwhY_, 5sm(U)aOV}
= [v;20°U[SH0°0U)0°V +~;' STV | Ty
L S*[0aU| T [wglaoU(?OV +wh Y esm(U)aOV] .
We realize the splittings (11.7) by writing
Moapmexpt(U) = 20°00,
Voxsn(U) = hOT0U + hd* [yulyy ' ST[0°0U], (11.72)

yitapx;rem(U) = 0,
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together with

yf;lin;U;expl [V] = S+ [808‘/},
VimualV] = g0t w]d®UST[0°0U10°V
+hyg 9t ]SO0V ] (11.73)

—hy ' SH[E0UO [v; ' 0°U V],
yltlin;U;rcm [V] = 7(;15+ [aOaU]T+ |:’YUh Ef;h gbm(U)aOV} .

Notice that we have eliminated the TH[0°0U] term in the explicit expressions, while keeping the
T+[0°0V] dependency. This inconsistency is deliberate as it will help us to make a useful substitution
in the sequel.

In addition, we introduce the sets

Qi et = 1200}, (11.74)
together with

={2 4, =QB,  ={2 11.75

Qyr = {2,00}, yfr;lin_ny;lin_{ ,00}. (11.75)

Lemma 11.17. Fiz 0 < k < % and write f = Y;". Then the conditions in (hf)in are satisfied with
fﬁl;u = flin;uirem and there exists a constant K > 0 so that the bounds

finwlV] e = KotV < KTae(V),
flﬁ’l;U[V] e < K||6+VH@}2L < KTswe(V), e
fEulV] P K[[07V]pe + 070" V]z] < KTawe(V), (11.76)
flﬁl;U[V] . < K[ HaJrV”e;c + HaJraJrVHe;c] < KTooopt(V)

hold for all h >0, U € Qp,, and V € Z%L.

Proof. Writing flﬁl;U[V] = flin:Usexpl[V] + fiin;u:sn[V], the bounds follow by inspection. O

Lemma 11.18. Fiz 0 < k < % There exists a constant K > 0 so that the following properties are
true.

(i) For any h >0 and U € Qp,,,c we have the bound

HyltaPX?eXpl(U) 2 + HyltémPX;eXpl(U)H + Hle?apx;sh(U) 5 + Hyitapx;sh(U)H < K.
&, U &, &
(11.77)
(i1) For any h >0 and U € Qp,c, we have the bound
Hyi";_apx;sh(U) 22 S Kh[l + ||a+8+a+U”£i} S Kgsh;full(U)y
g _ (11.78)
|9 @)],. < KB+ 107070 U] < KSagan(U).
h
Proof. These bounds follow from the discrete derivative identities in Lemma 4.2. O
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Lemma 11.19. Fiz 0 <k < % There exists a constant K > 0 so that we have the bounds

[HiwoalVl],, < KRG + 10407V
< Ké&€au(V), (11.79)
[HimorentVl], < EIElig 124V
< Ké&emu(V)
for any h >0, any pair U € Qp.,; and any V € (3.
Proof. These estimates follow by inspection. O
11.7 Decomposition for Y}
Substituting the relevant expressions from §10 into (11.5) and recalling (7.62), we compute
Varapx(U) = 8y5°0°USH[0°0UIT+[0°0U] + ¢/ (U)0°U
— [5§;apx(U) — 27548+808U] + ey 2 SH0%oU]. (1180)
We can hence realize the first splitting in (11.7) by writing
VinapeiotU) = [EdusapnU) = 29504 0°0U] + 2¢.77°0°0U,
Vapapesn(U) = cahr 207 [0°0U], (11.81)
Vapaprrem(U) = 0.
Substituting the relevant expressions from §10 into (11.4), we compute
y;?;;lin;U[V} = 8[6758 - 5756]S+ [303U]T+ [808[]]60‘/
+8y;500U [T+ [909U)S+[8°0V] + S+[8°0U|T+ [8°8V}] (11.82)
+g"(U)[0°UV + ¢'(U)8°V.
We realize the second splitting (11.7) implicitly by writing
VitimveplV] = 7520 [My[V]] + 475 0°U[8°0U| My [V] — My,p[V)
e[ 695 U000V + g s [P0V, 1183
sz?;;lin;U;sh[V] = y;b;lin;U[V] - y;b;lin;U;expl[V]’
Vytinvrrem V] = 0.
In addition, we introduce the sets
Dyt et = 120, (11.84)
together with
Qyy, = {2, 00}, ég},;lin - Qiﬁ,;lin = {2} (11.85)

Lemma 11.20. Fiz 0 < kK < % and write f = y;?). Then the conditions in (hf)in are satisfied with
flﬁl;U = flin;urem = 0 and there exists a constant K > 0 so that the bound

|80,

g K ||V||li*2 S KTsafe(V) (1186)

2
h

holds for all h >0, U € Qp,.,, and V € (3.
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Proof. The bound follows by inspection. O

Lemma 11.21. Fiz 0 < k < % There exists a constant K > 0 so that the following properties are
true.

(i) For any h >0 and U € Qp,,c we have the bound

[t @] + [Vhapesn @), + [Vt @]+ Ve @] . =
(11.87)
(i1) For any h >0 and U € Qp..c, we have the bound
[, < KRL+10 O VNG < KSan(©), s
[ @], € KR40V e] < KSu(V). |
Proof. Recalling (7.62), the bounds follow by inspection. O

Lemma 11.22. Fiz0 <k < % There exists a constant K > 0 so that we have the bound

[ViimwaV|, < KB[IVIg + 107Vl + 1% 0"V 5 + 0700 Vs |
HER[0F 070U e [ VIl +10%V g + 10707V ]2 | (11.89)
< Kzsm;U(V)

for any h >0, any pair U € Qp.,; and any V € (3.

Proof. We proceed by obtaining the decomposition

yQ—Z;lin;U[V] = y;_b;lin;U;I[V] + y;;:;lin;U;sh;a[V]’ (11.90)
in which we have introduced the function
y;;);lin;U;I[v] = 16[67;,° — 57;,°][0°0U]20°V
+327;,°0°U[0°0U)0° 0V (11.91)

+¢"(U)[0°UV + ¢'(U)d"V,
together with
Vabtimusna V] = 8h[675° = 57,°][8°0U107 [0°0U10°V
+8h[67;,° — 57y, %) ST [0°0U)0 [00U0°V

+8h;°0°U [0+ 0°0U10°0V + (000" 00V ] (11.92)
16k 00U [a+ [009U|T+[9°9V] + [8°0U]9+ [aOaV]] .
Using Proposition 7.16, we see that
Va1V = Mu,a[V] + My, p[V] + My.c[V] = Mu,g[V). (11.93)
Introducing the function
VihimvsnslV] = =152 [0 [MuV]] = M V1] = hearg®ot(0%0V],  (11.94)
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we see that
y;;);lin;U;expl[V} +y;?;;lin;U;sh;b[V] = VEQMJ;apx[V] + 4y 10U [8°0U | My [V] — MU?E[V}
te 675" DUV + 2[00V
= My.a[V] + My,s[V] + My.c[V] + My.p[V]
—My.g[V] — My,p|V]
= My.a[V] + My.[V] + My.c[V] — My.s|V]

— + +
- yZb;lin;U - y2b;lin;U;sh;a[V]'

(11.95)

In particular, we obtain
y;);lin;U;sh [V] = y;Z);lin;U;sh;a[V} + y;;;;lin;U;sh;b[V]' (1196)
Recalling Proposition 7.15, the desired bound now follows by inspection. O

Proof of Propositions 11.1-11.6. The statements can be readily verified by inspecting the results in
§11.2-§11.7. O

12 Estimates for §

In this section we exploit the component estimates from §10 to analyze the function G discussed in
§89. In particular, we introduce the approximants

gapx(U) = 6*80U7
glin;U[V] = C*GOV + My [V] + 200U h Zf;h ’752[808U}MU [V] (121)
and write
Gnv(V)=6GU+V)—-GU) — Ginu(V). (12.2)
Our main result quantifies the approximation errors in terms of the quantities
Esnyu (V) = hlV]pze.
Eremsu (V') = [Vl [II&W(U)H@L + € (@)l ge + 1m0 2 } o)

gprod(W(l)vw(Q)) = ||W(1)H£i2 ||W(2)H€i2
WO 2 [WE oeis + [V oot [W]] 22
that were originally introduced in §11.1.

Proposition 12.1. Suppose that (Hg) is satisfied and fit 0 < k < &. Then there ezists K > 0 so
that the following properties hold.

(i) For every h >0 and U € Qy,,,, we have
IGW) = Gaps) < K[l + [|Ee(U)ll 2 + [ (U) g0 |- (12.4)

(ii) For any h >0, U € Qp.c and V € 03 for which U +V € Qy.,;, we have the estimate

Hgnl;U(V) He}z1 < Kgprod(vv V) + Kgsh;U(V) + Kgrem;U(V) (125)
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(iii) Consider any h > 0, U € Q... and any pair (VD V) € 02 x (2 for which the inclusions
U+Vv® e Qpe and U + V@ e Qp,. both hold. Then we have the Lipschitz estimate
||gn1;U(V(2)) - gnl;U(V(l))Hez S Kgprod(v(l)a V(z) - V(l)) + Kgprod(v(z)a V(2) - V(l))
h

+EEqu(VE = VWD) + Ko (VR — VD),
(12.6)

Proof of Proposition 2.4. On account of Proposition 6.2, it is possible to pick constants 0 < x < %
and €y such that for any V € E,Ql with HVHK}Q < €g, we have Uy +V € Q... Recall the continuous

embedding £5° C ¢3. Inspecting Gyin.p using (7.82), we see that item (iii) of Proposition 12.1 implies
that the map

Vs GU+V) el (12.7)

is Lipschitz smooth on the set {V € 3 : ||V|| e < €0}. The result now follows from standard ODE
theory. O

In §12.1 we apply the theory developed in §6.2 to estimate the nonlinear component of our error,
exploiting the structural decomposition of G(U) described in §9.2 and the estimates obtained in §10.
In the remainder of the section we discuss the linear terms. Considerable effort will be required to
reduce the expressions (6.67) to our relatively simple approximants (12.1).

12.1 Nonlinear estimates

Applying the expressions (6.67) to the terms (9.9), we obtain the initial expressions

Gt () = [1= Ve )T [Xotsap(U)] | V2 (0,

Gnapsst(U) = 3Vtape(U)h T Vo (V)T | Xiap (V)] Fa (0, .
Gerapsr(U) = 3Vape 00D S Varape U)T™ [ X (0N Figis (U)] '
Gpapt(U) = 3 apx(U)h Y Vo U™ | X (V) Figit (U],

together with

Gaginuit[V] = =Vitinu[VIT™ [Xasapx(U)] Vosapx (U)
“Vtapx ()T [Xatin [V]] Vesapx(U)
1= Vi O [aape 0] Dot V],

GpanvalV] = 3V VIR Y, Vauapx (U)T { XB;apx(U)} Fo ) (129
1 apn (U)R S, Vasinstr VI~ [Xprap (V)| Fil ()
+5Visapx(U) 1 32, Vasap(U) T~ [XB;lin;U[V}]fgg)ﬁ'(U)
+3Visapx (U)o, Vasap(U) T~ |:XB;apx(U)i| Ford V]
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and finally

Guainva[V] = Vv VIR Voaps(U)T™ [X#;apx(U)fSSf(U)}
+5Viapx(U)h Yy Vo [VIT™ {X#;apx(U)fefo(U)}

(12.10)
3Vt OV Xy Ve (0)T™ [ X [VIFi (U)]
3Vt (U)X Vs (U)T ™ X (O) Frti V]
for # € {C, D}. Combining these expressions, we introduce the initial approximants
gapx;I(U) - gA;apx;I(U) + gB;apx;I(U) + gC;apx;I(U) + gD;apx;I(U)a (12 11)
Ginua[V] = Gadinwa[V]+ Gsiainu:1[V] + Goiinu:1[V] + Gpiinsu:a [V] .
and write
gnl;U;I(V) = g(U + V) - g(U) - glin;U;I[V]~ (1212)

Lemma 12.2. Suppose that (Hg) is satisfied and fixr 0 < k < % Then there exists K > 0 so that
the approximation estimate

19(0) = Gupmt (V)2 < K (12.13)
and the residual bound
||gn1;U;I(V)||g%L S Kgprod(va V) + Kgsh;U(V) (1214)

both hold for any h >0, any U € Q.. and any V € €3 for which U +V € Qp..

Proof. Our strategy is to apply Lemma 6.6 to each of the products in the decomposition of G(U)
obtained in Lemma 9.7. Let us therefore consider a single element of the sum (9.42), which we
characterize by the set (7, qn,f, k).

We first claim that

v (V) < Ciéu(V) < Co€proa(V,V) + Co [V | 22 (12.15)

Indeed, consider any 1 < i < k and any # € {4, B}. If ¢r,; = 2, then certainly 2 € Q,,prer by item
(iii) of Lemma 9.7, which allows us to take

qf = dx (12.16)

for the sequences in item (c) of Lemma 6.6. This allows us to apply (10.47), as desired. Suppose
therefore that gr,; = oo and consider the integer g defined in Corollary 10.9. If ¢ = oo, then we can

again take qfnl = q, and apply (10.48). If ¢ = 2, then we choose qfnl to be the admissable sequence
defined by the swapping Lemma 9.9, which has

L # _
Ani =2 Aoy = O (12.17)

Corollary 10.6 shows that oo € @y, |, which now again allows us to apply (10.48).
Our second claim is that

jcross;U (V)

IN

Czlg [Tsafe(v)sfull(v) + Too;opt (V)SQ,ﬁx(V)}

(12.18)
Céllgprod(va V)'

IN
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Indeed, consider any # € {4, B} and any pair (i,j) € {1,...,k}? with i # j. If item (a) in Corollary
10.8 holds for f; and ¢ = ¢ry, then the claim follows from (10.42). Suppose therefore that item (b)
in Corollary 10.8 holds for f; and ¢ = ¢x;; = 0.

