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Abstract

In this paper we consider a spatial discretization scheme with an adaptive grid for the Nagumo PDE and

establish the existence of travelling waves. In particular, we consider the MMPDE5 grid update method that

aims to equidistribute the arclength of the solution under consideration. We assume that this equidistribution

is strictly enforced, which leads to a non-local problem with infinite range interactions.

For small spatial grid-sizes, we establish some useful Fredholm properties for the operator that arises

after linearizing our system around the travelling wave solutions to the original Nagumo PDE. In particular,

we perform a singular perturbation argument to lift these properties from the natural limiting operator.

This limiting operator is a spatially stretched and twisted version of the standard second order differential

operator that is associated to the PDE waves.
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1 Introduction

In this paper we consider adaptive discretization schemes for a class of scalar reaction-diffusion
equations that includes the Nagumo PDE

ut = uxx + gcub(u; a), (1.1)

with the bistable cubic nonlinearity

gcub(u) = u(1− u)(u− a), 0 < a < 1. (1.2)

In particular, we discretize (1.1) on a time-dependent spatial grid and add an extra equation that
aims to distribute the gridpoints in such a way that the arclength of the solution is equal between
any two consecutive gridpoints.
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Our main contribution in this paper is to show that the resulting coupled semi-discrete system
admits solutions that can be interpreted as travelling waves. In particular, our results here are part
of an ongoing program that aims to systematically explore the impact of commonly used spatial,
temporal and full discretization schemes on the dynamical behaviour of dissipative PDEs.

Reaction-diffusion systems Reaction-diffusion PDEs have been extensively studied in the past
decades. Indeed, their rich pattern-forming properties allow many intriguing localized structures that
can be observed in nature to be reproduced analytically and numerically. For example, the classical
paper by Aronson and Weinberger [1] shows how (1.1) and its higher-dimensional counterparts can
be used to model the spreading of a dominant biological species throughout a spatial domain. Upon
adding a slowly-varying second component to (1.1) by writing

ut = uxx + gcub(u; a)− v,

vt = ε
(
u− v

)
,

(1.3)

Fitzhugh [27, 28] was able to effectively describe the propagation of signal spikes through nerve fibres.
Sparked by his interest in morphogenesis, Turing [62] described the famous bifurcation through which
equilibria of general two-component reaction-diffusion systems can destabilize and generate spatially
periodic structures such as spots and stripes.

These early results led to the development of many important technical tools that today are
indispensable to the field of dynamical systems. For example, comparison principle techniques have
been used to study the global dynamics of (1.1) in one [26] and two [9] spatial dimensions. The
rigorous construction of the pulses observed by FitzHugh for (1.3) led to the birth of geometric
singular perturbation theory [14, 32, 47]. The development of Evans function [44] and semigroup
theory [59] was heavily influenced by the desire to analyze the stability of many of these localized
structures.

The systems (1.1) and (1.3) are both still under active investigation. For example, the behaviour
of perturbed spherical [56] or planar [50] fronts has been investigated for higher-dimensional versions
of (1.1). In addition, in [15, 16] the authors consider (1.3) in the a ↓ 0 limit and describe the birth
of pulse solutions with oscillating tails.

Travelling waves It is well-known that travelling waves play an important role in the global
dynamics of (1.1). Such solutions have the form u(x, t) = Φ(x+ct), which implies that the waveprofile
Φ and wavespeed c must satisfy the travelling wave ODE

cΦ′ = Φ′′ + gcub(Φ; a). (1.4)

Using a now standard phase-plane analysis [26], one readily shows that (1.4) coupled with the
boundary conditions

Φ(−∞) = 0, Φ(+∞) = 1 (1.5)

admits a unique solution pair (Φ, c) =
(
Φ(a), c(a)

)
, with

sign
(
c(a)

)
= sign(

1
2
− a). (1.6)

Such solutions provide a mechanism through which the fitter biological species (corresponding to
the deepest well of the potential −

∫
gcub) can become dominant throughout a spatial domain. For

this reason they are sometimes referred to as invasion waves.
Using a squeezing technique based on the comparison principle, one can show that these waves

are nonlinearly stable under a large class of perturbations [26]. This can be generalized to planar
travelling wave solutions to

ut = uxx + uyy + gcub(u; a) (1.7)
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by carefully constructing appropriate sub- and supersolutions [9].
Travelling waves have been used extensively as building blocks to construct general time depen-

dent solutions of reaction-diffusion systems. For example, (1.7) supports travelling corners [10, 30],
expansion waves [56], and scattering waves [9]. Changing the nonlinearity g, (1.1) supports modu-
lated waves [21] that connect periodic travelling waves of nearby frequencies.

Uniform spatial discretizations Introducing the approximants Uj(t) ∼ u(jh, t) and applying a
standard discretization to the second derivative in (1.1), one obtains

U̇j(t) =
1
h2

[Uj−1(t) + Uj+1(t)− 2Uj(t)] + gcub(uj). (1.8)

This lattice differential equation (LDE) can be seen as the nearest-neighbour uniform spatial dis-
cretization of the PDE (1.1) on the grid hZ.

Mathematically speaking, the transition from (1.1) to (1.8) breaks the continuous translational
symmetry of the underlying space. Indeed, (1.8) merely admits the discrete group of symmetries
j 7→ j + k with k ∈ Z. As a consequence, travelling wave solutions

Uj(t) = Φ(jh+ ct) (1.9)

can no longer be seen as equilibria in an appropriate comoving frame. Instead, they must be treated
as periodic solutions modulo the discrete shift symmetry discussed above. The resulting challenges
occur frequently in similar discrete settings and general techniques have been developed to overcome
them [8, 17, 29].

Naturally, the 0 < h � 1 regime is the most interesting from the perspective of numerical
analysis. However, we remark here that many physical and biological systems have a discrete spatial
structure for which it is natural to take h ∼ 1. Indeed, genuinely discrete phenomena such as phase
transitions in Ising models [5], crystal growth in materials [13], propagation of action potentials in
myelinated nerve fibers [7] and phase mixing in martensitic structures [63] have all been modelled
using equations similar to (1.8). The list of applications will undoubtedly expand over time as the
mathematical tools for analyzing LDEs are improved.

Substituting the Ansatz (1.9) into (1.8), we obtain the travelling wave equation

cΦ′(ξ) =
1
h2

[Φ(ξ − h) + Φ(ξ + h)− 2Φ(ξ)] + gcub(Φ(ξ); a). (1.10)

Due to the presence of the shifted arguments such equations are known as functional differential
equations of mixed type (MFDEs). Mathematically speaking, the unbounded second derivative op-
erator in (1.4) has been replaced by a bounded second-difference operator. In addition, the transition
c → 0 is now singular since it changes the structure of the equation. As a consequence, there is a
fundamental difference between standing and moving wave solutions to (1.8).

In the anti-continuum regime h � 1, the second-difference operator can be treated as a small
perturbation to the remaining ODE. An elegant construction pioneered by Keener [45] allows one
to construct standing waves for a 6= 1

2 that satisfy the boundary conditions (1.5) and block the two
stable background states Φ ≡ 0 and Φ ≡ 1 from invading the domain. In particular, the simple
geometric condition (1.6) is violated in this setting. This phenomenon is often referred to as pinning
or propagation failure and has attracted a considerable amount of attention [3, 20, 22, 23, 34, 39].

In the intermediate h ∼ 1 regime the shifted terms cannot be handled so easily and one needs to
understand the full MFDE. Such equations are ill-posed as initial value problems and hence must be
handled delicately. Several important tools have been developed to accomplish this, such as Fredholm
theory [48] and exponential dichotomies [31, 49, 57, 58].

Using a global homotopy argument together with the comparison principle, Mallet-Paret con-
structed a branch of solutions

(
Φ(a), c(a)

)
to (1.10) with (1.5), in which c(a) is unique and Φ(a)
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is unique up to translation when c(a) 6= 0. For the uniform spatial discretization of the FitzHugh-
Nagumo PDE (1.3), a generalization of Lin’s method can be used to establish a version of the
exchange Lemma for MFDEs and construct stable travelling pulses [40, 41].

In the continuum regime 0 < h � 1, a natural first step is to construct spatially-discrete waves
as small perturbations from the PDE waves (Φ∗, c∗). As explained above however, the transition
between (1.4) and (1.10) is highly singular. Nevertheless, Johann [43] developed a version of the
implicit function theorem that can achieve this in some settings. Our inspiration for the present
paper however comes from the spectral convergence approach developed by Bates and his coauthors
in [4].

A key role in this approach is reserved for the linear operator

[Lh;unifv](ξ) = −cv′(ξ) +
1
h2

[v(ξ + h) + v(ξ − h)− 2v(ξ)] + g′cub(Φ∗(ξ); a)v(ξ), (1.11)

which can be seen as the linearization of (1.10) around the PDE wave Φ∗. This operator is a singularly
perturbed version of the PDE linearization

[Ltwv](ξ) = −cv′(ξ) + v′′(ξ) + g′cub(Φ∗(ξ); a)v(ξ). (1.12)

The main contribution in [4] is that Fredholm properties of Ltw are transferred to Lh;unif . The latter
operator can then be used in a standard fashion to close a fixed-point argument and construct a
solution to (1.10) that is close to (Φ∗, c∗).

Stated more precisely, the authors fix a constant δ > 0 and use the invertibility of Ltw + δ to
show that also Lh;unif + δ is invertible for small h > 0. In particular, they consider bounded weakly-
converging sequences {vj} ⊂ H1 and {wj} ⊂ L2 with (Lh;unif + δ)vj = wj and set out to find a
lower bound for wj that is uniform in δ and h. This can be achieved by picking a large compact
interval K and extracting a subsequence of {vj} that converges strongly in L2(K). Special care must
therefore be taken to rule out the limitless transfer of energy into oscillatory or tail modes, which
are not visible in this strong limit. Spectral properties of the (discrete) Laplacian together with the
bistable structure of the nonlinearity g provide the control on {vj} that is necessary for this.

The results in [4] are actually strong enough to handle discretizations of the Laplacian that have
infinite range interactions. In addition, this approach was recently generalized [60] for use in multi-
component reaction-diffusion problems such as the FitzHugh-Nagumo system (1.3). We emphasize
that this generalization also allows one to establish the stability of the constructed waves, which is
an important reason for us to pursue this line of thought in the present paper.

Uniform spatial-temporal discretizations A natural next step is to study the impact of tem-
poral discretization schemes. In order to set the stage, we apply the backward-Euler discretization
with time-step ∆t to the temporal derivative in (1.8), which leads to the fully discrete system

1
∆t

[
Uj
(
n∆t

)
− Uj

(
(n− 1)∆t

)
] = 1

h2

[
Uj−1(n∆t) + Uj+1(n∆t)− 2Uj(n∆t)

]
+gcub

(
Uj(n∆t); a

)
.

(1.13)

This type of system is commonly referred to as a coupled map lattice (CML). Such systems are used
as stand-alone models across a wide range of disciplines, from the construction of hash functions [65]
to the study of population dynamics [19].

The backward-Euler discretization is part of a family of six so-called backward differentiation
formula (BDF) schemes for discretizing the temporal derivative. These are well-known multistep
methods that are appropriate for parabolic PDEs due to their numerical stability properties. In [42]
we analyzed these BDF methods and constructed fully discretized travelling wave solutions

Uj(n∆t) = Φ(j + nc∆t), Φ(−∞) = 0, Φ(+∞) = 1 (1.14)
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for (1.13) and its five higher order counterparts. This continued the program that was initiated in
[23–25] to study the impact of temporal and full discretization schemes on various reaction-diffusion
systems. Indeed, these papers studied versions of (1.1) with various smooth and piecewise linear
bistable nonlinearities. The authors used adhoc techniques to obtain rigorous, formal and first order
information concerning the change in the dynamics of traveling wave solutions. In addition, in [17]
the authors considered the forward-Euler counterpart of (1.13) and used Poincaré return-maps and
topological arguments to obtain the existence of fully-discretized waves.

We note that the fully discrete front solutions (1.14) to (1.13) must satisfy the difference equation
1

∆t [Φ(ξ)− Φ(ξ − c∆t)] = 1
h2

[
Φ(ξ − h) + Φ(ξ + h)− 2Φ(ξ)

]
+ gcub

(
Φ(ξ); a

)
. (1.15)

In view of the discussion above it is natural to ask whether the c(a) relation can become multi-valued.
This question is answered affirmatively by the numerical and theoretical results in [42]. Related
phenomena have been observed in monostable KPP systems [51] in the presence of inhomogeneities.

The key technical ingredient in our construction of the front solutions (1.14) is the understanding
of the fully discrete operator

[Lh,∆tv](ξ) = − 1
∆t [v(ξ)− v(ξ − c∆t)] + 1

h2

[
v(ξ − 1) + v(ξ + 1)− 2v(ξ)

]
+g′cub(Φ(ξ); a)v(ξ),

(1.16)

in which (Φ, c) is the spatially-discrete travelling wave (1.10). The main contribution in [42] is that
we modified the approach of [4] that was discussed above in such a way that Fredholm properties
can be transferred from the spatially-discrete operators Lh;unif to the fully-discrete operators Lh,∆t.
In our view this presents a further reason for focussing on this spectral convergence approach here.

Arclength equidistribution Most efficient modern solvers do not use fixed spatial grids but
concentrate their meshpoints in areas where the solution under construction fluctuates the most. In
particular, let us write {xj(t)} for the positions of the grid points. Introducing the approximants

Uj(t) ≈ u(xj(t), t), (1.17)

we may use (1.1) to compute
d
dtUj(t) = ux

(
xj(t), t

)
ẋj(t) + ut

(
xj(t), t

)
= ux

(
xj(t), t

)
ẋj(t) + uxx

(
xj(t), t

)
+ gcub

(
u
(
xj(t), t

)
; a
) (1.18)

in the special case that the approximation (1.17) is exact. Using central differences to discretize the
spatial derivatives in (1.18) on the grid xj(t), we obtain the LDE

U̇j =
[
Uj+1−Uj−1
xj+1−xj−1

]
ẋj + 2

xj+1−xj−1

[Uj−1−Uj
xj−xj−1

+ Uj+1−Uj
xj+1−xj

]
+ gcub(Uj ; a). (1.19)

This system should be compared to [38, Eqs. (1.12)-(1.13)] where a similar procedure was applied
to Burgers’ equation.

In order to close the system, we need to describe the behaviour of the gridpoints. For illustrative
purposes, let us consider the so-called MMPDE5 method that was originally developed by Huang,
Ren, and Russell [36, 37, 55]. This method is efficient and relatively easy to formulate for our
problem. In particular, inspecting [38, Eqs. (2.52), (2.53), (2.57)], the gridpoint behaviour can be
described by

τ ẋj =
√

(xj+1 − xj)2 + (Uj+1 − Uj)2 −
√

(xj−1 − xj)2 + (Uj−1 − Uj)2, (1.20)

in which τ > 0 is a tunable speed parameter. In the terminology of [38], we are using the arclength
monitor function

ρ(x, t) =
√

1 + u2
x. (1.21)

Indeed, the update rule (1.20) acts to equalize the arclength of the solution profile between grid-
points.
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Adaptive meshing Numerical techniques involving non-constant grids have attracted tremendous
attention in the search for accurate and efficient approximation procedures for differential equations.
The first method of this type that is based upon an equidistribution principle was described by de
Boor [18]. The method was developed to efficiently solve boundary value problems for ordinary
differential equations. After each step in the numerical iteration scheme, the error is computed in
a pointwise fashion. One can subsequently choose new gridpoints in such a way that this error is
equally distributed over each subinterval in the new mesh. This technique turned out to be very
effective and has also been used for time dependent (parabolic) PDEs in one space dimension.

The MMPDE5 method described above is an r-adaptive refinement scheme in the terminology of
the finite element community, since the mesh is continuously relocating as it adapts to the solution
of the PDE being solved. The equations that determine the movement of the mesh are generally
independent of the PDE being solved, but are dependent on the solution of the underlying physical
PDE. Several approaches have been developed that are relatively simple to program and robust
with respect to the choice of adjustable parameters. The recent book [38] contains a comprehensive
treatment of the most important moving mesh methods, including the MMPDE5 scheme described
above. Further references can be found in the review articles [12] and [33].

The literature concerning convergence results for moving mesh methods is somewhat limited.
Results have been obtained [6, 53, 54] for finite difference methods applied to singularly perturbed
two-point boundary value problems and reaction-diffusion equations. However, these require a-priori
knowledge of the mesh behaviour and explicitly use the singular part of the exact solution. Results
that do not require such a-priori knowledge are available for linear one-dimensional elliptic equations
[2] and one-dimensional quasi-linear convection-diffusion problems [46]. For combustion PDEs that
feature blow-up behaviour, one can use scaling invariance and moving mesh methods to recreate
the scaling laws inherent in the exact blow-up solutions [11]. Finally, the behavior of moving mesh
schemes for travelling wave solutions of the Fisher equation, which is the monostable counterpart of
(1.1), was investigated in [52].

Results and broader goals Inspection of the coupled system (1.19)-(1.20) shows that one loses
the comparison principle, even if x is treated as a known function. Such drastic structural changes
are a common feature when applying discretization schemes and we refer to [61] for an interesting
discussion. For our purposes here, this means that we will have to consider perturbative techniques to
analyze (1.19)-(1.20), viewing the speed parameter τ and the average arclength between gridpoints
as small parameters.

In this paper we focus on the singular case τ = 0, which allows us to rewrite (1.20) as

h =
√

(xj+1 − xj)2 + (Uj+1 − Uj)2 =
√

(xj−1 − xj)2 + (Uj−1 − Uj)2 (1.22)

for some constant h > 0 that we take to be small. In particular, we obtain

xj+1 − xj =
√
h2 − (Uj+1 − Uj)2 (1.23)

for all j ∈ Z. In order to fix the absolute positions of the gridpoints, we impose the boundary
condition

lim
j→−∞

xj(t)− jh = 0 (1.24)

at each time t ≥ 0. Our main results state that the resulting system is well-posed and admits
travelling wave solutions

Uj(t) = Φ(xj(t) + ct) (1.25)

that satisfy the boundary conditions (1.5). These travelling waves (Φ, c) are small perturbations of
the PDE waves (Φ∗, c∗).
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We view our work here as a first step towards understanding the impact of adaptive discretization
schemes on travelling waves and other patterns that exist for all time. In particular, we believe that
the waves constructed here can be seen as a slow manifold for the dynamics of the full system (1.19)-
(1.20). Using the Fredholm theory that we develop in this paper one should be able to effectively
track the fast grid-dynamics in the 0 < τ � 1 regime. A further step in the program would be to
also handle temporal discretizations, inspired by the approach developed in [42] that we described
above. Finally, we feel that it is important to understand the stability of the discretized waves under
the full dynamics of the numerical scheme.

We are specially interested here in the pinning phenomenon. Indeed, numerical observations
indicate that the set of detuning parameters a for which c(a) = 0 shrinks dramatically when using
adaptive discretizations. Understanding this in a rigorous fashion would give considerable insight into
the theoretical benefits of adaptive grids compared to the practical benefits of increased performance.
Preliminary results in this direction can be found in [35].

Let us emphasize that the application range of our techniques does not appear to be restricted
to the scalar problem (1.1) or the specific grid-update scheme (1.20). Indeed, using the framework
developed in [60], it should be possible to perform a similar analysis for the FitzHugh-Nagumo equa-
tion PDE (1.3) and other multi-component reaction-diffusion problems. In addition, any numerical
scheme based on the arclength monitor function will share (1.23) as the instantaneous equidistribu-
tion limit.

Reduction procedure The first step in our program to construct the travelling waves (1.25) is
to eliminate the variable x from (1.19). In view of the boundary condition (1.24), we can repeatedly
apply (1.23) to obtain

xk − kh =
∑k−1
j=−∞(

√
h2 − (Uj+1 − Uj)2 − h)

= −
∑k−1
j=−∞

(Uj+1−Uj)2
√
h2−(Uj+1−Uj)2+h

.
(1.26)

Upon introducing the discrete derivative

[∂+
h U ]j = h−1[Uj+1 − Uj ], (1.27)

we note that this expression is well-defined if we impose the conditions∥∥∂+
h U
∥∥
∞ < 1, ∂+

h U ∈ `
2. (1.28)

A direct differentiation yields

ẋk = −
k−1∑
j=−∞

Uj+1 − Uj√
h2 − (Uj+1 − Uj)2

(
U̇j+1 − U̇j

)
, (1.29)

which is well-defined if also ∂+
h U̇ ∈ `2. Using (1.19) to eliminate ∂+

h U̇ , we obtain the implicit
expression

ẋk =
k−1∑
j=−∞

F
(
Uj−1, Uj+1, Uj , Uj+2, ẋj+1, ẋj

)
. (1.30)

This equation has a unique solution that can be written as

ẋk = Yk
(
{Uj}j≤k, {∂+

h Uj}j≤k, {∂
+
h ∂

+
h Uj}j≤k−1, {∂+

h ∂
+
h ∂

+
h Uj}j≤k−2

)
(1.31)
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for some function Y that we compute explicitly in §8. Using (1.23) to eliminate the remaining terms
involving x from (1.19), this allows us to write

U̇k = Gk
(
{Uj}j≤k, {∂+

h Uj}j≤k, {∂
+
h ∂

+
h Uj}j≤k−1, {∂+

h ∂
+
h ∂

+
h Uj}j≤k−2

)
(1.32)

for some function G that we describe explicitly in §9. We note that the partial derivatives of G can
be controlled uniformly for small h, so the representation (1.32) isolates all the terms that have the
potential to blow up as h ↓ 0. By choosing an appropriate space for the sequences U , we show in
§12 that (1.32) can be seen as a well-posed initial value problem.

The discrete third derivative in (1.32) arises directly from (1.29), which forces us to take a discrete
derivative of our second-order original system. Fortunately, one can use a discrete summation-by-
parts technique to eliminate this derivative. The price that needs to be paid is that the right-hand-side
of (1.32) becomes rather convoluted, containing terms of the form (∂+

h ∂
+
h U)2. Using PDE terminol-

ogy, the equation becomes fully nonlinear rather than semi-linear and this requires considerable
care.

We are aided by the special structure of G, which is a product of two sums. More precisely, taking
a discrete derivative of G does not involve fourth-order discrete derivatives of U . In fact, taking a
discrete derivative of (1.32) leads to a semi-linear third-order equation that plays a major role in our
construction. The main purpose of §6 and §10-§13 is to build a framework that allows us to control
the convoluted expressions that arise from this procedure.

Computational frame Based on the discussion above, it appears to be much more natural to
construct wave-like solutions to the scalar LDE (1.32) in the computational coordinate τ = jh+ ct
rather than the physical coordinate ξ = xj(t) + ct. Indeed, attempting to use ξ will lead to an
equation for the waveprofile Φ with shifts that depend on the waveprofile Φ itself. In particular, the
resulting wave equation is a state-dependent MFDE with infinite range interactions. At the moment,
even state-dependent delay equations with a finite number of shifts are technically very challenging
to analyze, requiring special care in the linearization procedure [64]. Indeed, linearizations typically
involve higher order (continuous) derivatives, making it very hard to close fixed-point arguments.

It turns out that the two points of view described above are closely related. In order to see this,
let us assume for the moment that we have found a triplet (Φ, c, x) for which x and the function U
defined in (1.25) satisfy (1.19) together with (1.23)-(1.24). Let us also assume that for each ϑ ∈ R
there is a unique increasing sequence yj;ϑ with y0;ϑ = ϑ for which(

Φ(yj+1;ϑ)− Φ(yj;ϑ)
)2 + (yj+1;ϑ − yj;ϑ)2 = h2 (1.33)

holds for all j ∈ Z. This can be arranged by imposing a-priori Lipschitz bounds on Φ and Φ′ and
picking h > 0 to be sufficiently small. Finally, let us assume for definiteness that c > 0 and that the
wave outruns the grid in the sense that ẋ0(t) + c > ε > 0.

A direct consequence of this inequality is that

x0(T ) + cT = x1(0) (1.34)

for some T > 0, which implies

U0(T ) = U1(0) = Φ
(
x1(0)

)
. (1.35)

The uniqueness property discussed above hence implies that

Uj(T ) = Φ(yj;x1(0)) = Φ
(
xj+1(0)

)
(1.36)
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for all j ∈ Z. Since (
xj+1(T )− xj(T )

)2 = h2 −
(
Uj+1(T )− Uj(T )

)2
= h2 −

(
Φ
(
xj+2(0)

)
− Φ

(
xj+1(0)

))2

=
(
xj+2(0)− xj+1(0)

)2
,

(1.37)

we see that in fact

xj(T ) + cT = xj+1(0) (1.38)

for all j ∈ Z. Taking the limit j → −∞, the boundary conditions (1.24) imply that cT = h.
Exploiting the well-posedness of our dynamics in forward and backward time, we conclude that

xj(t) = x0(jT + t) + jh (1.39)

holds for all j ∈ Z and t ∈ R. Writing Ψx(ϑ) = x0(ϑ/c), we hence find

xj(t)− jh = Ψx(jh+ ct), (1.40)

which implies that

Uj(t) = Φ(xj(t) + ct) = Φ
(
jh+ Ψx(jh+ ct) + ct

)
(1.41)

for all j ∈ Z and t ∈ R. Upon introducing the function

ΨU (τ) = Φ
(
τ + Ψx(τ)

)
, (1.42)

this allows us to obtain the representation(
Uj(t), xj(t)− jh

)
=
(
ΨU (jh+ ct),Ψx(jh+ ct)

)
. (1.43)

Motivated by these considerations, the main focus of this paper is to construct the waveprofiles
ΨU directly in the computational coordinates. We treat these profiles as small perturbations from
the function Ψ∗ that is defined as the arclength reparametrization of the PDE waveprofile Φ∗. In
fact, we show that for arbitrary solutions U to (1.32) for which U(t0) is close to Ψ∗(hZ + ϑ), we
indeed have the pointwise inequalities |ẋ(t0)| < |c| whenever c is sufficiently close to c∗. This can be
used to show that the coordinate transformation (1.42) can be inverted, allowing us to reconstruct
the profile Φ(ξ) from ΨU (τ).

In §3 we show that the stretched profile Ψ∗ satisfies the ODE

c∗
[
1−Ψ′∗(τ)2

]−1/2Ψ′∗(τ) =
[
1−Ψ′∗(τ)2

]−2Ψ′′∗(τ) + gcub

(
Ψ∗(τ); a

)
. (1.44)

Linearizing this equation around Ψ∗, we obtain the operator

[Lcmpv](τ) = −c∗
[
1−Ψ′∗(τ)2

]−3/2
v′(τ) +

[
1−Ψ′∗(τ)2

]−2
v′′(τ)

+4
[
1−Ψ′∗(τ)2

]−3Ψ′∗(τ)Ψ′′∗(τ)v′(τ) + g′cub

(
Ψ∗(τ); a

)
v(τ).

(1.45)

In §3.2 we analyze this operator in some detail and recast it back into the original physical coor-
dinates. In fact, we show that it is not equivalent to the standard linearization Ltw introduced in
(1.12). It contains an extra term related to the stretching procedure that vanishes when applied to
∂ξΦ∗. On the other hand, in the limits τ → ±∞ the differences between Lcmp and Ltw disappear.
The essential spectrum hence remains unchanged. In addition, we explicitly show that the kernel of
Lcmp is also one-dimensional.
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The singular perturbation The travelling wave equation in the computational coordinates can
be written as

cΨ′ = G
(

Ψ, ∂+
h Ψ, ∂+

h ∂
+
h Ψ, ∂+

h ∂
+
h ∂

+
h Ψ
)
, (1.46)

in which the discrete derivatives now act on functions instead of sequences. Linearizing around the
stretched wave Ψ∗, we obtain operators Lh that in the formal h ↓ 0 limit reduce to

[L∗v](τ) =
[
1−Ψ′∗(τ)2

][
Lcmpv

]
(τ) + Ψ′∗(τ)

∫ τ
−∞Ψ′′∗(τ

′)[Lcmpv](τ ′) dτ ′. (1.47)

The twisted structure is a direct consequence of the procedure that we used to eliminate the ẋ terms
from the LDE (1.19). In §3.3 we study the integral transform present in (1.47), which allows us to
transfer key properties of the operator Lcmp to L∗.

In §12 we compute the precise expression for Lh, which is too convoluted to present here. We
remark however that it is a version of L∗ where the integral has been replaced by a sum and all
derivatives except −c∗v′ have been replaced by their discrete counterparts.

A crucial step in our program is to establish Fredholm properties for the operator Lh. In par-
ticular, we generalize the spectral convergence approach described above to understand the singular
transition from L∗ to Lh. This is a delicate task, since the structure of the operators Lh is significantly
more complicated than that of Lh;unif . In particular, the integral transform and the non-autonomous
coefficients generate several new terms that were not present in [4].

Our approach hinges on the fact that the new terms can all be shown to be localized in an
appropriate sense. Nevertheless, recalling the sequences {vj} ⊂ H1 and {wj} ⊂ L2 with (Lh+δ)vj =
wj , we need to extract subsequences for which the discrete derivatives of vj also converge strongly on
compact intervals. We accomplish this by carefully controlling the size of the second-order discrete
derivatives. This requires frequent use of a discrete summation-by-parts procedure to isolate this
derivative from the convoluted expressions.

We believe that our understanding of the operators Lh will turn out to be very helpful when
carrying out the broader program discussed above. Indeed, following the approach in [60], we can
obtain information on the linearization around the actual adaptive travelling waves constructed in
this paper. Such information is crucial in order to understand the stability properties of the waves
and could be very helpful towards understanding the 0 < τ � 1 regime for the full coupled system
(1.19)-(1.20).

Overview This paper is organized as follows. Our main results are formulated in §2. In §3 we
discuss the impact on the PDE wave (Φ∗, c∗) caused by the transition from the physical coordinates
to the computational coordinates. We develop some basic tools that link discrete and continuous
calculus in §4-§5. We continue in §6-§7 by building the framework that we use to obtain our estimates
on G and discussing the properties of several important error functions.

The behaviour of the gridpoints is discussed in §8, where we derive an equation for the nonlinearity
Y that describes ẋ. We use this expression in §9 to analyze the function G that appears in the reduced
scalar LDE (1.32). In particular, we perform an initial summation by parts procedure to eliminate
the third discrete derivative. In §10-11 we obtain estimates on all the nonlinear functions that appear
as factors in the product structure of G. These estimates are used in §12-§13 to compute tractable
expressions for the linearization of G around Ψ∗ and obtain errors on the residuals.

In §14 we analyze the structure of the linearizations Lh and generalize the spectral convergence
method to establish Fredholm properties for these operators. Finally, in §15 we combine all these
ingredients and establish our main results. In particular, we construct the desired travelling waves
by setting up an appropriate fixed-point argument.

Acknowledgements. Hupkes acknowledges support from the Netherlands Organization for Sci-
entific Research (NWO) (grant 639.032.612). Van Vleck acknowledges support from the NSF (DMS-

10



1419047). Both authors wish to thank W. Huang for helpful discussions during the conception and
writing of this paper.

2 Main results

The main results of this paper concern adaptive-grid discretizations of the scalar PDE

ut = uxx + g(u). (2.1)

In particular, we fix h > 0 and consider a sequence of gridpoints that we index somewhat unconven-
tionally by hZ, in order to highlight the scale of their spatial distribution and prevent cumbersome
coordinate transformations.

For any j ∈ Z, we write xjh(t) for the time-dependent location of the relevant gridpoint and Ujh(t)
for the associated function value, which ideally should be a close approximation for u

(
xjh(t), t

)
. The

adaptive scheme that we study here can be formulated as

U̇jh(t) =
[
U(j+1)h(t)−U(j−1)h(t)

x(j+1)h(t)−x(j−1)h(t)

]
ẋjh(t)

+ 2
x(j+1)h(t)−x(j−1)h(t)

[
U(j−1)h(t)−Ujh(t)

xjh(t)−x(j−1)h(t) + U(j+1)h(t)−Ujh(t)

x(j+1)h(t)−xjh(t)

]
+ g
(
Ujh(t)

)
,

(2.2)

in which x(t) is defined implicitly by demanding that(
x(j+1)h(t)− xjh(t)

)2 +
(
U(j+1)h(t)− Ujh(t)

)2 = h2 (2.3)

and imposing the boundary constraint

lim
j→−∞

[xjh(t)− jh] = 0. (2.4)

Throughout the paper, we assume that the nonlinearity g satisfies the following standard bistability
condition.

(Hg) The nonlinearity g : R→ R is C3-smooth and has a bistable structure, in the sense that there
exists a constant 0 < a < 1 such that we have

g(0) = g(a) = g(1) = 0, g′(0) < 0, g′(1) < 0, (2.5)

together with

g(u) < 0 for u ∈ (0, a) ∪ (1,∞), g(u) > 0 for u ∈ (−∞,−1) ∪ (a, 1). (2.6)

In §2.1 we introduce a scalar lattice differential equation for U that is equivalent to (2.2)-(2.4) in
an appropriate sense, but much more suitable for analysis. In §2.2 we exploit this reduced equation to
describe a bifurcation result that allows us to obtain travelling wave solutions to (2.2) for 0 < h� 1.

2.1 The reduced system

Our main results in this first part show how the implicit requirements (2.3)-(2.4) can be made
explicit. In particular, we introduce the equilibrium grid

[xeq;h]jh = jh (2.7)

together with the sequence space

Xh = {x : hZ→ R for which ‖x‖Xh := ‖x− xeq;h‖∞ = supj∈Z |xjh − jh| <∞} (2.8)
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and write

x(t) = {xjh(t)}j∈Z ∈ Xh. (2.9)

Our goal is to formulate a well-posed equation for the dynamics of

U(t) = {Ujh(t)}j∈Z ∈ `∞(hZ;R) (2.10)

from which the dependence on x and ẋ has been eliminated.
As a preparation, for any U ∈ `∞(hZ;R) we introduce the notation

∂+U ∈ `∞(hZ;R), ∂−U ∈ `∞(hZ;R), ∂0U ∈ `∞(hZ;R) (2.11)

for the sequences

[∂+U ]jh = h−1
[
U(j+1)h − Ujh

]
,

[∂−U ]jh = h−1
[
Ujh − U(j−1)h

]
,

[∂0U ]jh = (2h)−1
[
U(j+1)h − U(j−1)h

]
.

(2.12)

In addition, for any U ∈ `∞(hZ;R) for which ‖∂+U‖∞ < 1, we define the sequences

F�±(U) ∈ `∞(hZ;R), F�0(U) ∈ `∞(hZ;R), F��0(U) ∈ `∞(hZ;R) (2.13)

by means of the pointwise identities

F�−(U) = ∂−U√
1−(∂−U)2

,

F�+(U) = ∂+U√
1−(∂+U)2

,

F�0(U) = 2∂0U√
1−(∂+U)2+

√
1−(∂−U)2

,

F��0(U) = 1
h

F�+ (U)−F�− (U)√
1−(∂+U)2+

√
1−(∂−U)2

.

(2.14)

We also introduce the Heaviside sequence H ∈ `∞(hZ;R) that has

Hjh =

 1 for j ≥ 0

0 for j < 0 (2.15)

Finally, we introduce the formal expression

Qjh(U) =
∑
j′<j

[
ln
[
1 + F�+j′h(U)F�0(j′+1)h(U)

]
− ln

[
1 + F�+j′h(U)F�0j′h(U)

]]
, (2.16)

together with

Yjh(U) = −exp[−Qjh(U)]h
∑
j′<j

F�+j′h(U)exp[Qj′h(U)]

1 + F�+j′h(U)F�0j′h(U)
∂+
[
2F��0(U) + g(U)

]
j′h
. (2.17)

Upon imposing a summability condition on U it is possible to show that these expressions are
well-defined.

Lemma 2.1 (see §8). Suppose that (Hg) is satisfied, fix h > 0 and consider any U ∈ `∞(hZ;R)
for which U −H ∈ `2(hZ;R) and ‖∂+U‖∞ < 1. Then the sequences

Q(U) = {Qjh}j∈Z, Y(U) = {Yjh}j∈Z (2.18)

are both well-defined and we have

Q(U) ∈ `∞(hZ;R), Y(U) ∈ `∞(hZ;R). (2.19)
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Our first main result shows that the expression Y(U) can be used to replace the ẋ term appearing
in (2.2). The remaining terms involving x can be eliminated using the implicit relation (2.3).

Proposition 2.2 (see §8). Suppose that (Hg) is satisfied and fix h > 0 together with T > 0.
Consider two functions

x : [0, T ] 7→ Xh, U : [0, T ] 7→ `∞(hZ;R) (2.20)

that satisfy the following properties.

(a) We have the inclusions

t 7→ U(t)−H ∈ C1
(
[0, T ]; `2(hZ;R)

)
,

t 7→ x(t)− xeq;h ∈ C1
(
[0, T ]; `∞(hZ;R)

)
.

(2.21)

(b) For every j ∈ Z and 0 ≤ t ≤ T we have the identity

x(j+1)h(t)− xjh(t) =
√
h2 −

(
U(j+1)h(t)− Ujh(t)

)2
. (2.22)

(c) For every 0 ≤ t ≤ T we have the limit

lim
j→−∞

[
xjh(t)− jh

]
= 0. (2.23)

(d) For every 0 ≤ t ≤ T we have the strict inequality

inf
j∈Z

[
x(j+1)h(t)− xjh(t)

]
> 0. (2.24)

(e) For every 0 ≤ t ≤ T and j ∈ Z we have the identity

U̇jh(t) =
[
U(j+1)h(t)−U(j−1)h(t)

x(j+1)h(t)−x(j−1)h(t)

]
ẋjh(t)

+ 2
x(j+1)h(t)−x(j−1)h(t)

[
U(j−1)h(t)−Ujh(t)

xjh(t)−x(j−1)h(t) + U(j+1)h(t)−Ujh(t)

x(j+1)h(t)−xjh(t)

]
+ g
(
Ujh(t)

)
.

(2.25)

Then the function U satisfies the system

U̇(t) = F�0
(
U(t)

)
Y
(
U(t)

)
+ 2F��0

(
U(t)

)
+ g
(
U(t)

)
(2.26)

for all 0 ≤ t ≤ T .

Conversely, once a solution to (2.26) has been obtained, it is possible to construct a solution to
the full problem (2.2). Indeed, the following result shows how the position of the gridpoints can be
recovered from U(t).

Proposition 2.3 (see §8). Suppose that (Hg) is satisfied and fix h > 0 together with T > 0.
Consider a function U : [0, T ]→ `∞(hZ;R) that satisfies the following properties.

(a’) We have the inclusion

t 7→ U(t)−H ∈ C1
(
[0, T ]; `2(hZ;R)

)
. (2.27)
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(b’) The strict inequality ∥∥∂+U(t)
∥∥
∞ < 1 (2.28)

holds for every t ∈ [0, T ].

(c’) For every t ∈ [0, T ] the identity

U̇(t) = F�0(U(t))Y
(
U(t)

)
+ 2F��0

(
U(t)

)
+ g
(
U(t)

)
(2.29)

is satisfied.

Then upon writing

xjh(t) = jh−
∑
j′<j

(
U(j′+1)h(t)−Uj′h(t)

)2

√
h2−(U(j′+1)h(t)−Uj′h(t))2+h

(2.30)

the properties (a), (b), (c), (d) and (e) from Proposition 2.2 are all satisfied.

We conclude our general analysis of the full problem (2.2) by showing that the reduced system
(2.29) is well-posed in an appropriate sense. Indeed, we establish the following short-term existence
result for a class of summable initial conditions. We remark that the restriction (2.31) on the initial
condition is a natural and unavoidable consequence of the requirement (2.3).

Proposition 2.4 (see §12). Suppose that (Hg) is satisfied and fix h > 0. Consider any U0 ∈
`∞(hZ;R) for which U0 −H ∈ `2(hZ;R) and for which∥∥∂+U0

∥∥
∞ < 1. (2.31)

Then there exists δT > 0 and a function U : [0, δT ] → `∞(hZ;R) that has U(0) = U0 and that
satisfies the properties (a’), (b’) and (c’) from Proposition 2.3 with T = δT .

2.2 Travelling waves

It is well-known that the PDE (2.1) admits a travelling wave solution that connects the two stable
equilibria of g [26]. The key requirement in our next assumption is that this wave is not stationary,
which can be arranged by demanding

∫ 1

0
g(u) du 6= 0.

(HΦ∗) There exists a wave speed c∗ 6= 0 and a profile Φ∗ ∈ C5(R,R) that satisfies the limits

lim
ξ→−∞

Φ∗(ξ) = 0, lim
ξ→+∞

Φ∗(ξ) = 1 (2.32)

and yields a solution to the PDE (2.1) upon writing

u(x, t) = Φ∗(x+ c∗t). (2.33)

The physical wave coordinate ξ = x+ c∗t appearing in (HΦ∗) is not well-suited for our purposes
here, since the reduced equation (2.29) is formulated in terms of the grid-coordinates hZ. In order
to compensate for this, we introduce the arclength

A(ξ) =
∫ ξ

0

√
1 + [∂ξ′Φ∗(ξ′)]2 dξ′. (2.34)

Lemma 2.5. For every τ ∈ R, there is a unique ξ∗(τ) for which

A
(
ξ∗(τ)

)
= τ. (2.35)
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Proof. The existence of the right-inverse ξ∗ for A follows from

∂ξA(ξ) =
√

1 + [∂ξΦ∗(ξ)]2 ≥ 1. (2.36)

We are now in a position to introduce the stretched waveprofile Ψ∗ : R→ R that is given by

Ψ∗(τ) = Φ∗
(
ξ∗(τ)

)
. (2.37)

This profile Ψ∗ can be seen as the arclength parametrization of the graph of the physical wave Φ∗.
The main result of this paper states that for sufficiently small h > 0, the reduced problem (2.29)

admits a travelling wave solution

Ujh(t) = Ψh(jh+ cht) (2.38)

with (Ψh, ch) ≈ (Ψ∗, c∗) in an appropriate sense. These waves are locally unique up to translation.
We note that items (iv) and (v) use the notation ∂+

h v = h−1[v(· + h) − v(·)] for functions v. In
addition, we use the shorthands L2 = L2(R;R) and H1 = H1(R;R).

Theorem 2.6 (see §15). Suppose that (Hg) and (HΦ∗) are satisfied. Then there exists a constant
δh > 0 together with pairs

(Ψh, ch) ∈ C1(R;R)× R, (2.39)

defined for 0 < h ≤ δh, such that the following properties are satisfied.

(i) For every 0 < h ≤ δh we have the limits

lim
ξ→−∞

Ψh(ξ) = 0, lim
ξ→+∞

Ψh(ξ) = 1. (2.40)

(ii) For every 0 < h ≤ δh we have the strict inequality

sup
τ∈R
|Ψh(τ + h)−Ψh(τ)| < h. (2.41)

(iii) For every 0 < h ≤ δh, the function U : R→ `∞(hZ;R) defined by

Ujh(t) = Ψh(jh+ cht) (2.42)

satisfies the inclusion

t 7→ U(t)−H ∈ C1
(
R; `2(hZ;R)

)
. (2.43)

In addition, the identity (2.29) and the strict inequality ‖∂+U(t)‖∞ < 1 both hold for all t ∈ R.

(iv) We have Ψh −Ψ∗ ∈ H1 for every 0 < h ≤ δh and the limit

|ch − c∗|+ ‖Ψh −Ψ∗‖H1 +
∥∥∂+

h

[
Ψh −Ψ∗

]∥∥
H1 +

∥∥∂+
h ∂

+
h ∂

+
h

[
Ψh −Ψ∗]

∥∥
L2 → 0 (2.44)

holds as h ↓ 0.

(v) Pick any 0 < h ≤ δh and consider a pair (Ψ̃, c̃) ∈ L∞ × R that has Ψ̃−Ψ∗ ∈ H1 with

|c̃− c∗|+
∥∥∥Ψ̃−Ψ∗

∥∥∥
H1

+
∥∥∥∂+

h

[
Ψ̃−Ψ∗

]∥∥∥
H1

+
∥∥∥∂+

h ∂
+
h ∂

+
h

[
Ψ̃−Ψ∗

]∥∥∥
L2
< h3/4. (2.45)
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Then the function Ũ : R→ `∞(hZ;R) defined by

Ũjh(t) = Ψ̃h

(
jh+ c̃t

)
(2.46)

satisfies the inclusion

t 7→ Ũ(t)−H ∈ C0
(
R; `2(hZ;R)

)
, (2.47)

together with the strict inequality
∥∥∥∂+Ũ

∥∥∥
∞
< 1 for all t ∈ R. In addition, if Ũ is a solution to

the system (2.29) for all t ∈ R, then we must have(
Ψ̃(·), c̃

)
=
(
Ψh(·+ ϑ), ch

)
(2.48)

for some ϑ ∈ R.

We emphasize that the location of the gridpoints for the waves (2.38) can be determined by
using (2.30). In fact, our final result shows how these waves in the computational coordinates can
be interpreted as wave-like objects in the original physical coordinates.

Corollary 2.7 (see §15). Consider the setting of Theorem 2.6. Then there exists a constant 0 <
δ̃h < δh so that for all 0 < h ≤ δ̃h there exist pairs

(Ψ(x)
h ,Φh) ∈ C1(R;R)× C1(R;R) (2.49)

that satisfy the following properties.

(i) Upon writing

xjh(t) = jh+ Ψ(x)
h (jh+ cht),

Ujh(t) = Ψh(jh+ cht),
(2.50)

the adaptive grid equations (2.2) - (2.4) are satisfied for all t ∈ R.

(ii) For every t ∈ R and j ∈ Z, the functions defined in (2.50) satisfy the relation

Ujh(t) = Φh
(
xjh(t) + cht

)
. (2.51)

We remark that if (2.38) and (2.51) both hold, simple substitutions yield the identity

Ψh(jh+ cht) = Ujh(t)

= Φh
(
jh+ Ψ(x)

h (jh+ cht) + cht
)

= Φh(jh+ cht+ Ψ(x)
h (jh+ cht)

)
.

(2.52)

In particular, the main assertion in Corollary 2.7 is that the perturbed coordinate transformation

ξh(τ) = τ + Ψ(x)
h (τ) (2.53)

is invertible for sufficiently small h > 0, allowing us to transfer the waves back to the original physical
framework.
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3 Stretched PDE waves

We recall the functions A(ξ) and ξ∗ introduced in Lemma 2.5, which are related to the arclength
parametrization of Φ∗. We also recall the stretched waveprofile

Ψ∗(τ) = Φ∗
(
ξ∗(τ)

)
(3.1)

and introduce the notation

γ∗(τ) =
√

1− [∂τΨ∗](τ)2 =
√

1−Ψ′∗(τ)2. (3.2)

Our first main result shows that γ∗ is well-defined and that it can be used to translate the travelling
wave equation for the continuum model (2.1) into the stretched computational coordinates.

Proposition 3.1. Suppose that (Hg) and (HΦ∗) are satisfied. Then we have Ψ∗ ∈ C5(R,R) and
there exists κ > 0 so that the bounds

0 < Ψ′∗(τ) < 1− κ,
√
κ < γ∗(τ) < 1 (3.3)

hold for all τ ∈ R. In addition, there exists a constant K > 0 together with exponents η− >
max{0, c∗} and η+ > max{0,−c∗} for which the bound

|Ψ∗(τ)|+ |Ψ′∗(τ)|+ |Ψ′′∗(τ)|+ |Ψ′′′∗ (τ)|+
∣∣∣Ψ(iv)
∗ (τ)

∣∣∣+
∣∣∣Ψ(v)
∗ (τ)

∣∣∣ ≤ Ke−η−|τ | (3.4)

holds whenever τ < 0, while the bound

|1−Ψ∗(τ)|+ |Ψ′∗(τ)|+ |Ψ′′∗(τ)|+ |Ψ′′′∗ (τ)|+
∣∣∣Ψ(iv)
∗ (τ)

∣∣∣+
∣∣∣Ψ(v)
∗ (τ)

∣∣∣ ≤ Ke−η+|τ | (3.5)

holds for all τ ≥ 0. Finally, for every τ ∈ R we have the identity

c∗γ
−1
∗ (τ)Ψ′∗(τ) = γ−4

∗ (τ)Ψ′′∗(τ) + g
(
Ψ∗(τ)

)
, (3.6)

together with the differentiated version

c∗γ
−3
∗ (τ)Ψ′′∗(τ) = γ−4

∗ (τ)Ψ′′′∗ (τ) + 4γ−6
∗ (τ)Ψ′′∗(τ)Ψ′∗(τ)Ψ′′∗(τ) + g′

(
Ψ∗(τ)

)
Ψ′∗(τ). (3.7)

Inspired by (3.7), we introduce the linear operator Lcmp : H2 → L2 given by

Lcmpv = −c∗γ−3
∗ v′ + γ−4

∗ v′′ + 4γ−6
∗ Ψ′∗Ψ

′′
∗v
′ + g′(Ψ∗)v, (3.8)

which corresponds with the linearization of (3.6) around Ψ∗. We also define the formal adjoint
Ladj

cmp : H2 → L2 that acts as

Ladj
cmpw = c∗∂τ [γ−3

∗ w] + ∂ττ [γ−4
∗ w]− ∂τ [4γ−6

∗ Ψ′∗Ψ
′′
∗w] + g′(Ψ∗)w. (3.9)

Indeed, one may easily verify that for any pair (v, w) ∈ H2 ×H2 we have

〈Lcmpv, w〉L2 = 〈v,Ladj
cmpw〉L2 . (3.10)

Finally, we introduce the function

Ψadj
∗ (τ) =

[ ∫
γ−1
∗ (τ ′)Ψ′∗(τ

′)e−
R τ′
0 c∗γ∗(s) dsΨ′∗(τ

′) dτ ′
]−1

e−
R τ
0 c∗γ∗(s) dsΨ′∗(τ). (3.11)

We note that the exponential bounds (3.4)-(3.5) together with (3.3) imply that Ψadj
∗ is a well-defined

function that decays exponentially as τ → ±∞. The second main result in this section shows that
we have now encountered all the kernel elements of Lcmp and Ladj

cmp.
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Proposition 3.2. Suppose that (Hg) and (HΦ∗) both hold. Then the operators Lcmp : H2 → L2

and Ladj
cmp : H2 → L2 are both Fredholm with index zero. In addition, we have the identities

Ker
(
Lcmp

)
= span{Ψ′∗},

Ker
(
Ladj

cmp

)
= span{Ψadj

∗ }.
(3.12)

In §14 we will see that the linearization of the adaptive grid problem leads naturally to a twisted
version of Lcmp. To account for this, we introduce the notation[ ∫

−
f
]
(τ) =

∫ τ

−∞
f(τ ′) dτ ′,

[ ∫
+

f
]
(τ) =

∫ ∞
τ

f(τ ′) dτ ′ (3.13)

for the bounded continuous functions that arise after integrating a function f ∈ L1. This allows us
to define the integral transforms

T∗f = γ−2
∗
[
f − γ∗Ψ′∗

∫
− γ
−3
∗ Ψ′′∗f

]
,

T adj
∗ f = γ−2

∗
[
f − γ−1

∗ Ψ′′∗
∫

+
γ−1
∗ Ψ′∗f

]
,

(3.14)

now for any f ∈ L2.
We give a detailed discussion of these transforms in §3.3 below. For now, we compute

T∗Ψ′∗ = γ−2
∗
[
Ψ′∗ − γ∗Ψ′∗

∫
− γ
−3
∗ Ψ′′∗Ψ

′
∗
]

= γ−2
∗
[
Ψ′∗ − γ∗Ψ′∗[γ−1

∗ − 1]
]

= γ−1
∗ Ψ′∗,

(3.15)

which means that we have normalized Ψadj
∗ in such a way that

〈Ψadj
∗ , T∗Ψ′∗〉 = 〈T adj

∗ Ψadj
∗ ,Ψ′∗〉 = 1. (3.16)

In particular, we see that λ = 0 is a simple eigenvalue for the twisted eigenvalue problem

Lcmpv = λT∗v. (3.17)

This allows us to obtain the following essential estimate on the behaviour of [Lcmp− δT∗]−1 as δ ↓ 0,
which will allow us to transfer the Fredholm properties of Lcmp to its discrete twisted counterpart
in §14.

Corollary 3.3. Suppose that (Hg) and (HΦ∗) both hold. Then Lcmp − δT∗ and Ladj
cmp − δT

adj
∗ are

both invertible as linear maps from H2 into L2 for all sufficiently small δ > 0. In addition, there
exists K > 0 so that the bounds∥∥∥[Lcmp − δT∗]−1f + δ−1Ψ′∗〈Ψ

adj
∗ , f〉L2

∥∥∥
H2

≤ K ‖f‖L2 ,∥∥∥[Ladj
cmp − δT

adj
∗ ]−1f + δ−1Ψadj

∗ 〈Ψ′∗, f〉L2

∥∥∥
H2

≤ K ‖f‖L2

(3.18)

hold for all f ∈ L2 and all sufficiently small δ > 0.

3.1 Coordinate transformation

Consider two functions fcmp : R → R and fphys : R → R. We introduce the stretching operator S∗
and the compression operator S−1

∗ that act as

[S∗fphys](τ) = fphys

(
ξ∗(τ)

)
, [S−1

∗ fcmp](ξ) = fcmp

(
A(ξ)

)
. (3.19)
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In particular, for any τ ∈ R and ξ ∈ R we have the identities

[S−1
∗ fcmp]

(
ξ∗(τ)

)
= fcmp(τ), [S∗fphys]

(
A(ξ)

)
= fphys(ξ). (3.20)

In order to understand the effect of these coordinate transformations on integrals and derivatives,
we first need to understand ξ′∗.

Lemma 3.4. Suppose that (Hg) and (HΦ∗) are satisfied. Then we have ξ∗ ∈ C1(R;R). In addition,
for any τ ∈ R we have

ξ′∗(τ) =
[
1 + [∂ξΦ∗

(
ξ∗(τ)

)
]2
]−1/2

= γ∗(τ).
(3.21)

Proof. The first identity in (3.21) follows by differentiating τ = A(ξ∗(τ)) with respect to τ . Using
the chain rule we compute

Ψ′∗(τ) = ∂τ [Φ∗
(
ξ∗(τ)

)
]

= [∂ξΦ∗]
(
ξ∗(τ)

)
ξ′∗(τ)

= [∂ξΦ∗]
(
ξ∗(τ)

)[
1 + ∂ξΦ∗

(
ξ∗(τ)

)2]−1/2
.

(3.22)

Squaring this identity yields

Ψ′∗(τ)2 = 1−
[
1 + ∂ξΦ∗

(
ξ∗(τ)

)2]−1
, (3.23)

which gives [
1 + ∂ξΦ∗

(
ξ∗(τ)

)2]−1 = 1−Ψ′∗(τ)2 = γ∗(τ)2, (3.24)

as desired.

Corollary 3.5. Suppose that (Hg) and (HΦ∗) are satisfied. Then for any fcmp ∈ C(R,R) ∩ L2 and
fphys ∈ C(R,R) ∩ L2 we have the identity

〈fphys,S−1
∗ fcmp〉L2 = 〈S∗fphys, γ∗fcmp〉L2 , (3.25)

together with

〈S∗fphys, fcmp〉L2 = 〈fphys,S−1
∗
[
γ−1
∗ fcmp

]
〉L2 . (3.26)

In particular, S∗ and S−1
∗ can be interpreted as elements of L(L2;L2).

Proof. The substitution rule allows us to compute

〈fphys,S−1
∗ fcmp〉L2 =

∫
fphys(ξ)fcmp

(
A(ξ)

)
dξ

=
∫
fphys

(
ξ∗(τ)

)
fcmp

(
A(ξ∗(τ))

)
ξ′∗(τ) dτ

=
∫
fphys

(
ξ∗(τ)

)
fcmp

(
τ
)
γ∗(τ) dτ

= 〈S∗fphys, γ∗fcmp〉L2 .

(3.27)

The second identity follows in a similar fashion.

Corollary 3.6. Suppose that (Hg) and (HΦ∗) are satisfied. Then for any fcmp ∈ H1, we have
S−1
∗ fcmp ∈ H1 with

∂ξ[S−1
∗ fcmp] = S−1

∗
[
γ−1
∗ ∂τfcmp

]
. (3.28)

In addition, for any fphys ∈ H1, we have S∗fphys ∈ H1 with

∂τ [S∗fphys] = γ∗S∗[∂ξfphys]. (3.29)
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Proof. For fcmp ∈ C1(R;R) we may use the chain rule to compute

∂ξ
[
fcmp

(
A(ξ)

)]
= [∂τfcmp]

(
A(ξ)

)
∂ξA(ξ) = [∂τfcmp]

(
A(ξ)

)[
ξ′∗
(
A(ξ)

)]−1
. (3.30)

In addition, for fphys ∈ C1(R;R) we compute

∂τ [fphys

(
ξ∗(τ)

)
] = [∂ξfphys]

(
ξ∗(τ)

)
ξ′∗(τ). (3.31)

The desired identities now follow from (3.19), (3.20) and (3.21). The final remark in Corollary 3.5
can be used to extend these results to fcmp ∈ H1 and fphys ∈ H1.

The physical wave Φ∗ satisfies the travelling wave ODE

c∗∂ξΦ∗(ξ) = ∂ξξΦ∗(ξ) + g
(
Φ∗(ξ)

)
(3.32)

for all ξ ∈ R. It is well known that the limiting behaviour of Φ∗ as ξ → ±∞ depends on the roots
of the characteristic functions

∆±(η) = −c∗η + η2 + g′
(
Φ∗(±∞)

)
. (3.33)

In particular, upon writing

η− =
1
2
c∗ +

1
2

√
c2∗ − 4g′(0) >

1
2
c∗ +

1
2
|c∗| (3.34)

and

η+ = −
[1

2
c∗ −

1
2

√
c2∗ − 4g′(1)

]
> −1

2
c∗ +

1
2
|c∗| , (3.35)

we have the bounds

|∂ξΦ∗(ξ)| ≤ Ke−η±|ξ| (3.36)

for ξ ∈ R±. In order to transfer this exponential bound to Ψ′∗, we need to understand the differences
ξ∗(τ)− τ .

Lemma 3.7. Suppose that (Hg) and (HΦ∗) are satisfied. Then there exists K > 0 so that the
inequality

|ξ∗(τ)− τ | < K (3.37)

holds for any τ ∈ R.

Proof. For any x ∈ R we have the standard inequality√
1 + x2 − 1 ≤ 1

2
x2. (3.38)

In particular, we see that

|A(ξ)− ξ| ≤ 1
2

∫ ξ
0
∂ξ′Φ∗(ξ′)2 dξ′

≤ 1
2 ‖∂ξΦ∗‖

2
L2 ,

(3.39)

which gives

|ξ∗(τ)− τ | =
∣∣ξ∗(τ)−A

(
ξ∗(τ)

)∣∣ ≤ 1
2
‖∂ξΦ∗‖2L2 . (3.40)
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Proof of Proposition 3.1. Using Φ∗ = S−1
∗ Ψ∗ together with the commutation relation

g
(
S−1
∗ Ψ∗

)
= S−1

∗ g
(
Ψ∗
)
, (3.41)

we can apply Corollary 3.6 to the travelling wave ODE (3.32) to obtain

c∗S−1
∗
[
γ−1
∗ Ψ′∗

]
= S−1

∗
[
γ−1
∗ ∂τ [γ−1

∗ Ψ′∗]
]

+ S−1
∗ [g(Ψ∗)]. (3.42)

Using the identity

γ′∗ = −γ−1
∗ Ψ′∗Ψ

′′
∗ (3.43)

together with the definition γ2
∗ = 1− [Ψ′∗]

2, this gives

c∗γ
−1
∗ Ψ′∗ = γ−2

∗ Ψ′′∗ + γ−4
∗
[
Ψ′∗
]2Ψ′′∗ + g(Ψ∗)

= γ−4
∗ Ψ′′∗ + g(Ψ∗).

(3.44)

A further differentiation yields

c∗γ
−1
∗ Ψ′′∗ + c∗γ

−3
∗ Ψ′∗Ψ

′
∗Ψ
′′
∗ = γ−4

∗ Ψ′′′∗ + 4γ−6
∗ Ψ′′∗Ψ

′
∗Ψ
′′
∗ + g′(Ψ∗)Ψ′∗, (3.45)

which can be simplified to (3.7).
The exponential bounds (3.4)-(3.5) now follow from Lemma 3.7 and (3.36), using (3.6) and its

derivatives to understand the derivatives of order two and higher for Ψ(i)
∗ (τ) for 2 ≤ i ≤ 5. The

inequality (3.3) for Ψ′∗ follows directly from (3.23) and the fact that ∂ξΦ∗ is uniformly bounded.
Finally, the inequalities (3.3) for γ∗ follow from

1 >
√

1−Ψ′∗(τ)2 >
√

1− (1− κ)2 =
√

2κ− κ2 >
√
κ. (3.46)

3.2 Linear operators

In principle, most of the statements in Proposition 3.2 can be obtained by an appeal to standard
Sturm-Liouville theory. We pursue a more explicit approach here in the hope that it can play a role
towards generalizing the theory developed in this paper to non-scalar systems.

Our first two results highlight the fact that our coordinate transformation does not simply map
Lcmp and Ladj

cmp onto the standard linear operators

Ltwy = −c∗∂ξy + ∂ξξy + g′(Φ∗)y,

Ladj
tw z = +c∗∂ξz + ∂ξξz + g′(Φ∗)z

(3.47)

obtained by linearizing the travelling wave ODE (3.32) around Φ∗. Indeed, the correct operators to
consider are given by

Lphysy = Ltwy +
(
∂ξΦ∗

)2 ∂ξξΦ∗
1+(∂ξΦ∗)2 ∂ξ

[
y

∂ξΦ∗

]
,

Ladj
physz = Ladj

tw z − 1
∂ξΦ∗

∂ξ

[(
∂ξΦ∗

)2 ∂ξξΦ∗
1+(∂ξΦ∗)2 z

]
.

(3.48)

Lemma 3.8. Suppose that (Hg) and (HΦ∗) are satisfied. Then for any v ∈ H2 we have the identity

Lcmpv = γ−1
∗ S∗LphysS−1

∗ [γ−1
∗ v]. (3.49)
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Proof. We write y = S−1
∗ [γ−1

∗ v], so that γ−1
∗ v = S∗y. Using Corollary 3.6 we get

S∗∂ξy = γ−1
∗ ∂τ [γ−1

∗ v]

= γ−4
∗ Ψ′∗Ψ

′′
∗v + γ−2

∗ v′.
(3.50)

In particular, (3.7) allows us to write

c∗S∗∂ξy = c∗γ
−2
∗ v′ + γ−5

∗ Ψ′∗Ψ
′′′
∗ v + 4γ−7

∗ (Ψ′∗)
2(Ψ′′∗)

2v + γ−1
∗ g′(Ψ∗)(1− γ2

∗)v. (3.51)

In addition, we compute

S∗∂ξξy = γ−1
∗ ∂τ

[
S∗∂ξy

]
= 4γ−7

∗ (Ψ′∗)
2(Ψ′′∗)

2v + γ−5
∗ (Ψ′′∗Ψ

′′
∗ + Ψ′∗Ψ

′′′
∗ )v + γ−5

∗ Ψ′∗Ψ
′′
∗v
′

+2γ−5
∗ Ψ′∗Ψ

′′
∗v
′ + γ−3

∗ v′′.

(3.52)

We hence see

γ−1
∗ S∗Ltwy = −c∗γ−3

∗ v′ + γ−6
∗ (Ψ′′∗)

2v + 3γ−6
∗ Ψ′∗Ψ

′′
∗v
′ + γ−4

∗ v′′ + g′(Ψ∗)v

= Lcmpv + γ−6
∗ (Ψ′′∗)

2v − γ−6
∗ Ψ′∗Ψ

′′
∗v
′.

(3.53)

We now write

Lphysy = Ltwy + ∂ξΦ∗
∂ξξΦ∗

1+(∂ξΦ∗)2 ∂ξy − (∂ξξΦ∗)
2

1+(∂ξΦ∗)2 y. (3.54)

Exploiting the identities

S∗
[
∂ξΦ∗

]
= γ−1

∗ Ψ′∗,

S∗
[
1 + (∂ξΦ∗)2

]
= γ−2

∗ ,

S∗[∂ξξΦ∗] = γ−4
∗ Ψ′′∗

(3.55)

together with (3.50), we may compute

γ−1
∗ S∗Lphysy = γ−1

∗ S∗Ltwy + γ−4
∗ Ψ′∗Ψ

′′
∗
[
γ−4
∗ Ψ′∗Ψ

′′
∗v + γ−2

∗ v′
]

−γ−7
∗ Ψ′′∗

[
γ−1
∗ v

]
= γ−1

∗ S∗Ltwy − γ−6
∗ (Ψ′′∗)

2v + γ−6
∗ Ψ′∗Ψ

′′
∗v
′

= Lcmpv,

(3.56)

as desired.

Lemma 3.9. Suppose that (Hg) and (HΦ∗) are satisfied. Then for any w ∈ H2 we have the identity

Ladj
cmpw = S∗Ladj

physS−1
∗ [γ−2

∗ w]. (3.57)

Proof. Pick v ∈ H2. Applying Corollary 3.5 twice, we compute

〈Lcmpv, w〉L2 = 〈γ−1
∗ S∗LphysS−1

∗ γ−1
∗ v, w〉L2

= 〈S∗LphysS−1
∗ γ−1

∗ v, γ−1
∗ w〉L2

= 〈LphysS−1
∗ γ−1

∗ v,S−1
∗ [γ−2

∗ w]〉L2

= 〈S−1
∗ γ−1

∗ v,Ladj
physS−1

∗ [γ−2
∗ w]〉L2

= 〈v,S∗Ladj
physS−1

∗ [γ−2
∗ w]〉L2 .

(3.58)

The result now follows from (3.10).
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The explicit form (3.48) allows one to immediately verify that

Lphys∂ξΦ∗ = Ltw∂ξΦ∗ = 0. (3.59)

Upon defining

Φadj;tw
∗ (ξ) = e−c∗ξ∂ξΦ∗(ξ), (3.60)

it is a standard exercise to verify that Ladj
tw Φadj;tw

∗ = 0. We now construct a kernel element for Ladj
phys

by writing

Φadj;phys
∗ (ξ) =

√
1 +

(
∂ξΦ∗(ξ)

)2Φadj;tw
∗ (ξ). (3.61)

Lemma 3.10. Suppose that (Hg) and (HΦ∗) are satisfied. Then we have

Ladj
physΦ

adj;phys
∗ = 0. (3.62)

Proof. We first compute

Ladj
tw Φadj;phys

∗ = c∗
∂ξΦ∗∂ξξΦ∗√

1+(∂ξΦ∗)2
Φadj;tw
∗ + ∂ξ

[
∂ξΦ∗∂ξξΦ∗√

1+(∂ξΦ∗)2

]
Φadj;tw
∗

+2 ∂ξΦ∗∂ξξΦ∗√
1+(∂ξΦ∗)2

∂ξΦ
adj;tw
∗ .

(3.63)

Upon writing

I = 1
∂ξΦ∗

∂ξ

[(
∂ξΦ∗

)2 ∂ξξΦ∗
1+(∂ξΦ∗)2 Φadj;phys

∗

]
, (3.64)

we also compute

I = 1
∂ξΦ∗

∂ξ

[(
∂ξΦ∗

)2 ∂ξξΦ∗√
1+(∂ξΦ∗)2

Φadj;tw
∗

]
= ∂ξ

[
∂ξΦ∗∂ξξΦ∗√

1+(∂ξΦ∗)2
Φadj;tw
∗

]
+ (∂ξξΦ∗)

2
√

1+(∂ξΦ∗)2
Φadj;tw
∗ + ∂ξΦ∗∂ξξΦ∗√

1+(∂ξΦ∗)2
∂ξΦ

adj;tw
∗ .

(3.65)

In particular, we find

Ladj
physΦ

adj;phys
∗ = c∗

∂ξΦ∗∂ξξΦ∗√
1+(∂ξΦ∗)2

Φadj;tw
∗ + ∂ξΦ∗∂ξξΦ∗√

1+(∂ξΦ∗)2
∂ξΦ

adj;tw
∗ − (∂ξξΦ∗)

2
√

1+(∂ξΦ∗)2
Φadj;tw
∗ . (3.66)

The result now follows from the computation

∂ξΦ∗∂ξΦadj;tw = ∂ξΦ∗∂ξ
[
e−c∗·∂ξΦ∗

]
= −c∗∂ξΦ∗Φadj;tw + Φadj;tw∂ξξΦ∗.

(3.67)

Lemma 3.11. Suppose that (Hg) and (HΦ∗) are satisfied and recall the definition (3.11). Then the
identity

Ψadj
∗ =

[ ∫
γ−1
∗ (τ)Ψ′∗(τ)e−

R τ
0 c∗γ∗(s) dsΨ′∗(τ) dτ

]−1

γ2
∗S∗[Φadj;phys

∗ ] (3.68)

holds. In particular, we have Ladj
cmpΨadj

∗ = 0.
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Proof. This follows directly from

S∗[∂ξΦ∗] = γ−1
∗ Ψ′∗,

S∗[
√

1 + (∂ξΦ∗)2] = γ−1
∗ ,

(3.69)

together with the computation

S∗[ξ 7→ e−c∗ξ](τ) = e−c∗ξ∗(τ)

= e−c∗
R τ
0 γ∗(s) ds.

(3.70)

Here we used ξ∗(0) = 0 and ξ′∗(s) = γ∗(s).

Lemma 3.12. Suppose that (Hg) and (HΦ∗) are satisfied. Then we have

KerLphys = span{Φ′∗}. (3.71)

Proof. A potential second, linearly independent kernel element can be written as α∂ξΦ∗ for some
function α. We hence compute

Lphys[α∂ξΦ∗] = −c∗∂ξα∂ξΦ∗ + ∂ξξα∂ξΦ∗ + 2∂ξα∂ξξΦ∗ +
(
∂ξΦ∗

)2 ∂ξξΦ∗
1+(∂ξΦ∗)2 ∂ξα. (3.72)

Setting the right hand side to zero, we find

∂ξξα =
[
c∗ − 2∂ξξΦ∗∂ξΦ∗

− ∂ξΦ∗∂ξξΦ∗
1+(∂ξΦ∗)2

]
∂ξα

= ∂ξ

[
c∗ξ − 2 ln[∂ξΦ∗]− 1

2 ln
[
1 + (∂ξΦ∗)2

]]
∂ξα.

(3.73)

Choosing an integration constant α∗ ∈ R, this can be solved to yield

∂ξα = α∗(∂ξΦ∗)−2ec∗ξ
1√

1 + (∂ξΦ∗)2
. (3.74)

For α∗ 6= 0 it is clear that one can choose κ > 0 in such a way that

|α(ξ)| ≥ κe2η+ξ+c∗ξ (3.75)

holds for all sufficiently large ξ � 1. This prevents α∂ξΦ∗ from being bounded.

Proof of Proposition 3.2. Viewing Lcmp, Lphys and Ltw as operators in L(H2;L2), we observe that
their essential spectral are equal. Indeed, the differential equations arising in the ξ → ±∞ and
τ → ±∞ limits agree with each other. In particular, all these operators are Fredholm with index
zero. The description of KerLcmp follows directly from (3.71) and the correspondence (3.49). The
description of KerLadj

cmp follows directly from Lemma 3.11 and the fact that

0 = ind(Lcmp) = dim
(

KerLcmp

)
− dim

(
KerLadj

cmp

)
. (3.76)

3.3 Integral transforms

Our goals here are to discuss the integral transforms introduced in (3.14) and to prove Corollary
3.3. In particular, the integral transforms can be used to solve two integral equations that appear
naturally when linearizing the adaptive grid equations around the stretched wave Ψ∗.
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Lemma 3.13. Suppose that (Hg) and (HΦ∗) are satisfied. There exists K > 0 so that the bound

‖T∗f‖L2 ≤ K ‖f‖L2 (3.77)

holds for any f ∈ L2, while the bound ∥∥T adj
∗ f

∥∥
H2 ≤ K ‖f‖H2 (3.78)

holds for all f ∈ H2.

Proof. The estimate (3.77) follows from the uniform bound (3.3) together with the inclusion Ψ∗ ∈ H2

and the inequality ∥∥∥∥∫
−
γ−3
∗ Ψ′′∗f

∥∥∥∥
∞
≤
∥∥γ−3
∗
∥∥
∞ ‖Ψ

′′
∗‖L2 ‖f‖L2 . (3.79)

Writing w = T adj
∗ f , we note that

w′ = [γ−2
∗ f ]′ − [γ−3

∗ Ψ′′∗ ]
′ ∫

+
γ−1
∗ Ψ′∗f + γ−4

∗ Ψ′′∗Ψ
′
∗f,

w′′ = [γ−2
∗ f ]′′ − [γ−3

∗ Ψ′′∗ ]
′′ ∫

+
γ−1
∗ Ψ′∗f + [γ−3

∗ Ψ′′∗ ]
′γ−1
∗ Ψ′∗f

+
[
γ−4
∗ Ψ′′∗Ψ

′
∗
]′
f + γ−4

∗ Ψ′′∗Ψ
′
∗f
′.