Write qsy for the admissable sequence defined by the swapping Lemma 9.9. If j.[i] # j, then we
have qgw,j = qr,;. Writing qf’;,hn = Qsw for the sequence in item (d) of Lemma 6.6, the contribution
from the pair (4,j) can be absorbed by Tiae(V)Sen (V). On the other hand, if j.[i] = j, then
Qswij = 00 and ¢r,; = 2. If item (b) of Corollary 10.7 holds, then we again write qf;,hn = (Qsw, Noting

that the contribution can be bounded by Tyate(V)Stan (V). However, we write qf;hn = q, if item
(a) of Corollary 10.7 holds. In this case the contribution from the pair (4,j) can be bounded by
Too;opt(V)SQ;ﬁx(V)~

Our final claim is that

Tugs (V) < CohTaase( V) = C4h [V o (12.19)

This follows directly from the fact that || f(U) — fapx(U)He; < Kh for every f € Sy and ¢ € Qy,

together with the swapping technique described above. We note that this observation also implies
the bound (12.13). O

12.2 Error terms

We now introduce the expressions
{Ga:apx:11(U), GBiapx:11(U), Gcsapx: 1 1(U), Gpsapx:11(U) } (12.20)
together with
{Gastin11[V]), GBitinu:11[V], Gestingu:11[V], Gpjtingu [V} (12.21)
by inspecting the definitions (12.8)-(12.9) and making the replacements
Japx(U) = fapesptU)s fiinu[V] = fiinvexpt[V] (12.22)

for each f € Snishort-

Lemma 12.3. Assume that (Hg) is satisfied and fix 0 < k < 11—2 There exists a constant K > 0
together with sequences

gapx;sh;a(U) € 4;217 gapx;rem;a(U> S E%L, (1223)
defined for every h > 0 and U € Qy,,;, so that the following properties hold true.

(i) For every h >0 and U € Q.. we have the identity
gaPXJ(U) = gapX;II(U) + gapx;sh;a(U) + gapx;rem;a(U)- (1224)
(ii) For every h >0 and U € Q. we have the bounds

||gapx;sh;a(U> Héi
||gapx;rcm;a(U) ”Zi

IN

KSehi(U) = Kh,

12.25
KSoma(U) = K[|E()lg + 6@l ). 122

IN

Proof. We consider a single element of the sum (9.42) obtained by using Syishort instead of Sy. We
characterize this element by the set (7, qr,f, k), taking £ C Sni.short-
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We introduce the expression

IW(U) = W[fl;aPX(U)v s 7fk§aPX(U)} - 7"'[fl;ap)c;emol(U)a s afk;apX;eXpl(U)] (12~26)

and note that Gapx.1(U) — Gapx.11(U) can be written as a sum expressions of the form Z .
Recalling the general identity

(a1 + b1)(az + b2)(ag + bs) — arazaz = by(az + ba)(as + bs) + a1ba(ag + b3) + arazbs  (12.27)
and its extensions, we write
Top(U) = [ Frapest (U), Fosape(U)s -+ frsaps(U)]
[ Frapreosst (0 Foapsct (U - fisape (U] (12.28)
+ o+ T frapsexpt(U), faiapssexpt (U); -+ frsapxis (U)]
for # € {sh,rem} and observe that
I:(U) = Zzsu(U) + Zryem(U). (12.29)
We now use (11.17) together with Proposition 11.3 to derive the bound
IZes@lle < CiSgran(U), (12.30)

from which the desired estimates follow.
O

Lemma 12.4. Assume that (Hg) is satisfied and fix 0 < k < %
together with linear maps

glin;U;sh;a € 6(5%562)7 glin;U;rem;a S ﬁ(fﬁaéﬁ)y (1231)

defined for all h > 0 and U € Qy,;, so that the following properties hold true.

There exists a constant K > 0

(i) For every h >0, U € Qp.,c and V € (2 we have the identity
glin;U;I[V] = glin;U;II [V] + glin;U;sh;a[V] + glin;U;rem;a[V]~ (1232)
(ii) For every h >0, U € Qp.,; and V € (2 we have the bounds

||glin;U;sh;a[V]||£i S Kgsh;U(V)v

12.
||glin;U;1rem;a[Vv]||g}21 S Kgrem;U(V)~ ( 33)
iii) For every h > 0, any pair (UMD, UR) € Q2 and any V € 03, we have the bound
hik h
||glin;U(2);rem;a[V] - glin;U(l);rem;a[V} H@% < KgpI‘Od(U(Z) - U(l)a V) (1234)

Proof. Reconsider the set (7, qy, f, k) discussed in the proof of Lemma 12.3. We introduce the two
expressions

Iﬂ;a;U[V}

T[frinu V], foapx(U)s - -+, friapx(U)]

=7 [ f1310:0 [V]s foiapssexpl(U) - -« s Frsapxiexpt(U) ]
Lepw[V] = 7[framu[V] frapexpl(U), - -+ 5 frsapxexpt (U)]
=7 [ fritinsUsexpt V], foiapxiexpl(U)s - - -, frsapsexpt (U)]

(12.35)
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and note that Gin.;7[V] — Gin,v,11[V] can be written as a sum of expressions of the form Z., +Zr.p,
together with their obvious permutations.
Writing

Iﬂ;a;U;#[V] = 7 [fl;lin;U[V]a f2;ap><;#(U)v s vfk;apX(U)}

t.o..tT |:f1§lin;U[V]7 f2;apx;expl(U)a tet fk;apx;#(U):I 3 (1236)
Iﬂ;b;U;#[V] = 7 [fl;lin;U;#[V]7 f2;apx;cxpl(U)a ey fk;apx;cxpl(U)]
for # € {sh,rem}, we see that
Iﬂ';a;U[V] - ITr;a;U;sh[V] + ITr;a;U;rem[V]a (12 37)
Iﬂ;b;U[V] = Iﬂ;b;U;sh[V] JFIﬂ;b;U;rem[V}'

Following the same reasoning used above to obtain (12.18), we may use Propositions 11.2 and 11.3
to derive the bound

IN

Ci Tsafc(v)s#;full(v) + Too;opt(v)s#;Q;ﬁx(V)}
Oég#;U(V)~

||Iﬂ;a;#||e2
" (12.38)

IN

In addition, following the arguments used above to derive (12.15), we may use Proposition 11.5 to
obtain the bound

Zranlly < Ca€ypu (V). (12.39)
Writing
Ay, = [fl;lin;U@);rem V] = frainr @ rem V], frapxiexpt(U2), . .. 7fk;apx;exp1(U(2))}7
A = 7T[fl%lin;U(U;rem[V]afQ;apx;cxpl(U(z)) — foapsept (UMW), .. >fk;apx;cxpl(U(2)):|
+...
T {fl;““?U“);rem[V]’ Frapxiexpt (UM), - friapxiexpt (U®)) — fk:;apx;expl(U(l))}a
(12.40)
we easily see that
Apii + Dviii = Loy vem — Lo, srem- (12.41)

Arguing as above, Proposition 11.6 yields

||Ab,z”é% < C’igprod(lj(m - U(l)a V)7 (1242)
while Propositions 11.2 and 11.4 imply

||Ab,n||ei S Cé Tsafc(v)sdiﬁ;full(v) + Too;opt(v)sdiﬁ;Q;ﬁx(V)}

(12.43)
Chproa (U — UM V).

A

Finally, we write

Aa = Tr;a;U(2);rem[V] - ZTr;a;U(l);rem[V]' (1244)
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We note that A, consists of sums of expressions that arise from A,; and A, after replacing
J10in:U@ rem DY f1aim;u and each occurrence of fj.apx.expl by an element of the set

{fj;apx’ fisapxsexpl, fj;aDX;rem}- (12.45)

We can hence again use Propositions 11.2, 11.4 and 11.6 to conclude that ||AaHzg can be bounded
by terms that have already appeared above.

U
12.3 Simplifications for G4
We recall the definition
GaapssiI(U) = —=Viapxiexpl (U)T ™ [Xasapxiexpl (U) ]| Vasapxiexpt (U)- (12.46)
Substituting the relevant expressions from §11, we find
Grapr1(U) = [1 —8UT- [aOUﬂ (cary 10°T7). (12.47)
We now make the decomposition
Ga.aps: 11(U) = Gasaps, 111(U) + G asapiship (U), (12.48)
by introducing
Grsas®) = [1= 00100 o
= c,woU
together with
Gasapxshp(U) = —hd°UI~[0°U] (e 0°U). (12.50)
We also recall the definition
Gaginvi1[V] = —Vitingtiexpl [VIT ! [Xasapxiexpt (U) ] Vasapxiexpl (U)
~Viapx(U)T ™1 [XA;lin;U;expl [V]]yZ;apx;expl(U) (12.51)
1= Prape (0T [Xasapenst (U)] | Vaina [V]:
Substituting the relevant expressions from §11, we find
Gagmu.r[V] = —0°VT~t [80U} (e ' 0°U)
~0°UT [0V ] (e 0°0) (12.52)
+[1 00T [0°U] | (152 Mu (V] + eig V).
We now make the decomposition
Gagtingu;111V] = Gastinsu; 111 [V] 4 Gagtinguisnip V] (12.53)
by introducing
Gagmusrr[V] = =0V U (cuy;'0°U)
—°U OV (e ' 0°U)
(12.54)

+[1 - 000U (17 My V] + g "0V
= gt (2vE - 1)V + My [V],
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together with
GagmvnalV] = —ho*VO~ |°U] (e5'0°D)
—hdUd~ [aOv} (carg ' 0°U) (12.55)
—hd°UO~[°U| (v > My V] + ey 2 0°V).

We summarize our results by writing

gA;apX(U) = gA;apx;III(U)
= .ol
(12.56)
GaninulV] = Gaginurrr[V]

= gt (29 - 1)V + My[V]
and obtaining the following bound.

Lemma 12.5. Assume that (Hg) is satisfied and pick 0 < k < % Then there exists a constant
K > 0 so that the following properties hold true.

(i) For every h >0, U € Qp..c and V € €2, we have the identities

gA;a x;II(U) = gA;a x(U) + gA;a x;sh;b(U)a
P ’ ? (12.57)
gA;lin;U;II[V] = gA;lin;U[V] + gA;lin;U;sh;b[V]-
(ii) For every h >0, U € Qp.,; and V € (2 we have the bounds
HgA;a.px;sh;b(U) ||[2 S Kh = KSsh;full(U)a
" (12.58)
HgA;lin;U;sh;b[V]”eﬁ < Kh ”VHZ}ZL%2 < Kgsh;U(V)~
Proof. Recalling Proposition 7.15, the bounds follow by inspection. O
12.4 Simplifications for Gp
We recall the definition
GBapx11(U) = %yl;apX;eXpl(U)h Z,;h Vaapxiexpl (U)T~ [XB;apX;eXpl(U)]~7'-§1;><;+(U)~ (12.59)
Substituting the relevant expressions from §11, we find
Gpapst1(U) = 20°URY_, ey 0°U0°0U. (12.60)
In view of Lemma 7.11, we introduce the expressions
gB;a x; 111 U = C*aOU 1-— YU ),
et 11 (U) (1-0) .
gB;apx;sh;b(U) - gB;apx;II(U) - gB;apx;III(U)-
We also recall the definition
gB;lin;U;II [V] = %ylglin;U;eXpl [V]h Z,;h y?;apx;expl<U)T_ [XB;apX;expl(U)]fgl;;+(U>

+%y1;apx;expl(U)h Z—;h yZ;lin;U;expl [V]Ti [XB;apx;expl( )] f:;px—i_ (U)
+%yl;ap><;expl<U)h Zf;h y2;aPX;exp1<U)T_ [XB;lin;U;expl[ ]] ]:m (U)
)

+%yl;apx;expl(U)h Z—;h y2;apx;expl(U T [XB;apx;expl(U)] j:]?r:’[j [V] .
(12.62)
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Substituting the relevant expressions from §11, we find
Gpamu.r[V] = 4+20°VhyS_, [ewygto0U 80U
+20°UR Y. _, (v MulV] + ey ®0°V]0°0U
—60°URY._, [cary 10U [0°U0°V] 200U
+OURY_,, [coyy ' O°U] (67, 20°U[0°0U10°V + 20°0V).

(12.63)

A little algebra yields
gB;hn;U;]][V] = 280Vh Z—;h [C*")/ElaoU} 808U
+20°UR Y., [ MulV] + ey °0°V]0°0U (12.64)
+2¢,.0°UR Y _, vy ' [0°U10°0V.
In view of Lemma’s 7.10 and 7.11, we introduce the expressions
Gpainu:rrr[V] = ¢0°V(1—w)
+200URY._,, [vg > Mu V] + ey 200V ] 0°0U
’ (12.65)
+e.00UNG OV = 20.0°URY _, [15*10°0U10°V |,
Gaiinushp[V] = Gainurr[V] — Gpginusrrr[V].
After a short computation, we find
Goanuvar[V] = ed®V(1+5" = 2)

120U A2 (000U My [V]. (12.66)

We summarize our results by writing
Gapx(U) = Gpuapxrrr(U)
= Ul -w),
GeanulV] = Geiinun[V] (12.67)
= c.0V(L+;" —2vp)
+20°UR Y., vy 2 [0°0U My [V]
and obtaining the following bounds.