(3.80)

Exploiting the inclusion Ψ∗ ∈ H4 and the bound∥∥∥∥∫
+

γ−1
∗ Ψ′∗f

∥∥∥∥
∞
≤
∥∥γ−1
∗
∥∥
∞ ‖Ψ

′
∗‖L2 ‖f‖L2 , (3.81)

we see that indeed w ∈ H2 and that the estimate (3.78) holds.

Lemma 3.14. Consider any pair (w, f) ∈ L2 × L2. Then the identity

γ2
∗w + Ψ′∗

∫
−

Ψ′′∗w = f (3.82)

holds if and only if

w = T∗f = γ−2
∗ f − γ−1

∗ Ψ′∗

∫
−
γ−3
∗ Ψ′′∗f. (3.83)

Proof. Assuming (3.82) holds, we write

X =
∫
−

Ψ′′∗w (3.84)

and compute

X ′ = Ψ′′∗w

= γ−2
∗ Ψ′′∗f − γ−2

∗ Ψ′∗Ψ
′′
∗X.

(3.85)

Recalling γ′∗ = −γ−1
∗ Ψ′∗Ψ

′′
∗ , we see that

[γ−1
∗ X]′ = γ−3

∗ Ψ′′∗f. (3.86)

Using the fact that X(τ)→ 0 as τ → −∞, this implies

X = γ∗

∫
−
γ−3
∗ Ψ′′∗f (3.87)
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and hence

γ2
∗w = f −Ψ′∗X = f − γ∗Ψ′∗

∫
−
γ−3
∗ Ψ′′∗f. (3.88)

On the other hand, assuming (3.83), we compute∫
−Ψ′′∗w =

∫
− γ
−2
∗ Ψ′′∗f −

∫
−

[
γ−1
∗ Ψ′′∗Ψ

′
∗
∫
− γ
−3
∗ Ψ′′∗f

]
=

∫
− γ
−2
∗ Ψ′′∗f +

∫
−

[
γ′∗
∫
− γ
−3
∗ Ψ′′∗f

]
=

∫
− γ
−2
∗ Ψ′′∗f + γ∗

∫
− γ
−3
∗ Ψ′′∗f −

∫
− γ∗γ

−3
∗ Ψ′′∗f

= γ∗
∫
− γ
−3
∗ Ψ′′∗f.

(3.89)

Multiplying by Ψ′∗, we hence see

Ψ′∗

∫
−

Ψ′′∗w = γ∗Ψ′∗

∫
−
γ−3
∗ Ψ′′∗f = f − γ2

∗w, (3.90)

which yields (3.82).

Lemma 3.15. Consider any pair (w, f) ∈ H2 ×H2. Then the identity

γ2
∗w + Ψ′′∗

∫
+

Ψ′∗w = f (3.91)

holds if and only if

w = T adj
∗ f = γ−2

∗
[
f − γ−1

∗ Ψ′′∗

∫
+

γ−1
∗ Ψ′∗f

]
. (3.92)

Proof. Assuming (3.91) holds, we write

Y =
∫

+

Ψ′∗w (3.93)

and compute

Y ′ = −Ψ′∗w

= −Ψ′∗γ
−2
∗ f + γ−2

∗ Ψ′∗Ψ
′′
∗Y.

(3.94)

In particular, we see that

[γ∗Y ]′ = −γ−1
∗ Ψ′∗f. (3.95)

We hence find

Y = γ−1
∗

∫
+

γ−1
∗ Ψ′∗f, (3.96)

which yields

w = γ−2
∗
[
f −Ψ′′∗Y

]
= γ−2
∗
[
f − γ−1

∗ Ψ′′∗

∫
+

γ−1
∗ Ψ′∗f

]
. (3.97)
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On the other hand, assuming (3.92) we compute∫
+

Ψ′∗w =
∫

+
γ−2
∗ Ψ′∗f −

∫
+

[
γ−3
∗ Ψ′∗Ψ

′′
∗
∫

+
γ−1
∗ Ψ′∗f

]
=

∫
+
γ−2
∗ Ψ′∗f −

∫
+

[
[γ−1
∗ ]′

∫
+
γ−1
∗ Ψ′∗f

]
=

∫
+
γ−2
∗ Ψ′∗f + [γ−1

∗ ]
∫

+
γ−1
∗ Ψ′∗f −

∫
+
γ−1
∗ γ−1

∗ Ψ′∗f

= γ−1
∗
∫

+
γ−1
∗ Ψ′∗f.

(3.98)

Multiplying by Ψ′′∗ , we find

Ψ′′∗

∫
+

Ψ′∗w = γ−1
∗

∫
+

γ−1
∗ Ψ′∗f = f − γ2

∗w, (3.99)

which yields (3.91).

Proof of Corollary 3.3. We introduce the notation

αc[f ] = 〈Ψadj
∗ , f〉L2 (3.100)

and note that the normalization (3.16) implies that αc[T∗Ψ′∗] = 1. In particular, the operator

πcf = [T∗Ψ′∗]αcf (3.101)

is a projection on L2. Writing π = I − πc, this yields the splitting L2 = R⊕Rc with

R = π(L2) = Lcmp(H2), Rc = πc(L2). (3.102)

Upon choosing a splitting

H2 = span{Ψ′∗} ⊕Kc, (3.103)

we note that the linear map

Lcmp : Kc → R (3.104)

is invertible, which implies that the perturbed operators[
Lcmp − δπT∗] : Kc → R (3.105)

are also invertible for small δ > 0. For any f ∈ R, we introduce the function

Lδ[f ] =
[
Lcmp − δπT∗

]−1
f −Ψ′∗αc

[
T∗
[
Lcmp − δπT∗

]−1
f
]

(3.106)

and observe that

[Lcmp − δT∗]Lδf = f − δT∗Ψ′∗αc[Lcmp − δπT∗]−1f + δT∗Ψ′∗αc
[
T∗
[
Lcmp − δπT∗

]−1
f
]

= f.
(3.107)

For any f ∈ L2, this allows us to compute

[Lcmp − δT∗]
[
− δ−1Ψ′∗αc[f ] + Lδπ[f ]

]
= T∗Ψ′∗αc[f ] + π[f ]

= f,
(3.108)

which provides an inverse for Lcmp − δT∗. An analogous procedure can be used to obtain the result
for Ladj

cmp.
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4 Preliminary identities

In this section we provide some basic identities concerning discrete differentiation and integration. In
addition, we introduce notation for the gridpoint spacing functions

√
1− (∂±U)2 and derive several

useful identities for their discrete derivatives. This allows us to obtain expressions that are uniform
in h for the derivative operator F��0 defined in (2.14) and the terms appearing in (2.16)-(2.17). This
will turn out to be very convenient when performing estimates.

4.1 Discrete calculus

For any sequence a ∈ `∞(hZ;R) we introduce the notation T±a ∈ `∞(hZ;R) to refer to the trans-
lated sequences

[T+a]jh = a(j+1)h, [T−a]jh = a(j−1)h. (4.1)

In addition, we introduce the notation S±a ∈ `∞(hZ;R) and P±a ∈ `∞(hZ;R) to refer to the sum
and product sequences

S±a = a+ T±a, P±a = aT±a (4.2)

Writing

[∂0∂a]jh =
1

2h
[∂+a− ∂−a]jh =

1
2h2

[
a(j+1)h + a(j−1)h − 2ajh

]
, (4.3)

it is not hard to verify the basic identities

∂0∂a = 1
2∂

+∂−a,

∂+∂0a = S+[∂0∂a].
(4.4)

Consider two sequences a ∈ `∞(hZ;R) and b ∈ `∞(hZ;R). One may easily compute

∂+[ab] = ∂+aT+b+ a∂+b

∂0[ab] = ∂0aT+b+ T−a∂0b,

∂−[ab] = [∂−a]b+
[
T−a

]
∂−b,

(4.5)

which yields

∂0∂[ab] = 1
2h

[
∂+[ab]− ∂−[ab]

]
= (∂0∂a)b+ 1

2∂
+a∂+b+ 1

2∂
−a∂−b+ a∂0∂b.

(4.6)

In addition, if bjh 6= 0 for all j ∈ Z then we have

∂+
[a
b

]
=
b∂+a− a∂+b

P+b
. (4.7)

We often use the symmetrized versions

∂+[ab] = 1
2∂

+aS+b+ 1
2S

+a∂+b,

∂+
[
a
b

]
= S+b∂+

h a

2P+b −
S+a∂+

h b

2P+b .
(4.8)

For any sequence a ∈ `1(hZ;R), we define two new sequences∑
−;h

a ∈ `∞(hZ;R),
∑
+;h

a ∈ `∞(hZ;R) (4.9)
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by writing [∑
−;h a

]
jh

=
∑
k>0 a(j−k)h,[∑

+;h a
]
jh

=
∑
k>0 a(j+k)h.

(4.10)

Using the fact that limk→±∞ akh = 0, one may readily verify the identities

∂+
[
h
∑
−;h a

]
jh

= ajh,

∂−
[
h
∑

+;h a
]
jh

= −ajh.
(4.11)

Finally, consider two sequences a ∈ `2(hZ;R) and b ∈ `2(hZ;R). Since ab ∈ `1(hZ;R), we may
exploit (4.11) together with the identity

∂+
[
aT−b

]
= [∂+a]b+ a∂+

[
T−b

]
= b∂+a+ a∂−b (4.12)

to obtain the discrete summation-by-parts formula

h
∑
−;h

b∂+a = aT−b− h
∑
−;h

a∂−b. (4.13)

In addition, we see that

h∂+
[
aT−b

]
= b(T+a− a) + a(b− T−b) = bS+a− aS−b, (4.14)

which gives a second summation-by-parts formula

h
∑
−;h

bS+a = haT−b+ h
∑
−;h

aS−b. (4.15)

4.2 Gridpoint spacing

We first define

r+
U =

√
1− (∂+U)2,

r−U =
√

1− (∂−U)2,

r0
U = 1

2

√
1− (∂+U)2 + 1

2

√
1− (∂−U)2

= 1
2 [r+

U + r−U ].

(4.16)

Notice that

T+r−U = r+
U , T−r+

U = r−U . (4.17)

In particular, we see that

r+
U − r

−
U

h
= ∂−r+

U = ∂+r−U . (4.18)

Lemma 4.1. Consider any U ∈ `∞(hZ;R) for which ‖∂+U‖∞ < 1. Then we have the identities

∂+r−U = −2[r0
U ]−1∂0U∂0∂U,

∂+r0
U = −S+

[
[r0
U ]−1∂0U∂0∂U

]
.

(4.19)

29



Proof. We compute

r+
U − r

−
U =

√
1− (∂+U)2 −

√
1− (∂−U)2

= (∂−U)2−(∂+U)2

r++r−

= −(∂+U−∂−U)(∂+U+∂−U)
2r0
U

= −2h∂0∂U(2∂0U)
2r0
U

,

(4.20)

from which the first identity follows. In addition, we see that

h∂+[r0
U ] = T+r0

U − r0
U

= 1
2

[
T+r+

U + T+r−U − r
+
U − r

−
U

]
= 1

2

[
T+r+

U + r+
U − T+r−U − r

−
U

]
= 1

2T
+
[
r+
U − r

−
U

]
+ 1

2

[
r+
U − r

−
U

]
= 1

2S
+
[
r+
U − r

−
U

]
.

(4.21)

Using (4.18) we conclude ∂+[r0
U ] = 1

2S
+[∂+r−U ], which yields the second identity.

In order to break the directional biases appearing in the discrete derivatives in (4.16), it is
convenient to define the sequence

γU =
√

1− (∂0U)2. (4.22)

A short computation shows that

γU(2) − γU(1) =
√

1− (∂0U (2))2 −
√

1− (∂0U (1))2

= − (∂0U(2))2−(∂0U(1))2√
1−(∂0U(1))2+

√
1−(∂0U(2))2

= −[γU(1) + γU(2) ]−1(∂0U (1) + ∂0U (2))(∂0U (2) − ∂0U (1)),

(4.23)

which allows us to readily compute several useful discrete derivatives.

Lemma 4.2. Consider any U ∈ `∞(hZ;R) for which ‖∂+U‖∞ < 1. Then we have the identities

∂+[γ−4
U ] = S+[∂0U ]S+[∂0∂U ]

P+[γ2
U ]

S+[γ2
U ]

P+[γ2
U ]
,

∂+[γ−2
U ] = S+[∂0U ]S+[∂0∂U ]

P+[γ2
U ]

,

∂+[γ−1
U ] = S+[∂0U ]S+[∂0∂U ]

S+[γU ]P+[γU ] ,

∂+[γU ] = −S
+[∂0U ]S+[∂0∂U ]

S+γU
,

∂+[γ2
U ] = −S+[∂0U ]S+[∂0∂U ].

(4.24)

Proof. Writing U (2) = T+U and U (1) = U , we use (4.23) to compute

h∂+γU = −[S+γU ]−1S+[∂0U ]h∂+∂0U (4.25)

which yields the desired identity for ∂+γU upon remembering (4.4). We can now use the general
identities

∂+[a−1] = −[P+a]−1∂+a,

∂+[a2] = ∂+aT+a+ a∂+a = ∂+aS+a,
(4.26)

30



together with

S+[a−1] =
S+a

P+a
(4.27)

to obtain the remaining expressions.

4.3 Discrete derivatives

The definitions (4.16) allow us to rewrite the discrete first derivatives in (2.14) as

F�±(U) = ∂±U
r±U

,

F�0(U) = ∂0U
r0
U
.

(4.28)

This means that the identities (4.19) can be restated in the form

∂+r−U = −2F�0(U)∂0∂U,

∂+r0
U = −S+

[
F�0(U)∂0∂U

]
.

(4.29)

We also introduce the second discrete derivatives

F�0;+(U) = ∂+F�0(U),

F�−;+(U) = ∂+F�−(U),

F�+;+(U) = ∂+F�+(U).

(4.30)

Using the identities

T+F�−(U) = F�+(U), T−F�+(U) = F�−(U), (4.31)

we readily see that

F�+(U)−F�−(U)
h

= F�−;+(U), (4.32)

which allows us to write

F��0(U) = 1
2r0
U
F�−;+(U) (4.33)

for the function F��0 appearing in (2.14). Finally, we introduce the third discrete derivative

F��0;+(U) = ∂+[F��0(U)]. (4.34)

Lemma 4.3. Consider any U ∈ `∞(hZ;R) for which ‖∂+U‖∞ < 1. Then we have the identities

F�−;+(U) = 2
r+
U

[
1 + F�−(U)F�0(U)

]
∂0∂U,

F�0;+(U) = 1
T+r0

U

[
1 + F�0(U)F�0(U)

]
[∂0∂U ]

+ 1
T+r0

U

[
1 + F�0(U)T+[F�0(U)]

]
T+[∂0∂U ].

(4.35)

Proof. Using (4.4), (4.7) and (4.29) we compute

F�−;+(U) = [P+r−U ]−1
[
r−U∂

+∂−U − ∂−U∂+r−U

]
= [r−U r

+
U ]−1

[
2r−U∂

0∂U + 2∂−UF�0(U)∂0∂U
]

= [r+
U ]−1

[
2∂0∂U + 2F�−(U)F�0(U)∂0∂U

]
,

(4.36)
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together with

F�0;+(U) = [P+r0
U ]−1

[
r0
U∂

+∂0U − ∂0U∂+r0
U

]
= [r0

UT
+r0

U ]−1
[
r0
US

+∂0∂U + ∂0US+
[
F�0(U)∂0∂U

]]
= [T+r0

U ]−1
[
S+∂0∂U + F�0(U)S+

[
F�0(U)∂0∂U

]]
,

(4.37)

from which the desired identities follow.

In order to restate our result concerning F��0;+, we introduce the expressions

I��0;+
0s (U) = 1

r+
UP

+r0
U

F�0(U)T+
[
1 + F�−(U)F�0(U)

]
+ 2
r0
Ur

+
U r

+
U

T+[F�0(U)]
(
1 + F�−(U)F�0(U)

)
+ 1
r+
UP

+r0
U

F�−(U)
(
1 + F�0(U)2

)
,

I��0;+
ss (U) = 2r0

U+T+r+
U

P+r0
UP

+r+
U

T+
[
F�0(U)

(
1 + F�−(U)F�0(U)

)]
+ 1
r+
UP

+r0
U

F�−(U)
(

1 + F�0(U)T+[F�0(U)]
)
,

I��0;+
+ (U) = 1

r0
Ur

+
U

(
1 + F�−(U)F�0(U)

)
.

(4.38)

These allow us to define the two components

F��0;+
a (U) = I��0;+

+ (U)∂+[∂0∂U ],

F��0;+
b (U) = I��0;+

0s (U)∂0∂UT+[∂0∂U ] + I��0;+
ss (U)T+[∂0∂U ]T+[∂0∂U ].

(4.39)

Lemma 4.4. Consider any U ∈ `∞(hZ;R) for which ‖∂+U‖∞ < 1. Then we have the identity

F��0;+(U) = F��0;+
a (U) + F��0;+

b (U). (4.40)

Proof. Using (4.33) we may compute

∂+F��0(U) = ∂+
[

1
r0
Ur

+
U

(
1 + F�−(U)F�0(U)

)
∂0∂U

]
= IA + IB + IC ,

(4.41)

in which

IA = ∂+[ 1
r0
Ur

+
U

]T+
[(

1 + F�−(U)F�0(U)
)
∂0∂U

]
,

IB = 1
r0
Ur

+
U

(
F�−;+(U)T+F�0(U) + F�−(U)F�0;+(U)

)
T+
[
∂0∂U

]
,

IC = 1
r0
Ur

+
U

(
1 + F�−(U)F�0(U)

)
∂+[∂0∂U ].

(4.42)

We immediately see that

IC = I��0;+
+ (U)∂+[∂0∂U ]. (4.43)

In addition, we may use (4.7) and (4.29) to compute

∂+
[

1
r0
Ur

+
U

]
= −[P+r0

UP
+r+

U ]−1
[
∂+r0

UT
+r+ + r0

U∂
+r+

]
= [P+r0

UP
+r+

U ]−1
[
S+[F�0(U)∂0∂U ]T+r+

U + r0
UT

+[F�0(U)∂0∂U ]
]

=
[

1
r+
UP

+r0
U

F�0(U)
]
∂0∂U +

[
2r0
U+T+r+

U

P+r0
UP

+r+
U

]
T+
[
F�0(U)∂0∂U

]
.

(4.44)
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Finally, Lemma 4.3 allows us to expand

IB = 2[r0
Ur

+
U r

+
U ]−1

[
1 + F�−(U)F�0(U)

]
[∂0∂U ]T+

[
F�0(U)∂0∂U

]
+[r+

UP
+r0

U ]−1
[
1 + F�0(U)F�0(U)

]
F�−(U)[∂0∂U ]T+[∂0∂U ]

+[r+
UP

+r0
U ]−1

[
1 + F�0(U)T+F�0(U)

]
F�−(U)T+[∂0∂U ]T+[∂0∂U ].

(4.45)

The splitting (4.40) can now be read off directly.

5 Sampling techniques

In order to link the continuum theory developed in §3 to the discrete setting of the adaptive grid,
we often need to extract sequences from continuous functions and relate discrete derivatives to
their continuous counterparts. In this section we collect several tools that will be useful for these
procedures.

For any h > 0, we first introduce the Hilbert space `2h that is equal to `2(hZ;R) as a set, but is
equipped with the rescaled inner product

〈V,W 〉`2h = h
∑
j∈Z

VjhWjh (5.1)

that compensates for the gridpoint density. In particular, for V ∈ `2h we have

‖V ‖2`2h = h
∑
j∈Z

V 2
jh. (5.2)

For convenience, we also introduce the alternative notation

`∞h = {V : hZ→ R for which ‖V ‖`∞h := supj∈Z |Vhj | <∞} (5.3)

for the usual set `∞(hZ;R) with the supremum norm. For any V ∈ `2h, it is clear that also V ∈ `∞h
and that we have the bound

‖V ‖`∞h ≤ h
−1/2 ‖V ‖`2h . (5.4)

In order to reduce the length of our expressions, we introduce the higher order norms

‖V ‖`2;1
h

= ‖V ‖`2h + ‖∂+V ‖`2h ,

‖V ‖`2;2
h

= ‖V ‖`2h + ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h ,

‖V ‖`2;3
h

= ‖V ‖`2h + ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h + ‖∂+∂+∂+V ‖`2h ,
(5.5)

together with

‖V ‖`∞;1
h

= ‖V ‖`∞h + ‖∂+V ‖`∞h ,

‖V ‖`∞;2
h

= ‖V ‖`∞h + ‖∂+V ‖`∞h + ‖∂+∂+V ‖`∞h .
(5.6)

We caution the reader that for fixed h > 0, these norms are equivalent to the norms on `2h respectively
`∞h . However, they do allow us to conveniently formulate estimates that are uniform in h > 0.

For any f ∈ L2 and h > 0, we formally write

[∂+
h f ](τ) = h−1[f(τ + h)− f(τ)], [∂−h f ](τ) = h−1[f(τ)− f(τ − h)], (5.7)
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which obviously satisfy ∂±h f ∈ L2. In a similar fashion, for any f ∈ L1 and h > 0 we formally write[∑
−;h

f ](τ) =
∑
k>0

f(τ − kh),
[∑

+;h

f ](τ) =
∑
k>0

f(τ + kh), (5.8)

noting that these functions are in L1
loc.

In §5.1 we obtain several useful results that relate the `qh-norms of sequences v(hZ+ ϑ) sampled
from a function v back to Lq-norms of v and its derivatives. In §5.2 we introduce exponentially
weighted norms on L2 and discuss their impact on the summed functions (5.8). Finally, in §5.3 we
discuss sequences of differences (5.7) and sums (5.8) for which h ↓ 0. Upon taking weak limits, it is
possible to recover the usual continuous derivatives and integrals.

5.1 Sampling estimates

For any bounded continuous function f , any ϑ ∈ R and any h > 0, we write evϑf ∈ `∞h for the
sequence

[evϑf ]jh = f(ϑ+ jh). (5.9)

When the context is clear, we often simply write f to refer to the sampled sequence ev0f . In this
subsection we explore the relation between such sampled sequences and the original function.

Lemma 5.1. Pick q ∈ {2,∞} and consider any u ∈W 1,q. Then the estimates∥∥∂±h u∥∥`qh ≤ ‖u′‖Lq (5.10)

hold for any h > 0. If q = 2, then we also have∥∥∂±h u∥∥`∞h ≤ h−1/2 ‖u′‖L2 (5.11)

for all h > 0.

Proof. For q =∞ the statement is immediate, so assume that q = 2. We may then compute

∥∥∂+
h u
∥∥2

`2h
= h

∑
j∈Z

(
u
(

(j+1)h
)
−u(jh)

)2

h2

= h
∑
j∈Z h

−2
[ ∫ h

0
u′(jh+ s) ds

]2
≤ h

∑
j∈Z h

−2h
∫ h

0
u′(jh+ s)2 ds

=
∑
j∈Z

∫ h
0
u′(jh+ s)2 ds

= ‖u′‖2L2 .

(5.12)

In addition, the identity (5.11) follows directly from (5.4).

Lemma 5.2. For any u ∈ H1 and any h > 0 we have

‖u‖`2h ≤ (2 + h) ‖u‖H1 . (5.13)

Proof. We compute

‖u‖2`2h = h
∑
j∈Z u(jh)2

=
∑
j∈Z

∫ h
0
u(jh)2 ds

=
∑
j∈Z

∫ h
0

[
u(jh+ s)−

∫ s
0
u′(jh+ σ) dσ

]2
ds.

(5.14)
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Using the standard bound (a− b)2 ≤ 2(a2 + b2) we hence obtain

‖u‖2`2h ≤ 2
∑
j∈Z

∫ h
0
u(jh+ s)2 ds

+2
∑
j∈Z

∫ h
0

[ ∫ s
0
u′(jh+ σ)2 dσ

]2
ds

≤ 2 ‖u‖2L2 + 2
∑
j∈Z

∫ h
0
s
∫ s

0
u′(jh+ σ)2 dσ ds

= 2 ‖u‖2L2 + 2
∑
j∈Z

∫ h
0
u′(jh+ σ)2

∫ h
σ
s ds dσ

≤ 2 ‖u‖2L2 + h2
∑
j∈Z

∫ h
0
u′(jh+ σ)2 dσ

= 2 ‖u‖2L2 + h2 ‖u′‖2L2 .

(5.15)

Corollary 5.3. There exists K > 0 so that for any ϑ ∈ R, any v ∈ H1 and any 0 < h < 1, we have
the bounds

‖evϑv‖`∞h ≤ K ‖v‖H1 ,

‖evϑv‖`∞;1
h

≤ K
[
‖v‖H1 +

∥∥∂+
h v
∥∥
H1

]
,

‖evϑv‖`∞;2
h

≤ K
[
‖v‖H1 + h−1/2

∥∥∂+
h v
∥∥
H1

]
,

(5.16)

together with

‖evϑv‖`2;1
h
≤ K ‖v‖H1 ,

‖evϑv‖`2;2
h
≤ K

[
‖v‖H1 +

∥∥∂+
h v
∥∥
H1

]
.

(5.17)

Proof. For convenience, pick ϑ = 0. Using Lemma 5.1 and the standard Sobolev bound ‖v‖∞ ≤
C1 ‖v‖H1 for some C1 > 0, we find

‖v‖`∞h ≤ C1 ‖v‖H1 ,∥∥∂+
h v
∥∥
`∞h

≤ C1

∥∥∂+
h v
∥∥
H1 ,∥∥∂+

h ∂
+
h v
∥∥
`∞h

≤ h−1/2
∥∥∂+

h v
′
∥∥
L2

≤ h−1/2
∥∥∂+

h v
∥∥
H1 .

(5.18)

In addition, using (5.13) we find

‖v‖`2h ≤ 3 ‖v‖H1 ,∥∥∂+
h v
∥∥
`2h

≤ ‖v′‖L2

≤ ‖v‖H1 ,∥∥∂+
h ∂

+
h v
∥∥
`2h
≤

∥∥∂+
h v
′
∥∥
L2

≤
∥∥∂+

h v
∥∥
H1 .

(5.19)

We remark that the results above shows that we automatically have evϑu ∈ `2h whenever u ∈ H1.
We exploit this in the next result, which shows how to recover L2 norms from the individual grid
evaluations. We note that a direct consequence of (5.10) and (i) below is that we have∥∥∂±h u∥∥Lq ≤ ‖u′‖Lq (5.20)

for any u ∈ H1 and q ∈ {2,∞}.
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Lemma 5.4. Consider any f ∈ C(R;R) and any g ∈ H1. Then the following properties hold for all
h > 0.

(i) If the bound

‖evϑf‖`2h ≤ ‖g‖∞ (5.21)

holds for all ϑ ∈ [0, h], then f ∈ L2 with

‖f‖L2 ≤ ‖g‖∞ . (5.22)

(ii) If the bound

‖evϑf‖`2h ≤ ‖evϑg‖`2h (5.23)

holds for all ϑ ∈ [0, h], then f ∈ L2 with

‖f‖L2 ≤ ‖g‖L2 . (5.24)

(iii) If the bound

‖evϑf‖`2h ≤ ‖evϑg‖`2;2
h

(5.25)

holds for all ϑ ∈ (0, h), then f ∈ L2 with

‖f‖L2 ≤ ‖g‖H1 +
∥∥∂+

h ∂
+
h g
∥∥
L2 . (5.26)

(iv) If the bound

‖evϑf‖`2h ≤ ‖evϑg‖`2;3
h

(5.27)

holds for all ϑ ∈ [0, h], then f ∈ L2 with

‖f‖L2 ≤ ‖g‖H1 +
∥∥∂+

h g
∥∥
H1 +

∥∥∂+
h ∂

+
h ∂

+
h g
∥∥ . (5.28)

Proof. We first note that

‖f‖2L2 =
∫
R
f(x)2 dx

=
∑
k∈Z

∫ h
0
f(kh+ ϑ)2 dϑ

= h−1
∫ h

0
‖evϑf‖2`2h dϑ.

(5.29)

Item (i) and (ii) follow immediately from this.
For (iii), we note

‖f‖2L2 ≤ h−1
∫ h

0
‖evϑg‖2`2;2

h
dϑ

= h−1
∫ h

0

[
‖evϑg‖2`2h +

∥∥evϑ∂+
h g
∥∥2

`2h
+
∥∥evϑ∂+

h ∂
+
h g
∥∥2

`2h

]
dϑ

= ‖g‖2L2 +
∥∥∂+

h g
∥∥2

L2 +
∥∥∂+

h ∂
+
h g
∥∥2

L2 .

(5.30)

Exploiting (5.20), we obtain

‖f‖2L2 ≤ ‖g‖2H1 +
∥∥∂+

h ∂
+
h g
∥∥2

L2 (5.31)
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as desired.
To see (iv), we apply (5.20) to ∂+

h g to obtain∥∥∂+
h ∂

+
h g
∥∥
L2 ≤

∥∥∂+
h g
′∥∥
L2 . (5.32)

This yields the desired bound

‖f‖2L2 ≤ ‖g‖2L2 +
∥∥∂+

h g
∥∥2

L2 +
∥∥∂+

h ∂
+
h g
∥∥2

L2 +
∥∥∂+

h ∂
+
h ∂

+
h g
∥∥2

L2

≤ ‖g‖2L2 +
∥∥∂+

h g
∥∥2

L2 +
∥∥∂+

h g
′
∥∥2

L2 +
∥∥∂+

h ∂
+
h ∂

+
h g
∥∥2

L2

≤ ‖g‖2H1 +
∥∥∂+

h g
∥∥2

H1 +
∥∥∂+

h ∂
+
h ∂

+
h g
∥∥2

L2 .

(5.33)

Lemma 5.5. Pick q ∈ {2,∞} and consider any u ∈W 2;q. Then the estimates∥∥∂±h u− u′∥∥`qh ≤ h ‖u′′‖Lq (5.34)

hold for all h > 0.

Proof. Fix h > 0 and write I± ∈ `∞h for the sequences

I±jh = [∂±h u](jh)− u′(jh). (5.35)

We may compute

I+
jh = 1

h

∫ h
0

[u′(jh+ s)− u′(jh)] ds

=
∫ 1

0
[u′(jh+ sh)− u′(jh)] ds

=
∫ 1

0

∫ sh
0
u′′(jh+ s′) ds′ ds.

(5.36)

For q =∞ we hence see ∣∣∣I+
jh

∣∣∣ ≤ ‖u′′‖L∞ ∫ 1

0

∫ sh

0

ds′ ds =
1
2
h ‖u′′‖L∞ . (5.37)

For q = 2 we obtain the estimate

‖I+‖2`2h = h
∑
j∈Z

[ ∫ 1

0

∫ sh
0
u′′(jh+ s′) ds′ ds

]2
≤ h

∑
j∈Z

∫ 1

0
[
∫ sh

0
u′′(jh+ s′) ds′]2 ds

≤ h
∑
j∈Z

∫ 1

0
sh
∫ sh

0
[u′′(jh+ s′)]2 ds′ ds

≤ h2
∑
j∈Z

∫ h
0

[u′′(jh+ s′)]2 ds′

= h2 ‖u′′‖2L2 .

(5.38)

Similar computations can be used for I−.

Corollary 5.6. Pick q ∈ {2,∞} and consider any u ∈W 3;q. Then the estimates∥∥2[∂0∂]hu− u′′
∥∥
`qh

≤ 2h ‖u′′′‖Lq ,∥∥2T+[∂0∂]hu− u′′
∥∥
`qh
≤ 2h ‖u′′′‖Lq

(5.39)

hold for all h > 0.
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Proof. We first compute

2[∂0∂]hu− u′′ = ∂+
h ∂
−
h u− u′′

= ∂+
h ∂
−
h u− ∂

−
h u
′ + ∂−h u

′ − u′′.
(5.40)

Applying Lemma 5.5 and (5.20) to ∂−h u shows that∥∥∂+
h ∂
−
h u− ∂

−
h u
′∥∥
`qh
≤ h

∥∥∂−h u′′∥∥Lq ≤ h ‖u′′′‖Lq . (5.41)

Similarly, applying Lemma 5.5 to u′ shows that∥∥∂−h u′ − u′′∥∥`qh ≤ h ‖u′′′‖Lq , (5.42)

from which the first estimate follows. Upon writing

2T+[∂0∂]hu− u′′ = ∂+
h ∂

+
h u− u′′

= ∂+
h ∂

+
h u− ∂

+
h u
′ + ∂+

h u
′ − u′′,

(5.43)

the second estimate can be obtained in a similar fashion.

Corollary 5.7. Pick q ∈ {2,∞} and consider any u ∈W 4;q. Then the estimate∥∥2∂+
h [∂0∂]hu− u′′′

∥∥
`2h
≤ 3h

∥∥∥u(iv)
∥∥∥
Lq

(5.44)

holds for all h > 0.

Proof. Splitting up

2∂+
h [∂0∂]hu− u′′′ = ∂+

h ∂
+
h ∂
−
h u− u′′′

= ∂+
h ∂

+
h ∂
−
h u− ∂

+
h ∂
−
h u
′

+∂+
h ∂
−
h u
′ − ∂−h u′′

+∂−h u
′′ − u′′′,

(5.45)

we can apply Lemma 5.5 to obtain∥∥2∂+
h [∂0∂]hu− u′′′

∥∥
`qh
≤ h

∥∥∂+
h ∂
−
h u
′′
∥∥
Lq

+ h
∥∥∂−h u′′′∥∥Lq + h ‖u′′′′‖L2 (5.46)

We can now repeatedly apply (5.20) to obtain the desired estimate.

We recall the definitions (3.13). Our final result here is a standard approximation bound for
discrete integration.

Lemma 5.8. For any f ∈W 1,1 and h > 0, we have the bounds∥∥∥∥∥∥h
∑
±;h

f −
∫
±
f

∥∥∥∥∥∥
`∞h

≤ h ‖f ′‖L1 . (5.47)

Proof. Fixing τ ∈ R, we compute[
h
∑

+;h f −
∫

+
f
]
(τ) =

∑
k>0

∫ h
0

[f(τ + kh)− f(τ + (k − 1)h+ σ)] dσ

=
∑
k≥0

∫ h
0

[f(τ + (k + 1)h)− f(τ + kh+ σ)] dσ

=
∑
k≥0

∫ h
0

∫ σ
0
f ′(τ + kh+ σ′) dσ′ dσ

=
∑
k≥0

∫ h
0

∫ h
σ′
f ′(τ + kh+ σ′) dσ dσ′.

(5.48)
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In particular, we obtain the estimate∣∣∣[h∑+;h f −
∫

+
f
]
(τ)
∣∣∣ ≤ ∑

k≥0 h
∫ h

0
|f ′(τ + kh+ σ′)| dσ′

≤ h
∫∞

0
|f ′(τ + σ′)| dσ′

≤ h ‖f ′‖L1 .

(5.49)

5.2 Weighted norms

For any η > 0 we define the exponential weight function

eη(τ) = e−η|τ |. (5.50)

This allows us to define an inner product

〈a, b〉L2
η

= 〈eηa, eηb〉L2 = 〈e2ηa, b〉L2 , (5.51)

together with the associated Hilbert space

L2
η = {f ∈ L1

loc : ‖f‖2L2
η

:= 〈f, f〉L2
η
<∞}. (5.52)

Since 0 < eη ≤ 1, we see that

〈a, a〉L2
η
≤ 〈a, a〉L2 (5.53)

for every a ∈ L2. In particular, we have the continuous embedding

L2 ⊂ L2
η. (5.54)

In addition, for any pair (a, b) ∈ L2
η × L2, we have eηa ∈ L2 and hence also e2ηa ∈ L2. This

allows us to estimate

|〈e2ηa, b〉L2 | =
∣∣∣〈a, b〉L2

η

∣∣∣ ≤ ‖a‖L2
η
‖b‖L2

η
. (5.55)

This weighted norm is very convenient when dealing with sampling sums.

Lemma 5.9. Fix η > 0. There exists K > 0 so that for any f ∈ L2
η and any 0 < h < 1, we have

the estimate ∥∥∥h∑−;h e2ηf
∥∥∥
L2
η

≤ K ‖f‖L2
η
. (5.56)

Proof. Using Cauchy-Schwartz, we compute∥∥∥h∑−;h e2ηf
∥∥∥2

L2
η

=
∫
e2η(τ)

[
h
∑
−;h e2ηf

]
(τ)2 dτ

=
∫
e2η(τ)

[
h
∑
k≥0 w

2
η(τ − kh)f(τ − kh)

]2
dτ

≤
∫
e2η(τ)

[
h
∑
k≥0 e2η(τ − kh)

][
h
∑
k≥0 e2η(τ − kh)f(τ − kh)2

]
dτ.

(5.57)

We note that there exists C1 > 0 so that for all 0 < h ≤ 1 and all τ ∈ R we have

h
∑
k≥0 e2η(τ − kh) = h

∑
k≥0 e

−2η|τ−kh|

≤ h
∑
k∈Z e

−2η|τ−kh|

≤ C1.

(5.58)
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Using the substitution τ ′ = τ − kh, this allows us to compute∥∥∥h∑−;h e2ηf
∥∥∥2

L2
η

≤ C1

∫
e2η(τ)

[
h
∑
k≥0 e2η(τ − kh)f(τ − kh)2

]
dτ

= C1

∫ [
h
∑
k≥0 e2η(τ ′ + kh)

]
e2η(τ ′)f(τ ′)2 dτ ′

≤ C2
1

∫
e2η(τ ′)f(τ ′)2 dτ ′

= C2
1 ‖f‖

2
L2
η
.

(5.59)

5.3 Weak Limits

Our results here show how weak limits interact with discrete summation and differentiation. The
first result concerns sequences that are bounded in H1 and have bounded second differences, as
described in the following assumption.

(hSeq) The sequence

{(hj , vj)}j>0 ⊂ (0, 1)×H1 (5.60)

satisfies hj → 0 as j →∞. In addition, there exists K > 0 so that the bound

‖vj‖H1 +
∥∥∥∂+

hj
∂+
hj
vj

∥∥∥
L2
< K (5.61)

holds for all j > 0.

The control on the second differences allows one to show that the weak limit is in fact in H2. In
addition, the first differences converge strongly on compact intervals.

Lemma 5.10. Consider a sequence

{(hj , vj)} ⊂ (0, 1)×H1 (5.62)

that satisfies (hSeq). Then there exists V∗ ∈ H2 so that, after passing to a subsequence, the following
properties hold.

(i) We have the weak limit

vj ⇀ V∗ ∈ H1. (5.63)

(ii) We have the weak limits

∂±hjvj ⇀ V ′∗ ∈ L2. (5.64)

(iii) We have the weak limit

2[∂0∂]hjvj ⇀ V ′′∗ ∈ L2. (5.65)

(iv) For any compact interval I ⊂ R, we have the strong convergences

vj → V∗ ∈ L2(I), ∂±hjvj → V ′∗ ∈ L2(I) (5.66)

as j →∞.
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Proof. Using (5.20) we obtain the uniform bound∥∥∥∂±hjvj∥∥∥L2
< K (5.67)

for all j > 0. In particular, after passing to a subsequence we can find a triplet

(V∗, V ±∗ , V
(2)
∗ ) ∈ H1 × L2 × L2 (5.68)

so that we have the weak convergences

vj ⇀ V∗ ∈ H1, ∂±hjvj ⇀ V ±∗ ∈ L2, 2[∂0∂]hjvj ⇀ V
(2)
∗ ∈ L2 (5.69)

as j →∞.
Pick any test function ζ ∈ C∞c . We note that∥∥∥∂−hjζ − ζ ′∥∥∥L2

+
∥∥2[∂0∂]hjζ − ζ ′′

∥∥
L2 → 0 (5.70)

as j →∞ by Lemma 5.5 and Corollary 5.6.
We now compute

〈∂+
hj
vj , ζ〉L2 = −〈vj , ∂−hjζ〉L2

= −〈vj , ζ ′〉L2 + 〈vj , ζ ′ − ∂−hjζ〉L2

= 〈v′j , ζ〉L2 + 〈vj , ζ ′ − ∂−hjζ〉L2 ,

(5.71)

together with

〈2[∂0∂]hjvj , ζ〉L2 = 〈vj , 2[∂0∂]hjζ〉L2

= 〈vj , ζ ′′〉L2 + 〈vj , 2[∂0∂ζ]hjζ − ζ ′′〉L2

= −〈v′j , ζ ′〉L2 + 〈vj , 2[∂0∂]hjζ − ζ ′′〉L2 .

(5.72)

The weak convergences v′j ⇀ V ′∗ ∈ L2 and (5.69) imply that

〈∂+
hj
vj , ζ〉L2 → 〈V ′∗ , ζ〉L2 , 〈∂+

hj
vj , ζ〉L2 → 〈V +, ζ〉L2 ,

〈2[∂0∂]hjvj , ζ〉L2 → −〈V ′∗ , ζ ′〉L2 , 〈2[∂0∂]hjvj , ζ〉L2 → 〈V (2)
∗ , ζ〉L2

(5.73)

as j →∞. The density of C∞c in L2 now implies that V + = V ′∗ and that V ′∗ ∈ H1 with V ′′∗ = V
(2)
∗ .

This yields (i), (ii) and (iii).
Turning to (iv), we pick a compact interval I ⊂ R. The compact embedding H1(I) ⊂ L2(I)

allows us to pass to a subsequence for which

‖vj − V∗‖L2(I) → 0 (5.74)

as j →∞. We compute∥∥∥∂+
hj
vj − V ′∗

∥∥∥
L2(I)

= 〈∂+
hj
vj − V ′∗ , ∂+

hj
vj − V ′∗〉L2(I)

= 〈∂+
hj
vj − V ′∗ , ∂+

hj
vj − ∂+V∗〉L2(I) + 〈∂+

hj
vj − V ′∗ , ∂+

hj
V∗ − V ′∗〉L2(I)

= −〈∂−hj∂
+
hj
vj − ∂−hjV

′
∗ , vj − V∗〉L2(I)

+〈∂+
hj
vj − V ′∗ , ∂+

hj
V∗ − V ′∗〉L2(I).

(5.75)
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Using (5.20) we see that ∥∥∥∂−hjV ′∗∥∥∥L2
≤ ‖V ′′∗ ‖L2 . (5.76)

Together with (5.61), (5.67) and the identity

∂−hj∂
+
hj
vj = 2[∂0∂]hjvj , (5.77)

this implies the uniform bound∥∥∥∂−hj∂+
hj
vj

∥∥∥
L2(I)

+
∥∥∥∂+

hj
vj

∥∥∥
L2(I)

+
∥∥∥∂−hjV ′∗∥∥∥L2(I)

+ ‖V ′∗‖L2(I) < C1 (5.78)

for some C1 > 0. In particular, using Lemma 5.5 and (5.74), we see that∥∥∥∂+
hj
vj − V ′∗

∥∥∥
L2(I)

≤ 2C1

[
‖vj − V∗‖L2(I) +

∥∥∥∂+
hj
V∗ − V ′∗

∥∥∥
L2(I)

]
≤ 2C1

[
‖vj − V∗‖L2(I) + hj ‖V ′′∗ ‖L2

]
→ 0

(5.79)

as j →∞, as desired. A standard diagonalization argument now completes the proof.

Lemma 5.11. Consider a bounded sequence

{(hj , fj , α1;j , α2;j , α3;j)}j>0 ⊂ (0, 1)× L2 ×H1 ×H1 ×H1 (5.80)

that satisfies the following properties.

(a) There exists C > 0 and η > 0 so that

|α1;j(τ)|+ |α2;j(τ)| ≤ Ce2η(τ) (5.81)

for all τ > 0.

(b) There exists a triplet (α1;∗, α2;∗, α3;∗) ∈ H1×H1×H1 so that we have the strong convergence

(α1;j , α2;j , α3;j)→ (α1;∗, α2;∗, α3;∗) ∈ H1 ×H1 ×H1 (5.82)

as j →∞.

(c) We have hj → 0 as j →∞.

Then, after passing to a subsequence, there exists f∗ ∈ L2 so that we have the weak convergences

fj ⇀ f∗ ∈ L2, α3;jfj ⇀ α3;∗ ∈ L2, (5.83)

together with

α1;jhj
∑
−;hj

α2;jfj ⇀ α1;∗

∫
−
α2;∗f∗ ∈ L2 (5.84)

as j →∞.
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Proof. Writing

gj = α1;jhj
∑
−;hj

α2;jfj , (5.85)

we see that

‖gj‖L2 ≤ C2
∥∥∥e2ηhj

∑
−;hj

e2η |f |j
∥∥∥
L2

≤ C2
∥∥∥eηhj∑−;hj

e2η |f |j
∥∥∥
L2

= C2
∥∥∥hj∑−;hj

e2η |f |j
∥∥∥
L2
η

≤ C ′3 ‖fj‖L2
η

≤ C ′3 ‖fj‖L2 .

(5.86)

In particular, after passing to a subsequence we have the weak convergences fj ⇀ f∗ ∈ L2 and
gj ⇀ g∗ ∈ L2.

Pick any ζ ∈ C∞c and write

Iζ;j = α2;jhj
∑
+;hj

α1;jζ − α2;∗

∫
+

α1;∗ζ, (5.87)

which can be expanded as

Iζ;j =
[
α2;j − α2;∗

]
hj
∑

+;hj
α1;jζ

+α2;∗hj
∑

+;hj

[
α1;j − α1;∗

]
ζ

+α2;∗

[
hj
∑

+;hj
α1;∗ζ −

∫
+
α1;∗ζ

]
.

(5.88)

Using the estimates (5.13) and (5.47) we see that

‖Iζ,j‖L2 ≤ ‖α2;j − α2;∗‖L2 ‖α1;j‖H1 ‖ζ‖H1

+ ‖α2;∗‖L2 ‖α1;j − α1;∗‖H1 ‖ζ‖H1

+ ‖α2;∗‖L2 |hj | ‖[α1;∗ζ]′‖L1 .

(5.89)

Observing that

‖[α1;∗ζ]′‖L1 ≤
∥∥α′1;∗ζ

∥∥
L1 + ‖α1;∗ζ

′‖L1

≤
∥∥α′1;∗

∥∥
L2 ‖ζ‖L2 + ‖α1;∗‖L2 ‖ζ ′‖L2

≤ 2 ‖α1;∗‖H1 ‖ζ‖H1 ,

(5.90)

we see that ‖Iζ,j‖L2 → 0 as j →∞. In addition, we see that

‖(α3;j − α3;∗)ζ‖L2 ≤ ‖α3;j − α3;∗‖L∞ ‖ζ‖L2 ≤ ‖α3;j − α3;∗‖H1 ‖ζ‖L2 → 0 (5.91)

as j →∞.
We now compute

〈gj , ζ〉L2 = 〈α1;jhj
∑
−;hj

α2;jfj , ζ〉L2

= 〈fj , α2;jhj
∑

+;hj
α1;jζ〉L2

= 〈fj , α2;∗
∫

+
α1;∗ζ〉L2 + 〈fj , Iζ,j〉L2 ,

(5.92)
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together with

〈α3;jfj , ζ〉L2 = 〈fj , α3;jζ〉L2

= 〈fj , α∗ζ〉L2 + 〈fj , (α3;j − α3;∗)ζ〉L2 .
(5.93)

In particular, the weak convergence fj ⇀ f∗ implies that

〈gj , ζ〉L2 → 〈f∗, α2;∗
∫

+
α1;∗ζ〉L2

= 〈α1;∗
∫
− α2;∗f∗, ζ〉L2

(5.94)

together with

〈α3;jfj , ζ〉L2 → 〈f∗, α3;∗〉L2

= 〈α3;∗f∗, ζ〉L2
(5.95)

as j →∞. The density of C∞c in L2 now implies the desired weak limits.

6 Estimation techniques

In this section we introduce the basic framework that we use throughout the paper to estimate the
terms featuring in our main equation (2.26). In particular, we introduce the sequence spaces on which
the nonlinear terms can be conveniently estimated in a fashion that is uniform in h > 0. We also
introduce several bookkeeping and approximation results that are essential to control convoluted
expressions such as (2.17) in a feasible manner.

The Heaviside function H has ‖∂+H‖`∞h = h−1, which makes it unsuitable for the bifurcation
arguments used in ths paper. In order to smooth out the transition between the two stable equilibria
of g, we pick a function Uref;∗ ∈ C2(R, [0, 1]) for which we have the identities

Uref;∗(τ) =

 0 for all τ ≤ −2,

1 for all τ ≥ 2 (6.1)

and for which the bounds

0 ≤ U ′ref;∗(τ) < 1,
∣∣U ′′ref;∗(τ)

∣∣ < 1 (6.2)

hold for all τ ∈ R.
For any κ > 0 we subsequently write

Uref;κ(τ) = Uref;∗(κτ) (6.3)

together with

Vh;κ = {V ∈ `2h : ‖V ‖`2;2
h

+ ‖V ‖`∞h + ‖∂+∂+V ‖`∞h < 1
2κ
−1

and ‖∂+V ‖∞ < 1− 2κ}.
(6.4)

As a consequence of the estimate (5.4), we see that Vh;κ is an open subset of `2h.
Combining these two definitions allows us to introduce the sets

Ωh;κ = Uref;κ(hZ) + Vh;κ ⊂ `∞h . (6.5)

Our first three results highlight the important role that these sets Ωh;κ will play in the sequel.
Indeed, the initial conditions referenced in the well-posedness result Proposition 2.4 can all be taken
from such a set. In addition, we obtain a-priori bounds on almost all the terms that appear in the
discrete derivatives defined in §4.3. The one exception is the third derivative ∂+∂0∂U , which will
play a special role in our estimates.
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Proposition 6.1. Fix h > 0 and 0 < κ < 1
12 . Then for any U ∈ Ωh;κ, we have the bound

‖U‖`∞h +
∥∥∂+U

∥∥
`2h

+
∥∥∂+∂+U

∥∥
`2h

+
∥∥∂+∂+U

∥∥
`∞h

< κ−1 (6.6)

together with ∥∥∂+U
∥∥
`∞h

< 1− κ. (6.7)

In addition, we have

‖g(U)‖`2h ≤ 4
[
sup|u|≤κ−1 |g′(u)|

]
κ−1. (6.8)

Proposition 6.2. Fix h > 0 and consider any U ∈ `∞h for which ‖∂+U‖∞ < 1 and U − H ∈ `2h.

Then there exist ε0 > 0 and κ0 > 0 so that for any Ũ ∈ `∞h that has
∥∥∥Ũ − U∥∥∥

`2h

< ε0, we have

Ũ ∈ Ωh;κ (6.9)

for all 0 < κ < κ0.

Proposition 6.3. Consider any u ∈ C(R;R) for which we have the inclusions

u′ ∈ H2, u− Uref;∗ ∈ L2, (6.10)

together with the bound ‖u′‖L∞ < 1. Then there exist ε0 > 0 and κ > 0 so that for any 0 < h < 1
and any v ∈ H1 that has

‖v‖H1 + h−1/2
∥∥∂+v

∥∥
H1 < ε0, (6.11)

we have

evϑ[u+ v] ∈ Ωh;κ (6.12)

for all ϑ ∈ [0, h].

We provide the proofs for these results in §6.3. In §6.1-§6.2 we introduce three convenient ap-
proximation results that allow us to considerably simplify the expressions that arise when linearizing
(2.26) around the continuum wave Ψ∗.

Convention Throughout the remainder of this paper, we use the convention that primed constants
(such as C ′1, C ′2 etc) that appear in proofs are positive and depend only on κ, the nonlinearity g and
the wave Ψ∗, unless explicitly stated otherwise.

6.1 Approximate substitution

In this subsection, our goal is to consider composite functions f ◦φ in situations where it is convenient
to approximate φ andDφ by φapx and φlin. These two approximants should be thought of as simplified
versions of φ and Dφ that are much easier to handle in computations, while still accurate to leading
order in h. Our typical setup is described in the following assumption.

(hφ) The set Kf ⊂ Rn is compact and we have the inclusion Ωφ ⊂ B, in which B is a Banach space.
In addition, the function

φ : Ωφ ⊂ B → Kf (6.13)
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is Lipschitz continuous in the sense that there is Klip > 1 so that

|φ(ω1)− φ(ω2)| ≤ Klip ‖ω1 − ω2‖B (6.14)

holds for all ω1, ω2 ∈ Ωφ. Finally, we have the inclusions

φapx(ω) ∈ Kf , φlin;ω ∈ L(B;Rn) (6.15)

for every ω ∈ Ωφ, together with the uniform bound

supω∈Ωφ
‖φlin;ω‖L(B;Rn) <∞. (6.16)

Lemma 6.4. Consider two triplets (φ, φapx, φlin) and (Ωφ,B,Kf ) and suppose that (hφ) is satisfied.
Suppose furthermore that there exists an open set Of ⊂ Rn and a compact set Kf ⊂ Rn for which

Kf ⊂ Of ⊂ Kf . (6.17)

Pick any f ∈ C2(Kf ;R) and consider the map

P : Ωφ ⊂ B → R, ω 7→ f
(
φ(ω)

)
. (6.18)

For any ω ∈ Ωφ and β ∈ B, write

Papx(ω) = f
(
φapx(ω)

)
,

Plin;ω[β] = Df
(
φapx(ω)

)
φlin;ω[β].

(6.19)

In addition, for any ω ∈ Ωφ and β ∈ B for which ω + β ∈ Ωφ, write

φnl;ω(β) = φ(ω + β)− φ(ω)− φlin;ω[β],

Pnl;ω(β) = P (ω + β)− P (ω)− Plin;ω[β].
(6.20)

Then there exists a constant K > 0 so that for any ω ∈ Ωφ the bound

|P (ω)− Papx(ω)| ≤ K |φ(ω)− φapx(ω)| (6.21)

holds, while for any ω ∈ Ωφ and β ∈ B for which ω + β ∈ Ωφ we have the estimate

|Pnl;ω(β)| ≤ K
[
‖β‖2B + |φnl;ω(β)|+ |φ(ω)− φapx(ω)| ‖β‖B

]
. (6.22)

Proof. The geometric condition (6.17) implies that f and Df are Lipschitz on Kf and that there is
C1 > 0 for which

|f(y)− f(x)−Df(x)(y − x)|
|y − x|2

≤ C1 (6.23)

holds for all (x, y) ∈ Kf ×Kf with x 6= y. Indeed, we can cover Kf completely with open balls in
which the local versions of these properties follow from the C2-smoothness of f on the larger set
Kf .

The inequality (6.21) follows directly from the fact that f is Lipschitz. Turning to (6.22), we
decompose

Pnl;ω(β) = J1 + J2 + J3 (6.24)
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in which
J1 = f

(
φ(ω + β)

)
− f

(
φ(ω)

)
−Df

(
φ(ω)

)
[φ(ω + β)− φ(ω)],

J2 = Df
(
φ(ω)

)
φnl;ω(β),

J3 =
[
Df
(
φ(ω)

)
−Df

(
φapx(ω)

)]
φlin;ω[β].

(6.25)

The bounds (6.14) and (6.23) imply

|J1| ≤ C1 |φ(ω + β)− φ(ω)|2

≤ C1K
2
lip ‖β‖

2
B ,

(6.26)

while the Lipschitz smoothness of Df yields

|J3| ≤ C2 |φ(ω)− φapx(ω)| ‖φlin;ω‖L(B;Rn) ‖β‖B (6.27)

for some C2 > 0. The desired estimate (6.22) now follows from the uniform bound (6.16).

Corollary 6.5. Consider two triplets (φ, φapx, φlin) and (Ωφ,B,Kf ) and suppose that (hφ) is sat-
isfied. Suppose furthermore that there exists an open set Of ⊂ Rn and a compact set Kf ⊂ Rn for
which

Kf ⊂ Of ⊂ Kf . (6.28)

Pick any f ∈ C2(Kf ;R), any Banach space BL, any L ∈ L(BL;R) and consider the map

P : Ωφ × BL → R, (ω, ωL) 7→ f
(
φ(ω)

)
L[ωL]. (6.29)

For any (ω, ωL) ∈ Ωφ × BL and (β, βL) ∈ B × BL, write

Papx(ω, ωL) = f
(
φapx(ω)

)
L[ωL],

Plin;ω,ωL [β, βL] = Df
(
φapx(ω)

)
L[ωL]φlin;ω[β] + f

(
φapx(ω)

)
L[βL].

(6.30)

In addition, for any (ω, ωL) ∈ Ωφ × BL and (β, βL) ∈ B × BL for which ω + β ∈ Ωφ, write

Pnl;ω,ωL(β, βL) = P (ω + β, ωL + βL)− P (ω, ωL)− Plin;ω,ωL [β, βL]. (6.31)

Then there exists a constant K > 0 so that for any (ω, ωL) ∈ Ωφ × BL we have the bound

|P (ω, ωL)− Papx(ω, ωL)| ≤ K |φ(ω)− φapx(ω)| ‖ωL‖BL , (6.32)

while for any for any (ω, ωL) ∈ Ωφ × BL and (β, βL) ∈ B × BL for which ω + β ∈ Ωφ we have the
bound

|Pnl;ω,ωL(β, βL)| ≤ K
[
‖β‖2B ‖ωL‖BL + ‖β‖B ‖βL‖BL + |φnl;ω(β)| ‖ωL‖BL
+ |φ(ω)− φapx(ω)|

[
‖β‖B ‖ωL‖BL + ‖βL‖BL

]]
.

(6.33)

Proof. The bound (6.32) follows immediately from (6.21) together with the fact that L ∈ L(BL;R).
Upon writing P (ω, ωL) = P̃ (ω)L[ωL], we see that

Pnl;ω,ωL(β, βL) = P̃nl;ω(β)L[ωL] +
[
f
(
φ(ω + β)

)
− f

(
φapx(ω)

)]
L[βL]

= P̃nl;ω(β)L[ωL] +
[
f
(
φ(ω + β)

)
− f

(
φ(ω)

)]
L[βL]

+
[
f
(
φ(ω)

)
− f

(
φapx(ω)

)]
L[βL].

(6.34)

In particular, exploiting the Lipschitz continuity of f and φ, we can find a constant C1 > 0 for which

|Pnl;ω,ωL(β, βL)| ≤ C1

∣∣∣P̃nl;ω(β)
∣∣∣ ‖ωL‖BL + C1 ‖β‖B ‖βL‖BL

+C1 |φ(ω)− φapx(ω)| ‖βL‖BL .
(6.35)

Substituting the estimate (6.22) for P̃nl;ω(β) yields the desired bound (6.33).
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6.2 Approximate products

For any integer k ≥ 1 and any sequence

q = (q1, q2, . . . , qk) ∈ {2,∞}k, (6.36)

we introduce the notation

`qh = `q1h × `
q2
h × . . .× `

qk
h . (6.37)

Writing

qπ = (qπ;1, qπ;2, . . . , qπ;k) ∈ {2,∞}k, (6.38)

we are interested in maps

π : `qπh → `2h (6.39)

that are bounded and multi-linear in the following sense.

(hπ) Consider any set

v = (v1, . . . , vk) ∈ `qπh . (6.40)

Then we have the estimate

‖π[v]‖`2h ≤ K ‖v1‖`qπ;1
h
× . . .× ‖vk‖`qπ;k

h

(6.41)

for some constant K > 0 that does not depend on v and h > 0. In addition, if there is an
integer 1 ≤ i ≤ k for which the decomposition

vi = λAv
A
i + λBv

B
i (6.42)

holds, with v#
i ∈ `

qπ;i
h and λ# ∈ R for # ∈ {A,B}, then we have

π[v] = λAπ[v1, . . . , v
A
i , . . . , vk] + λBπ[v1, . . . , v

B
i , . . . , vk]. (6.43)

We say that any sequence (6.36) is admissable for π if there is a constant K > 1 so that the bound

‖π[v]‖`2h ≤ K ‖v1‖`q1h × . . .× ‖vk‖`qkh (6.44)

holds for any

v ∈ `qπh ∩ `
q
h (6.45)

and any h > 0.
As an example, we note that the two sequences

qπ1 = (2,∞), qπ2 = (2, 2,∞, 2) (6.46)

with the accompanying maps

π1[v1, v2] = v1v2, π2[v1, v2, v3, v4] = v1h
∑
−;h

v2v3v4 (6.47)

both satisfy (hπ). In addition, (∞, 2) and (2,∞) are both admissable sequences for π1, while

(2,∞, 2, 2), (2, 2,∞, 2), (2, 2, 2,∞) (6.48)

are all admissable for π2.
Our goal is to study nonlinear functions of the form

Ωh;κ 3 U 7→ π[f1(U), . . . , fk(U)], (6.49)

in which each nonlinearity fi has zero-th and first order approximants fapx and flin in the sense of
(hφ). In particular, we impose the following condition on each of the nonlinearities.
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(hf) We have Qf ⊂ {2,∞}. For any U ∈ Ωh;κ and q ∈ Qf we have the inclusions

f(U) ∈ `qh, fapx(U) ∈ `qh, flin;U ∈ L(`2h; `qh). (6.50)

In addition, for each q ∈ Qf there exists a constant Kq > 0 and a semi-norm [·]f ;q,h on `2h so
that the following properties are true.

(a) The inequality

‖f(U)‖`qh + ‖fapx(U)‖`qh ≤ Kq (6.51)

holds for all h > 0 and U ∈ Ωh;κ.

(b) The inequality

[V ]f ;q,h ≤ Kq (6.52)

holds for all h > 0 and V ∈ Vh;κ.

(b) The Lipschitz estimate∥∥∥f(U (1))− f(U (2))
∥∥∥
`qh

≤ Kq[U (1) − U (2)]f ;q,h (6.53)

holds for all h > 0 and all pairs (U (1), U (2)) ∈ Ω2
h;κ.

(c) For every h > 0, the inequality

‖flin;U [V ]‖`qh ≤ Kq[V ]f ;q,h (6.54)

holds for all U ∈ Ωh;κ and V ∈ `2h.

To obtain sharp estimates it is sometimes necessary to decompose the approximate linearization flin

into two parts. Both parts can be evaluated in their own preferred norms, which do not necessarily
have to be an element of the set Qf discussed in (hf) above.

(hf)lin We have QAf ;lin ⊂ {2,∞} and QBf ;lin ⊂ {2,∞}. For all h > 0, U ∈ Ωh;κ and V ∈ `2h, we can
make the decomposition

flin;U [V ] = fAlin;U [V ] + fBlin;U [V ], (6.55)

in which fAlin;U [V ] ∈ `qh for every q ∈ QAf ;lin and fBlin;U [V ] ∈ `qh for every q ∈ QBf ;lin.

Our final condition concerns the residual term

fnl;U (V ) = f(U + V )− f(U)− flin;U [V ], (6.56)

which at times also needs to be decomposed into two parts that require separate norms.

(hf)nl We have QAf ;nl ⊂ {2,∞} and QBf ;nl ⊂ {2,∞}. For all h > 0, U ∈ Ωh;κ and V ∈ `2h for which
U + V ∈ Ωh;κ, we can make the decomposition

fnl;U (V ) = fAnl;U (V ) + fBnl;U (V ), (6.57)

in which fAnl;U (V ) ∈ `qh for every q ∈ QAf ;nl and fBnl;U (V ) ∈ `qh for every q ∈ QBf ;nl.
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Lemma 6.6. Fix k ≥ 1 and 0 < κ < 1
12 , consider the pair (qπ, π) defined in (6.38)-(6.39) and

assume that (hπ) holds. In addition, consider a set

{fi, fi;apx, fi;lin, Qfi , Q
A
fi;lin, Q

A
fi;nl, Q

B
fi;lin, Q

B
fi;nl}ki=1 (6.58)

of nonlinearities with their associated approximants and exponents that satisfy the following proper-
ties.

(a) For every 1 ≤ i ≤ k, the set {fi, fi;apx, fi;nl, Qfi} satisfies (hf) and the set {fi;lin, QAfi;lin, Q
B
fi;lin
}

satisfies (hf)lin. In addition, recalling the definition (6.56), the set {fi;nl, Q
A
fi;nl, Q

B
fi;nl} satisfies

(hf)nl.

(b) We have qπ;i ∈ Qfi for 1 ≤ i ≤ k.

(c) For every 1 ≤ i ≤ k, there are σAi;nl ∈ QAfi;nl and σBi;nl ∈ QBfi;nl together with sets

qAi,nl = (qAi,nl;1, . . . , q
A
i,nl;k), qBi,nl = (qBi,nl;1, . . . , q

B
i,nl;k) (6.59)

that are admissible for π, which have

qAi,nl;i = σAi;nl, qBi,nl;i = σBi;nl (6.60)

and

qAi,nl;j ∈ Qfj , qBi,nl;j ∈ Qfj (6.61)

for all j 6= i.

(d) For every pair (i, j) ∈ {1, . . . , k}2 with i 6= j , there are

σAij;lin ∈ QAfi;lin, τAij;lin ∈ Qfj , σBij;lin ∈ QBfi;lin, τBij;lin ∈ Qfj , (6.62)

together with two sets

qAij,lin = (qAij,lin;1, . . . , q
A
ij,lin;k), qBij,lin = (qBij,lin;1, . . . , q

B
ij,lin;k) (6.63)

that are admissible for π, which have

qAij,lin;i = σAij;lin, qAij,lin;j = τAij;lin qBij,lin;i = σBij;lin, qBij,lin;j = τBij;lin (6.64)

and

qAij,lin;k′ ∈ Qf ′k , qBij,lin;k′ ∈ Qf ′k (6.65)

for all k′ /∈ {i, j}.

Consider the map

P : Ωh;κ → `2h, U 7→ π[f1(U), . . . , fk(U)]. (6.66)

For any U ∈ Ωh;κ and V ∈ `2h, write

Papx(U) = π[f1;apx(U), . . . , fk;apx(U)]

Plin;U [V ] = π[f1;lin;U [V ], f2;apx(U), . . . , fk;apx(U)]

+π[f1;apx(U), f2;lin;U [V ], . . . , fk;apx(U)]

+π
[
f1;apx(U), . . . , fk−1;apx(U), fk;lin;U [V ]

]
.

(6.67)
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In addition, for any U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ, write

Pnl;U (V ) = P (U + V )− P (U)− Plin;U [V ]. (6.68)

Then there exists a constant K > 0 so that for any h > 0 and U ∈ Ωh;κ the bound

‖P (U)− Papx(U)‖`2h ≤ K
k∑
i=1

‖fi(U)− fi;apx(U)‖qπ;i
(6.69)

holds, while for any h > 0, U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ we have the estimate

‖Pnl;U (V )‖`2h ≤ KJnl;U (V ) +KJcross;U (V ) +KJapx;U (V ). (6.70)

Here we have introduced the expressions

Jnl;U (V ) =
∑k
i=1

[ ∥∥∥fAi;nl(V )
∥∥∥
σAi;nl

+
∥∥∥fBi;nl(V )

∥∥∥
σBi;nl

]
, (6.71)

together with

Jcross;U (V ) =
∑k
i=1

∑
j 6=i

∥∥∥fAi;lin[V ]
∥∥∥
σAij;lin

[V ]fj ;τAij;lin,h

+
∑k
i=1

∑
j 6=i

∥∥∥fBi;lin[V ]
∥∥∥
σBij;lin

[V ]fj ;τBij;lin,h
(6.72)

and finally

Japx;U (V ) =
∑k
i=1

∑
j 6=i

∥∥∥fAi;lin[V ]
∥∥∥
σAij;lin

‖fj(U)− fj;apx(U)‖τAij;lin

+
∑k
i=1

∑
j 6=i

∥∥∥fBi;lin[V ]
∥∥∥
σBij;lin

‖fj(U)− fj;apx(U)‖τBij;lin .
(6.73)

Proof. Pick 1 ≤ i ≤ k, any h > 0, U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ. We remark that
all the primed constants below are independent of these specific choices.

By definition, the condition on V means that

V = V (a) − V (b) (6.74)

with V (#) ∈ Vh;κ for # ∈ {a, b}. Exploiting (6.52), this shows that we have the uniform bound

[V ]fi;q,h ≤ C ′1 (6.75)

for any q ∈ Qfi . In addition, we may use (6.53) and (6.54) to obtain the rough estimate

‖fi;nl(V )‖`qh ≤ ‖fi(U + V )− fi(U)‖q + ‖fi;lin[V ]‖`qh
≤ C ′2[V ]i;q,h,

(6.76)

which gives

‖fi;lin;U [V ]‖`qh + ‖fi;nl;U (V )‖`qh ≤ C
′
3[V ]i;q,h. (6.77)

In addition, using (6.51) and (6.75), we obtain the uniform bound

‖fi(U)‖`qh + ‖fi;lin;U [V ]‖`qh + ‖fi;nl;U (V )‖`qh ≤ C
′
4 + C ′3[V ]i;q,h ≤ C ′5. (6.78)
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Observe that

P (U + V )− P (U) = π
[
f1(U + V ), . . . , fk(U + V )

]
− π

[
f1(U), . . . , fk(U)

]
= π

[
f1(U) + f1;lin;U [V ] + f1;nl;U (V ), . . . , fk(U) + fk;lin;U [V ] + fk;nl;U (V )

]
−π
[
f1(U), . . . , fk(U)

]
.

(6.79)

In particular, writing

Plin;U ;I [V ] = π
[
f1;lin;U [V ], f2(U), . . . , fk(U)

]
+π
[
f1(U), f2;lin;U [V ], . . . , fk(U)

]
+ . . .+ π

[
f1(U), . . . , fk−1(U), fk;lin;U [V ]

]
,

(6.80)

together with

Pnl;U ;I(V ) = P (U + V )− P (U)− Plin;U ;I [V ], (6.81)

the bounds (6.77) and (6.78) allow us to expand out Pnl;U ;I [V ] and obtain

‖Pnl;U ;I [V ]‖`2h ≤ C
′
6Jnl;U (V ) + C ′6Jcross;U (V ). (6.82)

Upon writing

J1 = π[f1;lin;U [V ], f2(U), . . . , fk(U)]− π[f1;lin;U [V ], f2;apx(U), . . . , fk;apx(U)], (6.83)

we see by multi-linearity that

J1 = π[f1;lin;U [V ], f2(U)− f2;apx(U), . . . , fk(U)]

+π[f1;lin;U [V ], f2;apx(U), f3(U)− f3;apx(U), . . . , fk(U)]

+ . . .+ π[f1;lin;U [V ], f2;apx(U), . . . , fk−1;apx(U), fk(U)− fk;apx(U)].

(6.84)

In particular, exploiting (6.51), we obtain the bound

‖J1‖`2h ≤ C
′
7Japx;U (V ). (6.85)

Repeating this computation for the remaining indices shows that also

‖Plin;U [V ]− Plin;U ;I [V ]‖`2h ≤ C
′
8Japx;U (V ), (6.86)

which establishes (6.70). The estimate (6.69) can be obtained in a similar, but much easier fashion.

6.3 The reference function

We conclude this section by establishing Propositions 6.1-6.3 . The proofs are relatively direct,
exploiting the following scaling results.

Lemma 6.7. For any 0 < κ < 1 and h > 0, we have the bounds

‖Uref;κ‖`∞h ≤ 1,
∥∥∂+Uref;κ

∥∥
`∞h
≤ κ,

∥∥∂+∂+Uref;κ

∥∥
`∞h
≤ κ2, (6.87)

together with ∥∥∂+Uref;κ

∥∥
`2h
≤ 2κ1/2,

∥∥∂+∂+Uref;κ

∥∥
`2h
≤ 2κ3/2 (6.88)

and finally

‖Uref;κ −H‖`2h ≤ 2
√

2κ−1/2. (6.89)
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Proof. The uniform bound on Uref;κ follows directly from the definition (6.1)-(6.2). Upon computing

U ′ref;κ(ξ) = κU ′ref;∗(κξ), U ′′ref;κ(ξ) = κ2U ′′ref;∗(κξ), (6.90)

the properties (6.2) immediately yield∥∥U ′ref;κ

∥∥
L∞
≤ κ,

∥∥U ′′ref;κ

∥∥
L∞
≤ κ2. (6.91)

The bounds (6.87) now follow from (5.10) and (5.20).
It is easy to verify that ∥∥U ′ref;∗

∥∥2

L2 ≤ 4,
∥∥U ′′ref;∗

∥∥2

L2 ≤ 4. (6.92)

This allows us to compute ∥∥∥U ′ref;κ

∥∥∥2

L2
=

∫
κ2
[
U ′ref;∗(κτ)]2 dτ

= κ
∫ [
U ′ref;∗(τ

′)]2 dτ ′

= κ
∥∥∥U ′ref;∗

∥∥∥2

L2

≤ 4κ.