Lemma 12.6. Assume that (Hg) is satisfied and pick 0 < k < % Then there exists a constant
K > 0 so that the following properties hold true.

(i) For every h >0, U € Qp.,, and V € €3, we have the identities

gB;a x;II(U) = gB;a x(U) + gB;a x;sh;b(U);
: : ’ (12.68)
gB;lin;U;II[V] = gB;lin;U[V] + gB;lin;U;sh;b[V]-
(ii) For every h >0, U € Qp.,; and V € (3 we have the bounds
||gB;apx;Sh;b(U)||£2 < Kh = KSSh?fun(U)’
" N ot (12.69)
”gB;lin;U;sh;b[V]”[;’L < Kh[ H@ VHei + Ha 0 VHZ}%] < Kgsh;U(V)-
Proof. The estimates follow from Lemma’s 7.10 and 7.11. O
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12.5 Simplifications for G- and Gp
We recall the definition

Gapxirr(U) = %yl;apX;expl(U)hzf;hy2;aPX;exp1(U)T_ [X#;apxwxpl( ) Fasi(U) (12.70)

for # € {C, D}. Inspecting (11.58) and (11.61), we see that

Gcsapxs11(U) = —=Gpiapxs11(U). (12.71)
We also recall the definition
Guainvs1[V] = Vi [V]A > Vaapxsexpl(U) T~ {X#;apx;expl(U)f§8X+(U)j|
+ 3 Viapxiexpl(U) R > Y2tingUsexp [VIT [X#;apx;expl( )7§8X+(U):|
+1 Viapxsexpl (U) R > V2sapxiexpl(U) T~ [X#;lin;U;expl[ | Fooit (U)}

+%yl;aPX;eXP1(U)h Z—;h y2§apx§9XP1(U)T7 [X#;aDX;eXpl( hn U V}

(12.72)
for # € {C, D}. Using (11.59) and (11.62) we hence see
Geiinu;11[V] = —Gpiinu,rr[V]. (12.73)
12.6 Summary
Recalling the definitions (12.1), we observe that
Gaapx(U) + Gapx(U) = cxqyudU + ¢,0°U(1 — yur)
= ¢0U (12.74)
= Gapx(U),
together with
Gatinu[V] + GpinuV] = g’ (293 — 1)V + My[V]

+e. V(1 +5" = 290) +20°UR Y, 752 [0°0U My [V]
= .0V + My[V]+20°URY,_, v, [0°0U My [V]

= glin;U[V]~
(12.75)
We define the error terms

ga x;rem(U) = ga x;rem;a(U)v
: ’ (12.76)

glin;U;rem [V] - glin;U;rem;a [V] 3

together with
gapx;sh(U) = gapx;sh;a(U) + gA;apx;sh;b(U) + gB;apx;sh;b(U)a (12 77)
glin;U;sh [V] = glin;U;sh;a[V] + gA;lin;U;sh;b[V] + gB;lin;U;sh;b[V]~ .

136



The computations above show that

Gapx1(U) = Gapx(U) + Gapsrem (U) + Gapxssh (U), (12.78)
Ginv:1[V] = Ginv[V] + Glinvirem[V] + Glin:u:sn[V]-

Recalling the definition (12.12), this implies that
Guv(V) = Guur(V) + Glingvirem[V] 4 Glingusn[V]- (12.79)

Corollary 12.7. Assume that (Hg) is satisfied and pick 0 < k < % Then there exists a constant
K > 0 so that the following properties hold true.

(i) For every h >0 and U € Q.. we have the bounds
gaPX;sh(U) < Kh,

(12.80)
gapx;rem(U) < K[ ||8tW(U)||€}2L + ||€tW<U)||Z;’L° ]
(ii) For every h >0, U € Qp..; and V € €2, we have the bounds

glin; ;sh |4 < Kgsh; Vv ;
ussh[V] v(V) (12.81)

glin;U;rem[V] S Kgrem;U[V]~

(iii) For any h > 0, any pair (UM, UR)) € Q%m and any V € (2, we have the bound

||glin;U(2>;rem[V] - glin;U(l);rem[V] ||€,21 S KEPYOd (U(z) - U(1)7 V) (1282)
Proof. These estimates follow directly from Lemma’s 12.3, 12.4, 12.5 and 12.6. O

Lemma 12.8. Assume that (Hg) is satisfied and pick 0 < k < % There exists a constant K > 0
so that the estimate

Hglin;U(2) [V] - glin;U(l) [V] ||g’21 < Kgprod (U(2) - U(1)7 V) (1283)

holds for all h >0, all V € €} and all pairs (UM, UP) € QF .
Proof. We compute
[Grinre [V] = Ginro [V] ||gg < Mye V] = Myw V]l + 01 |00 — 00U ||@,21 1Mo, V][l
+01 1@ 0°0U®) = 450, 0°0U D || o | Mur, [Vl 2
+C1 [My @ [V] = Myw [V][lg -

(12.84)
Exploiting the a-priori bound (7.82) together with the Lipschitz bounds (7.3) and (7.84), this yields
the desired estimate. O

Lemma 12.9. Assume that (Hg) is satisfied and pick 0 < k < % There exists a constant K > 0
s0 that the estimate

9ot (V) Gua (VO o € Ko (VD — VIO,V VD) 4 Kn [V VO,
+ K Eremu (VP — V)
+KEprod (V(l)’ V@ _ V(l))
(12.85)

holds for all h > 0, all U € Q.. and all pairs (VD V) € 2 x (3 for which the inclusions
U+V® e Q. and U+ VR € Q.. both hold.
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Proof. By definition, we have
Guo(V) = GU+V)-GU) - GinulV] (12.86)
In particular, we get
G (V®) = G (VD) GU+ VD) = Gy [V + Guny [VV] - G(U + VD)

Q(U +v® 4 (v® — V(l))) —G(U + VW)

_glin;U[V(Q) _ V(l)]
Ginvrv o [V =V 4+ G v (VR — V) (12.87)

~Giinu[V® — V]
G v (VP — V)

+[Ginv v — Ginu] [VE = VO]

Substituting (12.79), we find
Gar(VP) = Gup (VW) = Gupyivo (VO —VD)
+G1in 04V Wiwem (V) = V) + Gy, (VE — VD)
+[Giinw s v — Gringu | V@ -y
Gurv, (V) — v
+Gtin;Urem (VP — V) 4 glin;U+V(1>;sh(V(2) -v)
+ [gnn;UJrvu);rem - glin;U;rem:| (V@ —y)

+[Ginvrv = Ginw | [VE = VO]
(12.88)

The desired bound now follows from Lemma 12.2 and Corollary 12.7. O

Proof of Proposition 12.1. In view of the expression (12.79), the statements follow from Lemma 12.2,
Corollary 12.7 and Lemma 12.9. O

13 Estimates for G*

In this section we exploit the component estimates from §10-§11 to analyze the function G discussed
in §9. In particular, we introduce the approximants

Gh(U) = c.SH0U),
GhplV] = e.ST[0°0V] + 0% [My[V]] + 240U [0°0U) My V] (13.1)

+25H[0°OUITTh Y. _ ), vy 200U My [V]

and write
G (V) =G (U +V) =G (U) = Gl (V). (13.2)
Using (4.4), (4.5) and (4.11) one may readily verify the identities
G (U) = 07 |Gapx(U)],
+p( ) [Gapx (U)] (133)
glin;U[V} = aJr [glimU[VHa
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which implies that also

Gho(V) =0%[Guu(V)]. (13.4)
Our main result quantifies the approximation errors in terms of the quantities
Eno(V) = [Vllgs + [[0%00* U + 04070 Ul ] V] 22
Eremtr (V) = K [Vige [1Ew(@)llz + [1Ea@)llge + [1Eam(T) 5 | (13.5)

FE |V 0% (€ (U)]
that were originally introduced in §11.1, together with

Eprodt/ (W, WE) = 07007 g [ WO g2 [WO [ s+ WD s [ W 2
WOz W] 22
+ W] 2z [[W] o + [V iz [P 22
[ g ([ g+ [V it [WP 2
(13.6)

Proposition 13.1. Suppose that (Hg) is satisfied and fiz 0 < k < % Then there exists K > 0 so
that the following properties hold.

(i) For every h >0 and U € Qp,., we have
197(0) = G5l < Kh[1+ 0707 07Uz + 0700V e |

. (13.7)
AK€ (U2 + 10 (U)ll e + 107 Ee(U) ]2 ]-
(i) For any h >0, U € Qp.c and V € €3 for which U +V € Qu.,;, we have the estimate
’ g$7U(V) 2 < KEprod;U(‘/a V) + thsh;U(V) + Kgrcm;U(V)' (138)
h
(iii) For any h >0, U € Qe and V € {3 we have the bound
|GV = G 07V, < K[1 4107070 Ul + 1070704 U3 | IV 22
h
(13.9)
13.1 Nonlinear estimates
Applying the expressions (6.67) to the term
Gha(U) = 2p(U)IS (U)o T 0 oU (13.10)
defined in (9.39), we obtain the initial approximants
gX’a;apx;I(U) = 2ﬁapX(U)Ii?;i)i(U)a+aoaUa
GrramualV] = Wi VIESL U U + 2 (DI, VIO 00U (13.11)
2 (V)25 (0)0 00V
and write
gj/a;nl;U;I(V) = gj’a(U =+ V) - gj’a(U) - gz’a;lin;U;I[V}' (1312)
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Lemma 13.2. Suppose that (Hg) is satisfied and fixr 0 < k < % Then there exists K > 0 so that
the approximation estimate

950 @) = Ghtsapea )], < BRI+ D0 U (13.13)

and the residual bound

9% s (V)

IN

K[|0* V]l +n] 0707 0%V ]|,2
+K ||3+V||e;° ||8+V||ei ||8+3+(’9+UH£§C

e

(13.14)
+Kh[\\8+w|p + 10TV | |0FOTOTU| e
h h h

< KEprod;U(‘/a V) + Kzsh;U(V)
both hold for any h >0, any U € Q.. and any V € €3 for which U +V € Q..

Proof. The first estimate follows immediately from Proposition 10.2. To obtain the second estimate,
we observe that the uniform bound in item (i) of this proposition shows that

|G V)], < G100 0V g [ Wi V] e + Wt (V)

4

Hzsiem], + [zt on]),.
PN o h (13.15)
+CL0F 00U e [npnw( e + [ Z5mim00)] .
h
+ P V1l 255V, ]
h
We note that Lemma’s 10.15 and 10.17 yield the preliminary estimates
~ 4 2 2
BVl + [ES 00 < GI0VIE: + CillOVIE + 1040 VIg ] o
< G0V e +H]-
In addition, Proposition 10.2 yields the bounds
1Prins V]Il 2 < CillotVllge
- To%0i+ s (13.17)
Pino Vil + [T VY|, . < Chllo Vil
h

together with

1Buss Vlle + |[Z555 ||, £ ColloTVilge 187Vl + Coh[ 107V g + 1070V 5 ]

e
(13.18)
Substituting these bounds into (13.15) yields the desired estimate. O
We now apply (6.67) to the terms (9.14) to obtain the initial approximants
gjﬁr’b;apx;l(U) = |:1 - yl;aPX(U)XA;aPX(U)} y;?;;apx(U% (13 19)
gj’c;apx;I(U) = _:))ltapx([])‘)C‘Aﬁlpx(Uv)iz—‘+ [y2§3PX(U)] ’ .
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together with
GaptinuilV] = =Vl VI asapx (V) Viyapx (V)]
a0 X [V (D)
[1 — yl;apx(U)XA;apx(U)]y;?;;lin;U[V]] )
g:xr/c;lin;U;I[v] = _le:lin;U[V]XAapx(U)TJr [Vaiap ()]
Ve 0 Xt VIT* [Iae (U]
~Viapx (U) Xasaps (O)TH [ Vosiin,u [V]]-

Applying the expressions (6.67) one final time to the terms (9.15), we also obtain

(13.20)

Gt (U) = SV ODRTT S Vi (U)T ™ [ Xprap(U) | Fat ™ ()],

GmuralV] = B VIT DS Vo UNT ™ [ X (U)] Fol ()
+ 3P aprept (VTR Vaimur [VIT™ {XB;apx(U)}f;;x;Jr(U) (13.21)
LV DT RS Vi (U)X V] i (U)
LV T Vg (U)T ™ | X (U) | Fi V]

together with

Ghrapt(U) = 3 Vlapn (VTR Vasaps (U)T ™ [X;é,ﬁ;apx([j)]:gg);j(U)}7

GhmalV] = 3w VIT A Varape (U)T~ [ X U) i (V)|
Y gt O DT Yo VT g (V) F3g V)] (13:22)
3V ape (DT R Y Vaaps(U)T™ {X#’;lin;U[V]f§8§+(U)}
3V T 0L VU [ UV

for # € {C, D}.
Writing
G, U) =6t (U) - G4,.(U) (13.23)
we use the expressions above to introduce the initial approximants
gngW;apx;I(U) = gj’b;apx;I(U) + gX'c;apx;I(U)
+g§/;apx;1(U) + gg’;apx;I(U) + g$/;apx;1(U)7 (13.24)
glJc:w;lin;U;I[V] = g;xr/b;lin;U;IW] + gjar'c;lin;U;I[V]
+gg”;lin;U;I[V] + gé’r’;lin;U;I[v] + gB;lin;U;I[V]
and write

gltw;nl;U;I(V) = gl-gw(U + V) - gl-gw(U) - gl—"o_w;lin;U;I[V}' (1325)

Lemma 13.3. Suppose that (Hg) is satisfied and fiz 0 < k < % Then there exists K > 0 so that
the approximation estimate

|Gt 0) = Gl (V)

a = Kh (13.26)
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and the residual bound

|Gtwaa ||, = K IVilze [IVIlz2 + 1Vl g ]
h
+Kh HVHZ%z (13.27)
S KEprod;U(Vra V) + KESh;U(V)

both hold for any h > 0, any U € Qp.c and any V € €3 for which U +V € Q...

Proof. Following the strategy developed in the proof of Lemma 12.2, the error terms in Lemma 6.6
can be controlled by

Tau(V) < Ci€u(V)
< 3 Vile [IVllge + IVl + ],
jcross;U(V) S Ci [Tsafe(v)gfull(v) + Too;opt(v)gzﬁx(v)} (13 28)
< GIViga [Vl + 1V ].
japX;U(V) S CihTsafe(V)
= Ve,
which yields the desired bounds. O
13.2 Error terms
We now introduce the set of expressions
{gjl_’b;apx;ll(U)’ gX’c;apx;II(U)’ gg’;apx;ll(U)’ gg/;apx;II(U)’ gg/;apx;II(U) (1329)
together with
{gX’b;lin;U;II[V]’ gz’c;lin;U;II [V]7 gg’;lin;U;II [VL gg’;lin;U;II[VL gg’;lin;U;II[V]} (1330)
by inspecting the definitions (13.19), (13.20), (13.21) and (13.22) and making the replacements
fapX(U) = fapx;expl(U)v flin;U[V] = flin;U;expl[V] (1331)
for each f € gnl;short.
In addition, we simply write
g:lr’a;apx;II(U) = gj’a;apx;I(U) (13 32)
gX’a;lin;U;II[V] = gj/a;lin;U;I [V]
We now define
gzj;)X;II(U) = gjﬁr’a;apx;II(U> + gjﬂr’b;apx;II(U) + gX’c;apx;II<U)
+gg’;apx;ll(U) + gg’;apx;]l(U) + gB’;apx;II(U)’ (13 33)
gl—ii_n;U;II [V] = gZ’a;lin;U;II[V] + gjl_’b;lin;U;II[V} + gX’c;lin;U;II[V}

+gg’;lin;U;II[V] + gér’;lin;U;II[V] + gE’;lin;U;II [V]

Lemma 13.4. Assume that (Hg) is satisfied and fix 0 < k < % There exists a constant K > 0
together with quantities

g;;x;sh;a(U) € E%L’ ga—.‘})x;rem;a<U) € Eiv (1334)

defined for every h > 0 and U € Qy,.;, so that the following properties hold true.
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(i) For every h >0 and U € Q.. we have the identity
gz’a;apx;I(U) + ggw;apx;](U) = g;;x;]](U) + g;;)x;sh;a(U) + g;rpx;rcm;a(U)' (1335)

(ii) For every h >0 and U € Q. we have the bounds

‘ g;;x;sh;a(U) 2 < Kgsh;full(U) = Kh[l + ||8+a+8+U“z% + ||8+8+8+U”z;>° ]7
|Garema@lly < EBremaan@) = K[ 1w (@)l + 1€ (U]
(13.36)
Proof. The arguments in the proof of Lemma 12.3 also work in the current setting. O

Lemma 13.5. Assume that (Hg) is satisfied and fix 0 < k < 11—2 There exists a constant K > 0
together with linear maps

ngn;U;sh;a € ‘C(éi’gi)7 gl—i‘rn;U;rem;a € E(f%,é%), (1337)
defined for all h > 0 and U € Qy,,;, so that the following properties hold true.

(i) For every h >0, U € Qp.,; and V € €2 we have the identity

gX’a;lin;U;I[V] + gl-io—w;lin;U;I[V] = gl—ii_n;U;II[V] + gl—i‘rn;U;sh;a[V] + gl-ii_n;U;rem;a[V]' (1338)

(ii) For every h >0, U € Qp.,; and V € (3 we have the bounds

HglJirn;U;sh;a[V] 2 < KES}UU(V)’
N _ (13.39)
Hglin;U;rem;a[V] 2 < Kgrem;U(V)-
h
Proof. The arguments in Lemma 12.4 show that for # € {sh,rem} we have
GinvalVlle < CToateV)Sun(V) + Tooiopt (V) Sz V)] a0
+C €40 (V), .
from which the desired bounds can be read off. O
. . . _l’_
13.3 Simplifications for G},
We recall the definition
gX/a;apx;II(U) = 2§3PX(U)I—T-<?3}7;(U)8+808U (1341)
Substituting the relevant expressions from §10, we find
gX’a;apx;II(U) = 27528+606U' (13.42)
We also recall the definition
GhonmuntlV] = P VIO 90 VTV 0000
k) 7 K ’ ’ ’ 1 .
+2Papx (U) {305 (U) 0+ 000V
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Substituting the relevant expressions from §10 and recalling (7.86), we find
gj’a;lin;U;II[V] = —47(}4[8+808U]60U60V
+8v; 10U [0+ 8°0U 0"V
+27,°0%0V
V2 My, V] — 4y 00U [0+ 8°0U100V.

We conclude by writing

gj’a;apx(U) = gX/a;apx;II(U)v

gz’a;lin;U[V] = gz’a;lin;U;II [V]

13.4 Simplifications for Q:{,b
We recall the definition

gj’b;apx;]l (U) = |:]‘ - yhap’(?expl (U)XA§€1PX§9XP1 (U)] y;;j;apx;expl (U)‘

Substituting the relevant expressions from §11, we find
Ghnapxs1(U) = B[Ehapx(U) = 295 010°0U + 2c.7,°0°0U]
= V€L apx(U) — 275707 0°0U + 2¢,;' 0°0U.
We now make the decomposition
gz/b;apx;ll(U) = g:lr’b;apx;III(U) + gjﬁr’b;apx;sh;b(U)
by introducing
Ghpaperrr(U) = 18 apx(U) = 295707 0°0U + eyt ST[8°0U],
together with
gjﬁr’b;apx;sh;b(U> = —c.hyg 0t 80U,
We also recall the definition
gZ’b;lin;U;II[v] = *yl;lin;U;expl[V]XA;apx;expl(U)ysgy;apx;expl(U)
~Vtapxexpl (U)X astin:sexpl [VIVyapsccespt (U)
[1 - yl;aPX§EXP1(U)XA§aPX§'3XD1(U)]y;z;lin;U;cxpl [V]

Substituting the relevant expressions from §11, we find

GhpmmuirlV] = —280U8°V[5;;V;apx(U)—27548+806U+2c*753808U}

43 [0 [MulV]] + 40 PUIPOUIMAV] ~ MooV ]

+2e, [675580U[808U]60V + 88t [aOaVﬂ
= 20,95°0°U0°0U)°V + eyt SH[000V]
+0F [My[V]] + 445 20°U[0°0U | My [V] — 42 My, [V]
twiapx

—28°U [5+ (U) - 2754a+806U} aov.
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We conclude by writing

g:lr’b;apx(U) = gX’b;apx;III(U)
= VEELapx(U) — 295201 0°0U + eyt ST0°0U],
gX’b;lin;U[v} - gz'b;lin;U;II[V]

and obtaining the following bound.

Lemma 13.6. Assume that (Hg) is satisfied and pick 0 < k < %
K > 0 so that the following properties hold true.

(i) For every h >0, U € Qp.,c and V € €3, we have the identity

gz'b;apX;II(U) = gz’b;apx(U) + g:’\_’b;apx;sh;b(U)‘

(i1) For every h >0 and U € Q. we have the bound

ng'b;apx;sh;b(U) < Kh||6+6+6+U||Zi < KSshpa(U).

a4
Proof. The results follow by inspection.

13.5 Simplifications for G},
We recall the definition

gjﬂr’c;apx;II(U) = _le:apx;cxpl(U)XA§apX§eXP1(U>T+ [y2;apx;expl<U)] :

Substituting the relevant expressions from §11, we find

Ghicaprs1(U) = —2[0°0U10°UT™ vy, 0°U].

We now make the decomposition
gA’c;apx;II(U) = gA’c;apx;III(U) + gA/c;apx;sh;b(U)
by introducing

gjér’c;apx;III(U) = _20*[808[]]80(][7(;180[]}
—2c.75 (1 = ~3)[0°0U],

together with
Ghcapxsnn(U) = —2h[0°0U10°UO* [c.ryy ' 0OU].
In addition, we make the splitting
gA’c;apx;III(U) = gA/c;apx;IV(U) + gA’c;apx;sh;c(U)
by writing

gX’c;apx;IV(U) = _0*71}1(1_’712]>5+[808U]7
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together with
gg/c;apx;sh;c(U) = hc*’ygl(]‘ - 7[2])8+ [aOaU] (1363)

We also recall the definition
gX’c;lin;U;II[V] = _y;’;lin;U;expl [V]XA;apx;expl(U)T+ [yQ;aPX;expl(U)]
_yitapx;cxpl(U)XA§lin§U§exPl [V]T+ [yQ;aPX;expl(U)] (13.64)
7yitapx;exp1(U)XA;apx;cxpl(U)T+ liyZ;lin;U;cxpl[VH .
Substituting the relevant expressions from §11, we find
ThretmutlV] = —ST0°0VIOPUT e 00U |

280UV T+ [c*yglaOU} (13.65)
—92[0°0U1°UT+ [WI}QMU[V] + c*y,;?’aov} .

We now make the decomposition

gX’c;lin;U;II [V] = gX’c;lin;U;III [V] + gX’c;lin;U;sh;b[V] (1366)
by introducing
gj/c;lin;U;III[V] = 70*7[;1(1 - 7(2])S+[808V]
—2e:95°(1 413 [0°0U]0°U OV (13.67)

~200°0U10°U 152 My (V1]
together with

GhectnvsnaV] = —hSTO°OV]UOT [cyy ' 0°U]
—2h[0°0U10°V OF [C*’yglaOU] (13.68)
_2h[°8U]°U O [752MU V] + oy 0V ].

We summarize our results by writing

gj’c;apX(U) = gz’c;apx;IV(U)
= —c*'y[}l(l —~%)ST8%U],
g:xr/c;hn;U [V} = gX’c;lin;U;III [V]

= et (L a3)S V] (13.69)

—2c,75° (14 43)[0°0U]0° UV
—2[°9U10°U [WI}QMU[V}]
and obtaining the following bounds.

Lemma 13.7. Assume that (Hg) is satisfied and pick 0 < k < ﬁ Then there exists a constant
K > 0 so that the following properties hold true.
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(i) For every h >0, U € Qp,,; and V € €3, we have the identities

gz’c;apx;ll (U) = gX'C;a,px(U) + g:\_’c;apx;sh;b(U) =+ gX'c;apx;sh;c(U)7

(13.70)
gj’c;lin;U;II[V} = gX/c;lin;U[V] + gX;lin;U;sh;b[V]'

(i1) For every h >0 and U € Q.. we have the bounds
ng{’c;apx;sh;b(U)

Hg;;’c;apx;sh;c(U)

IA
IN

Kh Kgsh;full(U)v

a _ (13.71)
Kh |‘8+808UH/2 KSsh;full(U)7

IN
IN

4
(iii) For every h >0, U € Q. and V € 2 we have the bounds

H gj’c;lin;U;sh;b [V]

< Kh||V] s+ Kh (0700 U]l 07V ]|
h h h

e = 770 (13.72)
< Kh&mulV]
Proof. Recalling Proposition 7.15, the bounds follow by inspection. O
13.6 Simplifications for G,
We recall the definition
Ghrapet1(U) = 3V anienpt (DT TR Y. Vorapscespt(U)T ™ [XB;apx;expl(U)}fggx;—i_(U ) (13.73)
Substituting the relevant expressions from §11, we find
gg’;apX;II(U) = [808U]T+hzﬂh C*'Yl;laoU[Q’Yg [2'753606(]]] (13.74)
— 4[°UITHRY ., c*%leOU[aOaUH. '
In view of Lemma 7.11, we introduce the expressions
gg’;apx;lll(U) = 2¢[0°U|T* (1 —w), (13.75)
gg’;apx;sh;b(U) = gg’;apx;][(U) - gg’;apx;lll(U)'
In addition, we make the splitting
gg/;apx;[}I(U) = gg’;apx;]V(U) + gg’;apx;sh;c(U) (13.76)
by writing
Ghaperv(U) = 5F[0°0U](1 — o), (13.77)
together with
Ghrapsstic(U) = —chd*[0°OU]T (1 — ) (18.78)

+c,hST[0°0U10T (1 — ).
We also recall the definition
GhramvirlV] = 3ot VIT TR Vrsapscexs )T [Xsapsonp (U)] Fad (V)
3V ot DT TR Vatintriexpt V1T~ [Xpsapsiexpl (U)] Faps ' (U)
+%yitapx;expl(U)T+h Zf;h y2;ap>c;eXPI( T [XB;lin;U;eXDl[V]]f:I;x;Jr(U)

U)
+%y;’;apx;expl(U)T+h Z_;h yQ;aPX;eXDI(U)Ti [XB;EPX;EXPI(U)] -7:1?;,; V1.
(13.79)
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Substituting the relevant expressions from §11, we find

gg’;lin;U;II [V] = %S—i_ [808V]T+h Zf;h c*’yalaOU [27[?} [2’753808[]]}

+HOUITTRY_, [7,;2MU[V] n cwg?*aOV} [275[275330%}}

HODUIThY_, ey 0T (—6)7U80U80V[2753806U]]
[

HODUIThY_, e 0T [27,3] 675,°0°U8°OU OV + 27538081/]] .