(6.93)

In a similar fashion, we obtain ∥∥U ′′ref;κ

∥∥2

L2 = κ3
∥∥U ′ref;∗

∥∥2

L2 ≤ 4κ3. (6.94)

We may now apply (5.10) and (5.20) once more to obtain (6.88).
Since Uref;κ is an increasing function, we see that

h
∑
j<0 Uref;κ(jh)2 ≤

∫ 0

−∞ Uref;κ(τ + h)2 dτ

=
∫ 0

−∞ Uref;∗(κ(τ + h))2 dτ

= κ−1
∫ κh
−∞ Uref;∗(τ ′)2 dτ ′

≤ κ−1
∫ 2

−2
Uref;∗(τ ′)2 dτ ′

≤ 4κ−1.

(6.95)

In a similar fashion, we find

h
∑
j≥0(Uref;κ(jh)− 1)2 ≤ 4κ−1 (6.96)

and hence

‖Uref;κ −H‖`2h ≤ 2
√

2κ−1/2, (6.97)

as desired.

Proof of Proposition 6.1. Write U = Uref;κ + V with V ∈ Vh;κ. Note that Lemma 6.7 implies that

‖Uref;κ‖`∞h +
∥∥∂+Uref;κ

∥∥
`2h

+
∥∥∂+∂+Uref;κ

∥∥
`2h

+
∥∥∂+∂+Uref;κ

∥∥
`∞h
≤ 6. (6.98)

In particular, we see that

‖U‖`∞h + ‖∂+U‖`2h + ‖∂+∂+U‖`2h + ‖∂+∂+U‖`∞h < 6 + 1
2κ
−1

≤ κ−1
(6.99)
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since 0 < κ ≤ 1
12 . In addition, we see that:∥∥∂+U

∥∥
`∞h
≤
∥∥∂+Uref;κ

∥∥
`∞h

+
∥∥∂+V

∥∥
`∞h

< κ+ 1− 2κ = 1− κ, (6.100)

as desired.
Finally, we note that

g(U) = g(H) + g(Uref;κ)− g(H) + g(Uref;κ + V )− g(Uref;κ). (6.101)

Writing

M = sup|u|≤κ−1|g′(u)|, (6.102)

we see that

‖g(Uref;κ)− g(H)‖`2h ≤ M ‖Uref;κ −H‖`2h
≤ 2

√
2Mκ−1/2,

‖g(Uref;κ + V )− g(Uref;κ)‖`2h ≤ M ‖V ‖`2h
≤ 1

2Mκ−1.

(6.103)

The desired bound now follows from g(H) = 0.

Proof of Proposition 6.2. Notice first that ∂+H ∈ `2h, which with U−H ∈ `2h implies that ∂+U ∈ `2h.
Pick κ > 0 to be so small that ∥∥∂+U

∥∥
`∞h

< 1− 4κ (6.104)

and also

‖U‖`∞h +
∥∥∂+U

∥∥
`2h

+
∥∥∂+∂+U

∥∥
`2h

+
∥∥∂+∂+U

∥∥
`∞h

+ 6 <
1
8
κ−1. (6.105)

In addition, pick ε0 > 0 to be so small that∥∥∥∂+Ũ
∥∥∥
`∞h

< 1− 3κ (6.106)

and also ∥∥∥Ũ∥∥∥
`∞h

+
∥∥∥∂+Ũ

∥∥∥
`2h

+
∥∥∥∂+∂+Ũ

∥∥∥
`2h

+
∥∥∥∂+∂+Ũ

∥∥∥
`∞h

+ 6 <
1
4
κ−1 (6.107)

whenever
∥∥∥Ũ − U∥∥∥

`2h

< ε0, which is possible because of the continuous embedding `2h ⊂ `∞h .

For any such Ũ , we write

Vκ = Ũ − Uref;κ. (6.108)

We immediately see∥∥∂+Vκ
∥∥
`∞h
≤
∥∥∥∂+Ũ

∥∥∥
`∞h

+ ‖Uref;κ‖`∞h < 1− 3κ+ κ = 1− 2κ. (6.109)

In addition, we have:

‖Vκ‖`∞h + ‖∂+Vκ‖`2h + ‖∂+∂+Vκ‖`2h + ‖∂+∂+Vκ‖`∞h < 1
4κ
−1 − 6 + 6 = 1

4κ
−1. (6.110)
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Finally, we note that

‖Vκ‖`2h =
∥∥∥Ũ − Uref;κ

∥∥∥
`2h

≤
∥∥∥Ũ − U∥∥∥

`2h

+ ‖U −H‖`2h + ‖Uref;κ −H‖`2h
≤ ε0 + ‖U −H‖`2h + 2

√
2[κ]−1/2.

(6.111)

By decreasing κ > 0 even further, which does not destroy the estimates above, we can hence obtain

‖Vκ‖`2h <
1
4
κ−1. (6.112)

This shows that Vκ ∈ Vh;κ, as desired.

Proof of Proposition 6.3. Pick κ > 0 to be so small that

‖u′‖L∞ < 1− 4κ (6.113)

and also

‖u‖H1 + ‖u′‖L2 + ‖u′′‖L2 + ‖u′′‖H1 + 6 < 1
8κ
−1. (6.114)

Using Lemma 5.1 and the inequality (5.20), we obtain∥∥evϑ∂+
h u
∥∥
`∞h
≤ ‖u′‖L∞ < 1− 4κ (6.115)

together with

‖evϑu‖`∞h +
∥∥evϑ∂+

h u
∥∥
`2h

+
∥∥evϑ∂+

h ∂
+
h u
∥∥
`2h

+
∥∥evϑ∂+

h ∂
+
h u
∥∥
`∞h

+ 6 < 1
8κ
−1 (6.116)

for any ϑ ∈ R.
Corollary 5.3 implies that we can pick a small constant ε0 > 0 in such a way that

‖evϑv‖`∞;2
h

+ ‖evϑv‖`2;2
h
< min{κ, 1

8
κ−1} (6.117)

holds for every ϑ ∈ R and any v ∈ H1 that satisfies (6.11). Upon writing w = u+ v for any such v,
we see that

‖evϑw‖`∞h < 1− 4κ+ κ < 1− 3κ (6.118)

together with

‖evϑw‖`∞h +
∥∥evϑ∂+

h w
∥∥
`2h

+
∥∥evϑ∂+

h ∂
+
h w
∥∥
`2h

+
∥∥evϑ∂+

h ∂
+
h w
∥∥
`∞h

+ 6 <
1
4
κ−1 (6.119)

for any ϑ ∈ R.
For any such w, we write

Vκ;ϑ = evϑw − Uref;κ. (6.120)

We immediately see∥∥∂+Vκ;ϑ

∥∥
`∞h
≤
∥∥evϑ∂+

h w
∥∥
`∞h

+
∥∥∂+

h Uref;κ

∥∥
`∞h

< 1− 3κ+ κ = 1− 2κ. (6.121)

In addition, we have

‖Vκ;ϑ‖`∞h + ‖∂+Vκ;ϑ‖`2h + ‖∂+∂+Vκ;ϑ‖`2h + ‖∂+∂+Vκ;ϑ‖`∞h < 1
4κ
−1 − 6 + 6 = 1

4κ
−1. (6.122)
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Finally, we note that

‖Vκ;ϑ‖`2h = ‖evϑw − Uref;κ‖`2h
≤ ‖evϑw − evϑu‖`2h + ‖evϑu− evϑUref;∗‖`2h

+ ‖evϑUref;∗ − Uref;∗‖`2h + ‖Uref;∗ −H‖`2h + ‖Uref;κ −H‖`2h
≤ ε0 + 3 ‖u− Uref;∗‖H1 + 3 ‖Uref;∗(·+ ϑ)− Uref;∗(·)‖H1 + 2

√
2 + 2

√
2[κ]−1/2.

(6.123)

By decreasing κ > 0 even further, which does not destroy the estimates above, we can hence obtain

‖Vκ;ϑ‖`2h <
1
4
κ−1 (6.124)

for all ϑ ∈ [0, h]. This shows that Vκ;ϑ ∈ Vh;κ for all ϑ ∈ [0, h], as desired.

7 Preliminary estimates

In this section we exploit the bounds in Proposition 6.1 to obtain a number of technical estimates on
useful expressions that will help to streamline the arguments in the rest of the paper. In particular, in
§7.1-§7.2 we derive preliminary estimates on the gridpoint spacing functions and discrete derivatives
that were introduced in §4. In §7.3 we discuss two important error functions and in §7.4 we study
several U -dependent linear operators on `2h that are encountered when linearizing our main equation
(2.26).

7.1 Gridpoint spacing estimates

Our first result here is crucial as it shows that the inverse functions [r±U ]−1 and γ−1
U can be uniformly

bounded on Ωh;κ for all h > 0 simultaneously. We use it to simplify the expressions for γ−kU defined
in Lemma 4.2 at the cost of an O(h) error term.

Lemma 7.1. Fix h > 0 and 0 < κ < 1
12 . Then for any U ∈ Ωh;κ, we have the pointwise estimates

√
κ < r±U ≤ 1,

√
κ < γU ≤ 1. (7.1)

Proof. We compute

1 ≥
√

1− (∂±U)2 >
√

1− (1− κ)2 =
√

1− 1 + 2κ− κ2 ≥
√
κ. (7.2)

Corollary 7.2. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any pair

(U (1), U (2)) ∈ Ω2
h;κ, we have the estimates

‖γU(1) − γU(2)‖`∞h ≤ K
∥∥∂+U (2) − ∂+U (1)

∥∥
`∞h
,

‖γU(1) − γU(2)‖`2h ≤ K
∥∥∂+U (2) − ∂+U (1)

∥∥
`2h
.

(7.3)

Proof. These bounds are a direct consequence of the lower bounds in (7.1) and the representation
(4.23).

Corollary 7.3. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any U ∈ Ωh;κ

we have the bounds ∣∣∂+r−U
∣∣ ≤ K

∣∣∂0∂U
∣∣ ,∣∣∂+r0

U

∣∣ ≤ K
[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ]. (7.4)
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Proof. These estimates follow directly from Lemma 4.1.

Lemma 7.4. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any U ∈ Ωh;κ,

we have the pointwise estimates∣∣∂+[γ2
U ] + 2∂0US+[∂0∂U ]

∣∣ ≤ Kh
[ ∣∣∂0∂U

∣∣2 + T+
∣∣∂0∂U

∣∣2 ],∣∣∂+[γU ] + γ−1
U ∂0US+[∂0∂U ]

∣∣ ≤ Kh
[ ∣∣∂0∂U

∣∣2 + T+
∣∣∂0∂U

∣∣2 ],∣∣∂+[γ−1
U ]− γ−3

U ∂0US+[∂0∂U ]
∣∣ ≤ Kh

[ ∣∣∂0∂U
∣∣2 + T+

∣∣∂0∂U
∣∣2 ],∣∣∂+[γ−2

U ]− 2γ−4
U ∂0US+[∂0∂U ]

∣∣ ≤ Kh
[ ∣∣∂0∂U

∣∣2 + T+
∣∣∂0∂U

∣∣2 ],∣∣∂+[γ−4
U ]− 4γ−6

U ∂0US+[∂0∂U ]
∣∣ ≤ Kh

[ ∣∣∂0∂U
∣∣2 + T+

∣∣∂0∂U
∣∣2 ].

(7.5)

Proof. Using the representation in Lemma 4.2, we see that∣∣∂+γU
∣∣ ≤ C ′1[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ], (7.6)

together with ∣∣∂+∂0U
∣∣ =

∣∣S+[∂0∂U ]
∣∣ ≤ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ . (7.7)

This implies that∣∣S+[∂0U ]− 2∂0U
∣∣ ≤ C ′2h

[ ∣∣∂0∂U
∣∣+ T+

∣∣∂0∂U
∣∣ ],

|S+[γU ]− 2γU |+
∣∣S+[γ2

U ]− 2γ2
U

∣∣ ≤ C ′2h
[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ],∣∣P+[γU ]− γ2
U

∣∣+
∣∣P+[γ2

U ]− γ4
U

∣∣ ≤ C ′2h
[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ]. (7.8)

Since the explicit expressions on the left hand side in (7.5) can be obtained from Lemma 4.2 by
making the replacements

S+[∂0U ] 7→ 2∂0U, S+γU 7→ 2γU , S+γ2
U 7→ 2γ2

U , P+γU 7→ γ2
U P+γ2

U 7→ γ4
U , (7.9)

the desired estimates follow from the lower bounds for γU stated in (7.1).

7.2 Discrete derivative estimates

In this subsection we obtain several preliminary estimates concerning the discrete derivatives intro-
duced in §4.3 and the mixed expressions γ−kU ∂0U . We also consider approximations for three sums
that can be seen as discrete versions of the integral identities∫ τ

−∞
u′(τ ′)u′′(τ ′)√

1−u′(τ ′)2
dτ ′ = 1−

√
1− u′(τ)2,∫ τ

−∞
u′(τ ′)u′′(τ ′)
1−u′(τ ′)2 dτ ′ = 1

2 ln[1− u′(τ)2],
(7.10)

together with ∫ τ

−∞

u′(τ ′)v′′(τ ′)√
1− u′(τ ′)2

=
u′(τ)v′(τ)√
1− u′(τ)2

−
∫ τ

−∞

u′′(τ ′)v′(τ ′)
(1− u′(τ ′)2)3/2

dτ ′. (7.11)

Lemma 7.5. Fix h > 0 and 0 < κ < 1
12 . Then for any U ∈ Ωh;κ, we have the inclusions{

F�±(U),F�0(U),F��0(U),F�0;+(U),F�−;+(U),F��0;+(U)
}
⊂ `2h. (7.12)
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Proof. Proposition 6.1 implies that ∂±U ∈ `2h, Together with Lemma 7.1 and the identity (4.28),
this implies the inclusions

F�±(U) ∈ `2h, F�0(U) ∈ `2h. (7.13)

Since ∂±(`2h) ⊂ `2h, the remaining inclusions can be read off from the definitions (4.30), (4.33) and
(4.34).

Corollary 7.6. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any U ∈ Ωh;κ,

we have the pointwise bounds

|∂+F�−(U)| ≤ K
∣∣∂0∂U

∣∣ ,
|∂+F�0(U)| ≤ K

[ ∣∣∂0∂U
∣∣+ T+

∣∣∂0∂U
∣∣ ]. (7.14)

Proof. This follows directly from Lemma 4.3.

Lemma 7.7. Fix h > 0 and 0 < κ < 1
12 . Then for any U ∈ Ωh;κ, we have the pointwise bounds

1
2
κ < F�0(U)F�±(U) + 1 <

3
2
κ−1. (7.15)

Proof. We compute

F�0(U)F�+(U) + 1 = 1 + ∂+U+∂−U
r−U+r+

U

∂+U
r+
U

= r+
U (r−U+r+

U )+(∂+U)2+∂−U∂+U

r+
U (r−U+r+

U )
.

(7.16)

Since (r+
U )2 + (∂+U)2 = 1, we obtain

F�0(U)F�+(U) + 1 = r+
U r
−
U

r+
U (r−U+r+

U )
+ 1+∂−U∂+U

r+
U (r−U+r+

U )
. (7.17)

Observe that |∂−U | |∂+U | < 1. In addition, Lemma 7.1 implies

2κ < r+
U (r−U + r+

U ) ≤ 2, κ < r+
U r
−
U ≤ 1. (7.18)

We hence find

κ

2
< F�0(U)F�+(U) + 1 <

3
2κ
, (7.19)

as desired. The estimate involving F�−(U) can be obtained in the same fashion.

Lemma 7.8. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any U ∈ Ωh;κ,

we have the pointwise estimate∣∣∣∣∂+
[∂0U

γU

]
− γ−3

U S+[∂0∂U ]
∣∣∣∣ ≤ Kh[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ]. (7.20)

Proof. Using ∂+∂0U = S+∂0∂U and the definition (4.22) for γU , we compute

∂+
[
∂0U
γU

]
= ∂+[γ−1

U ]T+∂0U + γ−1
U ∂+∂0U

= ∂+[γ−1
U ]∂0U + E1(U) + γ−1

U ∂+∂0U

= γ−3
U ∂0US+[∂0∂U ]∂0U + E1(U) + E2(U) + γ−1

U S+[∂0∂U ]

= γ−3
U S+[∂0∂U ] + E1(U) + E2(U),

(7.21)
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in which

E1(U) = h∂+[γ−1
U ]∂+∂0U,

E2(U) =
[
∂+[γ−1

U ]− γ−3
U ∂0US+[∂0∂U ]

]
∂0U.

(7.22)

The estimate (7.5) now yields the bounds

|E1(U)|+ |E2(U)| ≤ C ′1h
[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ], (7.23)

which establishes (7.20).

Lemma 7.9. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any U ∈ Ωh;κ,

we have the pointwise estimate∣∣∣∣∂+
[∂0U

γ2
U

]
− γ−4

U (2− γ2
U )S+∂0∂U

∣∣∣∣ ≤ Kh[ ∣∣∂0∂U
∣∣+ T+

∣∣∂0∂U
∣∣ ]. (7.24)

Proof. Using ∂+∂0U = S+∂0∂U and the definition (4.22) for γU , we compute

∂+
[
∂0U
γ2
U

]
= ∂+[γ−2

U ]T+∂0U + γ−2
U ∂+∂0U

= ∂+[γ−2
U ]∂0U + E1(U) + γ−2

U ∂+∂0U

= 2γ−4
U ∂0US+[∂0∂U ]∂0U + E1(U) + E2(U) + γ−2

U S+[∂0∂U ]

= γ−4
U (2− γ2

U )S+[∂0∂U ] + E1(U) + E2(U),

(7.25)

in which

E1(U) = h∂+[γ−2
U ]∂+∂0U,

E2(U) =
[
∂+[γ−2

U ]− 2γ−4
U ∂0US+[∂0∂U ]

]
∂0U.

(7.26)

As in the proof of Lemma 7.8, the desired estimate now follows from the bounds (7.5).

Lemma 7.10. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any U ∈ Ωh;κ,

the two linear expressions

SA;U [V ] = h
∑
−;h γ

−1
U [∂0U ]∂0∂V,

SB:U [V ] = 1
2γ
−1
U [∂0U ]∂0V − h

∑
−;h γ

−3
U [∂0∂U ]∂0V

(7.27)

satisfy the pointwise estimate

|SB;U [V ]− SA;U [V ]| ≤ Kh
[
T− |∂−V |+ |∂−V |+

∣∣∂0∂V
∣∣+ ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
(7.28)

for all V ∈ `2h.

Proof. Using (4.11) we first observe that∣∣T+SA;U [V ]− SA;U [V ]
∣∣ = h

∣∣∂+SA;U [V ]
∣∣ ≤ C ′1 ∣∣∂0∂V

∣∣ . (7.29)

The summation-by-parts identity (4.13) allows us to compute

T+SA;U [V ] = T+
[
h
∑
−;h γ

−1
U [∂0U ]∂0∂V

]
= T+

[
1
2h
∑
−;h γ

−1
U [∂0U ]∂+∂−V

]
= T+

[
1
2T
−1
[
γ−1
U ∂0U

]
∂−V − 1

2h
∑
−;h ∂

−[γ−1
U ∂0U ]∂−V

]
= 1

2γ
−1
U [∂0U ]∂+V − 1

2h
∑
−;h ∂

+[γ−1
U ∂0U ]∂+V.

(7.30)
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Upon writing

SA;U ;I [V ] =
1
2
γ−1
U [∂0U ]∂0V − 1

2
h
∑
−;h

∂+[γ−1
U ∂0U ]∂0V, (7.31)

we use the identity

∂+V − ∂0V = h∂0∂U (7.32)

together with (7.20) to obtain∣∣SA;U ;I [V ]− T+SA;U [V ]
∣∣ ≤ C ′2h ∣∣∂0∂V

∣∣+ C ′2h
∥∥∂+∂+V

∥∥
`2h
. (7.33)

We now write

SA;U ;II [V ] =
1
2
γ−1
U [∂0U ]∂0V − 1

2
h
∑
−;h

γ−3
U S+[∂0∂U ]∂0V, (7.34)

which gives

SA;U ;II [V ]− SA;U ;I [V ] = −1
2
h
∑
−;h

[
∂+[γ−1

U ∂0U ]− γ−3
U S+[∂0∂U ]

]
∂0V. (7.35)

In particular, (7.20) yields

|SA;U ;II [V ]− SA;U ;I [V ]| ≤ C ′3h
∥∥∂+∂+U

∥∥
`2h

∥∥∂0V
∥∥
`2h
≤ C ′4h

∥∥∂+V
∥∥
`2h
. (7.36)

We now transfer the S+ using the summation-by-parts identity (4.13) to obtain

SA;U ;II [V ] =
1
2
γ−1
U [∂0U ]∂0V − 1

2
hT−

[
γ−3
U ∂0V ]∂0∂U − 1

2
h
∑
−;h

S−
[
γ−3
U ∂0V

]
∂0∂U. (7.37)

We hence see that

SB;U [V ]− SA;U ;II [V ] = 1
2hT

−[γ−3
U ∂0V ] + 1

2h
∑
−;h h∂

−[γ−3
U ∂0V

]
∂0∂U. (7.38)

Using the fact that ∥∥∂−[γ−3
U ∂0V

]∥∥
`2h
≤ C ′5

[ ∥∥∂+V
∥∥
`2h

+
∥∥∂+∂+V

∥∥
`2h

]
(7.39)

the desired estimate follows.

Lemma 7.11. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any U ∈ Ωh;κ,

we have the pointwise estimate∣∣∣∣∣∣h
∑
−;h

γ−1
U [∂0U ]∂0∂U − 1

2
(1− γU )

∣∣∣∣∣∣ ≤ Kh. (7.40)

Proof. Since [γU ]jh → 1 as j → −∞, we have

γU − 1 = h
∑
−;h ∂

+γU . (7.41)

In particular, writing

SI = h
∑
−;h γ

−1
U ∂0US+[∂0∂U ] (7.42)
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we may use the estimate (7.5) to obtain

|SI − (1− γU )| ≤ 2Kh ‖∂+∂+U‖2`2h
≤ C ′1h.

(7.43)

Using the summation-by-parts identity (4.15), we can transfer the S+ to obtain

SI = h
∑
−;h S

−[γ−1
U ∂0U

]
∂0∂U + h∂0∂UT−

[
γ−1
U ∂0U

]
. (7.44)

In particular, writing

I = SI − 2h
∑
−;h γ

−1
U [∂0U ]∂0∂U, (7.45)

we see that

I = −h
∑
−;h h∂

−[γ−1
U ∂0U

]
∂0∂U + h∂0∂UT−

[
γ−1
U ∂0U

]
. (7.46)

Using Lemma 7.8 we see that

|I| ≤ C ′1h
∥∥∂+∂+U

∥∥2

`2h
+ C ′2h, (7.47)

from which the desired estimate follows.

Lemma 7.12. Fix 0 < κ < 1
12 . Then there exists K > 0 so that for any h > 0 and any U ∈ Ωh;κ,

we have the pointwise estimate∣∣∣h∑−;h γ
−2
U ∂0US+[∂0∂U ] + ln[γU ]

∣∣∣ ≤ Kh. (7.48)

Proof. We first compute

∂+[ln γU ] = 1
h lnT+γU − 1

h ln γU

= 1
h ln T+γU

γU
.

(7.49)

The bounds in Lemma 7.1 imply that

T+γU
γU

≥
√
κ. (7.50)

We recall that

|ln(1 + x)− x| ≤ C ′1 |x|
2 (7.51)

holds for all x ∈ R that have 1 + x ≥
√
κ > 0. Applying this estimate with

x =
T+γU
γU

− 1 = hγ−1
U ∂+[γU ], (7.52)

we conclude that the sequence

I1 = ∂+[ln γU ]− γ−1
U ∂+[γU ] (7.53)

satisfies the pointwise bound

|I1| ≤ C ′1h
−1
[
hγ−1

U |∂+[γU ]|
]2
. (7.54)
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Using the explicit expression for ∂+[γU ] in Lemma 4.2, we conclude

|I1| ≤ C ′2h
[ ∣∣∂0∂U

∣∣2 + T+
∣∣∂0∂U

∣∣2 ]. (7.55)

Writing

I2 = ∂+[ln γU ] + γ−2
U ∂0US+[∂0∂U ], (7.56)

the estimate (7.5) implies that also

|I2| ≤ C ′3h
[ ∣∣∂0∂U

∣∣2 + T+
∣∣∂0∂U

∣∣2 ]. (7.57)

In particular, we see that ∣∣∣h∑−;h I2

∣∣∣ ≤ 2C ′3h ‖∂+∂+U‖2`2h
≤ C ′4h.

(7.58)

Since [γU ]jh → 1 as j → −∞, we conclude that

ln[γU ] = h
∑
−;h

∂+
[

ln γU
]

(7.59)

must hold pointwise. The desired estimate follows directly from this identity and the bound (7.58).

7.3 Error functions

In the sequel we will encounter two error functions that are small when applied to Ψ∗, but that need
to be controlled for arbitrary U ∈ Ωh;κ. In particular, we define the function

Esm(U) = h∂−
[
γ−4
U (2− γ2

U )S+[∂0∂U ]
]
, (7.60)

which measures the smoothness of U in some sense. In addition, we define

Etw(U) = 2γ−4
U ∂0∂U + g(U ; a)− c∗ ∂

0U
γU

, (7.61)

which measures the error when U is substituted into a discretization of the travelling wave equation
(3.6). Finally, we introduce the function

E+
tw;apx(U) = 8γ−6

U ∂0US+[∂0∂U ]T+[∂0∂U ] + 2γ−4
U ∂+∂0∂U

+g′(U)∂0U − c∗γ−3
U S+[∂0∂U ],

(7.62)

which can be used to approximate the discrete derivative of (7.61).

Proposition 7.13. Assume that (Hg) and (HΦ∗) are satisfied and fix 0 < κ < 1
12 . There exists

K > 0 so that for any h > 0 and U ∈ Ωh;κ we have the a-priori bounds

‖Esm(U)‖`∞h + ‖Esm(U)‖`2h ≤ K,

‖Etw(U)‖`∞h + ‖Etw(U)‖`2h ≤ K
(7.63)

together with the estimate∥∥∂+[Etw(U)]− E+
tw;apx(U)

∥∥
`∞h

+
∥∥∂+[Etw(U)]− E+

tw;apx(U)
∥∥
`2h
≤ Kh, (7.64)
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while for any U (1) ∈ Ωh;κ and U (2) ∈ Ωh;κ we have the Lipschitz bounds∥∥Esm(U (1))− Esm(U (2))
∥∥
`2h
≤ K

[ ∥∥∂+U (2) − ∂+U (1)
∥∥
`2h

+
∥∥∂+∂+U (2) − ∂+∂+U (1)

∥∥
`2h

]
,∥∥Etw(U (1))− Etw(U (2))

∥∥
`2h

≤ K
∥∥U (2) − U (1)

∥∥
`2;2
h

.

(7.65)

Proof. The bounds in (7.63) and (7.65) follow directly from ‖h∂−‖L(`2h,`
2
h) ≤ 2, the Lipschitz bounds

in Corollary 7.2, the estimate (6.8) on g(U) and the pointwise inequality∣∣∣g(U (2))− g(U (1))
∣∣∣ ≤ [sup|u|≤κ−1 |g′(u)|

] ∣∣∣U (2) − U (1)
∣∣∣ . (7.66)

In order to establish (7.64), we compute

∂+[Etw(U)] = 2∂+[γ−4
U ]T+[∂0∂U ] + 2γ−4

U ∂+∂0∂U + ∂+[g(U)]− c∗∂+[γ−1
U ∂0U ] (7.67)

and notice that

∂+[g(U)]− g′(U)∂0U = ∂+[g(U)]− g′(U)∂+U + hg′(U)∂0∂U. (7.68)

Upon estimating

|∂+[g(U)]− g′(U)∂+U | = h−1 |g(U + h∂+U)− g(U)− g′(U)h∂+U |

≤ 1
2

[
sup|u|≤κ−1 |g′′(u)|

]
h−1 |h∂+U |2

= 1
2h
[
sup|u|≤κ−1 |g′′(u)|

]
|∂+U |2 ,

(7.69)

we can use (7.5) together with (7.20) to obtain the desired bound.

Proposition 7.14. Assume that (Hg) and (HΦ∗) are satisfied. Then there exists K > 0 so that for
any h > 0 we have the estimates

‖Esm(Ψ∗)‖`∞h + ‖Esm(Ψ∗)‖`2h ≤ Kh,

‖Etw(Ψ∗)‖`∞h + ‖Etw(Ψ∗)‖`2h ≤ Kh,

‖∂+[Etw(Ψ∗)]‖`∞h + ‖∂+[Etw(Ψ∗)]‖`2h ≤ Kh.

(7.70)

Proof. We have Ψ∗ ∈W 3;q for q ∈ {2,∞}, which allows us to apply Lemma 5.1 and (5.20) to obtain

‖Esm(Ψ∗)‖`2h ≤ C ′1h ‖∂−∂+∂−Ψ∗‖`qh
≤ C ′1h ‖Ψ′′′∗ ‖Lq .

(7.71)

This yields the first bound.
Since γ∗ and γΨ∗ are both uniformly bounded away from zero, we can estimate∣∣γ−1

∗ − γ−1
Ψ∗

∣∣+
∣∣γ−3
∗ − γ−3

Ψ∗

∣∣+
∣∣γ−4
∗ − γ−4

Ψ∗

∣∣+
∣∣γ−6
∗ − γ−6

Ψ∗

∣∣ ≤ C ′1 ∣∣∂0Ψ∗ −Ψ′∗
∣∣ . (7.72)

Exploiting the fact that Ψ′∗, Ψ′′∗ , , γ−1
∗ γ−1

Ψ∗
, ∂0Ψ∗ and ∂0∂Ψ∗ are all uniformly bounded, we now see

that ∥∥γ−1
∗ Ψ′∗ − γ−1

Ψ∗
∂0Ψ∗

∥∥
`qh

≤ C ′2
∥∥∂0Ψ∗ −Ψ′∗

∥∥
`qh∥∥γ−4

∗ Ψ′′∗ − 2γ−1
Ψ∗
∂0∂Ψ∗

∥∥
`qh

≤ C ′2
[ ∥∥∂0Ψ∗ −Ψ′∗

∥∥
`qh

+
∥∥2∂0∂Ψ∗ −Ψ′′∗

∥∥
`qh

]∥∥2γ−4
Ψ∗
∂+∂0∂Ψ∗ − γ−4

∗ Ψ′′′∗
∥∥
`qh
≤ C ′2

[ ∥∥∂0Ψ∗ −Ψ′∗
∥∥
`qh

+
∥∥2∂+∂0∂Ψ∗ −Ψ′′′∗

∥∥
`qh

] (7.73)
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for q ∈ {2,∞}.
Since Ψ∗ ∈W 3,2 ∩W 3,∞, we may apply Lemma 5.5, and Corollary 5.6 to obtain∥∥γ−1
∗ Ψ′∗ − γ−1

Ψ∗
∂0Ψ∗

∥∥
`qh

+
∥∥γ−4
∗ Ψ′′∗ − 2γ−4

Ψ∗
∂0∂Ψ∗

∥∥
`qh

+
∥∥γ−4
∗ Ψ′′′∗ − 2γ−4

Ψ∗
∂0∂Ψ∗

∥∥
`qh
≤ C ′3h

(7.74)

for q ∈ {2,∞}. The travelling wave equation (3.6) allows us to write

Etw(Ψ∗) = 2γ−4
Ψ∗
∂0∂Ψ∗ − γ−4

∗ Ψ′′∗ − c∗γ−1
Ψ∗
∂0Ψ∗ + c∗γ

−1
∗ Ψ′∗, (7.75)

which using (7.74) yields the second bound.
Using the fact that Ψ∗ ∈W 4,2 ∩W 4,∞, which allows us to apply Corollary 5.7, we may argue in

a similar fashion as above to conclude∥∥γ−6
∗ Ψ′′∗Ψ

′
∗Ψ
′′
∗ − 2γ−6

Ψ∗
∂0Ψ∗S+[∂0∂Ψ∗]T+[∂0∂Ψ∗]

∥∥
`qh
≤ C ′4h,∥∥γ−3

∗ Ψ′′∗ − γ−3
Ψ∗
S+[∂0∂Ψ∗]

∥∥
`qh

≤ C ′4h,∥∥γ−4
∗ Ψ′′′∗ − 2γ−4

Ψ∗
∂+∂0∂Ψ∗

∥∥
`qh

≤ C ′4h,

(7.76)

for q ∈ {2,∞}. The differentiated travelling wave equation (3.7) allows us to write

E+
tw;apx(Ψ∗) = 8γ−6

Ψ∗
∂0Ψ∗S+[∂0∂Ψ∗]T+[∂0∂Ψ∗]− 4γ−6

∗ Ψ′′∗Ψ
′
∗Ψ
′′
∗

+2γ−4
Ψ∗
∂+∂0∂Ψ∗ − γ−4

∗ Ψ′′′∗
+g′(Ψ∗)∂0Ψ∗ − g′(Ψ∗)Ψ′∗
−c∗γ−3

Ψ∗
S+[∂0∂Ψ∗] + c∗γ

−3
∗ Ψ′′∗ .

(7.77)

Using (7.76) together with (7.64) we may hence conclude

‖∂+[Etw(Ψ∗)]‖`qh ≤
∥∥E+

tw;apx(Ψ∗)
∥∥
`qh

+
∥∥∂+[Etw(Ψ∗)]− E+

tw;apx(Ψ∗)
∥∥
`qh

≤ C ′3h,
(7.78)

which yields the third bound.

7.4 The M terms

In the sequel we will often encounter the quantities

MU ;A[V ] = 8γ−4
U ∂0U [∂0∂U ]∂0V, MU ;C [V ] = γ2

Ug
′(U)V,

MU ;B [V ] = 2γ−2
U ∂0∂V, MU ;D[V ] = −c∗γ−1

U ∂0V.
(7.79)

The discrete derivatives of these terms can be approximated by

M+
U ;A;apx[V ] = 16(4γ−6

U − 3γ−4
U )[∂0∂U ]2∂0V + 8γ−4

U ∂0U [∂+∂0∂U ]∂0V

+16γ−4
U ∂0U [∂0∂U ]∂0∂V,

M+
U ;B;apx[V ] = 8γ−4

U ∂0U [∂0∂U ]∂0∂V + 2γ−2
U ∂+∂0∂V,

M+
U ;C;apx[V ] = −4∂0U [∂0∂U ]g′(U)V + γ2

Ug
′′(U)[∂0U ]V + γ2

Ug
′(U)∂0V,

M+
U ;D;apx[V ] = −2c∗γ−3

U ∂0U [∂0∂U ]∂0V − 2c∗γ−1
U ∂0∂V.

(7.80)

We are specifically interested in the combinations

MU [V ] = MU ;A[V ] +MU ;B [V ] +MU ;C [V ] +MU ;D[V ],

M+
U ;apx[V ] = M+

U ;A;apx[V ] +M+
U ;B;apx[V ] +M+

U ;C;apx[V ] +M+
U ;D;apx[V ],

(7.81)

for which we obtain the following bounds.
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Proposition 7.15. Assume that (Hg) is satisfied and fix κ > 0. There exists K > 0 so that for any
h > 0, U ∈ Ωh;κ and V ∈ `2h we have the a-priori bounds

‖MU [V ]‖`2h ≤ K ‖V ‖`2;2
h
,

‖∂+MU [V ]‖`2h ≤ K ‖V ‖`2;3
h

+K ‖∂+∂+∂+U‖`∞h ‖∂
+V ‖`2h ,

‖∂+MU [V ]−MU [∂+V ]‖`2h ≤ K ‖V ‖`2;2
h

+K ‖∂+∂+∂+U‖`∞h ‖∂
+V ‖`2h ,

(7.82)

together with the estimate∥∥∥∂+MU [V ]−M+
U ;apx[V ]

∥∥∥
`2h

≤ Kh ‖V ‖`2;3
h

+Kh ‖∂+∂+∂+U‖`∞h ‖V ‖`2;2
h
. (7.83)

In addition, for any h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the Lipschitz

bound

‖MU(2) [V ]−MU(1) [V ]‖`2h ≤
∥∥U (2) − U (1)

∥∥
`2;2
h

‖V ‖`∞;1
h

+
∥∥U (2) − U (1)

∥∥
`∞;1
h

‖V ‖`2;2
h
. (7.84)

We will also encounter the expressions

M̃U ;#[V ] = γ−2
U M+

U ;#;apx[V ] + 4γ−4
U ∂0U [∂0∂U ]MU ;#[V ] (7.85)

for # ∈ {A,B,C,D}, together with

M̃U ;E [V ] = 8γ−6
U ∂0U [∂+∂0∂U ]∂0V + 2γ−4

U ∂+∂0∂V. (7.86)

The relevant combinations are evaluated explicitly in the second main result of this subsection.