A little algebra yields
GVl = 2ST[OOVITTRY. _, ey 0°UB OU
+HA[PPOUITHRY. {VEZMU[V] + 6*753801/} 800U
+A[POUIT TR Y., ey ' 0°U[0°0V].
In view of Lemma’s 7.11 and 7.10, we introduce the expressions
ggf;lin;U;UI[V] = cS*[0°VIT(1 - )
+HA[POUITHR Y, [752MU V] + c*’y[}?’aOV] 800U
e, [POUNT 445 00UV — Y, [y 00U V],

gg';lin;U;sh;b[V] = gg/;lin;U;II[V] - gg’;lin;U;II[[V]'
A short computation yields
GhramuanlVl = cSTOVITH(1 = yu) + 2¢.[0°0U]TT [, ' 0°U V]

+HA[PPOUITHRY. 752303UMU[V]]

We now make the decomposition

gg’;lin;U;III [V] = gg’;lin;U;IV[V] + gg’;lin;U;sh;c[V}
by writing
GhamuavlVl = STV — ) + 2¢.[0°0U] [ ' 0°U V]

+25F[POUITHRY. [7528°8UMU[V]},
together with
GhrmusnelV] = ¢hST[0°0V]OF[1 — qu] 4 2he.[0°0U]0" [ ' 9°U OOV ]
—2h*[POUITTRY._, [752808UMU [V]]

We summarize our results by writing

gglﬁpx(U) = gg’;apX;IV(U>
= ¢ ST[0%U](1 - ),
gg’;lin;U[V] = gg’;lin;U;IV[V]

= ¢.ST[0°V](1 —yu) + 2¢.[0°0U] [y UV ]
+25H[QOUITHR Y, [»y,;?aOaUMU[V]]

and obtaining the following bounds.
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Lemma 13.8. Assume that (Hg) is satisfied and pick 0 < k < % Then there exists a constant

K > 0 so that the following properties hold true.
(a) For every h >0, U € Qp.c and V € €3, we have the identities

g;’;apx;ll(U) = g—g/;apx(U) + gg’;apx;sh;b(U) + g—g’;apx;sh;c(U)’
gg’;lin;U;II[V} = gg’;lin;U[V] + gg/;lin;U;sh;b[V] + gg’;lin;U;sh;c[V]'
(i1) For every h >0 and U € Qp,,c we have the bounds
Hgg’;apx;sh;b(U)

Jr
HgB’;apx;sh;c(U)

Kh

IA

Kgsh;full(U)a

IN

2
4 h

IN
N

Kgsh;full(U)'

Kh|ota°U|,,
o2 h

(iii) For every h >0, U € Q... and V € 3 we have the bounds

|95 eV, < ER[107VIIg + 110704V 5]
h _
< thsh;U(V)a
|95 s Vl|,, < ERIVIe + KR 0400 U g V] 2
h _
< thsh;U(V).

(13.88)

(13.89)

(13.90)

Proof. Recalling Lemma’s 7.10 and 7.11, the bounds in (ii) and the first bound in (iii) follow by

inspection. The final bound in (iii) follows from Proposition 7.15.

13.7 Simplifications for G/, and G,
Arguing as in §12.5 we see that
gé'_;apx;ll(U) = 7gB;apx;11(U)7

galin;U;H[W = _gg;lin;U;H[V}'

13.8 Intermediate total
We now define the total
g;rpx;III(U) = gz’a;apx(U) + gX’b;apx(U) + gX’c;apx(U) + gg’;apx(U)'

Substituting the relevant expressions from §13.3-13.6 we obtain
g:px;III(U) = 27(;28+80‘9U
Ve Eapx(U) — 275207 000U + e,y ' SH[0°0U]
—cp (L=13)St[0%0U]
e ST[OVOU)(1 — vrr)
= ¢ ST[0%0U] + vlzjgttmpx(U).
In order to suppress the final term, we introduce the expressions
g;)x;sh;d(U> = 7[2] [gttv;apx(U) - ot [gtW(U)H7
ga—:ax;rem;d(U) - 7[2]8+ [gtW(U)]
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Moving on to the linear approximants, we define the function
ngn;U;HI[V] = gX/a;lin;U[V] + gX/b;lin;U[V] + gjar'c;lin;U[V] + gg’;lin;U[V}' (13.95)
As a first step towards evaluating this expression, we substitute the relevant identities from §13.3-13.6
to compute
gjva;lin;U[V] + gX/b;nn;U[V] = VIQJMU;E[V] — 4yt U0+ 00UV
+26.7520°U [0°0U)°V + coygtSH[0°0V]
+0% [My [V]] + 475 °0°U[0°0U] My [V] = 7 My, (V]
e (U) — 275207 0%0U |0°V
= 2c.95°0°U0°0U0°V + coyyt SH[0°0V]
+0F [My[V]] + 420U [0°0U | My [V]

290U [5+

—20°U [5+

tw;apx

(U)} aov.
(13.96)
In a similar fashion, we find
gjl_/c;lin;U[V} + gz?r/;lin;U[V] = —cqp (1=18)ST[8%V]
—2¢,75° (1 4+ 43)[0°0U)0°U 0V
—2[808U}60U[7(}2MU [V]}
+¢,ST[0°V](1 — ) + 2¢.[0°0U] [v; ' 0°U V]
+25H[QOOUITHR Y, [%;QaOaUMU[V]] (13.97)
STV — ey ST 000V — 2¢,7520°U[0°0U )00V
—27;20°U[0°0U | My [V]

+25F[OUITHRY. [v(}Q@O@UMU[V}].
In particular, we see that
GtimuarrlV] = e5T[0°0V] + 0% [My[V]] + 2v;0°U[0°0U] My [V ]
+25F[0°OUITThY._ ), [ 00U My [V]] (13.98)
—280U[5;(N;apx(U)]8°V

Comparing this expression with (13.1), we set out to suppress the final term by introducing the
functions

glJirn;U;sh;d [V} = _280U [gttv;apx(U) - 8+ [gtw (U)H 80‘/7
glJirn;U;rem;d[V]

—20°U 07" [E4 (U)])O°V.
Lemma 13.9. Assume that (Hg) is satisfied, pick 0 < k < & and recall the definitions (13.1).
There exists a constant K > 0 so that the following properties hold true.

(13.99)

(i) For every h >0, U € Qp..c and V € €3, we have the identities

ga+px;III(U) = g;;)x(U) + g;i)x;sh;d(U) + g;rpx;rcm;d(U)7 (13 100)
gl_i‘—n;U;III[V} - gl_;n;U[V] + gl—i‘rn;U;sh;d[V] + gl_i‘_n;U;rem;d[V}'
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(i1) For every h >0 and U € Q. we have the bounds

‘ g':px;sh;d(U) 5 S Kh S Kgsh;full(U)a
N o _ (13.101)
|Grema®@)]|,, = K107 €@l < KSremsun(U).
h
(iii) For every h >0, U € Q. and V € 2 we have the bounds
|gtwamaVl],, < KRV
h —
S Kgsh;U(V)7
(13.102)
|Gtvaema VY|, < K 1O E @) 10V
h —
< Kgrem;U(v)~
Proof. Recalling (7.64), the bounds follow by inspection. O
13.9 Summary
We define the final error terms
g;;x;rem(U) = g:px;rem;a(U) + ga_;)x;rem;d(U)a (13 103)
gl-ii_n;U;rem[V} = ngn;U;rem;a[V] + ngn;U;rem;d[VL
together with
ga—:)x;sh(U) = gz;;x;sh;a(U) + gX’b;apx;sh;b(U) + gz'c;apx;sh;b(U) + gj’c;apx;sh;c(U)
+g§’;apx;sh;b(U) + gg’;apx;sh;c(U) + ga—;)x;sh;d(U)’ (13 104)
gli+n;U;sh [V] = glJirn;U;sh;a[V] + gjl’c;lin;U;sh;b[V]
+gg’;1in;U;sh;b[V] + gg/;lin;U;sh;c[v] + gl-i‘_n;U;sh;d[V}'
The computations above show that
gK’a;apx;I(U) + gltw;apx;[(U) = ga-:_px(U) + g:px;sh(U) + gat)x;rem(U% (13 105)
gz’a;lin;U;I[V} + gl—gw;lin;U;I[V] = ngn;U[V} + gl—ii_n;U;sh [V] + gﬁ_n;U;rem[V]'
Recalling the definitions (13.12) and (13.25), this implies that
gI-E,U(V) = gX’a;nl;U;I(V) + gl—gw;nl;U;I(V) + ngn;U;rem [V] + gl—i‘rn;U;sh [V] (13106)

Corollary 13.10. Assume that (Hg) is satisfied and pick 0 < k < 1—12 Then there exists a constant
K > 0 so that the following properties hold true.

(i) For every h >0 and U € Q. we have the bounds

g+ (U) < Kgsh;full(U)a

apx;sh

_ (13.107)
g;i)x;rem<U) < KSrem;full(U)-
(ii) For every h >0, U € Qp.,; and V € €2, we have the bounds
gJirn- s [V] < Kgsh;U(V)v
v (13.108)

gl_i‘_n;U;rem [V] < KErcm;U(V)~
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Proof. These estimates follow directly from Lemma’s 13.4-13.9. O

Lemma 13.11. Assume that (Hg) is satisfied and pick 0 < k < % Then there exists a constant
K >0 so that for any h >0, U € Qp,c and V € éi we have the estimate

[0% [ V] = G l0*VI|, < K[1+10%0%0%U | 1 + 1070+ 07Ul 11V

K (13.109)
Proof. Systematically applying (4.5), we compute
Ot [Guinu[V]] = cSTOOV] + 0t [My[V]]
+25F[0OUITTR Y., 72 [0°0U My V]
+20°UR Y., 0 [152]T* 00U My V]| (13.110)
+20°UR Y, 720" [808U] T+ [My[V]]
+200Uh Y., vy 2 [0°0U]0* [MU [V]} :
On the other hand, a direct substitution yields
Gins [07V] = €.ST[°OV] + My [0+V] +20°URY. _, 45 2[0°0U) My [aﬂ/] (13.111)

Comparing these two expressions, we obtain the bound
o+ [Gim V] = Guwlo* V], < o [MulV]] = Mulo V]|, +CLIMu V]

O} 070 U5 [ Mo [Vl -

2
‘eh

(13.112)
The desired estimate now follows from (7.82). O

Proof of Proposition 13.1. In view of the expression (13.106), the statements follow from Lemma’s
13.2, 13.3 and 13.11 together with Corollary 13.10 . O

14 The full linear operator

In this section we study the linear operators £, : H* — L? that act as
Lyv = —cv" + Ginw, [v]. (14.1)

Strictly speaking, the equation £pv = f with v € H' and f € L? needs to be interpreted as the
statement that

glin;evglll* [evlw] = €evy [C*U/ + f] (142)

for almost all ¥ € [0, h]. We remark that the left-hand side is continuous in ¢7 as a function of 9 as a
consequence of (5.13) and the continuity of the translation operator on H!. Throughout the sequel
we simply use the notation (14.1) and keep this interpretation in mind.

Our main result provides a quasi-inverse for L, that bifurcates off a twisted version of the
operator Lemp discussed in §3. This accounts for the presence in (iii) of the integral transform 7,
that was defined in (3.14).

The crucial point in (i) is that we also obtain control on the L?-norm of the second discrete
derivative of v. This is slightly weaker than full H2-control of v, but turns out to be sufficient to
bound our nonlinear terms. In addition, item (ii) allows us to control an extra discrete derivative of
v provided one is available for f.
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Proposition 14.1. Suppose that (Hg) and (H®.) are satisfied. Then there exist constants K > 0
and hg > 0 together with linear maps

Br: L? — R, Vi L? — HY, (14.3)
defined for all h € (0, hg), so that the following properties hold true.
(i) For all f € L? and 0 < h < hg, we have the bound
B+ Vi f s + 103 0 Vi f |l o < BNl e - (14.4)
(ii) For all f € L? and 0 < h < hg, we have the bound
1R Vi N grr + 1100 O Vi SNl o < KNSl e + 1105 f] 2 ]- (14.5)
(i) For all f € L? and 0 < h < hg, the pair
(B,v) = (Bif, Vif) e Rx H' (14.6)
is the unique solution to the problem
Ly = f+ PV, (14.7)
that satisfies the normalization condition
(U2 T 0) 2 = 0. (14.8)
(iv) We have B3V, = —1 for all h € (0, h).

Our strategy is to apply the spirit of the ideas in [4] to our present more convoluted setting.
In particular, in §14.1 we analyze the structure of the terms contained in the definition £; and
its adjoint and provide a decomposition that isolates the crucial expressions. In §14.2 we show
how Proposition 14.1 can be established provided that a technical lower bound related to the sets
{[£n — 0]v}|ju| ;=1 can be obtained. We set out to derive this bound in §14.3, using a generalized
version of the arguments in [4].

14.1 Structure

For any v € L? and h > 0, we introduce the function
Mpv] = —c*’yq_,i@gv + 87\1_,:182\1'* [[0°0], V.| 0hv + 27\53[803}“} + 7.9 (T, ). (14.9)

Here we recall the definition

Yo, = /1 — (899,)2, (14.10)

Ve = V1= (W) (14.11)

which should not be confused with

Upon writing

M) = c.ofbglu] - 0 [8yg 0. (10000 . Jw] + [0°9] [2957w] + 73 ¢ (),
(14.12)
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one readily checks that for any pair (v,w) € L? x L? we have
Mol w)ze = (o, M2V [u]) . (14.13)

From now on, we simply write 9% and 9° for the discrete derivatives if the value for h is clear from
the context.
With this notation in hand, the operator £; can be written as

Ly = —cv' + 0% + Mp[v] + 20°W,h 27;,1 fy\;f[a()@\l/*]Mh[v}. (14.14)
We now introduce the formal adjoint £3% : H' — L? that acts as
Ezdjw = cow — 0w+ M,":dj [w] + MZdj 7\1_,*2[808\11*% POINY 2w, |. (14.15)
Indeed, using the computation
(20°W.hY_, [y;f[aoaqf*]Mh[v] swypr = (g (0000 My [v], h Y, 2w W)
= (Mp[v],792[0°0W.h Y, 20w W,)
= (o, M} [fy\;f 000 Y, zwaoq/*} brz,
(14.16)
one can verify that
(Lho,w) g2 = (v, L2Yw) 1o (14.17)

for any pair (v,w) € H* x H'.

Our goal here is to establish the following structural decomposition of £; and Ezdj. Roughly
speaking, this decomposition isolates all the terms that cannot be exponentially localized. In ad-
dition, it explicitly describes how the formal A | 0 limit can be related to twisted versions of the

operators Lemp and E?ﬂfp that were discussed in §3.

Proposition 14.2. Suppose that (Hg) and (H®.) are satisfied and pick n > 0 sufficiently small.
There exists a constant K > 0 together with linear maps

Leg : HY — L2, Ly H' — L7, (14.18)
defined for all 0 < h < 1, so that the following properties hold true.

(i) For every 0 < h <1 the identities

Lrv = —cv' + 27\17*28031) + 749" (V.)v + Leg[v], ( )
. i 14.19
Ezdjw = cow' + 27;*280811) + 759 (T )w + Liiﬂ [w]
hold for allv € H' and w € H'.
(i) For any 0 < h < 1 we have the bounds

[Lenlv]ll. < Kol
i (14.20)

|Esd]| , < Kilwl

for allv € H* and w € H".
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(i11) For every 0 < h < 1 we have the bounds

IN

||€27]L6h HLz K[HU||LEI+H8+UHL%]7

H L (14.21)

IN

K[wls + 0% wl ., ]

for allv e H and w € H'.

(iv) Consider two sequences {(hj,v;)} and {(h;,w;)} that both satisfy the condition (hSeq) intro-
duced in §5.3. Then there exist two pairs (V.,W,) € H2 x H? and (F,, F2Y) € L2 x L? for
which the weak convergences

(v, Lo o)) = (Vi Fu) € H' x I2, (wy, L35 wy]) = (W, F29) € H' x L2 (14.22)

both hold, possibly after passing to a further subsequence. In addition, we have the identity

LempVe = T.F (14.23)
and we have
=7MH, (14.24)
for some H, € H? that satisfies
L30 [H,] = F24. (14.25)

Decomposition for L

We set out to identify all the terms in £}, that can be exponentially localized in the sense of (14.20).
We start by analyzing the function M} [v], which can be treated by direct inspection.

Lemma 14.3. Suppose that (Hg) and (H®.) are satisfied and pick n > 0 sufficiently small. There
exists a constant K > 0 together with functions ao., € H', defined for 0 < h < 1, so that the
following properties hold.

(i) For every 0 < h <1 and 7 € R we have

|ao;n (T)] < Keay(T). (14.26)

(ii) For any 0 < h <1 and v € H' we have the identity

e 0% + My[v] = 27\538081) +73_ 9 (V. )v + ap,nd°v. (14.27)

(iii) For any sequence {(h;,v;)} that satisfies (hSeq), there exists V. € L? for which the weak
convergences

v = Vi My [vj] = 7 Lemp[Vi] € L2 (14.28)
both hold as j — oo, possibly after passing to a subsequence.
Proof. Writing
o = cu(1—vg!) + 875 100, [0°0W.], (14.29)

item (ii) follows by inspection. Item (i) follows from the exponential bounds (3.4) together with an
application of the Lipschitz bound (4.23) with UM = 0 and ~v;a) = 1.
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Turning to (iii), we may exploit the fact that ¥, € H? to reason as in the proof of Proposition
7.14 and obtain the strong limits

Yol =P e H, 45,9 (W) —A2d' (W) € HY, (14.30)
together with

aosn, — el — 0 ) + 29, L0 e H. (14.31)

In particular, we may apply Lemma’s 5.10 and 5.11 to obtain the weak convergence
My loj] = ey W+ 4 IV 42V 429 (WL)Ve € L2 (14.32)
Inspecting the definition (3.8) yields (iii). O

It is convenient to introduce the notation

Quvl = "3, 17 [0°00.] M), (14.33)

which in view of (14.27) allows us to obtain the expression (14.19) for £; by writing
Len[v] = a0 + 2[0°W,]Q),[v]. (14.34)

Lemma 14.4. Suppose that (Hg) and (H®.) are satisfied and pick n > 0 sufficiently small. There
ezists a constant K > 0 so that the following properties hold.

(i) For anyv € H' and 0 < h < 1, we have the estimate
100l < K[eglls + 0%yl - (14.35)

(ii) For any sequence {(h;,v;)} that satisfies (hSeq), there exists V. € L? for which the weak
convergences

v — Vi, 2[0°W,)Qp, [v;] = \IJ;/ U LompVi € L? (14.36)

both hold as j — oo, possibly after passing to a subsequence.

Proof. We make the splitting Qp[v] = Qa.p[v] + Qp.n[v] by introducing the notation

Qunle] = hY 752000, [Mh o] — 275330311],
o o (14.37)
Qp.plv] = 2h Z_;h Vg [0°09,]0°0v.
Applying Lemma 5.9 and inspecting (14.27), we see that
12amelll s < CF || Ma[o] = 2957000 ,
, . ” (14.38)
< [l + 10 0l s ]
Applying the summation-by-parts identity (4.13), we compute
Q] = hY_, 79 [0°0V,]0% 0 v
— T |hgtotou.|omu (14.39)

o S [%;faoaxp*]
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Item (i) now follows from a second application of Lemma 5.9.

To obtain (ii), we set out to apply Lemma 5.11 with f; = My, [v;], ao,; = 7@3808\11* and
a1,; = 20°0,. Exploiting the fact that U, € H?, we may reason as in the proof of Proposition 7.14
to obtain the strong limits

1
ar; — 2V, e HY, gy — 57;2\1/;’ € H'. (14.40)
Ttem (iii) of Lemma 14.3 implies that

from which the desired weak limit follows. O

Decomposition for £Zd']

We set out to here to mimic the procedure above for Ezdj, which has a more convoluted structure.

Special care needs to be taken to handle the fact that M, de acts on a discrete sum. The identities
(4.11) play a crucial role here.

Lemma 14.5. Suppose that (Hg) and (H®.) are satisfied and pick n > 0 sufficiently small. There
exists a constant K > 0 together with a set of functions

(ao;h,aos;h,a+;h,a,;h) e H' x H' x H' x ,E[l7 (1442)
defined for 0 < h < 1, so that the following properties hold.

(i) For every 0 < h <1 and 7 € R we have
05 (7)] + [t0ssn (1) 4 v ()] 4 o (7)] < Keay (7). (14.43)
(ii) For any 0 < h <1 and w € H' we have the identity

—c, % + M}?dj [w] = 27\;*280811) + 75,9 (¥ )w (14.44)
+ap.pw + apspTTw + ag , 0w + a0 w.

(iii) For any sequence {(h;,w;)} that satisfies (hSeq), there exists W, € L? for which the weak
convergences

w; = Wi, My Bfw;) — £33 [2W.) € L? (14.45)

both hold as j — oo, possibly after passing to a subsequence.

Proof. Applying (4.5) and (4.6), we obtain

MpUw] = a0 NT [w] + T~ [y 10w
— [&@f [an*]aOam*]Tw —T- [875380\1/*608\1/*] 8w (14.46)
+2[0°075Jw + 2732 0°0w + 0T [y *10Tw + 0[5 20" w
+75,9' (W )w,
from which (i) and (ii) can be read off.
Turning to (iii), we note first that the identity
THwj = wj + h;0Tw; (14.47)
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shows that also T w; — W, € L?. Applying Lemma’s 5.10 and 5.11 to the representation (14.46),
we obtain the weak limit

My Uw,] = ey I'We + curg WL
~[arrwwr] W - [ wr
FP) W+ PW 2 W (14.48)
+v2g (W, )W,

= O [y - 0r [MI“‘M‘IIL’W*] +0rr {%?QW*} + 779 (W)W

Inspecting the definition (3.9) now yields the result. O

It is convenient to introduce the notation

QY [w] = 2w W, (14.49)
+ih

which in view of (14.44) allows us to obtain the expression (14.19) for Ezdj by writing

Liﬁf w] = aw+ayTTw+ardtw+a_ 0w
adi [ —2790 adj (14.50)
MY 132 (0000105 w] .

Lemma 14.6. Suppose that (Hg) and (H®.) are satisfied and pick n > 0 sufficiently small. There
exists a constant K > 0 together with a set of functions

(do;h7&08;h7&+;h7 &w;ha dws;h) € H'x H' x H' x H' x H17 (14'51)
defined for 0 < h < 1, so that the following properties hold.

(i) For any 0 < h <1 and w € H', we have the estimate

.d'
Jetwl],, = Kl (14.52)
(i) For every 0 < h <1 and 7 € R we have
|0 (T)] 4 [G0ssn (7)) + [Egsn ()] + G (T)] 4 |Gwssn (T)| < Kz (7). (14.53)

(iii) For every 0 < h <1 and w € H', we have the identity

MZdj ’)/;*2[808‘1/*]92@ [w]]} = Qopw+ dOs;hT+w + d+;h8+w (14 54)
a0 n VW] + G, TTOY ).

(iv) For any sequence {(hj,w;)} that satisfies (hSeq), there exists W. € L? for which the weak
convergences

w; — Wi, M [ygf[aoa\p*]ﬂzfj [wj]} Ny [xp /+ xpgw*} €L (14.55)

both hold as j — oo, possibly after passing to a subsequence.
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Proof. Ttem (i) can be obtained in a similar fashion as item (i) of Lemma 14.4. Recalling the identities
(4.5)-(4.6) and (4.11), we compute

07 [0 w] = 2wV, (14.56)
and hence
PN Vw]] = —SHwd'v,]
O9[0Yw]] = 1ato [V (w]] (14.57)
= —9t[0°0,|THw — [0°0, )0 w.
Writing
T[w] = 75 [0°00.] 25" w], (14.58)
this gives
O] = o hatePou.) T [ ] i)

—T~ [vg210°0%.]] S+ [wd’w,],
together with
oo[zinl| = 20[i?00w.] [ u]
+ [7\173606\11*] [— T [0OW, | THw — [80\11*]6+w}
+507 7520009, T+ [-2wd° P, ]
+307 [520°09, ] [-2wd° D, ].

(14.60)

Ttems (ii) and (iii) can now be read off from the representation (14.44) and the exponential bounds
(3.4).
Suppose now that {(h;,w;)} satisfies (hSeq) and write

Tj = 752 [0°00. ]2 [w;]. (14.61)

Using the same arguments as in the proof of item (ii) of Lemma 14.4, we can apply Lemma 5.11 to
obtain the weak convergence

Z; — 7;2\1/;'/ U W, € L2 (14.62)
+
In addition, using the identity
. !/
[del [w]} =1 2wV, + 200"V, ] (14.63)
+;h

together with Lemma 5.9, we see that ||Z;||;, can be uniformly bounded. Finally, (14.60) together
with the fact that U, € H® implies that also |07 Z;||,, can be uniformly bounded. In particular,
the sequence {(h;,Z;)} also satisfies (hSeq). Applying item (iii) of Lemma 14.5 now yields (iv). O

Proof of Proposition 14.2. Ttems (i) and (ii) follow directly from Lemma’s 14.3, 14.4, 14.5 and 14.6.
Under the assumptions of (iii), the weak limits (14.22) follow from the fact that {Lj,[v;]} and
{L'chj [w;]} are bounded sequences in L?. Using Lemma’s 14.3 and 14.4, we see that

Fo =32 Lemp[Va] + W, / U/ Lemp Vel (14.64)
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Applying (3.82) yields (14.23).
On the other hand, Lemma’s 14.5 and 14.6 show that

adj adj 2 adj
P = b W)+ i [ vl (14.65)

In particular, we can satisfy (14.25) by writing

H, =W, + \p;’/ v W, (14.66)
+
Applying (3.83) we see that
W, = T2 H,, (14.67)
as desired. O

14.2 Strategy

In this subsection we show that Proposition 14.1 can be established by finding appropriate lower
bounds for the quantities

En(0) = infyyy, =1 {10 — Sv]l 2 + 67 ‘<‘1’idj7T* [Lhv = 6v]) 12

g
}

In particular, the required bounds are formulated in the following result, which is analogous to [4,
Lem. 6].

(14.68)

£90) = ity o (€8 o+ 671 o0, £t — s

Proposition 14.7. Suppose that (Hg) and (H®,) are satisfied. Then there exists p > 0 and §g > 0

such that for every 0 < § < dg we have

1(0) == liminfy o &, () > u,
: N (14.69)
p24(8) = liminfy o &V (8) > p.