Proposition 7.16. For any κ > 0, h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identities

M̃U ;A[V ] + M̃U ;B [V ] + M̃U ;C [V ] = 16[6γ−8
U − 5γ−6

U ][∂0∂U ]2∂0V

+32γ−6
U ∂0U [∂0∂U ]∂0∂V

+g′′(U)[∂0U ]V + g′(U)∂0V,

+M̃U ;E [V ]

M̃U ;D[V ] = −6c∗γ−5
U ∂0U [∂0∂U ]∂0V − 2c∗γ−3

U ∂0∂V.

(7.87)

In the remainder of this subsection we set out to establish these results. We will treat each of
the components separately, using the estimates (7.5) to approximate the ∂+[γ−kU ] terms.

Lemma 7.17. Fix κ > 0. There exist K > 0 so that for any h > 0, U ∈ Ωh;κ and V ∈ `2h we have
the bound

‖∂+MU ;A[V ]−MU ;A[∂+V ]‖`2h ≤ K ‖∂+V ‖`2h +K ‖∂+∂+∂+U‖`∞h ‖∂
+V ‖`2h , (7.88)

together with the estimate∥∥∥∂+MU ;A[V ]−M+
U ;A;apx[V ]

∥∥∥
`2h

≤ Kh
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h + ‖∂+∂+∂+V ‖`2h

]
+Kh ‖∂+∂+∂+U‖`∞h ‖∂

+V ‖`2h .
(7.89)

Proof. We compute

∂+MU ;A[V ] = 8∂+[γ−4
U ]T+

[
∂0U [∂0∂U ]∂0V

]
+8γ−4

U S+[∂0∂U ]T+[∂0∂U ]T+∂0V

+8γ−4
U ∂0U∂+[∂0∂U ]T+∂0V

+8γ−4
U ∂0U [∂0∂U ]S+[∂0∂V ],

(7.90)
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together with

MU ;A[∂+V ] = 8γ−4
U ∂0U [∂0∂U ]S+[∂0∂V ]. (7.91)

The estimate (7.88) now follows directly from inspection.
Upon making the replacements

∂+[γ−4
U ] 7→ 8γ−6

U ∂0U [∂0∂U ], T+ 7→ I, S+ 7→ 2I, (7.92)

we readily see that ∂+
[
MU ;A[V ]

]
agrees with M+

U ;A;apx[V ]. In particular, applying these replacements
to each of the four terms in (7.90) separately, we may write

∂+
[
MU ;A[V ]

]
−M+

U ;A;apx[V ] = Ja + Jb + Jc + Jd, (7.93)

in which

Ja = 8
[
∂+[γ−4

U ]− 4γ−6
U ∂0US+[∂0∂U ]

]
T+
[
∂0U [∂0∂U ]∂0V

]
+32hγ−6

U ∂0U∂+[∂0∂U ]T+
[
∂0U [∂0∂U ]∂0V

]
+64hγ−6

U ∂0U [∂0∂U ]S+[∂0∂U ]T+[∂0∂U ]T+[∂0V ]

+64hγ−6
U ∂0U [∂0∂U ]∂0U∂+[∂0∂U ]T+[∂0V ]

+64hγ−6
U ∂0U [∂0∂U ]∂0U [∂0∂U ]S+[∂0∂V ],

(7.94)

together with

Jb = 8hγ−4
U ∂+[∂0∂U ]T+[∂0∂U ]T+[∂0V ]

+16hγ−4
U [∂0∂U ]∂+[∂0∂U ]T+[∂0V ]

+16hγ−4
U [∂0∂U ][∂0∂U ]S+[∂0∂V ]

(7.95)

and finally

Jc = 8hγ−4
U ∂0U∂+[∂0∂U ]S+[∂0∂V ],

Jd = 8hγ−4
U ∂0U [∂0∂U ]∂+[∂0∂V ].

(7.96)

The desired estimate (7.89) follows from (7.5) and inspection of the above identities.

Lemma 7.18. Fix κ > 0. There exist K > 0 so that for any h > 0, U ∈ Ωh;κ and V ∈ `2h we have
the bound

‖∂+MU ;B [V ]−MU ;B [∂+V ]‖`2h ≤ K ‖∂+∂+V ‖`2h , (7.97)

together with the estimate∥∥∥∂+MU ;B [V ]−M+
U ;B;apx[V ]

∥∥∥
`2h

≤ Kh
[
‖∂+∂+V ‖`2h + ‖∂+∂+∂+V ‖`2h

]
+Kh ‖∂+∂+∂+U‖`∞h ‖∂

+∂+V ‖`2h .
(7.98)

Proof. We compute

∂+MU ;B [V ] = 2∂+[γ−2
U ]T+[∂0∂V ] + 2γ−2

U ∂+∂0∂V, (7.99)

together with

MU ;B [∂+V ] = 2γ−2
U ∂+∂0∂V. (7.100)
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The estimate (7.97) now follows directly from inspection.
Upon making the replacements

∂+[γ−2
U ] 7→ 4γ−4

U ∂0U [∂0∂U ], T+ 7→ I, (7.101)

we readily see that ∂+
[
MU ;B [V ]

]
agrees with M+

U ;B;apx[V ]. In particular, we may write

∂+
[
MU ;B [V ]

]
−M+

U ;B;apx[V ] = Ja, (7.102)

in which

Ja = 2
[
∂+[γ−2

U ]− 2γ−4
U ∂0US+[∂0∂U ]

]
T+[∂0∂V ]

+4hγ−4
U ∂0U∂+[∂0∂U ]T+[∂0∂V ]

+8hγ−4
U ∂0U [∂0∂U ]∂+[∂0∂V ].

(7.103)

The desired estimate (7.98) follows from (7.5) and inspection of the above identity.

Lemma 7.19. Assume that (Hg) is satisfied and fix κ > 0. There exist K > 0 so that for any
h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bound

‖∂+MU ;C [V ]−MU ;C [∂+V ]‖`2h ≤ K ‖V ‖`2h , (7.104)

together with the estimate∥∥∥∂+MU ;C [V ]−M+
U ;C;apx[V ]

∥∥∥
`2h

≤ Kh
[
‖V ‖`2h + ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
+Kh ‖∂+∂+∂+U‖`∞h ‖V ‖`2h .

(7.105)

Proof. We compute

∂+MU ;C [V ] = ∂+[γ2
U ]T+[g′(U)V ]

+γ2
U∂

+[g′(U)]T+V

+γ2
Ug
′(U)∂+V,

(7.106)

together with

MU ;C [∂+V ] = γ2
Ug
′(U)∂+V. (7.107)

The estimate (7.104) now follows directly from inspection.
Upon making the replacements

∂+[γ−2
U ] 7→ 4γ−4

U ∂0U [∂0∂U ], T+ 7→ I, ∂+[g′(U)] 7→ g′′(U)∂0U (7.108)

we readily see that ∂+
[
MU ;C [V ]

]
agrees with M+

U ;C;apx[V ]. In particular, applying these replacements
to each of the three terms in (7.106) separately, we may write

∂+
[
MU ;C [V ]

]
−M+

U ;C;apx[V ] = Ja + Jb + Jc, (7.109)

in which

Ja =
[
∂+[γ2

U ] + 2∂0US+[∂0∂U ]
]
T+
[
g′(U)V

]
−2h∂0U∂+[∂0∂U ]T+

[
g′(U)V

]
−4h∂0U [∂0∂U ]∂+[g′(U)]T+V

−4h∂0U [∂0∂U ]g′(U)∂+V,

(7.110)
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together with

Jb = γ2
U

[
∂+g′(U)− g′′(U)∂0U ]T+V

+γ2
Ug
′′(U)[∂+U − ∂0U ]T+V

+hγ2
Ug
′′(U)∂0U∂+V

(7.111)

and finally

Jc = γ2
Ug
′(U)[∂+V − ∂0V ]

= hγ2
Ug
′(U)∂0∂V.

(7.112)

In order to estimate ‖Jb‖`2h , we recall that ∂+U − ∂0U = h∂0∂U and compute

|∂+g′(U)− g′′(U)∂+U | = h−1 |g′(U + h∂+U)− g′(U)− g′′(U)h∂+U |

≤ 1
2

[
sup|u|≤κ−1 |g′′′(u)|

]
h−1 |h∂+U |2

= 1
2h
[
sup|u|≤κ−1 |g′′′(u)|

]
|∂+U |2 .

(7.113)

The desired estimate (7.105) now follows from (7.5) and inspection of the above identities.

Lemma 7.20. Fix κ > 0. There exist K > 0 so that for any h > 0, U ∈ Ωh;κ and V ∈ `2h we have
the bound

‖∂+MU ;D[V ]−MU ;D[∂+V ]‖`2h ≤ K ‖∂+V ‖`2h , (7.114)

together with the estimate∥∥∥∂+MU ;D[V ]−M+
U ;D;apx[V ]

∥∥∥
`2h

≤ Kh
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h + ‖∂+∂+∂+V ‖`2h

]
+Kh ‖∂+∂+∂+U‖`∞h ‖∂

+V ‖`2h .
(7.115)

Proof. We compute

∂+MU ;D[V ] = −c∗∂+[γ−1
U ]T+∂0V − c∗γ−1

U S+[∂0∂V ], (7.116)

together with

MU ;D[∂+V ] = −c∗γ−1
U S+[∂0∂V ]. (7.117)

The estimate (7.114) now follows directly from inspection.
Upon making the replacements

∂+[γ−1
U ] 7→ 2γ−3

U ∂0U [∂0∂U ], T+ 7→ I, S+ 7→ 2I (7.118)

we readily see that ∂+
[
MU ;D[V ]

]
agrees withM+

U ;D;apx[V ]. In particular, applying these replacements
to each of the two terms in (7.106) separately, we see that

∂+
[
MU ;D[V ]

]
−M+

U ;D;apx[V ] = Ja + Jb, (7.119)

in which

Ja = −c∗
[
∂+[γ−1

U ]− γ−3
U ∂0US+[∂0∂U ]

]
T+[∂0V ]

−c∗hγ−3
U ∂0U∂+[∂0∂U ]T+[∂0V ]

−2c∗hγ−3
U ∂0U [∂0∂U ]S+[∂0∂V ],

(7.120)

together with

Jb = −c∗h∂+[∂0∂V ]. (7.121)

The desired estimate (7.115) now follows from (7.5) and inspection of the above identities.
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Proof of Proposition 7.15. The bound for ‖MU [V ]‖`2h and the Lipschitz bound (7.84) follow directly
by inspecting the definitions (7.79). The remaining bounds follow from Lemma’s 7.17 - 7.20.

Proof of Proposition 7.16. Direct computations yield

M̃U ;A[V ] = 16(4γ−8
U − 3γ−6

U )[∂0∂U ]2∂0V

+8γ−6
U ∂0U [∂+∂0∂U ]∂0V

+16γ−6
U ∂0U [∂0∂U ]∂0∂V

+32γ−8
U ∂0U [∂0∂U ]∂0U [∂0∂U ]∂0V

= 16(6γ−8
U − 5γ−6

U )[∂0∂U ]2∂0V

+8γ−6
U ∂0U [∂+∂0∂U ]∂0V

+16γ−6
U ∂0U [∂0∂U ]∂0∂V,

(7.122)

together with

M̃U ;B [V ] = 8γ−6
U ∂0U [∂0∂U ]∂0∂V + 2γ−4

U ∂+∂0∂V + 8γ−6
U ∂0U [∂0∂U ]∂0∂V

= 16γ−6
U ∂0U [∂0∂U ]∂0∂V + 2γ−4

U ∂+∂0∂V
(7.123)

and finally

M̃U ;C [V ] = −4γ−2
U ∂0U [∂0∂U ]g′(U)V + g′′(U)[∂0U ]V + g′(U)∂0V

+4γ−2
U ∂0U [∂0∂U ]g′(U)V

= g′′(U)[∂0U ]V + g′(U)∂0V.

(7.124)

The first identity follows directly from these expressions. To obtain the second identity we compute

M̃U ;D[V ] = −2c∗γ−5
U ∂0U [∂0∂U ]∂0V − 2c∗γ−3

U ∂0∂V

−4c∗γ−5
U ∂0U [∂0∂U ]∂0V

= −6c∗γ−5
U ∂0U [∂0∂U ]∂0V − 2c∗γ−3

U ∂0∂V.

(7.125)

8 Gridpoint behaviour

In this section we derive the reduced equation (2.26) by analyzing the function Y(U) defined in
(2.17) and showing that the speed of the gridpoints satisfies

ẋ = Y(U). (8.1)

In particular, we establish Lemma 2.1 together with Propositions 2.2 and 2.3.
In order to clean up the expressions (2.16)-(2.17), we introduce the functions

p̃(U) = 1
1+F�+ (U)F�0 (U)

,

p(U) = F�+(U)p̃(U), (8.2)

together with

q(U) = h−1 ln
[
1 + hp(U)F�0;+(U)

]
. (8.3)
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In addition, we introduce the functions

Z+(U) = exp[Q(U)],

Z−(U) = exp[−Q(U)].
(8.4)

Our first main result states that these expressions are well-defined, allowing us to obtain reasonably
compact expressions for Y(U) and its discrete derivative.

Proposition 8.1. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 and h > 0. For any U ∈ Ωh;κ,

we have the inclusions

p̃(U) ∈ `∞(hZ;R), p(U) ∈ `2(hZ;R), q(U) ∈ `1(hZ;R), (8.5)

together with

Q(U) ∈ `∞(hZ;R), Z±(U) ∈ `∞(hZ;R), Y(U) ∈ `∞(hZ;R). (8.6)

In addition, we have the identity

Q(U) = h
∑
−;h q(U), (8.7)

together with

Y(U) = −Z−(U)h
∑
−;h p(U)Z+(U)∂+

[
2F��0(U) + g(U)

]
,

∂+Y(U) = − 1
2T

+
[
Z−(U)

]
p(U)F�0;+(U)S+[Z+(U)Y(U)]

− 1
2S

+[Z−(U)]p(U)Z+(U)∂+
[
2F��0(U) + g(U)

]
.

(8.8)

Finally, for every U ∈ Ωh;κ we have the limit

lim
j→−∞

Yjh(U) = 0. (8.9)

Our second main result shows that we indeed have ẋ = Y(U), irrespective of whether the full
equation (2.2) or the reduced system (2.26) is satisfied.

Proposition 8.2. Suppose that (Hg) is satisfied. Consider a function U : [0, T ] → `∞h for which
U −H ∈ C1([0, T ]; `2h) and ∥∥∂+U(t)

∥∥
`∞h

< 1 (8.10)

for all 0 ≤ t ≤ T . Write

x(t) = xeq;h + h
∑
−;h(r+

U(t) − 1)

= xeq;h − h
∑
−;h

(
∂+U(t)

)2

r+
U(t)+1

.
(8.11)

Suppose furthermore that at least one of the following two conditions holds.

(a) The function U satisfies (2.26) on [0, T ].

(b) The pair (U, x) satisfies (2.2) on [0, T ].

Then there exists 0 < κ < 1
12 so that for every 0 ≤ t ≤ T we have the inclusion

U(t) ∈ Ωh;κ, (8.12)

together with the identity

ẋ(t) = Y
(
U(t)

)
. (8.13)
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8.1 Basic properties for Z and Y
In this subsection we show that the definitions above are well-posed. In addition, we establish some
basic identities for the discrete derivatives of Z and Y that allow us to establish Proposition 8.1.

Lemma 8.3. Fix 0 < κ < 1
12 and h > 0. For any U ∈ Ωh;κ we have the identity

hq(U) = ln
[
1 + F�+(U)T+F�0(U)

]
− ln

[
1 + F�+(U)F�0(U)

]
, (8.14)

together with the inequality

exp[hq(U)] = 1 + hp(U)F�0;+(U)

≥ 1
3κ

2.
(8.15)

Proof. We compute

exp[hq(U)] = 1 + hp(U)∂+F�0(U)

= 1 + F�+ (U)h∂+F�0 (U)
1+F�+ (U)F�0 (U)

= 1+F�+ (U)F�0 (U)+F�+ (U)h∂+F�0 (U)
1+F�+ (U)F�0 (U)

= 1+F�+ (U)T+F�0 (U)
1+F�+ (U)F�0 (U)

,

(8.16)

which directly implies (8.14). In addition, we may use Lemma 7.7 to conclude

exp
[
hq(U)

]
=

T+

[
1+F�− (U)F�0 (U)

]
1+F�+ (U)F�0 (U)

≥
1
2κ

3
2κ
−1

= 1
3κ

2.

(8.17)

Lemma 8.4. Fix 0 < κ < 1
12 and h > 0. For any U ∈ Ωh;κ, we have the inclusions

p̃(U) ∈ `∞(hZ;R), p(U) ∈ `2(hZ;R), q(U) ∈ `1(hZ;R), (8.18)

together with the identity

Q(U) = h
∑
−;h q(U). (8.19)

Proof. Note that Lemma 7.7 yields

p̃(U) = [1 + F�+(U)F�0(U)]−1 ∈ `∞(hZ;R). (8.20)

Together with Lemma 7.5 this shows that p(U) ∈ `2(hZ;R).
Since d

dx [ln(x)] can be uniformly bounded on sets of the form x ≥ 1
3κ

2 > 0, the bound (8.15)
implies that there exists C ′1 > 1 for which

|hq(U)| ≤ C ′1h |p(U)|
∣∣F�0;+(U)

∣∣ . (8.21)

Lemma 7.5 implies that F�0;+(U) ∈ `2(hZ;R), allowing us to apply Cauchy-Schwartz to conclude
that q(U) ∈ `1(hZ;R). Finally, the identity (8.19) follows directly from (8.14).
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Lemma 8.5. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 and h > 0. For any U ∈ Ωh;κ, we

have the inclusions

Q(U) ∈ `∞(hZ;R), Z±(U) ∈ `∞(hZ;R), Y(U) ∈ `∞(hZ;R). (8.22)

together with the identity

Y(U) = −Z−(U)h
∑
−;h p(U)Z+(U)∂+

[
2F��0(U) + g(U)

]
. (8.23)

In addition, the limit (8.9) holds.

Proof. The inclusions (8.22) for Q and Z± follow immediately from Lemma 8.4 and the definitions
(8.4). The expression (8.23) follows immediately from the definition (2.17).

We note that we have the inclusions p(U) ∈ `2h, F��0(U) ∈ `2h and g(U) ∈ `2h by Lemma 8.4,
Lemma 7.5 and Proposition 6.1 respectively. In particular, writing

H(U) = p(U)Z+(U)∂+[2F��0(U) + g(U)] (8.24)

we may use the fact that ∂+ is a bounded operator on `2(hZ;R) to conclude by Cauchy-Schwarz
that H(U) ∈ `1(hZ;R). The inclusion Y(U) ∈ `∞(hZ;R) and the limit (8.9) follow directly from
this.

We remark that we explicitly constructed Z+(U) with the aim of satisfying the first identity in
(8.26). Indeed, writing Z = Z+ and attempting to solve this equation, we compute

h∂+ ln(Z) = ln(T+Z)− ln(Z) = ln(1 + hZ−1∂+Z) = ln[1 + p(U)hF�0;+(U)], (8.25)

which leads naturally to (8.4). This choice will allow us to use Z as a discrete version of an integrating
factor; see Lemma 8.10 below.

Lemma 8.6. Fix 0 < κ < 1
12 and h > 0. For any U ∈ Ωh;κ, we have the identities

∂+[Z+(U)] = Z+(U)p(U)F�0;+(U),

∂+[Z−(U)] = −T+
[
Z−(U)

]
p(U)F�0;+(U). (8.26)

Proof. For any U ∈ `∞(hZ;R) we observe that

∂+
[
exp[U ]

]
= h−1exp[U ]

[
exp
[
T+[U ]− U

]
− 1
]

= h−1exp[U ]
[
exp
[
h∂+[U ]

]
− 1
]
.

(8.27)

This allows us to compute

∂+Z+(U) = h−1Z+(U)
[
exp
[
h∂+[Q(U)]

]
− 1
]

= h−1Z+(U)
[
exp
[

ln[1 + hp(U)F�0;+(U)]
]
− 1
]

= h−1Z+(U)
[
hp(U)F�0;+(U)

]
,

(8.28)

which yields the first identity. Using (4.7) we compute

∂+
[
Z−(U)] = ∂+

[
1

Z+(U)

]
= −Z

+(U)p(U)F�0;+(U)
P+Z+(U) ,

(8.29)

which yields the second identity.
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Lemma 8.7. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 and h > 0. For any U ∈ Ωh;κ, we

have the identities

∂+[Z+(U)Y(U)] = −p(U)Z+(U)∂+
[
2F��0(U) + g(U)

]
,

∂+[F�0(U)Z−(U)] = p̃(U)T+
[
Z−(U)

]
F�0;+(U).

(8.30)

Proof. The first identity follows from Z+(U)Z−(U) = 1 together with the expression (8.23) for
Y(U). In addition, using (8.26) and (4.5) we compute

∂+[F�0(U)Z−(U)] = F�0;+(U)T+[Z−(U)]−F�0(U)T+
[
Z−(U)

]
p(U)F�0;+(U)

=
(
1−F�0(U)p(U)

)
T+
[
Z−(U)

]
F�0;+(U).

(8.31)

The second identity follows from

F�0(U)p(U) = 1− p̃(U). (8.32)

Proof of Proposition 8.1. In view of Lemma’s 8.4 and 8.5, it suffices to establish the identity for
∂+Y. Exploiting (4.8), (8.26) and (8.30), we compute

∂+Y(U) = ∂+[Z−(U)Z+(U)Y(U)]

= 1
2∂

+[Z−(U)]S+[Z+(U)Y(U)]

− 1
2S

+[Z−(U)]p(U)Z+(U)∂+
[
2F��0(U) + g(U)

]
= − 1

2

[
T+[Z−(U)]p(U)F�0;+(U)

]
S+[Z+(U)Y(U)]

− 1
2S

+[Z−(U)]p(U)Z+(U)∂+
[
2F��0(U) + g(U)

]
,

(8.33)

as desired.

8.2 Gridpoint speed

In this subsection we use the discrete derivatives (8.26) and (8.30) to analyze the discrete differential
equations that govern the behaviour of the gridpoints. This allows us to establish Proposition 8.2
and the first three main results from §2.

Lemma 8.8. Consider the setting of Proposition 8.2, but without requiring (a) or (b) to hold. Then
there exists 0 < κ < 1

12 for which the inclusion

U(t) ∈ Ωh;κ (8.34)

holds for all 0 ≤ t ≤ T . In addition, we have

x− xeq;h ∈ C1
(

[0, T ]; `∞h
)
, (8.35)

with

ẋ = −h
∑
−;h F�+(U)∂+U̇ . (8.36)

Finally, we have the limit

lim
j→−∞

ẋjh(t) = 0 (8.37)

for every 0 ≤ t ≤ T .
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Proof. Since U(t) − H is continuous in `2h, and the interval [0, T ] is compact, the existence of the
constant κ > 0 can be deduced from Proposition 6.2.

Taking a pointwise derivative, we may compute

ṙ+
U = −F�+(U)∂+U̇ . (8.38)

Writing

p1(U) =
∂+U√

1− (∂+U)2 + 1
=

∂+U

r+
U + 1

(8.39)

and taking a pointwise derivative, we obtain the identity

ṗ1(U) = ∂+U̇
r+
U+1

+ ∂+U
(r+
U+1)2F�+(U)∂+U̇

= r+
U+1+∂+UF�+ (U)

(r+
U+1)2 ∂+U̇

= r+
U+1+[r+

U ]−1(1−(r+
U )2)

(r+
U+1)2 ∂+U̇

= 1
r+
U (r+

U+1)
∂+U̇ .

(8.40)

The embedding `2h ⊂ `∞h together with the smoothness assumption on U implies that

t 7→ p1

(
U(t)

)
∈ C1([0, T ]; `2h),

t 7→ ∂+U(t) ∈ C1([0, T ]; `2h).
(8.41)

In particular, since the map

π : `2h × `2h → `∞h , (V (1), V (2)) 7→ h
∑
−;h

V (1)V (2) (8.42)

is a bounded bilinear map, we see that

t 7→ π
[
p1

(
U(t)

)
, ∂+U(t)

]
∈ C1([0, T ]; `∞h ). (8.43)

Since we have

x(t) = xeq;h − π
[
p1

(
U(t)

)
, ∂+U(t)

]
, (8.44)

we may compute

ẋ(t) = − d
dtπ
[
p1

(
U(t)

)
, ∂+U(t)

]
= −π

[
ṗ1

(
U(t)

)
, ∂+U(t)

]
− π

[
p1

(
U(t)

)
, ∂+U̇(t)

]
= −π

[
1

r+
U(t)(r

+
U(t)+1)

∂+U̇(t), ∂+U(t)
]
− π

[
∂+U(t)

r+
U(t)+1

, ∂+U̇(t)
]

= −π
[[

1
r+
U(t)(r

+
U(t)+1)

+ 1
r+
U(t)+1

]
∂+U(t), ∂+U̇(t)

]
= −π

[
F�+

(
U(t)

)
, ∂+U̇(t)

]
,

(8.45)

which gives the desired expression. Finally, the limit (8.37) follows directly from the fact that
F�+

(
U(t)

)
∈ `2h and ∂+U̇(t) ∈ `2h, which means that the product is in `1(hZ;R).

Lemma 8.9. Consider the setting of Proposition 8.2 and suppose that (a) holds. Then we have
ẋ(t) = Y

(
U(t)

)
for all 0 ≤ t ≤ T .

74



Proof. Exploiting the identity (8.36), we compute

ẋ = −h
∑
−;h F�+(U)∂+U̇

= −h
∑
−;h F�+(U)∂+

[
F�0(U)Y(U) + 2F��0(U) + g(U)

]
= −h

∑
−;h F�+(U)∂+

[
F�0(U)Z−(U)Z+(U)Y(U) + 2F��0(U) + g(U)

]
= − 1

2h
∑
−;h F�+(U)∂+

[
F�0(U)Z−(U)

]
S+[Z+(U)Y(U)

]
− 1

2h
∑
−;h F�+(U)S+

[
F�0(U)Z−(U)

]
∂+[Z+(U)Y(U)]

−h
∑
−;h F�+(U)∂+[2F��0(U) + g(U)

]
.

(8.46)

Using the definition (8.2) and the identities (8.30), we find

ẋ = − 1
2h
∑
−;h p(U)T+

[
Z−(U)

]
F�0;+(U)S+[Z+(U)Y(U)

]
+ 1

2h
∑
−;h F�+(U)S+

[
F�0(U)Z−(U)

]
p(U)Z+(U)∂+

[
2F��0(U) + g(U)

]
−h
∑
−;h F�+(U)∂+[2F��0(U) + g(U)

]
.

(8.47)

Writing

H(U) = 1
2S

+[F�0(U)Z−(U)]p(U)Z+(U)− 1, (8.48)

we see

ẋ = − 1
2h
∑
−;h p(U)T+

[
Z−(U)

]
F�0;+(U)S+[Z+(U)Y(U)

]
+h
∑
−;h F�+(U)H(U)∂+

[
2F��0(U) + g(U)

]
.

(8.49)

Using (8.30) we now compute

2H(U) =
[
S+[F�0(U)Z−(U)]p(U)− 2Z−(U)

]
Z+(U)

=
[
2F�0(U)Z−(U)p(U) + h∂+[F�0(U)Z−(U)]p(U)− 2Z−(U)

]
Z+(U)

=
[
2F�0(U)Z−(U)p(U) + hp̃(U)T+[Z−(U)]F�0;+(U)p(U)− 2Z−(U)

]
Z+(U).

(8.50)

Exploiting (8.32) we obtain

2H(U) =
[
− 2p̃(U)Z−(U) + hp̃(U)T+[Z−(U)]F�0;+(U)p(U)

]
Z+(U), (8.51)

which using (8.26) yields

2H(U) =
[
− 2Z−(U)− h∂+[Z−(U)]

]
p̃(U)Z+(U)

= −S+[Z−(U)]p̃(U)Z+(U).
(8.52)

In particular, recalling (8.8) we see

ẋ = − 1
2h
∑
−;h p(U)T+

[
Z−(U)

]
F�0;+(U)S+[Z+(U)Y(U)

]
− 1

2h
∑
−;h S

+[Z−(U)]p(U)Z+(U)∂+
[
2F��0(U) + g(U)

]
= h

∑
−;h ∂

+[Y(U)].

(8.53)

The desired conclusion ẋ = Y(U) now follows from the limit (8.9).
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Lemma 8.10. Consider the setting of Proposition 8.2 and suppose that (b) holds. Then we have
ẋ(t) = Y

(
U(t)

)
for all 0 ≤ t ≤ T .

Proof. Exploiting the identity (8.36), we compute

ẋ = −h
∑
−;h F�+(U)∂+U̇

= −h
∑
−;h F�+(U)∂+

[
F�0(U)ẋ+ 2F��0(U) + g(U)

]
.

(8.54)

Taking a difference, we obtain

∂+ẋ+ F�+(U)∂+[F�0(U)ẋ] = −F�+(U)∂+
[
2F��0(U) + g(U)

]
. (8.55)

Using (8.26), we now observe that

∂+[Z+(U)ẋ] = ∂+[Z+(U)]T+ẋ+ Z+(U)∂+[ẋ]

= Z+(U)p(U)F�0;+(U)T+ẋ+ Z+(U)∂+[ẋ]

= Z+(U)p(U)
[
∂+[F�0(U)ẋ]−F�0(U)∂+ẋ

]
+Z+(U)∂+[ẋ]

= Z+(U)
[(

1− p(U)F�0(U)
)
∂+[ẋ] + p(U)∂+[F�0(U)ẋ]

]
.

(8.56)

In particular, recalling (8.32) we see that

∂+[Z+(U)ẋ] = Z+(U)
[
p̃(U)∂+[ẋ] + p(U)∂+[F�0(U)ẋ]

]
= Z+(U)p̃(U)

[
∂+[ẋ] + F�+(U)∂+[F�0(U)ẋ]

]
.

(8.57)

Substituting (8.55), we find

∂+[Z+(U)ẋ] = −Z+(U)p(U)∂+
[
2F��0(U) + g(U)

]
. (8.58)

The limit (8.37) together with the inclusion Z+(U) ∈ `∞ implies that

lim
j→−∞

Z+
jh(U)ẋjh = 0. (8.59)

In particular, we obtain

Z+(U)ẋ = −h
∑
−;hZ+(U)p(U)∂+

[
2F��0(U) + g(U)

]
, (8.60)

as desired.

Proof of Propostion 8.2. The result follows immediately from Lemma’s 8.8-8.10.

Proof of Lemma 2.1. The statements follow directly from Propositions 6.1 and 8.1.

Proof of Proposition 2.2. Suppose that (b) and (c) are satisfied. Writing

yjh(t) = xjh(t)− jh (8.61)

we see that

lim
j→−∞

yjh(t) = 0 (8.62)
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and

∂+y(t) =
√

1− [∂+U(t)]2 − 1. (8.63)

This means that

y(t) = h
∑
−;h

∂+y(t) = h
∑
−;h

[√
1− [∂+U(t)]2 − 1

]
(8.64)

and hence x must satisfy (8.11). Together with (a) and (d), this allows us to apply Proposition 8.2
and conclude that ẋ = Y(U). Item (e) now directly implies that (2.26) holds.

Proof of Proposition 2.3. Items (a’) and (b’) together with (8.11) allow us to apply Proposition 8.2
and conclude that ẋ = Y(U). Together with (c’) this implies that (2.25) holds. Item (a) follows
from Lemma 8.8, (b) and (d) are immediate and finally (c) follows from the fact that r+

U − 1 ∈
`1(hZ;R).

9 The full nonlinearity

In this section we study the function

G(U) = F�0(U)Y(U) + 2F��0(U) + g(U), (9.1)

which contains all the terms on the right-hand side of our main reduced equation (2.26). In addition,
we study the discrete derivative

G+(U) = ∂+[G(U)]. (9.2)

In principle the results in §4 and §8 provide explicit expressions for all these terms, but the main
issue here is that the expression (8.8) features a third order derivative that cannot be controlled
uniformly for U ∈ Ωh;κ and h > 0. This is particularly dangerous since we can only except our linear
operator to generate two derivatives, in line with the continuous theory developed in §3.

This can be repaired by a discrete summation-by-parts procedure that we carry out in this
section. Naturally, the term G+(U) will feature third derivatives, but as a consequence of the discrete
differentiation the linear operator also generates an extra derivative.

In order to state our results, we need to introduce the three auxiliary functions

p
�+
A (U) = S+[1+F�+ (U)F�0 (U)]

2P+[1+F�+ (U)F�0 (U)]
,

p
�+
B (U) = − S+F�+ (U)S+F�0 (U)

4P+[1+F�+ (U)F�0 (U)]
,

p�0(U) = − S+F�+ (U)S+F�+ (U)
4P+[1+F�+ (U)F�0 (U)]

(9.3)

together with the convenient shorthand

p�+(U) = p
�+
A (U) + p

�+
B (U). (9.4)

Our first main result here shows how these functions can be used to describe ∂+p(U).

Proposition 9.1. Fix 0 < κ < 1
12 and h > 0. Then for any U ∈ Ωh;κ we have the inclusions

p
�+
A (U) ∈ `∞(hZ;R), p

�+
B (U) ∈ `2(hZ;R), p�0(U) ∈ `2(hZ;R). (9.5)

In addition, we have the identity

∂+p(U) = p�+(U)F�+;+(U) + p�0(U)F�0;+(U). (9.6)
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We now have all the necessary ingredients to define the functions

Y1(U) = F�0(U)Z−(U),

Y2(U) = 2F��0(U) + g(U), (9.7)

together with

XA(U) = p(U)Z+(U),

XB(U) = S+[Z+(U)]p�+(U),

XC(U) = S+[Z+(U)]p�0(U),

XD(U) = S+[p(U)]Z+(U)p(U).

(9.8)

Our second main result shows that these functions can be used to split G(U) into the four components

GA(U) =
[
1− Y1(U)T−

[
XA
]]
Y2(U),

GB(U) = 1
2Y1(U)h

∑
−;h Y2(U)T−

[
XB(U)F�+;+(U)

]
,

GC(U) = 1
2Y1(U)h

∑
−;h Y2(U)T−

[
XC(U)F�0;+(U)

]
,

GD(U) = 1
2Y1(U)h

∑
−;h Y2(U)T−

[
XD(U)F�0;+(U)

]
.

(9.9)

Proposition 9.2. Suppose that (Hg) is satisfied and fix 0 < κ < 1
12 and h > 0. Then for any

U ∈ Ωh;κ we have the identity

G(U) = GA(U) + GB(U) + GC(U) + GD(U). (9.10)

Turning to G+(U), we introduce the functions

Y+
1 (U) = ∂+[Y1(U)], Y+

2 (U) = ∂+[Y2(U)]. (9.11)

Using (8.30), one readily obtains the identities

Y+
1 (U) = p̃(U)F�0;+(U)T+[Z−(U)],

Y+
2 (U) = 2F��0;+(U) + ∂+[g(U)].

(9.12)

In order to isolate the third derivative in Y+
2 , we write

Y+
2a(U) = 2I��0;+

+ (U)∂+∂0∂U,

Y+
2b(U) = 2

[
F��0;+(U)− I��0;+

+ (U)∂+∂0∂U
]

+ ∂+[g(U)].
(9.13)

Our third main result shows that G+(U) can be decomposed into the components

G+
A′a(U) =

[
1− Y1(U)XA(U)

]
Y+

2a(U),

G+
A′b(U) =

[
1− Y1(U)XA(U)

]
Y+

2b(U),

G+
A′c(U) = −Y+

1 (U)XA(U)T+
[
Y2(U)

]
,

(9.14)

together with

G+
B′(U) = 1

2Y
+
1 (U)hT+

∑
−;h Y2(U)T−

[
XB(U)F�+;+(U)

]
,

G+
C′(U) = 1

2Y
+
1 (U)hT+

∑
−;h Y2(U)T−

[
XC(U)F�0;+(U)

]
,

G+
D′(U) = 1

2Y
+
1 (U)hT+

∑
−;h Y2(U)T−

[
XC(U)F�0;+(U)

]
.

(9.15)
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Proposition 9.3. Suppose that (Hg) is satisfied and fix 0 < κ < 1
12 and h > 0. Then for any

U ∈ Ωh;κ we have the identity

G+(U) = G+
A′a(U) + G+

A′b(U) + G+
A′c(U) + G+

B′(U) + G+
C′(U) + G+

D′(U). (9.16)

We provide the proof for these three results in §9.1. We conclude in §9.2 by analyzing the structure
of our decompositions. In particular, each term can be written as a sum of products that can be
described in the terminology of §6.2.