We postpone the proof of this result to §14.3, but set out to explore the consequences here. In
particular, it enables us to show that the operators £, — § are invertible for small h > 0 and § > 0,
providing us with the analogue of [4, Thm. 4].

Proposition 14.8. Suppose that (Hg) and (H®,) are satisfied. There exists constants K > 0 and
do > 0 together with a map hg : (0,00) — (0,1) so that the following holds true. For any 0 < 6 < d
and any 0 < h < ho(68), the operator Ly — & is invertible as a map from H' onto L? and satisfies
the bound

1Cen =) L < K[ 1F1e + 07 w2, 7 p) ] (14.70)

Proof. Following the proof of [4, Thm. 4], we fix 0 < § < dp and a sufficiently small h > 0. By
Proposition 14.7, the operator £, — § is an homeomorphism from H' onto its range

R=(L,—0)(H") C L (14.71)

with a bounded inverse Z : R — H'. The latter fact shows that R is a closed subset of L2, If R # L?,
there exists a non-zero w € L? so that (w,R)z> =0, i.e.,

(w,(Ly —6)v),, =0forallve H". (14.72)
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Restricting this identity to test functions v € CS° implies that in fact w € H'. In particular, we find
<(£Zdj —§w,v),, =0 forallve H, (14.73)

which by the density of H' in L? means that (LY — §)w = 0. Applying Proposition 14.7 once more
yields the contradiction w = 0 and establishes R = L2. The bound (14.70) with the J-independent
constant K > 0 now follows directly from the definition (14.68) of the quantities &, (J) and the
uniform lower bound (14.69). O

Following the ideas in [42, §3.3], we can take the § | O limit and establish our main result
concerning Ly,. The bounds in (ii) rely heavily on the preliminary work in §13 related to the quantity

gﬁ_n;U[V] — G [0 V. (14.74)
Proof of Proposition 14.1. For convenience, we introduce the set
Zp={ve H" : (U T.0) 2 = 0}. (14.75)
Our goal is to find, for any f € L2, a solution (3,v) € R x Z; to the problem
v="Vps[fov. 8] = (Ln—8) " [f + BY, — bv]. (14.76)

In order to ensure that the linear operator V}.s indeed maps into Zy, it suffices to choose 3 in such
a way that

B T (L) — 8) 7 L) 2 = —(W2 T (L) — ) 7H(f — 0v)) e (14.77)
Writing
(Lyp —6)" W, = 6710, +7 (14.78)
we see that
[Ly — 6o =0""1L,T., (14.79)

which shows that
9] ;2 < C1RI2. (14.80)
Choosing ¢ < 1 and recalling the normalization
(Ul T ) e =1, (14.81)

we can impose a restriction h < [C%] 7162 to ensure that
. 1
(T2 T (L), — 6) W, ) 2| > 55—1. (14.82)

In particular, we can find a unique solution 8 = 8,.5[f,v] to (14.77) for every v € Zj, and f € L?.
The definition of Z implies the bound

1(2n =82 = 80)| < 4[5 1711 ga + 8 ol . (14.83)
which allows us to obtain the estimate

Brss[fs 0]l < CLlI1Fll 2 + 6% [[v]l 2 - (14.84)
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This in turn leads to the estimate

[Vais [f. 0, Buss[f )] | o < C5[07 1 f Nl e + 8 Mloll 2 |- (14.85)

By choosing § > 0 to be sufficiently small, we hence see that the linear fixed point problem

v =Vis|f,v, Buslf,v]] (14.86)

posed on Z; has a unique solution for all f € L?. Writing v = V.5 for this solution together with

ﬂ;:;éf = ﬁh;é [fa V;z’éf} ’ (1487)

we obtain the estimates

Visf g < Ce5 ™ W lles  Bisf] < oIl o (14.88)

The remarks above show that the problem (14.7)-(14.8) is equivalent to (14.86). We can hence fix a
sufficiently small § > 0 and write 3}, = 3} 5 and Vj, 5, which are well-defined for all sufficiently small
h > 0. This establishes (iii). Item (iv) can be verified directly by noting that (v,3) = (0,—1) is a
solution to (14.7)-(14.8) for f = ¥/.
Turning to (i) and (ii), let us pick f € L? and write

(v, 8) = Vi lf1: BRLID)- (14.89)

Ttem (iii) implies that
'+ f+ 6V, = Ginuw,[v]

oo . (14.90)
= 274 000+ g, g (V. )v + Lep[v].

The bound (i) follows from (14.88) and item (ii) of Proposition 14.2, which together provide L?-
bounds on all the terms in (14.90) that do not involve 9°9v. To see (ii), we compute

CaJr [’U]/ + aJr [f] + ﬁaJr[\I/;} = a+ [glin;‘ll*;expl [UH
= Glinw, [07] (14.91)
+a+ I:glin;\ll* [U]] - glin;\Il* [6+U]~
In particular, we see that
Luloto] = OF[f]+ BOT[VL] + Giinw. [070] — O [Giinsw. [v]]. (14.92)

Using item (iii) of Proposition 13.1 together with item (iii) of Lemma 5.4, we obtain

Hglin;\ll* [0FTv] — ot [glin;‘l’* [UH HL2 < Cf[HU”Hl + ||6+6+U”L2} (14.93)
< Geliflle-
Using (i) we conclude that
10 0] s + 070 [0 ][l o < CoLI1S 112 + 1|07 f]] 2 ] (14.94)
which establishes (ii). O
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14.3 Proof of Proposition 14.7

We set out here to obtain lower bounds for the quantities (14.68). As a first step, we show that the
limiting values can be approached via a sequence of realizations for which the weak limits described
in (iv) of Proposition 14.2 hold and for which the full power of Lemma 5.10 is available.

Lemma 14.9. Consider the setting of Proposition 1.7 and fit 0 < § < dg. Then there exist four
functions

(V.,W.) € H? x H?, (Y., Z.) € L*(R), (14.95)
together with a sequence
{(hj,v;,yj,wj, 2j) }jen C (0,1) x H' x L? x H' x L? (14.96)
that satisfies the following properties.

(i) For any j € N, we have

[0l g1 = Nlwill g =1, (14.97)
together with
Ln;lvs] =dv; =y,
i (14.98)
Ly [wi] = dw; =z
(it) Recalling the constants (u(6), >3 (8)) defined in (14.69), we have the limits
p0) = lmyso{llysll e + 07 (U, Tolyy)) e[, (14.99)
) = limyoao{llzll e + (W, 25) e |} '
(iii) As j — oo, we have the weak convergences
v; = V. € HY, w; — W, € H', (14.100)
together with
y; — Y. € L? zj =~ Z, € L*. (14.101)

(iv) The pairs {(hj,v;)} and {(h;,w;)} both satisfy (hSeq).

Proof. The existence of the sequences (14.96) that satisfy (i) and (ii) with h; | 0 follows directly
from the definitions (14.69). Notice that (14.99) implies that we can pick Cy > 0 for which we have
the uniform bound

lyillpz + llzill 2 < Ch (14.102)

for all j € N. In particular, after taking a subspace we obtain (iii). In addition, item (ii) of Proposition
14.2 implies that also

110°0]n,v5| 1> + [|[0°0]n,v5]] L. < Ca (14.103)

for some Cy > 0 and all j > 0, which implies (iv). O
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Lemma 14.10. Consider the setting of Proposition 14.7. There exists a constant K1 > 0 so that
for any 0 < § < &y, the function V, defined in Lemma 14.9 satisfies the bound

WVallgs < Kapa(d). (14.104)
Proof. Ttem (iv) of Proposition 14.2 implies that
Lemp[Vi] = T[Ys + 6Vi], (14.105)
which we rewrite as
Lomp|Vi] — 0T [Vi] = T.Y.. (14.106)
The lower-semicontinuity of the L?-norm under weak limits implies that
1Vlle + 672 (029, TY,) | < u(0), (14.107)
while Lemma 3.13 implies that

|72, o+ 6 (3, Ty

< C1u(9). (14.108)
The desired bound hence follows directly from Corollary 3.3. O

Lemma 14.11. Consider the setting of Proposition 14.7. There exists a constant K1 > 0 so that
for any 0 < § < &y, the function W, defined in Lemma 14.9 satisfies the bound

IWell o < K p9i(5). (14.109)
Proof. Ttem (iv) of Proposition 14.2 implies that
W, =T H, (14.110)
for some H, € H? that satisfies the identity
L29 [H,] = [Z, + 6W.] = [Z. + 0TV H,]. (14.111)
In particular, we find
adj adj _
Lo [Hi] = 6TV [H,] = Z.. (14.112)

The lower-semicontinuity of the L?-norm under weak limits implies that

1Zu]1 2+ 67 (W, 2.)] < (o). (14.113)

Corollary 3.3 hence implies that
1H. e < Clu(): (14.114)
The desired bound hence follows from (14.110) and Lemma 3.13. O

The next result controls the size of the derivatives (v}, w}), which is crucial to rule out the leaking
of energy into oscillations that are not captured by the relevant weak limits. The key novel element
here compared to the setting in [4] is that one needs to include 81 v; in the bound. Our preparatory
work enables us to measure this contribution in a weighted norm, which allows us to capture the

bulk of the contribution on a compact interval.
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Lemma 14.12. Consider the setting of Lemma 14.9 and pick a sufficiently small n > 0. There
exists a constant Ko > 1 that does not depend on 0 < § < &g so that the inequalities

2 2 2 2
W57, < Ee[llulGs + sl + 10+013, |,

. (14.115)
w55, < Ka|llzsl3e + oyl + 19 wj117s |
hold for all j > 0.
Proof. Using the representation in item (i) of Proposition 14.2, we expand the identity
(Ln,vj — 5vj,’y§,*v;>Lz = (yj,'yé,*v;ﬁz (14.116)
to obtain
C*(V?y*”}”ﬁm + <yj77\21/*vg'>L2 = _5<Uja7\211*03‘>L2 + <230‘9Ujav}>L2 + <Wff*g'(‘1’*)7)jav§>m
+(Lesn; [05], 75, V)) L2
(14.117)
Applying (5.55) together with item (iii) of Proposition 14.2, we note that
(Len, [0, 78. 02| = [(ezy Len, [vi], €207, ) 12|
< lezy Zen, loslll 5 1178, 951 (14.118)
< Cilllollg +10% el ] o)), -

Using the identity (8°0v;,v})r> = 0 together with the lower bound ~g, > [C5]~" we may hence
compute

el (v), )2 < lea| Colvg vj, v)) e
< Gy Mol gl + sle 15 o + 0l 1051 + 0% 0l 9511 )
(14.119)
Recalling the bound ||a| ;. < |lal|;2 for a € L? and using ¢, # 0, we find
n
2
Il < Cillosle + s + 10705l ] e (14.120)
Dividing through by Hvé HL2 and squaring, we obtain
2 2 2 2
10517, < C5[ Nolis + lsl3 + 1o+ os 175 |- (14.121)
The same procedure works for w;u O

We are now almost ready to obtain lower bounds for ||V, || ;. and ||W.|| ., exploiting the fact that
our nonlinearity is bistable. The next technical result is the analogue of the inequality (9°0u, u)y2: <0
used in [4]. Due to the non-autonomous coefficient in front of the second difference, we obtain
localized correction terms that need to be controlled.

Lemma 14.13. Suppose that (Hg) and (H®.) are satisfied. There exists a constant K > 0 so that
for any v € H' and any 0 < h < 1, we have the one-sided inequality

_ 2
2057000, v < K[0%0]5 + lol2, ] (14.122)
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Proof. Using (4.5) we compute

—2(7\1_,*280311j,vj>p = —<fy\1_,f(978+vj,vj>L2
= <8+vj,8 [7\1, ’Uj] L2
= (0%, TH[v T, 75207 v;) 2
< j [ ] [ J]> < i V., ]> (14.123)
= <8+UJ7 [ ] +[UJ]> <6+1}], ('7\1/ - 1)6+U]> 2
+(0Tv;,0%v;) L2
> <3+v],5+ ['7\1; ]TJF[UJDLQ + (0 ”Ja('Y\I/* 1)a+vj>L2~
The result now follows from (5.55) together with the pointwise exponential bounds
e? =1+ |07 [37]] < Cleay. (14.124)
O

Lemma 14.14. Consider the setting of Proposition 14.7. There exists constants Ko > 0 and K3 > 0
so that for any 0 < § < dg, the functions V. and W, defined in Lemma 14.9 satisfy the bounds

Vill3n > K3 — Kau(6)?,
” HT ’ ( ) (14.125)
Wil = K — K (5)°.
Proof. Pick m > 1 and o > 0 in such a way that
1%.(T)g' (¥u(7)) < —a (14.126)

holds for all |7| > m. This is possible on account of the uniform lower bound ~3,_ > [C{]~" and the
fact that ¢’(0) < 0 and ¢'(1) < 0.
We now expand the identity

<£hj?)j — 5Uj,Uj>L2 = <yjavj>L2 (14127)
to obtain the estimate
<yj;vj>L2 = —C*<U;,’Uj>L2 _5<Ujvvj>L2
+2<’7\£3808'Uj, ’Uj>L2 + <’y€,fg’(\ll*)vj, ’Uj>L2 (14128)

+(Le;n[vs], vj) L2

Using (v}, vj)r2 = 0, Lemma 14.13 and item (iii) of Proposition 14.2, we find

IN

2 2 _
Cy 110 vlZe + llolZs ] + (g9 (s, v5) 12
Cylllo+ollze + [lvllZ: ] (14.129)
—alojll: +C4 [T, los(r) dr.