9.1 Summation by parts

Proof of Proposition 9.1. The inclusions follow directly from Lemma’s 7.5 and 7.7. In addition, we
may use (4.8) to compute

∂+p(U) = ∂+
[ F�+ (U)

1+F�+ (U)F�0 (U)

]
= S+[1+F�+ (U)F�0 (U)]∂+[F�+ (U)]

2P+[1+F�+ (U)F�0 (U)]
− S+[F�+ (U)]∂+[F�+ (U)F�0 (U)]

2P+[1+F�+ (U)F�0 (U)]

= 1
2 [P+p̃(U)]−1S+

[
1 + F�+(U)F�0(U)

]
F�+;+(U)

− 1
2 [P+p̃(U)]−1S+

[
F�+(U)

]
∂+
[
F�+(U)F�0(U)

]
.

(9.17)

Applying (4.8) once more we obtain the desired decomposition

∂+p(U) = 1
2 [P+p̃(U)]−1S+

[
1 + F�+(U)F�0(U)

]
F�+;+(U)

− 1
4 [P+p̃(U)]−1S+

[
F�+(U)

]
S+[F�0(U)]F�+;+(U)

− 1
4 [P+p̃(U)]−1S+

[
F�+(U)

]
S+
[
F�+(U)]F�0;+(U).

(9.18)

Lemma 9.4. Fix 0 < κ < 1
12 and h > 0. Then for any U ∈ Ωh;κ we have the identity

∂+[XA(U)] = 1
2XB(U)F�+;+(U) + 1

2XC(U)F�0;+(U) + 1
2XD(U)F�0;+(U). (9.19)

Proof. Appying (4.8) and (8.26), we compute

∂+[XA(U)] = ∂+[p(U)Z+(U)]

= 1
2∂

+[p(U)]S+[Z+(U)] + 1
2S

+[p(U)]∂+[Z+(U)]

= 1
2 [p�+A (U) + p

�+
B (U)]F�+;+(U)S+[Z+(U)]

+ 1
2p
�0(U)F�0;+(U)S+[Z+(U)]

+ 1
2S

+[p(U)]p(U)Z+(U)F�0;+(U),

(9.20)

which yields the desired result.

Proof of Proposition 9.2. Applying the discrete summation-by-parts formula (4.13) to the expression
(8.8) for Y, we obtain

Y(U) = −Z−(U)T−
[
p(U)Z+(U)

][
2F��0(U) + g(U)

]
+Z−(U)h

∑
−;h

[
2F��0(U) + g(U)

]
∂−
[
p(U)Z+(U)

]
.

(9.21)
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Exploiting the definitions (9.7)-(9.8), this allows us to write

G(U) = −Y1(U)Y2(U)T−
[
XA(U)

]
+Y1(U)h

∑
−;h Y2(U)∂−XA

+Y2(U).

(9.22)

Applying (9.19), we find

G(U) =
[
1− Y1(U)T−

[
XA(U)

]]
Y2(U)

+ 1
2Y1(U)h

∑
−;h Y2(U)T−

[
XB(U)F�+;+(U)

]
+ 1

2Y1(U)h
∑
−;h Y2(U)

[
XC(U)F�0;+(U) + XD(U)F�0;+(U)

]
,

(9.23)

as desired.

Proof of Proposition 9.3. We use the preliminary expression (9.22) together with (4.5) to compute

∂+[G(U)] = −Y+
1 (U)T+[Y2(U)]XA(U)− Y1(U)Y+

2 (U)XA(U)− Y1(U)Y2(U)∂−[XA(U)]

+Y+
1 (U)hT+

∑
−;h Y2(U)∂−XA + Y1(U)Y2(U)∂−XA

+Y+
2 (U)

= −Y+
1 (U)XA(U)T+Y2(U) +

(
1− Y1(U)XA(U)

)
Y+

2 (U)

+Y+
1 (U)hT+

∑
−;h Y2(U)∂−XA.

(9.24)

Applying (9.19) now yields the desired decomposition.

9.2 Product structure

The first two results below describe the two types of products that appear in our decompositions of
G(U) and G+(U). Both types can be covered by the theory developed in §6.2.

Lemma 9.5. Pick k ≥ 1. Assume that

qπ = (qπ;1, . . . , qπ;k) ∈ {2,∞}k (9.25)

is a sequence containing precisely one 2 and suppose that the map

π : `qπ → `2h (9.26)

is given by

π[v1, . . . , vk] = v1v2 · · · vk. (9.27)

Then the pair (qπ, π) satisfies (hπ).

Proof. This follows directly from the bound

‖v1 · · · vk‖`2h ≤ ‖v1‖`2h ‖v2‖`∞h · · · ‖vk‖`∞h (9.28)

and rearrangements thereof.
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Lemma 9.6. Pick k1 ≥ 1 and k2 ≥ 2 and write k = k1 + k2. Assume that

qπ = (qπ;1, . . . , qπ;k) ∈ {2,∞}k (9.29)

is a sequence containing precisely one 2 in the first k1 positions and precisely two 2’s in the last k2

positions. Assume also that the map

π : `qπh → `2h (9.30)

is given by

π[v1, . . . , vk] = v1 · · · vk1h
∑
−;h

vk1+1 · · · vk. (9.31)

Then the pair (qπ, π) satisfies (hπ).

Proof. This follows directly from the bound

‖π[v1, . . . , vk]‖`2h ≤ ‖v1‖`2h ‖v2‖`∞h · · · ‖vk1‖`∞h ‖vk1+1‖`2h ‖vk1+2‖`2h ‖vk1+3‖`∞h · · · ‖vk‖`∞h (9.32)

and rearrangements thereof.

We now define the set of nonlinearities

Snl = {F�0 , p, p�0 , p�+ ,F��0 ,F�0;+,F�−;+,Z+,Z−, g}. (9.33)

In addition, for each f ∈ Snl we define a set of preferred exponents Qf ;pref ⊂ {2,∞} via

Qf ;pref =


{2} for f ∈ {F��0 ,F�0;+,F�−;+, g},

{∞} for f ∈ {p, p�0 , p�+ ,Z+,Z−},

{2,∞} for f ∈ {F�0}.

(9.34)

Introducing the notation g+(U) = ∂+g(U), we also define

Snl = Snl ∪ {p̃, I��0;+
0s , I��0;+

ss , g+, ∂0∂}, (9.35)

together with the preferred exponent sets

Qf ;pref =


{2} for f ∈ {F��0 ,F�−;+, g, g+},

{∞} for f ∈ {p̃, p, p�0 , p�+ , I��0;+
0s , I��0;+

0s ,Z+,Z−},

{2,∞} for f ∈ {F�0 , ∂0∂,F�0;+}.

(9.36)

Comparing with (9.34), we remark that ∞ was added to QF�0;+;pref . This is motivated by the fact
that the G+

A′c(U) term contains a product of this nonlinearity with F��0 . In any case, we note that
for any f ∈ Snl we have

Qf ;pref ⊂ Qf ;pref . (9.37)

Notice that we are excluding the third derivative from the set Snl. Recalling the identity

Z−(U)Z+(U) = 1 (9.38)

and using (8.32), we obtain the simplification

G+
A′a(U) = 2[1−F�0(U)p(U)]I��0;+

+ (U)∂+∂0∂U

= 2p̃(U)I��0;+
+ (U)∂+∂0∂U.

(9.39)
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The third derivative requires special attention, but appears here in a relatively straightforward
fashion. For this reason, we exclude it from our general statements here and analyze it directly in
the sequel.

The following two results state that G(U) and G+(U)−G+
A′a(U) can be decomposed into products

of the two types discussed above. In addition, every product can be estimated in `2h by only using
norms ‖f(U)‖`qh for which q ∈ Qf ;pref .

Lemma 9.7. Fix 0 < κ < 1
12 and h > 0. There exists an integer N > 1 together with integers

ki ≥ 1, sequences

qπi = (qπi;1, . . . , qπi;ki) ∈ {2,∞}k,

fi = (fi;1, . . . , fi;ki) ∈ Sknl

(9.40)

and maps

πi : `qπih → `2h, (9.41)

each defined for 1 ≤ i ≤ N , so that the following properties hold true.

(i) For each U ∈ Ωh;κ we have the decomposition

G(U) =
N∑
i=1

πi
[
fi;1(U), . . . , fi;ki(U)

]
. (9.42)

(ii) For each 1 ≤ i ≤ N the pair (qπi , πi) satisfies the conditions of either Lemma 9.5 or Lemma
9.6.

(iii) For each 1 ≤ i ≤ N and 1 ≤ j ≤ ki we have the inclusion

qπi;j ∈ Qfi;j ;pref . (9.43)

Proof. The desired decomposition can be read off directly from the structure of the terms defined
in (9.9).

Lemma 9.8. Fix 0 < κ < 1
12 and h > 0. There exists an integer N > 1 together with integers

ki ≥ 1, sequences

qπi = (qπi;1, . . . , qπi;ki) ∈ {2,∞}k,

fi = (fi;1, . . . , fi;ki) ∈ Sknl

(9.44)

and maps

πi : `qπih → `2h, (9.45)

each defined for 1 ≤ i ≤ N , so that the following properties hold true.

(i) For each U ∈ Ωh;κ we have the decomposition

G+(U)−G+
A′a(U) =

N∑
i=1

πi
[
fi;1(U), . . . , fi;ki(U)

]
. (9.46)

(ii) For each 1 ≤ i ≤ N the pair (qπi , πi) satisfies the conditions of either Lemma 9.5 or Lemma
9.6.
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(iii) For each 1 ≤ i ≤ N and 1 ≤ j ≤ ki we have the inclusion

qπi;j ∈ Qfi;j ;pref . (9.47)

Proof. The desired composition can be read off directly from the structure of the terms defined in
(9.14) and (9.15).

Our final result allows us to construct admissable sequences for our multi-linear maps by simply
swapping suitable exponents. This will allow us to deviate from the exponents Qf ;pref defined above
in a strategic fashion, which is crucial to obtain useful error bounds.

Lemma 9.9. Consider the setting of either Lemma 9.5 or Lemma 9.6. Pick any integer 1 ≤ i∗ ≤ k
for which qπ;i∗ =∞. Then there is an integer

1 ≤ j∗[i∗] ≤ k (9.48)

that has

qπ;j∗[i∗] = 2 (9.49)

and for which the swapped sequence

qi∗ = (qi∗;1, . . . , qi∗;k) (9.50)

defined by

qi∗;j =


qπ;j if j /∈ {i∗, j∗},

2 if j = i∗,

∞ if j = j∗,

(9.51)

is admissable for π.

Proof. This follows directly by inspecting (9.28) and (9.32).

10 Component estimates

Our goal in this section is to analyze the nonlinearities f ∈ Snl ∪ Snl and introduce the terminology
that allows the conditions (hf), (hf)lin and (hf)nl to be verified. In particular, we construct suitable
approximants fapx and flin that are accurate to leading order in h, but also tractable to use in our
subsequent computations.

In order to apply Lemma 6.6 in a streamlined fashion, we state our estimates that are relevant
for (6.72) in terms of the quantities

Sfull(V ) = ‖V ‖`2;2
h

+ ‖∂+V ‖`∞h , Sfull(V ) = Sfull(V ) + ‖∂+∂+V ‖`∞h ,

S2;fix(V ) = ‖V ‖`2;2
h
, S2;fix(V ) = S2;fix(V )

(10.1)

related to the seminorms in (hf), together with the expressions

Tsafe(V ) = ‖V ‖`2;2
h
, T safe(V ) = Tsafe(V ),

T∞;opt(V ) = ‖∂+V ‖`∞h , T∞;opt(V ) = T∞;opt(V ) + ‖∂+∂+V ‖`∞h
(10.2)
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associated to the linear terms in (hf)lin. Finally, we use the functions

Enl(V ) = (‖V ‖`2;2
h

+ ‖V ‖`∞;1
h

+ h) ‖V ‖`2;2
h
,

Enl(V ) = Enl(V )
(10.3)

to control the nonlinear terms (6.71).
We divide our nonlinearities into five distinct groups that are fully described by Propositions

10.1-10.5 in §10.1. In Corollaries 10.6-10.9 we subsequently discuss a number of bookkeeping issues
that in §12 will allow us to control the cross-terms (6.72) for G(U) by

Jcross;U (V ) = Tsafe(V )Sfull(V ) + T∞;opt(V )S2;fix(V ). (10.4)

Naturally, the related estimate for G+(U)− G+
A′a(U) will also hold.

The proofs for our estimates can be found in §10.2-§10.6. The main idea is to apply the substi-
tution techniques from §6.1 to the explicit identities derived in §4.

10.1 Estimate summary

The first set of nonlinearities is given by

Snl;I = {F�0}. (10.5)

We define

F�0apx(U) = γ−1
U ∂0U, F�0lin;U [V ] = γ−3

U ∂0V. (10.6)

For any f ∈ Snl;I , we write

Qf = {2,∞}, QAf ;lin = QBf ;lin = {2,∞}, QAf ;nl = QBf ;nl = {2} (10.7)

and recall that Qf ;pref = Qf ;pref = {2,∞}.

Proposition 10.1. Assume that (Hg) is satisfied, fix 0 < κ < 1
12 and pick any nonlinearity f ∈

Snl;I . Then there exists a constant K > 0 so that the following properties are true.

(i) Upon introducing the seminorms

[V ]f ;2,h = ‖∂+V ‖`2h ≤ Sfull(V ),

[V ]f ;∞,h = ‖∂+V ‖`∞h ≤ Sfull(V ),
(10.8)

the conditions in (hf) are all satisfied.

(ii) For every q ∈ Qf , U ∈ Ωh;κ and h > 0 we have the estimate

‖f(U)− fapx(U)‖`qh ≤ Kh. (10.9)

(iii) Upon writing fBlin;U = 0, the conditions in (hf)lin are satisfied. In addition, the bounds∥∥∥fAlin;U [V ]
∥∥∥
`2h

≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),∥∥∥fAlin;U [V ]
∥∥∥
`∞h

≤ K ‖∂+V ‖`∞h ≤ KT∞;opt(V )
(10.10)

hold for all U ∈ Ωh;κ, h > 0 and V ∈ `2h.
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(iv) Upon writing fBnl;U = 0, the conditions in (hf)nl are satisfied. In addition, we have the bound∥∥∥fAnl;U (V )
∥∥∥
`2h

≤ K ‖∂+V ‖∞ ‖∂+V ‖`2h +Kh
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEnl(V )

(10.11)

for all U ∈ Ωh;κ, h > 0 and V ∈ `2h.

The second set of nonlinearities is given by

Snl;II = {p̃, p, p�0 , p�+ , I��0;+
0s , I��0;+

ss , I��0;+
+ }. (10.12)

We remark that I��0;+
+ /∈ Snl, but we do need the bounds stated below in order to estimate G+

A′a.
We write

p̃apx(U) = γ2
U , p̃lin;U [V ] = −2∂0U∂0V,

papx(U) = γU∂
0U, plin;U [V ] = γ−1

U (2γ2
U − 1)∂0V,

p�0apx(U) = γ2
U (γ2

U − 1), p�0lin;U [V ] = (2− 4γ2
U )∂0U∂0V,

p
�+
apx(U) = γ4

U , p
�+
lin;U [V ] = −4γ2

U∂
0U∂0V,

I��0;+
0s;apx(U) = 4γ−6

U ∂0U, I��0;+
0s;lin;U [V ] = 4[6γ−8

U − 5γ−6
U ]∂0V,

I��0;+
ss;apx(U) = 4γ−6

U ∂0U, I��0;+
ss;lin;U [V ] = 4[6γ−8

U − 5γ−6
U ]∂0V,

I��0;+
+;apx(U) = γ−4

U , I��0;+
+;lin;U [V ] = 4γ−6

U ∂0U∂0V.

(10.13)

In addition, we write

Qf = {∞}, QAf ;lin = QBf ;lin = {2,∞}, QAf ;nl = QBf ;nl = {2} (10.14)

for each f ∈ Snl;II . We recall that Qf ;pref = {∞} for f ∈ Snl;II ∩ Snl and Qf ;pref = {∞} for
f ∈ Snl;II ∩ Snl.

For later use, we recall the definitions (4.39) and remark that we can formally write

F��0;+
a;apx (U) = γ−4

U ∂+∂0∂U,

F��0;+
b;apx (U) = 4γ−6

U ∂0US+[∂0∂U ]T+[∂0∂U ],
(10.15)

together with

F��0;+
a;lin;U [V ] = 4γ−6

U ∂0U [∂+∂0∂U ]∂0V + γ−4
U ∂+∂0∂V,

F��0;+
b;lin;U [V ] = 4[6γ−8

U − 5γ−6
U ]S+[∂0∂U ]T+[∂0∂U ]∂0V

+4γ−6
U ∂0U

[
T+[∂0∂U ]S+[∂0∂V ] + S+[∂0∂U ]T+[∂0∂V ]

]
.

(10.16)

Proposition 10.2. Assume that (Hg) is satisfied, fix 0 < κ < 1
12 and pick any nonlinearity f ∈

Snl;II . Then there exists a constant K > 0 so that the following properties are true.

(i) Upon introducing the seminorm

[V ]f ;∞,h = ‖∂+V ‖`∞h ≤ Sfull(V ), (10.17)

the conditions in (hf) are all satisfied.
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(ii) For every q ∈ Qf , U ∈ Ωh;κ and h > 0 we have the estimate

‖f(U)− fapx(U)‖`qh ≤ Kh. (10.18)

(iii) Upon writing fBlin;U = 0, the conditions in (hf)lin are satisfied. In addition, the bounds∥∥∥fAlin;U [V ]
∥∥∥
`2h

≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),∥∥∥fAlin;U [V ]
∥∥∥
`∞h

≤ K ‖∂+V ‖`∞h ≤ KT∞;opt(V )
(10.19)

hold for all U ∈ Ωh;κ, h > 0 and V ∈ `2h.

(iv) Upon writing fBnl;U = 0, the conditions in (hf)nl are satisfied. In addition, we have the bound∥∥∥fAnl;U (V )
∥∥∥
`2h

≤ K ‖∂+V ‖`∞h ‖∂
+V ‖`2h +Kh

[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEnl(V )

(10.20)

for all U ∈ Ωh;κ, h > 0 and V ∈ `2h.

The third set of nonlinearities is given by

Snl;III = {F��0 ,F�0;+,F�−;+, ∂0∂}. (10.21)

We write

F��0apx (U) = γ−4
U ∂0∂U, F��0lin;U [V ] = 4γ−6

U ∂0U [∂0∂U ]∂0V + γ−4
U ∂0∂V,

F�0;+
apx (U) = γ−3

U S+[∂0∂U ], F�0;+
lin;U [V ] = 3γ−5

U ∂0US+[∂0∂U ]∂0V + γ−3
U S+[∂0∂V ],

F�−;+
apx (U) = 2γ−3

U ∂0∂U, F�−;+
lin;U [V ] = 6γ−5

U ∂0U [∂0∂U ]∂0V + 2γ−3
U ∂0∂V,

[∂0∂]apx(U) = ∂0∂U, [∂0∂]lin;U [V ] = ∂0∂V.

(10.22)

In addition, for each f ∈ Snl;III we write

Qf = {2,∞}, QAf ;lin = QBf ;lin = {2,∞}, QAf ;nl = QBf ;nl = {2}. (10.23)

We recall that Qf ;pref = Qf ;pref = {2} for f ∈ {F��0 ,F�−;+} . For f = F�0;+ we have Qf ;pref = {2}
and for f ∈ {F�0;+, ∂0∂} we have Qf ;pref = {2,∞}.

Proposition 10.3. Assume that (Hg) is satisfied, fix 0 < κ < 1
12 and pick any nonlinearity f ∈

Snl;III . Then there exists a constant K > 0 so that the following properties are true.

(i) Upon introducing the seminorms

[V ]f ;2,h = ‖∂+V ‖`2h +
∥∥∂0∂V

∥∥
`2h

≤ min{Sfull(V ), S2;fix(V )},

[V ]f ;∞,h = ‖∂+V ‖`∞h + ‖∂+∂+V ‖`∞h ≤ Sfull(V ),
(10.24)

the conditions in (hf) are all satisfied.

(ii) For every q ∈ Qf , U ∈ Ωh;κ and h > 0 we have the estimate

‖f(U)− fapx(U)‖`qh ≤ Kh. (10.25)

86



(iii) Upon writing fBlin;U = 0, the conditions in (hf)lin are satisfied. In addition, the bounds∥∥∥fAlin;U [V ]
∥∥∥
`2h

≤ K
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KTsafe(V ),∥∥∥fAlin;U [V ]

∥∥∥
`∞h

≤ K
[
‖∂+V ‖`∞h + ‖∂+∂+V ‖`∞h

]
≤ KT∞;opt(V )

(10.26)

hold for all U ∈ Ωh;κ, h > 0 and V ∈ `2h.

(iv) Upon writing fBnl;U = 0, the conditions in (hf)nl are satisfied. In addition, we have the bound∥∥∥fAnl;U (V )
∥∥∥
`2h

≤ K ‖∂+V ‖∞
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
+Kh

[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEnl(V )

(10.27)

for all U ∈ Ωh;κ, h > 0 and V ∈ `2h.

The fourth set of nonlinearities is given by

Snl;IV = {Z+,Z−}. (10.28)

We write

Z+
apx(U) = γ−1

U , Z+
lin;U [V ] = γ−3

U ∂0U∂0V + γ−1
U h

∑
−;h Esm(U)∂0V,

Z−apx(U) = γU , Z−lin;U [V ] = −γ−1
U ∂0U∂0V − γUh

∑
−;h Esm(U)∂0V.

(10.29)

In addition, for every f ∈ Snl;IV we write

Qf = {∞}, QAf ;lin = {∞}, QBf ;lin = {2,∞}, QAf ;nl = {∞}, QBf ;nl = {2} (10.30)

and recall that Qf ;pref = Qf ;pref = {∞}.

Proposition 10.4. Assume that (Hg) is satisfied, fix 0 < κ < 1
12 and pick any nonlinearity f ∈

Snl;IV . Then there exists a constant K > 0 so that the following properties are true.

(i) Upon introducing the seminorm

[V ]f ;∞,h = ‖∂+V ‖`2h + ‖∂+V ‖`∞h + ‖∂+∂+V ‖`2h ≤ Sfull(V ), (10.31)

the conditions in (hf) are all satisfied.

(ii) For every q ∈ Qf , U ∈ Ωh;κ and h > 0 we have the estimate

‖f(U)− fapx(U)‖`qh ≤ Kh. (10.32)

(iii) The conditions in (hf)lin are satisfied. In addition, the bounds∥∥∥fAlin;U [V ]
∥∥∥
`∞h

≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),∥∥∥fBlin;U [V ]
∥∥∥
`2h

≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),∥∥∥fBlin;U [V ]
∥∥∥
`∞h

≤ K ‖∂+V ‖`∞h ≤ KT∞;opt(V )

(10.33)

hold for all U ∈ Ωh;κ, h > 0 and V ∈ `2h.
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(iv) The conditions in (hf)nl are satisfied. In addition, we have the bounds∥∥∥fAnl;U (V )
∥∥∥
`∞h

≤ K
[
‖∂+V ‖2`2h + ‖∂+∂+V ‖2`2h

]
+Kh

[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEnl(V ),∥∥∥fBnl;U (V )

∥∥∥
`2h

≤ Kh ‖∂+V ‖`2h
≤ KEnl(V )

(10.34)

for all U ∈ Ωh;κ, h > 0 and V ∈ `2h.

Recalling the notation g+(U) = ∂+g(U), the final set of nonlinearities is given by

Snl;V = {g, g+}. (10.35)

We write

gapx(U) = g(U), glin;U [V ] = g′(U)V,

g+
apx(U) = g′(U)∂0U, g+

lin;U [V ] = g′′(U)[∂0U ]V + g′(U)∂0V.
(10.36)

In addition, for every f ∈ Snl;V we write

Qf = {2,∞}, QAf ;lin = QBf ;lin = {2}, QAf ;nl = QBf ;nl = {2}. (10.37)

We recall that Qg;pref = Qg;pref = {2} and Qg+;pref = {2}.

Proposition 10.5. Assume that (Hg) is satisfied, fix 0 < κ < 1
12 and pick any nonlinearity f ∈

Snl;V . Then there exists a constant K > 0 so that the following properties are true.

(i) Upon introducing the seminorms

[V ]f ;2,h = ‖V ‖`2h + ‖∂+V ‖`2h ≤ min{Sfull(V ), S2;fix(V )},

[V ]f ;∞,h = ‖V ‖`∞h + ‖∂+V ‖`∞h ,
(10.38)

the conditions in (hf) are all satisfied.

(ii) For every q ∈ Qf , U ∈ Ωh;κ and h > 0 we have the estimate

‖f(U)− fapx(U)‖`qh ≤ Kh. (10.39)

(iii) Upon writing fBlin;U = 0, the conditions in (hf)lin are satisfied. In addition, the bound∥∥∥fAlin;U [V ]
∥∥∥
`2h

≤ K
[
‖V ‖`2h + ‖∂+V ‖`2h

]
≤ KTsafe(V ) (10.40)

holds for all U ∈ Ωh;κ, h > 0 and V ∈ `2h.

(iv) Upon writing fBnl;U = 0, the conditions in (hf)nl are satisfied. In addition, we have the bound∥∥∥fAnl;U (V )
∥∥∥
`2h

≤ K
[
‖V ‖`∞h + ‖∂+V ‖`∞h

][
‖V ‖`2h + ‖∂+V ‖`2h

]
Kh
[
‖V ‖`2h + ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEnl(V )

(10.41)

for all U ∈ Ωh;κ, h > 0 and V ∈ `2h.
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Corollary 10.6. For every f ∈ Snl we have ∞ ∈ Qf together with Qf ;pref ⊂ QAf ;lin and Qf ;pref ⊂
QBf ;lin. The same properties hold upon replacing (Snl, Qf ;pref) by (Snl, Qf ;pref).

Proof. The result can be readily verified by inspecting the identities above.

Corollary 10.7. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . For every f ∈ Snl and q ∈ Qf ;pref

we have

[V ]f ;q,h ≤ Sfull(V ) (10.42)

for any h > 0 and V ∈ `2h. In addition, if 2 ∈ Qf ;pref then at least one of the following two properties
hold true.

(a) We have

[V ]f ;2,h ≤ S2;fix(V ) (10.43)

for every h > 0 and V ∈ `2h.

(b) We have

[V ]f ;∞,h ≤ Sfull(V ) (10.44)

for every h > 0 and V ∈ `2h.

The same properties hold upon replacing (Snl, Qf ;pref , Sfull, S2;fix) by (Snl, Qf ;pref , Sfull, S2;fix).

Proof. The result can be readily verified by inspecting the identities and estimates above.

Corollary 10.8. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . For any f ∈ Snl, any # ∈ {A,B}

and any q ∈ Qf ;pref , at least one of the following two properties hold true.

(a) There exists K > 0 so that ∥∥∥f#
lin;U [V ]

∥∥∥
`qh

≤ KTsafe(V ) (10.45)

holds for every h > 0, U ∈ Ωh;κ and V ∈ `2h.

(b) We have q =∞ and there exists K > 0 so that the bounds∥∥∥f#
lin;U [V ]

∥∥∥
`2h

≤ KTsafe(V ),∥∥∥f#
lin;U [V ]

∥∥∥
`∞h

≤ KT∞;opt(V )
(10.46)

hold for every h > 0, U ∈ Ωh;κ and V ∈ `2h.

The same properties hold upon replacing (Snl, Qf ;pref , Tsafe, T∞;opt) by (Snl, Qf ;pref , T safe, T∞;opt).

Proof. The result can be readily verified by inspecting the identities and estimates above.

Corollary 10.9. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Consider any f ∈ Snl and any

# ∈ {A,B}. Then if 2 ∈ Qf ;pref , there exists a constant K > 0 so that∥∥∥f#
nl;U (V )

∥∥∥
`2h

≤ KEnl(V ) (10.47)

holds for all h > 0, U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ.
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Otherwise, there exists q ∈ {2,∞} together with a constant K > 0 so that∥∥∥f#
nl;U (V )

∥∥∥
`qh

≤ KEnl(V ) (10.48)

holds for all h > 0, U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ. The same properties hold upon
replacing (Snl, Qf ;pref , Enl) by (Snl, Qf ;pref , Enl).

Proof. The result can be readily verified by inspecting the identities and estimates above.

10.2 Gridpoint spacing

We define the approximate derivative

rlin;U [V ] = −γ−1
U ∂0U∂0V (10.49)

together with the nonlinear residuals

r±nl;U (V ) = r±U+V − r
±
U − rlin;U [V ],

r0
nl;U (V ) = r0

U+V − r0
U − rlin;U [V ].

(10.50)

Lemma 10.10. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise bounds∣∣r0

U − γU
∣∣+
∣∣r+
U − γU

∣∣+
∣∣r−U − γU ∣∣ ≤ Kh

∣∣∂0∂U
∣∣ ,∣∣∣r0

nl;U (V )
∣∣∣+
∣∣∣r+

nl;U (V )
∣∣∣+
∣∣∣r+

nl;U (V )
∣∣∣ ≤ K

[
|∂+V |2 + |∂−V |2

]
+Kh

[
|∂+V |+ |∂−V |+

∣∣∂0∂V
∣∣ ] (10.51)

hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. We consider only the statements concerning r+
U as the functions r−U and r0

U can be treated in
a similar fashion. Writing f(x) =

√
1− x2 and φ(∂−U, ∂+U) = ∂+U , we see that

r+
U = f

(
φ(∂−U, ∂+U)

)
. (10.52)

We include the redundant variable ∂−U here because it will be used for our approximate function

φapx(∂−U, ∂+U) = 1
2∂

+U + 1
2∂
−(U)

= ∂0U
(10.53)

and our approximate derivative

φlin;U [∂−V, ∂+V ] = ∂0V. (10.54)

An easy computation shows that

φ(∂−U, ∂+U)− φapx(∂−U, ∂+U) = ∂+U − ∂0U

= h∂0∂U,
(10.55)

together with

φnl;U (∂−V, ∂+V ) = ∂+(U + V )− ∂+U − ∂0V

= ∂+V − ∂0V

= h∂0∂V.

(10.56)
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The a-priori estimate (6.7) ensures that the geometric condition (6.17) can be satisfied. In particular,
the bounds now follow directly from Lemma 6.4 and the observations

f
(
φapx(∂−U, ∂+U)

)
= γU ,

Df
(
φapx(∂−U, ∂+U)

)
= −γ−1

U ∂0U.
(10.57)

10.3 Discrete derivatives

We write

F�+apx(U) = F�−apx(U) = F�0apx(U) = γ−1
U ∂0U,

F�+lin;U [V ] = F�−lin;U [V ] = F�0lin;U [V ] = γ−3
U ∂0V

(10.58)

and introduce the nonlinear residuals

F�±nl;U (V ) = F�±(U + V )−F�±(U)−F�±lin;U [V ],

F�0nl;U (V ) = F�0(U + V )−F�0(U)−F�0lin;U [V ].
(10.59)

Lemma 10.11. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise bounds∣∣F�0(U)−F�0apx(U)

∣∣+
∣∣F�+(U)−F�+apx(U)

∣∣+
∣∣F�−(U)−F�−apx(U)

∣∣ ≤ Kh
∣∣∂0∂U

∣∣ (10.60)

and ∣∣∣F�0nl;U (V )
∣∣∣+
∣∣∣F�+nl;U (V )

∣∣∣+
∣∣∣F�−nl;U (V )

∣∣∣ ≤ K
[
|∂−V |2 + |∂+V |2

]
+Kh

[
|∂−V |+ |∂+V |+

∣∣∂0∂V
∣∣ ] (10.61)

hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. We consider only the statements concerning F�+ as the functions F�− and F�0 can be treated
in a similar fashion. Recalling the fact that r+

U depends only on ∂+U , we abuse notation slightly to
write

φ(∂−U, ∂+U) = (∂+U, r+
U ). (10.62)

Upon introducing f(x, y) = x/y, we see that

F�+(U) = f
(
φ(∂−U, ∂+U)

)
. (10.63)

We now define the approximants

φapx(∂−U, ∂+U) = (∂0U, γU ),

φlin;U [∂−V, ∂+V ] = (∂0V,−γ−1
U ∂0U∂0V )

(10.64)

and compute

φ(∂−U, ∂+U)− φapx(∂−U, ∂+U) =
(
∂+U − ∂0U, r+

U − γU
)

=
(
h∂0∂U, r+

U − γU
) (10.65)

91



together with

φnl;U (∂−V, ∂+V ) =
(
∂+V − ∂0V, r+

nl;U (V )
)

=
(
h∂0∂V, r+

nl;U (V )
)
.

(10.66)

In particular, Lemma 10.10 provides the bound

|φ(∂−U, ∂+U)− φapx(∂−U, ∂+U)| ≤ C ′1h
∣∣∂0∂U

∣∣ (10.67)

together with

|φnl;U (∂−V, ∂+V )| ≤ C ′1

[
|∂−V |2 + |∂+V |2

]
+ C ′1h

[
|∂−V |+ |∂+V |+

∣∣∂0∂V
∣∣ ]. (10.68)

Upon computing

f
(
φapx(∂−U, ∂+U)

)
= γ−1

U ∂0U,

Df
(
φapx(∂−U, ∂+U)

)
φlin;U [∂−V, ∂+V ] = γ−1

U ∂0V − ∂0Uγ−2
U (−γ−1

U ∂0U∂0V )

=
[
γ−1
U + (∂0U)2γ−3

U

]
∂0V

= γ−3
U ∂0V,

(10.69)

the desired bounds follow directly from Lemma 6.4.

Proof of Proposition 10.1. The results follow directly from Lemma 10.11.

Turning to second derivatives, we recall the definitions

F�−;+
apx (U) = 2γ−3

U ∂0∂U,

F�−;+
lin;U [V ] = 6γ−5

U ∂0U [∂0∂U ]∂0V + 2γ−3
U ∂0∂V

(10.70)

and write

F�−;+
nl;U (V ) = F�−;+(U + V )−F�−;+(U)−F�−;+

lin;U [V ]. (10.71)

Lemma 10.12. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise approximation

estimate ∣∣∣F�−;+(U)−F�−;+
apx (U)

∣∣∣ ≤ Kh
∣∣∂0∂U

∣∣ (10.72)

and the residual bound∣∣∣F�−;+
nl;U (V )

∣∣∣ ≤ K
[
|∂−V |2 + |∂+V |2 + |∂−V |

∣∣∂0∂V
∣∣+ |∂+V |

∣∣∂0∂V
∣∣ ]

+Kh
[
|∂−V |+ |∂+V |+

∣∣∂0∂V
∣∣ ] (10.73)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. Motivated by the identity

F�−;+(U) =
2
r+
U

[
1 + F�−(U)F�0(U)

]
∂0∂U (10.74)
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derived in Lemma 4.3, we write

f(y, z−, z0) =
2
y

[
1 + z−z0

]
(10.75)

together with

φ(∂−U, ∂+U) =
(
r+
U ,F

�−(U),F�0(U)
)

(10.76)

and finally

P (∂−U, ∂+U, ∂0∂U) = f
(
φ(∂−U, ∂+U)

)
∂0∂U. (10.77)

One readily verifies that

F�−;+(U) = P (∂−U, ∂+U, ∂0∂U). (10.78)

We now define the approximants

φapx(∂−U, ∂+U) =
(
γU , γ

−1
U ∂0U, γ−1

U ∂0U
)
,

φlin;U [∂−V, ∂+V ] =
(
− γ−1

U ∂0U∂0V, γ−3
U ∂0V, γ−3

U ∂0V
) (10.79)

and compute

φ(∂−U, ∂+U)− φapx(∂−U, ∂+U) =
(
r+
U − γ

−1
U ,F�−(U)−F�apx,F�0(U)−F�apx

)
(10.80)

together with

φnl;U (∂−V, ∂+V ) =
(
r+
nl;U (V ),F�−nl;U (V ),F�0nl;U (V )

)
. (10.81)

In particular, Lemma’s 10.10 and 10.11 provide the bound

|φ(∂−U, ∂+U)− φapx(∂−U, ∂+U)| ≤ C ′1h
∣∣∂0∂U

∣∣ , (10.82)

together with

|φnl;U (∂−V, ∂+V )| ≤ C ′1

[
|∂−V |2 + |∂+V |2

]
+C ′1h

[
|∂−V |+ |∂+V |+

∣∣∂0∂V
∣∣ ]. (10.83)

Introducing the compressed nonlinearity

f(y, z) = f(y, z, z) =
2
y

(1 + z2) (10.84)

together with the compressed approximants

φapx(∂−U, ∂+U) = (γU , γ−1
U ∂0U),

φlin;U [∂−V, ∂+V ] =
(
− γ−1

U ∂0U∂0V, γ−3
U ∂0V

)
,

(10.85)

we see that

f
(
φapx(∂−U, ∂+U)

)
= f

(
φapx(∂−U, ∂+U)

)
,

Df
(
φapx(∂−U, ∂+U)

)
φlin;U [∂−V, ∂+V ] = Df

(
φapx(∂−U, ∂+U)

)
φlin;U [∂−V, ∂+V ].