<ij Uj>L2

N

Using the basic inequality

= (Vaz)(y/Va) < %mZ + %y% (14.130)
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we arrive at

2 2
Cy " oy (0P dr = allvjlze — (Y5, 05) 12
2 2
—C3 (0%l + ol ]
2
> alvilize = llysllpe llvill g2
2 2
=Cs[ 0% vllzz + vz, ]
2 2
> % ||UJ'HL2 - i ||yjHL2

2 2
~C4[10% ]33 + [l -

Multiplying the first inequality in (14.115) by m, we find

o 2 aK: 9
02 5y 15l — 5y Ml — Callotellz, = CalluslZa

Adding (14.131) and (14.132), we may use the identity

a aKsy B «
2 201+K;) 2(1+K)

to obtain

cL ™ () dr

v

sy [vsll3e + 195115, ] = C4 s

2 2
—Cg[llo* vz + Ivllz2 ]
2
- 2(1fK2) — G5 |ly;ll7
2 2
—Cs[ 0% vllz + o722 |-

For any M > 0 and a € L? we may compute

lallz: = [e"a(r)?dr
< e M a|2, 4+ [N, e la(r)2 dr
< e M |la|7. + [1) a(r)?dr.
Exploiting [|0Fv;| ;. < ||v;-HL2 and ||vj]| ;1 = 1, we hence see

2 _ M M
losll s + 0% esll3s < e o [ og)(r)2dr + [, 07 0))(r)2 dr.
In particular, by choosing M > m to be sufficiently large, we find

Cy [N o (P dr > L™ ()] dr

v

2
iy — O il

4| [0 u](7)2 dr + [ () dr.
We hence obtain

M M a
[ [Mlo w2 dr + [ vi(?dr] > gt — Chllyl3a
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(14.131)

(14.132)

(14.133)

(14.134)

(14.135)

(14.136)

(14.137)

(14.138)



In view of the bound

limsup [ly;|7. < 1(5)?, (14.139)

J—00

the strong convergences v; — V. € L*([-M, M]) and 07 v; — V! € L*([-M, M]) imply that

IVl = [Cg) 7' — Cyu(6)?], (14.140)

>
4(1 + Ko)
as desired. The bound for W, follows in a very similar fashion. O

Proof of Proposition 14.7. For any 0 < § < 1, Lemma’s 14.10 and 14.14 show that the function Vi
defined in Lemma 14.9 satisfies

K20 2 |[Vl3 = Ks — Kap(6)2, (14.141)

which gives (Kl2 + K4)u(6)2 > K3 > 0, as desired. The same computation works for 23, but now
one uses Lemma’s 14.11 and 14.14. O

15 Travelling waves

Formally substituting the travelling wave Ansatz (2.42) into the reduced system (2.29) leads to the
nonlocal differential equation

V' = G(T). (15.1)

In this section we set out to construct solutions to this equation for small A > 0 that can be written
as

U =0, +w, c=c.+¢ (15.2)

for pairs (¢, v) that tend to zero as h | 0. Care must be taken to ensure that the expression G(¥) is
well-defined, but based on our preparations we are able to provide a relatively streamlined fixed-point
argument here, which allows us to prove the results stated in §2.2.

In order to control the size of the perturbation (¢,v) € R x H!, we introduce the norms

&)z, = el + [Vl g2 + (|07 ;] (15.3)

|12
for h > 0 and write Z, for the set R x H! equipped with this new norm. Observe that for fixed h
this norm is equivalent to the usual one on R x H'.

We note that Proposition 6.3 allows us to fix 0 < kK <
inclusion

% and €y > 0 in such a way that the

evy[U, +v] € Qe (15.4)
holds for all 0 < h < 1, all ¥ € [0,h] and all v € H' that have

0]l 2 + 72 |0 < 2€. (15.5)

V]|
In order to accommodate this, we pick two parameters 6 > 0 and §;" > 0 and introduce the set
255t = {(¢,v) e 2y : [(¢,v)]l z, <min{d, e}

(15.6)
and [[(0,07v)| z, < min{d;", h'/2€p}}.
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Since 8; is bounded on H' and L? for each fixed h, we note that this is a closed subset of Zj,.
Substituting (15.2) into (15.1), we obtain

U+ eV 4+ + e = G, +0)
(15.7)
- g(\Il*) + glin;‘ll* [U] + gnl;‘ll* (U)y
which should be interpreted in the sense that was outlined at the start of §14.
Upon introducing the nonlinearity
Hh(éa U) = 67}/ - gnl;‘ll* (U)v (158)
we can rewrite (15.7) as
Lpv] = &V, +Hy, (Cv)+ eV, —G(T,). (15.9)
Recalling Proposition 14.1, we now introduce the map W, : Zh;é,éjr — Zj, that acts as
Wh(Gv) = [85, V7] [Hh(é, V) + e — g(xp*)], (15.10)
which allows us to recast (15.9) as the fixed point problem
(¢,v) =Wh(Ev). (15.11)

Lemma 15.1. Suppose that (Hg) and (H®,) are satisfied. There exists K > 0 so that for any pair
(6,67) € (0,1)% and any 0 < h < 1 the estimates

[Ha(Ev)ll,, < K[hé+6%+067],
[0t HR(E V)2 < K[[04 6712 +h™Y28[8 + 6] + hlo, + 6]

(15.12)

hold for each (¢,v) € Z, 4 s+ while the estimate

||Hh(6(2),v(2)) _ Hh(é(l)’v(l))HLQ < K[h—1/2[5 =+ 53] + h] ||(5(2) _ 5(1),1,(2) _ U(l))Hz

h

(15.13)
holds for each set of pairs (¢, v™1)) € 2,55+ and (&2 v ¢ 255t
Proof. The first term in Hj, can be handled by the elementary estimates
lev'll. < 62
leo o/l < 8]0 o] (15.14)
< 00y,
together with
||5(2) [ — 5(1)[1,(1)]/“L2 < |5(2) — 5(1)’ Hv(2)HH1 + |5(1)} Hv(l) _ ”(2)HH1 o
< (e =, o), |
Corollary 5.3 yields the bound
oll e + o]l < G416+ 6] (15.16)
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for all (¢,v) € Z,55+. For any ¥ € R, we may hence exploit Propositions 7.14 and 12.1 to obtain
the estimate

[Gniw. (evov)llz < Cy [6 + 6, + h] levgvll 22, (15.17)
together with

|Gtz (evov®) = Guw (evorW)[| . < Co[0+ 0] + h] [levor™) —evyr® || o
h h

15.18
+C5 [0 + 6] [|levor™ — evov® || oot - ( )
h
A second application of Corollary 5.3 yields the bound
[ollze + o]l gme < C3h=Y2[5 + 571, (15.19)
For any ¥ € R, we may hence use Propositions 7.14 and 13.1 to find
|G (evon)|, < Cilo+65 +n] flevoul] g (1520
h ' .
+CLhT218 + 61 llevou]| e -
We now apply Lemma 5.4 to obtain
1Gaw. (W)l < C3[6+67 +h][llvllg +[10F0% ] ]
< Cy[0+ 6 + hlé,
[0, @], = Calo+55 + B (el + 1070 0l o + 0% 0l o + 07 0% ]2
15.21
+C R 2+ 5[ o]l g + 10T 0 0| 2 | (521
< CLl6+ 65 +n][6+6]]
+Chh2[5 4 516
Using (5.13) we note that
Hv<2> - ’U(l)H < 2n~1/? Hv<2> - v(l)H . (15.22)
e;@;l H1

Applying Lemma 5.4 once more, we obtain

G, (v®) = G, (V)| < Co[0+ 6] + ] [ [0 —o@| 1, + [JoF oo —atotu@| , }
+2C3[6 + 12 [o® — 0@
(15.23)

The desired bounds follow readily from these estimates. O

Lemma 15.2. Suppose that (Hg) and (H®.) are satisfied. There exists K > 0 so that for each
0 < h <1 we have the bounds

lea¥, ~ 6w, < Kh

0% [e. ¥, — G(w.)] Kh. (15.24)

A

[
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Proof. Applying Lemma 5.4 together with Propositions 7.14, 12.1 and 13.1, we find

[1Gapx (Us) = G| 2 + [| G (Us) = GH(LL)]| . < Cih. (15.25)
We now compute
C*\I/; - g(\II*) = C*\II; - gapx(\I}*) + gapx(\:[l*) - g(\:[/*)
— W, — 0O+ G (W) — G(WL), (15.26)
together with
8+ [C*\I/fk - g(‘ll*)] - 8+ [C*\I]; - gapx(\ll*)] + 6+ [gapx(\ll*) - g(\I/*):I
= ¢4 [8+\I/*]’ — ¢, 007w, ] (15.27)
+g;;)x(\11*) - g+(\11*)
Applying Lemma 5.5, we see that
U — G|, < CLh||¥Y|,. + Cih
H (W)l Sh [Vl + C1 (15.28)
< Cih,
together with
O e, ¥ —GU )|, < C4LhlloT8!|,. +Crh
1071 (@Il S|l 5 1 (15.20)
< Cih,
as desired. O

Lemma 15.3. Suppose that (Hg) and (H®.) are satisfied. Then for each sufficiently small h > 0,
the fived point problem (15.11) posed on the set Z, ps/a ps/a has a unique solution.

Proof. Using Proposition 14.1, together with the a-priori bounds (h,d,8;}) € (0,1)3, we obtain the
estimates

Wh(&,0)ll z, < CilIMAE )]s + el — G2l 12 ]
< Cy[0% 406 + ),
0,04 W@ )z, < LI )lga + 10 HA(E o)l 2] (15.30)
+01 [llea®, = G0 o + [0 e ¥, — G(w.)] . |
<

Cy[n12810 + 6]+ (5 + 6% + 1),

together with

||Wh (5(2)’0(2)) — W, (5(1)7,0(1))th < ||Hh(6(2),v(2)) _ Hh(é(l),’v(l))HLz
< Cy[RR 467+ h] ]| (6@ - &0 — M)
(15.31)
Picking
6 =d0F =n¥4, (15.32)
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we see that § = 07 < h1/2¢, for all sufficiently small h > 0. In addition, we find

[Wh(¢, U)th < [2h3/4 + h1/4]67
(15.33)

110,05 Wa(E0)llz, < Ch|2h1/4+ an¥/4 4 p1AS,

together with

W (@, 0@) =Wy (60,00, < G2+ A [ (6 — cD,0@ — v )|l . (15.34)

Iz,
The result hence follows from the contraction mapping theorem. O

Proof of Theorem 2.6. We write (¢p,vy) for the unique solution to the fixed point problem (15.11)
that is provided by Lemma 15.3. This allows us to define

Uy, =W, + vy, Chp = Cyx + Cp. (1535)
For fixed h > 0, we claim that the map
9 evy[ U, +vp] —evoV, € (2 (15.36)

is continous. Indeed, this follows from the smoothness of ¥, together with (5.13) and the fact that
the translation operator is continuous on H'. Since the map

Vi GV, +V)el; (15.37)
is continuous on a subset of /2 that contains evyovy, for all ¥ € [0, k], we conclude that
0 GlevgWy) € 6, (15.38)

is continuous. The travelling wave equation (15.1) now implies the inclusion (2.43).
In a similar fashion, the inclusion (2.47) follows from (5.13) and the continuity of the translation
operator on H'. The remaining statements are a direct consequence of Lemma, 15.3. O

Proof of Corollary 2.7. Upon defining

+r, )2
v =—ny (0791) (15.39)

V1= (0702 + 1

Proposition 2.3 implies that (i) is satisfied. Using Proposition 8.2, we see that
En(t) = e @) (R + ent) = V(Ta(- +ent))] . (15.40)

Inspecting the computations in §9 and §12.3-12.4, we can recover an approximant for Y(U) by
making the replacements

Gaapxir11(U)  — —’yUaoU(cwalﬁoU)
(o), (15.41)
Gapxirt(U) —  coyu(1—p).

In particular, upon defining

Yapx(U) = ex(yw — 1), (15.42)
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we obtain the error bound
IP(U) = Yapx (D)l 2o < Ci[h+ 1€ (D)2 + €0 (U)o ]-
Substituting U = ¥}, and applying the Lipschitz bounds (7.65), we find

€0 (Un) = Ew(Wa)llz < Co[|Tn — Wal[p22
< Gyl = Wil + 10F[®n — W]l 10 |
< Chh3/1,

Using Proposition 7.14, we obtain

€ (W)l < C5™"
and hence

[€one (@) e < C3h1*

In a similar fashion, we may exploit (7.3) to conclude

Iyw, = 7wl < Coh®/™
and hence
o, — o e < CohM/4,
Together, these observations yield the pointwise bound
V(Wh) = culyw. —1)] < CihM™
Assuming for clarity that ¢, > 0, this implies the pointwise inequality
V() > ex(yw, —1) = Cppl/e.
Since |cp, — ¢i| < h3/4, we find
ch [[\Pf)]’ + 1} > c(yw, — 1) +cp — CihMA
> CuYw, — Cghl/‘l.

Since vy, is strictly bounded away from zero, uniformly in h, we conclude that

() (r) > -1

(15.43)

(15.44)

(15.45)

(15.46)

(15.47)

(15.48)

(15.49)

(15.50)

(15.51)

(15.52)

for all sufficiently small h > 0 and all 7 € R. This shows that the coordinate transformation (2.53)

is invertible, as desired.
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