(10.86)
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Upon computing

Df(y, z) =
(
− 2
y2

(1 + z2), 4
z

y

)
, (10.87)

we hence see that the functions defined in (6.30) satisfy

Papx(U) = 2γ−1
U

(
1 + (∂0U)2γ−2

U

)
∂0∂U

= 2γ−3
U ∂0∂U,

(10.88)

together with

Plin;U [V ] = −2γ−2
U

(
1 + (∂0U)2γ−2

U

)
(−γ−1

U ∂0U)∂0V (∂0∂U)

+4γ−2
U ∂0U(γ−3

U ∂0V )(∂0∂U)

+2γ−1
U

(
1 + (∂0U)2γ−2

U

)
∂0∂V

= 6γ−5
U ∂0U∂0∂U∂0V + 2γ−3

U ∂0∂V.

(10.89)

The desired estimates now follow directly from Corollary 6.5.

We also recall the definitions

F��0apx (U) = γ−4
U ∂0∂U,

F��0lin;U [V ] = 4γ−6
U ∂0U [∂0∂U ]∂0V + γ−4

U ∂0∂V
(10.90)

and write

F��0nl;U (V ) = F��0(U + V )−F��0(U)−F��0lin;U [V ]. (10.91)

Lemma 10.13. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise approximation

estimate ∣∣F��0(U)−F��0apx (U)
∣∣ ≤ Kh

∣∣∂0∂U
∣∣ (10.92)

and the residual bound∣∣∣F��0nl;U (V )
∣∣∣ ≤ K

[
|∂−V |2 + |∂+V |2 + |∂−V |

∣∣∂0∂V
∣∣+ |∂+V |

∣∣∂0∂V
∣∣ ]

+Kh
[
|∂−V |+ |∂+V |+

∣∣∂0∂V
∣∣ ] (10.93)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. Motivated by the identity

F��0(U) =
1

r+
U r

0
U

[
1 + F�−(U)F�0(U)

]
∂0∂U (10.94)

derived in Lemma 4.3 and (4.33), we write

f(y+, y0, z−, z0) =
1

y+y0

[
1 + z−z0

]
(10.95)

together with

φ(∂−U, ∂+U) =
(
r+
U , r

0
U ,F�−(U),F�0(U)

)
(10.96)
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and finally

P (∂−U, ∂+U, ∂0∂U) = f
(
φ(∂−U, ∂+U)

)
∂0∂U. (10.97)

One readily verifies that

F��0(U) = P (∂−U, ∂+U, ∂0∂U). (10.98)

We now define the approximants

φapx(∂−U, ∂+U) =
(
γU , γU , γ

−1
U ∂0U, γ−1

U ∂0U
)
,

φlin;U [∂−V, ∂+V ] =
(
− γ−1

U ∂0U∂0V,−γ−1
U ∂0U∂0V, γ−3

U ∂0V, γ−3
U ∂0V

)
.

(10.99)

This allows us to compute

φ(∂−U, ∂+U)− φapx(∂−U, ∂+U) =
(
r+
U − γ

−1
U , r0

U − γ
−1
U ,F�−(U)−F�apx,F�0(U)−F�apx

)
,

(10.100)

together with

φnl;U (∂−V, ∂+V ) =
(
r+
nl;U (V ), r0

nl;U (V )F�−nl;U (V ),F�0nl;U (V )
)
. (10.101)

In particular, the bounds (10.82)-(10.83) remain valid.
This allows us to repeat the procedure in the proof of Lemma 10.12 with the compressed ap-

proximants (10.85) and the compressed nonlinearity

f(y, z) = f(y, y, z, z) =
1
y2

(1 + z2), (10.102)

for which we have

Df(y, z) =
(
− 2
y3

(1 + z2), 2
z

y2

)
. (10.103)

The functions defined in (6.30) hence satisfy

Papx(U) = γ−2
U

(
1 + (∂0U)2γ−2

U

)
∂0∂U

= γ−4
U ∂0∂U,

(10.104)

together with

Plin;U [V ] = −2γ−3
U

(
1 + (∂0U)2γ−2

U

)
(−γ−1

U ∂0U)∂0V (∂0∂U)

+2γ−3
U ∂0U(γ−3

U ∂0V )(∂0∂U)

+γ−2
U

(
1 + (∂0U)2γ−2

U

)
∂0∂V

= 4γ−6
U ∂0U [∂0∂U ]∂0V + γ−4

U ∂0∂V.

(10.105)

The desired estimates again follow directly from Corollary 6.5.

We now recall the definitions

F�0;+
apx (U) = γ−3

U S+[∂0∂U ],

F�0;+
lin;U [V ] = 3γ−5

U ∂0U [S+∂0∂U ]∂0V + γ−3
U S+[∂0∂V ]

(10.106)

and write

F�0;+
nl;U (V ) = F�0;+(U + V )−F�0;+(U)−F�0;+

lin;U [V ]. (10.107)
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Lemma 10.14. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise approximation

estimate ∣∣F�0;+(U)−F�0;+
apx (U)

∣∣ ≤ Kh
[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ] (10.108)

and the residual bound∣∣∣F�0;+
nl;U (V )

∣∣∣ ≤ K
[
|∂−V |2 + |∂+V |2 + T+ |∂+V |2

]
+K

[
|∂−V |+ |∂+V |+ T+ |∂+V |

][ ∣∣∂0∂V
∣∣+ T+

∣∣∂0∂V
∣∣ ]

+Kh
[
|∂−V |+ |∂+V |+ T+ |∂+V |+

∣∣∂0∂V
∣∣+ T+

∣∣∂0∂V
∣∣ ] (10.109)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. Motivated by the identity

F�0;+(U) = 1
T+r0

U

[
1 + F�0(U)F�0(U)

]
[∂0∂U ]

+ 1
T+r0

U

[
1 + F�0(U)T+[F�0(U)]

]
T+[∂0∂U ]

(10.110)

derived in Lemma 4.3, we write

f1(ys, z, zs) = 1
ys

[
1 + z2

]
,

f2(ys, z, zs) = 1
ys

[
1 + zzs

] (10.111)

together with

φ(∂−U, ∂+U, T+∂+U) =
(
T+r0

U ,F�0(U), T+F�0(U)
)

(10.112)

and finally

P1(∂−U, ∂+U, T+∂+U, ∂0∂U) = f1

(
φ(∂−U, ∂+U, T+∂+U)

)
∂0∂U,

P2(∂−U, ∂+U, T+∂+U, T+∂0∂U) = f2

(
φ(∂−U, ∂+U, T+∂+U)

)
T+∂0∂U.

(10.113)

For convenience, we introduce the shorthand

ωU = (∂−U, ∂+U, T+∂+U). (10.114)

One readily verifies that

F�0;+(U) = P1(ωU , ∂0∂U) + P2(ωU , T+∂0∂U). (10.115)

We now define the approximants

φapx(ωU ) =
(
γU , γ

−1
U ∂0U, γ−1

U ∂0U
)
,

φlin;U [ωV ] =
(
− γ−1

U ∂0U∂0V, γ−3
U ∂0V, γ−3

U ∂0V
)
.

(10.116)

This allows us to compute

φ(ωU )− φapx(ωU ) =
(
T+r0

U − γU ,F�0(U)−F�apx(U), T+F�0(U)−F�apx(U)
)

=
(
r0
U − γU ,F�0(U)−F�0apx(U),F�0(U)−F�0apx(U)

)
+
(
h∂+[r0

U ], 0, hF�0;+(U)
)
,

(10.117)
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together with

φnl;U (ωV ) =
(
T+r0

nl;U (V ),F�0nl;U (V ), T+F�0nl;U (V )
)

+h
(
− ∂+[γ−1

U ∂0U∂0V ], 0, ∂+[γ−3
U ∂0V ]

)
.

(10.118)

In particular, Lemma’s 10.10 and 10.11 together with Corollaries 7.3 and 7.6 provide the bound

|φ(ωU )− φapx(ωU )| ≤ C ′1h
[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ], (10.119)

together with

|φnl;U (ωV )| ≤ C ′1

[
|∂−V |2 + |∂+V |2 + T+ |∂+V |2

]
+C ′1h

[
|∂−V |+ |∂+V |+ T+ |∂+V |+

∣∣∂0∂V
∣∣+ T+

∣∣∂0∂V
∣∣ ]. (10.120)

Introducing the compressed nonlinearity

f(y, z) = f1(y, z, z) = f2(y, z, z) =
1
y

(1 + z2), (10.121)

together with the compressed approximants

φapx(ωU ) = (γU , γ−1
U ∂0U),

φlin;U [ωV ] =
(
− γ−1

U ∂0U∂0V, γ−3
U ∂0V

)
,

(10.122)

we see that the identities

fi
(
φapx(ωU )

)
= f

(
φapx(ωU )

)
,

Dfi
(
φapx(ωU )

)
φlin;U [ωV ] = Df

(
φapx(ωU )

)
φlin;U [ωV ]

(10.123)

hold for i = 1, 2. Upon computing

Df(y, z) =
(
− 1
y2

(1 + z2), 2
z

y

)
, (10.124)

we hence see that the functions defined in (6.30) satisfy

P1;apx(ωU , ∂0∂U) = γ−1
U

(
1 + (∂0U)2γ−2

U

)
∂0∂U

= γ−3
U ∂0∂U,

P2;apx(ωU , T+∂0∂U) = γ−3
U T+∂0∂U,

(10.125)

together with

P1;lin;U [ωV , ∂0∂V ] = −γ−2
U

(
1 + (∂0U)2γ−2

U

)
(−γ−1

U ∂0U)∂0V (∂0∂U)

+2γ−2
U ∂0U(γ−3

U ∂0V )(∂0∂U)

+γ−1
U

(
1 + (∂0U)2γ−2

U

)
∂0∂V

= 3γ−5
U ∂0U∂0∂U∂0V + γ−3

U ∂0∂V,

P2;lin;U [ωV , T+∂0∂V ] = 3γ−5
U ∂0UT+[∂0∂U ]∂0V + γ−3

U T+[∂0∂V ].

(10.126)

The desired estimates again follow directly from Corollary 6.5.
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Proof of Proposition 10.3. The results follow directly from Lemma’s 10.12, 10.13 and 10.14.

We recall the definitions

I��0;+
+;apx(U) = γ−4

U ,

I��0;+
+;lin;U [V ] = 4γ−6

U ∂0U∂0V
(10.127)

and write

I��0;+
+;nl;U (V ) = I��0;+

+ (U + V )− I��0;+
+ (U)− I��0;+

+;lin;U [V ]. (10.128)

Lemma 10.15. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise approximation

estimate ∣∣I��0;+
+ (U)− I��0;+

+;apx(U)
∣∣ ≤ Kh

∣∣∂0∂U
∣∣ (10.129)

and the residual bound∣∣∣I��0;+
+;nl;U (V )

∣∣∣ ≤ K
[
|∂−V |2 + |∂+V |2

]
+Kh

[
|∂−V |+ |∂+V |+

∣∣∂0∂V
∣∣ ] (10.130)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. Motivated by the identity

I��0;+
+ (U) =

1
r+
U r

0
U

[
1 + F�−(U)F�0(U)

]
(10.131)

derived in Lemma 4.4, we may reuse the functions f , φ, φapx and φlin defined in the proof of Lemma
10.13. Writing

P (∂−U, ∂+U) = f
(
φ(∂−U, ∂+U)

)
, (10.132)

one readily verifies that

I��0;+
+ (U) = P (∂−U, ∂+U). (10.133)

Reusing the computations in the proof of Lemma 10.13, we see that the functions defined in
(6.19) satisfy

Papx(U) = γ−2
U

(
1 + (∂0U)2γ−2

U

)
= γ−4

U ,
(10.134)

together with

Plin;U [V ] = −2γ−3
U

(
1 + (∂0U)2γ−2

U

)
(−γ−1

U ∂0U)∂0V

+2γ−3
U ∂0U(γ−3

U ∂0V )

= 4γ−6
U ∂0U∂0V.

(10.135)

The desired estimates now follow from Lemma 6.4 and the bounds (10.82)-(10.83).
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We recall the definitions

I��0;+
0s;apx(U) = I��0;+

ss;apx(U) = 4γ−6
U ∂0U,

F��0;+
0s;lin;U [V ] = F��0;+

ss;lin;U [V ] = 4
[
6γ−8
U − 5γ−6

U

]
∂0V

(10.136)

and write

I��0;+
0s;nl;U (V ) = I��0;+

0s (U + V )− I��0;+
0s (U)− I��0;+

0s;lin;U [V ],

I��0;+
ss;nl;U (V ) = I��0;+

ss (U + V )− I��0;+
ss (U)− I��0;+

ss;lin;U [V ].
(10.137)

Lemma 10.16. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise approximation

estimate∣∣I��0;+
0s (U)− I��0;+

s;apx (U)
∣∣+
∣∣I��0;+
ss (U)− I��0;+

s;apx (U)
∣∣ ≤ Kh

[ ∣∣∂0∂U
∣∣+ T+

∣∣∂0∂U
∣∣ ] (10.138)

and the residual bound∣∣∣I��0;+
0s;nl;U (V )

∣∣∣+
∣∣∣I��0;+
ss;nl;U (V )

∣∣∣ ≤ K
[
|∂−V |2 + |∂+V |2 + T+ |∂+V |2

]
+Kh

[
|∂−V |+ |∂+V |+ T+ |∂+V |+

∣∣∂0∂V
∣∣+ T+

∣∣∂0∂V
∣∣ ]

(10.139)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. For convenience, we introduce the shorthand

ωU = (∂−U, ∂+U, T+∂+U). (10.140)

Motivated by the identities derived in Lemma 4.4, we write

f0s(y0, y0s, y+, y+s, z0, z0s, z−, z+) = 1
y+y0y0s

z0(1 + z+z0s)

+ 2
y0y+y+

z0s(1 + z−z0)

+ 1
y+y0y0s

z−(1 + z2
0),

fss(y0, y0s, y+, y+s, z0, z0s, z−, z+) = 2y0+y+s
y0y0sy+y+s

z0s(1 + z+z0s)

+ 1
y+y0y0s

z−(1 + z0z0s),

(10.141)

together with

φ(ωU ) =
(
r0
U , T

+r0
U , r

+
U , T

+r+
U ,F

�0(U), T+F�0(U),F�−(U),F�+(U)
)

(10.142)

and finally

P0s(ωU ) = f0s

(
φ(ωU )

)
,

Pss(ωU ) = fss
(
φ(ωU )

)
.

(10.143)

One readily verifies that

I��0;+
0s (U) = P0s(ωU ),

I��0;+
ss (U) = Pss(ωU ).

(10.144)
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We now define the approximants

φapx(ωU ) =
(
γU , γU , γU , γU , γ

−1
U ∂0U, γ−1

U ∂0U, γ−1
U ∂0U, γ−1

U ∂0U
)
,

φlin;U [ωV ] =
(
− γ−1

U ∂0U∂0V,−γ−1
U ∂0U∂0V,−γ−1

U ∂0U∂0V,−γ−1
U ∂0U∂0V,

γ−3
U ∂0V, γ−3

U ∂0V, γ−3
U ∂0V, γ−3

U ∂0V
)
.

(10.145)

This allows us to compute

φ(ωU )− φapx(ωU ) =
(
r0
U − γU , r0

U − γU , r
+
U − γU , r

+
U − γU ,

F�0(U)−F�0apx(U),F�0(U)−F�0apx(U),

F�−(U)−F�−apx(U),F�+(U)−F�+apx(U)
)

+h
(

0, ∂+[r0
U ], 0, ∂+[r+

U ], 0,F�0;+(U), 0, 0
)
,

(10.146)

together with

φnl;U (ωV ) =
(
r0
nl;U (V ), T+r0

nl;U (V ), r+
nl;U (V ), T+r+

nl;U (V ),

F�0nl;U (V ), T+F�0nl;U (V ),F�−nl;U (V ),F�+nl;U (V )
)

+h
(

0,−∂+[γ−1
U ∂0U∂0V ], 0,−∂+[γ−1

U ∂0U∂0V ],

0, ∂+[γ−3
U ∂0V ], 0, 0

)
.

(10.147)

In particular, Lemma’s 10.10 and 10.11 together with Corollaries 7.3 and 7.6 provide the bound

|φ(ωU )− φapx(ωU )| ≤ C ′1h
[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ] (10.148)

together with

|φnl;U (ωV )| ≤ C ′1

[
|∂−V |2 + |∂+V |2 + T+ |∂+V |2

]
+C ′1h

[
|∂−V |+ |∂+V |+ T+ |∂+V |+

∣∣∂0∂V
∣∣+ T+

∣∣∂0∂V
∣∣ ]. (10.149)

Introducing the compressed nonlinearity

f(y, z) = f0s(y, y, y, y, z, z, z, z) = fss(y, y, y, y, z, z, z, z) =
4z
y3

+
4z3

y3
, (10.150)

together with the compressed approximants

φapx(ωU ) = (γU , γ−1
U ∂0U),

φlin;U [ωV ] =
(
− γ−1

U ∂0U∂0V, γ−3
U ∂0V

)
,

(10.151)

we see that the identities

f#

(
φapx(ωU )

)
= f

(
φapx(ωU )

)
,

Df#

(
φapx(ωU )

)
φlin;U [ωV ] = Df

(
φapx(ωU )

)
φlin;U [ωV ]

(10.152)

hold for # ∈ {0s, ss}. Upon computing

Df(y, z) =
(
− 12

z + z3

y4
,

4 + 12z2

y3

)
, (10.153)
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we hence see that the functions defined in (6.19) satisfy

P0s;apx(ωU ) = Pss;apx(ωU )

= 4γ−4
U ∂0U + 4γ−6

U (∂0U)3

= 4γ−6
U ∂0U,

(10.154)

together with

P0s;lin;U [ωV ] = Pss;lin;U [ωV ]

= −12γ−5
U ∂0U

(
1 + γ−2

U (∂0U)2
)
(−γ−1

U ∂0U∂0V )

+
(

4γ−3
U + 12γ−5

U (∂0U)2
)
γ−3
U ∂0V

=
[
12γ−8

U (1− γ2
U ) + 4γ−6

U + 12γ−8
U (1− γ2

U )
]
∂0V

=
[
− 20γ−6

U + 24γ−8
U

]
∂0V.

(10.155)

The desired estimates now follow from Lemma 6.4.

10.4 Auxiliary functions

We recall the definitions

p̃apx(U) = γ2
U , p̃lin;U [V ] = −2∂0∂V,

papx(U) = γU∂
0U, plin;U [V ] = γ−1

U (2γ2
U − 1)∂0V

(10.156)

and write

p̃nl;U (V ) = p̃(U + V )− p̃(U)− p̃lin;U [V ],

pnl;U (V ) = p(U + V )− p(U)− plin;U [V ]. (10.157)

Lemma 10.17. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise approximation

estimate

|p̃(U)− p̃apx(U)|+ |p(U)− papx(U)| ≤ Kh
∣∣∂0∂U

∣∣ (10.158)

and the residual bound

|p̃nl;U (V )|+ |pnl;U (V )| ≤ K
[
|∂−V |2 + |∂+V |2

]
+Kh

[
|∂−V |+ |∂+V |+

∣∣∂0∂V
∣∣ ] (10.159)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. Motivated by the definitions (8.2), we write

fep(z0, z+) = 1
1+z+z0

,

fp(z0, z+) = z+
1+z+z0

,
(10.160)

together with

φ(∂−U, ∂+U) =
(
F�0(U),F�+(U)

)
(10.161)
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and finally

P̃ (∂−U, ∂+U) = fep
(
φ(∂−U, ∂+U)

)
,

P (∂−U, ∂+U) = fp
(
φ(∂−U, ∂+U)

)
.

(10.162)

One readily verifies that

p̃(U) = P̃ (∂−U, ∂+U),

p(U) = P (∂−U, ∂+U).
(10.163)

We now define the approximants

φapx(∂−U, ∂+U) =
(
γ−1
U ∂0U, γ−1

U ∂0U
)
,

φlin;U [∂−V, ∂+V ] =
(
γ−3
U ∂0V, γ−3

U ∂0V
)
.

(10.164)

This allows us to compute

φ(∂−U, ∂+U)− φapx(∂−U, ∂+U) =
(
F�0(U)−F�0apx(U),F�+(U)−F�+apx(U)

)
, (10.165)

together with

φnl;U (∂−V, ∂+V ) =
(
F�0nl;U (V ),F�+nl;U (V )

)
. (10.166)

In particular, Lemma 10.11 provides the bound

|φ(∂−U, ∂+U)− φapx(∂−U, ∂+U)| ≤ Kh
∣∣∂0∂U

∣∣ (10.167)

together with

|φnl;U (∂−V, ∂+V )| ≤ K
[
|∂−V |2 + |∂+V |2

]
+Kh

[
|∂−V |+ |∂+V |+

∣∣∂0∂V
∣∣ ]. (10.168)

Introducing the compressed nonlinearities

f ep(z) = fep(z, z) = 1
1+z2 ,

fp(z) = fp(z, z) = z
1+z2 ,

(10.169)

together with the compressed approximants

φapx(∂−U, ∂+U) = γ−1
U ∂0U,

φlin;U [∂−V, ∂+V ] = γ−3
U ∂0V,

(10.170)

we see that the identities

f#

(
φapx(∂−U, ∂+U)

)
= f#

(
φapx(∂−U, ∂+U)

)
,

Df#

(
φapx(∂−U, ∂+U)

)
φlin;U [∂−V, ∂+V ] = Df#

(
φapx(∂−U, ∂+U)

)
φlin;U [∂−V, ∂+V ]

(10.171)

hold for # ∈ {p̃, p}. Upon computing

f
′
ep(z) = − 2z

(1+z2)2 ,

f
′
p(z) = 1−z2

(1+z2)2 ,
(10.172)
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we hence see that the functions defined in (6.19) satisfy

P̃apx(U) = [1 + γ−2
U (∂0U)2]−1

= γ2
U ,

Papx(U) = γ−1
U ∂0U [1 + γ−2

U (∂0U)2]−1

= γU∂
0U,

(10.173)

together with

P̃lin;U [V ] = −2γ−1
U ∂0U [1 + γ−2

U (∂0U)2]−2γ−3
U ∂0V

= −2∂0U∂0V,

Plin;U [V ] = (1− γ−2
U (∂0U)2)[1 + γ−2

U (∂0U)2]−2γ−3
U ∂0V

= (2− γ−2
U )γU∂0V

= γ−1
U (2γ2

U − 1)∂0V.

(10.174)

The desired estimates now follow from Lemma 6.4.

We recall the definitions

p�0apx(U) = γ2
U (γ2

U − 1), p�0lin;U [V ] = (2− 4γ2
U )∂0U∂0V,

p
�+
apx(U) = γ4

U , p
�+
lin;U [V ] = −4γ2

U∂
0U∂0V

(10.175)

and write

p�0nl;U (V ) = p�0(U + V )− p�0(U)− p�0lin;U [V ],

p
�+
nl;U (V ) = p�+(U + V )− p�+(U)− p�+lin;U [V ]. (10.176)

Lemma 10.18. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise approximation

estimate ∣∣p�+(U)− p�+apx(U)
∣∣+
∣∣p�0(U)− p�0apx(U)

∣∣ ≤ Kh
[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ] (10.177)

and the residual bound∣∣∣p�+nl;U (V )
∣∣∣+
∣∣∣p�0nl;U (V )

∣∣∣ ≤ K
[
|∂−V |2 + |∂+V |2 + T+ |∂+V |2

]
+Kh

[
|∂−V |+ |∂+V |+ T+ |∂+V |+

∣∣∂0∂V
∣∣+ T+

∣∣∂0∂V
∣∣ ]

(10.178)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. For convenience, we introduce the shorthand

ωU = (∂−U, ∂+U, T+∂+U). (10.179)

Motivated by the definitions (9.3), we write

f
�+
A (z0, z0s, z+, z+s) = 2+z+z0+z+sz0s

2(1+z+z0)(1+z+sz0s)
,

f
�+
B (z0, z0s, z+, z+s) = − (z++z+s)(z0+z0s)

4(1+z+z0)(1+z+sz0s)
,

f�0(z0, z0s, z+, z+s) = − (z++z+s)
2

4(1+z+z0)(1+z+sz0s)
,

(10.180)
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together with

φ(ωU ) =
(
F�0(U), T+F�0(U),F�+(U), T+F�+(U)

)
(10.181)

and finally

P
�+
A (ωU ) = f

�+
A

(
φ(ωU )

)
,

P
�+
B (ωU ) = f

�+
B

(
φ(ωU )

)
,

P �0(ωU ) = f�0
(
φ(ωU )

)
.

(10.182)

One readily verifies that

p
�+
A (U) = P

�+
A (ωU ),

p
�+
B (U) = P

�+
B (ωU ),

p�0(U) = P �0(ωU ).

(10.183)

We now define the approximants

φapx(ωU ) =
(
γ−1
U ∂0U, γ−1

U ∂0U, γ−1
U ∂0U, γ−1

U ∂0U
)
,

φlin;U [ωV ] =
(
γ−3
U ∂0V, γ−3

U ∂0V, γ−3
U ∂0V, γ−3

U ∂0V
)
.

(10.184)

This allows us to compute

φ(ωU )− φapx(ωU ) =
(
F�0(U)−F�0apx(U),F�0(U)−F�0apx(U),

F�+(U)−F�+apx(U),F�+(U)−F�+apx(U)
)

+h
(

0,F�0;+(U), 0,F�+;+(U)
)
,

(10.185)

together with

φnl;U (ωV ) =
(
F�0nl;U (V ), T+F�0nl;U (V ),F�+nl;U (V ), T+F�+nl;U (V )

)
+h
(

0, ∂+[γ−3
U ∂0V ], 0, ∂+[γ−3

U ∂0V ]
)
.

(10.186)

In particular, Lemma 10.11 provides the bound

|φ(ωU )− φapx(ωU )| ≤ Kh
[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ], (10.187)

together with

|φnl;U (ωV )| ≤ K
[
|∂−V |2 + |∂+V |2 + T+ |∂+V |2

]
+Kh

[
|∂−V |+ |∂+V |+ T+ |∂+V |+

∣∣∂0∂V
∣∣+ T+

∣∣∂0∂V
∣∣ ]. (10.188)

Introducing the compressed nonlinearities

f
�+
A (z) = f

�+
A (z, z, z, z)

= 1
1+z2 ,

f
�+
B (z) = f�+B (z, z, z, z)

= − z2

(1+z2)2

= − 1
1+z2 + 1

(1+z2)2 ,

f
�0(z) = f�0(z, z, z, z)

= f
�+
B (z),

(10.189)
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together with the compressed approximants

φapx(ωU ) = γ−1
U ∂0U,

φlin;U [ωV ] = γ−3
U ∂0V,

(10.190)

we see that the identities

f
�+
#

(
φapx(ωU )

)
= f

�+
#

(
φapx(ωU )

)
,

Df
�+
#

(
φapx(ωU )

)
φlin;U [ωV ] = Df

�+
#

(
φapx(ωU )

)
φlin;U [ωV ]

(10.191)

hold for # ∈ {A,B}, together with similar identities for f�0 . Upon computing

Df
�+
A (z) = −2z

(1+z2)2 ,

Df
�+
B (z) = 2z

(1+z2)2 − 4z
(1+z2)3 ,

(10.192)

we hence see that the functions defined in (6.19) satisfy

P
�+
A;apx(U) = [1 + γ−2

U (∂0U)2]−1

= γ2
U ,

P
�+
B;apx(U) = P �0apx(U)

= −γ−2
U (∂0U)2[1 + γ−2

U (∂0U)2]−2

= −γ2
U (1− γ2

U )

= γ4
U − γ2

U ,

(10.193)

together with

P
�+
A;lin;U [V ] = −2γ−1

U ∂0U [1 + γ−2
U (∂0U)2]−2γ−3

U ∂0V

= −2∂0U∂0V,

P
�+
B;lin;U [V ] = P �0lin;U [V ]

= γ−1
U ∂0U

[
2[1 + γ−2

U (∂0U)2]−2 − 4[1 + γ−2
U (∂0U)2]−3

]
γ−3
U ∂0V

=
[
2− 4γ2

U

]
∂0U∂0V.

(10.194)

The desired estimates now follow from Lemma 6.4.

Proof of Proposition 10.2. The results follow directly from Lemma’s 10.15-10.18.

10.5 Estimates for Z
We introduce the function

q̃(U) = p(U)F�0;+(U) (10.195)

and write

q̃apx(U) = γ−2
U ∂0US+[∂0∂U ],

q̃lin;U [V ] = γ−4
U (2− γ2

U )S+[∂0∂U ]∂0V + γ−2
U ∂0US+[∂0∂V ],

(10.196)

together with

q̃nl;U (V ) = q̃(U + V )− q̃(U)− q̃lin;U [V ]. (10.197)
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Lemma 10.19. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise approximation

estimate

|q̃(U)− q̃apx(U)| ≤ Kh
[
|∂+U |+

∣∣∂0∂U
∣∣ ][ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ] (10.198)

and the residual bound

|q̃nl;U (V )| ≤ K
[
|∂−V |2 + |∂+V |2 + T+ |∂+V |2

]
+K

[
|∂−V |+ |∂+V |+ T+ |∂+V |

][ ∣∣∂0∂V
∣∣+ T+

∣∣∂0∂V
∣∣ ]

+Kh
[
|∂−U |+ |∂+U |+ T+ |∂+U |+

∣∣∂0∂U
∣∣+ T+

∣∣∂0∂U
∣∣ ]

×
[
|∂−V |+ |∂+V |+ T+ |∂+V |+

∣∣∂0∂V
∣∣+ T+

∣∣∂0∂V
∣∣ ]

(10.199)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. We first note that

papx(U)F�0;+
apx (U) = γU∂

0Uγ−3
U S+[∂0∂U ]

= γ−2
U ∂0US+[∂0∂U ]

= q̃apx(U),

(10.200)

while also

papx(U)F�0;+
lin;U [V ] + plin;U [V ]F�0;+

apx (U) = γU∂
0U
[
3γ−5
U ∂0US+[∂0∂U ]∂0V + γ−3

U S+[∂0∂V ]
]

+γ−1
U (2γ2

U − 1)∂0V γ−3
U S+[∂0∂U ]

=
( 2γ2

U−1

γ4
U

+ 3γ−4
U (∂0U)2

)
S+[∂0∂U ]∂0V

+γ−2
U ∂0US+[∂0∂V ]

= q̃lin;U [V ].
(10.201)

Lemma 4.3 and the definition (8.2) yield the bound

|p(U)|+
∣∣F�0;+(U)

∣∣ ≤ C ′1[ ∣∣∂+U
∣∣+
∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ]. (10.202)

Observing that

|q̃(U)− q̃apx(U)| ≤ |p(U)− papx(U)| |F�0;+(U)|

+ |papx(U)|
∣∣F�0;+(U)−F�0;+

apx (U)
∣∣ , (10.203)

we may hence exploit Lemma’s 10.14 and 10.17 to obtain the first desired estimate.
In addition, the computation

q̃nl;U (V ) = p(U + V )F�0;+(U + V )− p(U)F�0;+(U)− q̃lin;U [V ]

= [p(U) + plin;U [V ] + pnl;U (V )][F�0;+(U) + F�0;+
lin;U [V ] + F�0;+

nl;U (V )]

−p(U)F�0;+(U)− q̃lin;U [V ]

= plin;U [V ]
(
F�0;+(U)−F�0;+

apx (U)
)

+
(
p(U)− papx(U)

)
F�0;+

lin;U [V ]

+pnl;U (V )F�0;+(U) + p(U)F�0;+
nl;U (V )(

plin;U [V ] + pnl;U (V )
)(
F�0;+

lin;U [V ] + F�0;+
nl;U (V )

)
(10.204)

together with the bounds in Lemma’s 10.14 and 10.17 yields the second desired estimate.
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We now write

qapx(U) = q̃apx(U),

qlin;U [V ] = q̃lin;U [V ], (10.205)

together with

qnl;U (V ) = q(U + V )− q(U)− qlin;U [V ]. (10.206)

Lemma 10.20. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise approximation

estimate

|q(U)− qapx(U)| ≤ Kh
[
|∂+U |+

∣∣∂0∂U
∣∣ ][ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ] (10.207)

and the residual bound

|qnl;U (V )| ≤ K
[
|∂−V |2 + |∂+V |2 + T+ |∂+V |2

]
+K

[
|∂−V |+ |∂+V |+ T+ |∂+V |

][ ∣∣∂0∂V
∣∣+ T+

∣∣∂0∂V
∣∣ ]]

+Kh
[
|∂−U |+ |∂+U |+ T+ |∂+U |+

∣∣∂0∂U
∣∣+ T+

∣∣∂0∂U
∣∣ ]

×
[
|∂−V |+ |∂+V |+ T+ |∂+V |+

∣∣∂0∂V
∣∣+ T+

∣∣∂0∂V
∣∣ ]

(10.208)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. We recall that for every τ > 0 there exists Cτ > 0 so that the inequalities∣∣∣ln(1 + x)− ln(1 + y)− 1
1+y (x− y)

∣∣∣ ≤ Cτ |x− y|2 ,∣∣[1 + x]−1 − 1
∣∣ ≤ Cτ |x|

(10.209)

hold whenever x+ 1 ≥ τ and y + 1 ≥ τ .
We now write

I0 = q(U + V )− q(U)− q̃(U + V ) + q̃(U). (10.210)

Recalling the definition

q(U) = h−1 ln
[
1 + hp(U)F�0;+(U)

]
= h−1 ln

[
1 + hq̃(U)

]
,

(10.211)

we may compute

I0 = h−1
[

ln[1 + hq̃(U + V )]− ln[1 + hq̃(U)]
]
− h−1[1 + hq̃(U)]−1[hq̃(U + V )− hq̃(U)]

+
[
[1 + hq̃(U)]−1 − 1

]
[q̃(U + V )− q̃(U)].

(10.212)

The uniform estimate (8.15) allows us to apply (10.209) with τ = 1
3κ

2 to obtain

|I0| ≤ h−1C ′2h
2 |q̃(U + V )− q̃(U)|2

+C ′2h |q̃(U)| |q̃(U + V )− q̃(U)| .
(10.213)
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Exploiting Lemma 10.19 and inspecting (10.195), we see that

|I0| ≤ C ′3h
[
|∂−V |2 + |∂+V |2 + T+ |∂+V |2 +

∣∣∂0∂V
∣∣2 + T+

∣∣∂0∂V
∣∣2 ]

+C ′3h
[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ][ |∂−V |+ |∂+V |+ T+ |∂+V |+
∣∣∂0∂V

∣∣+ T+
∣∣∂0∂V

∣∣ ].
(10.214)

The bound (10.208) now follows from the observation

qnl;U (V ) = I0 + q̃(U + V )− q̃(U)− qlin;U [V ]

= I0 + q̃(U + V )− q̃(U)− q̃lin;U [V ]

= I0 + q̃nl;U (V ).

(10.215)

Applying (10.209) with y = 0 and using

|q̃(U)| ≤ C ′4 min{
∣∣∂+U

∣∣ , ∣∣∂0∂U
∣∣+ T+

∣∣∂0∂U
∣∣}, (10.216)

we find

|q(U)− q̃(U)| ≤ h−1C ′5h
2 |q̃(U)|2

≤ hC ′6 |∂+U |
[ ∣∣∂0∂U

∣∣+ T+
∣∣∂0∂U

∣∣ ]. (10.217)

The desired bound (10.207) now follows from the identity

q(U)− qapx(U) = q(U)− q̃apx(U) = q(U)− q̃(U) + q̃(U)− q̃apx(U). (10.218)

We now turn our attention to the function

Q(U) = h
∑
−;h

q(U). (10.219)

Recalling the definition (7.60), we write

Qapx(U) = − ln γU ,

Qlin;U [V ] = γ−2
U ∂0U∂0V + h

∑
−;h Esm(U)∂0V,

(10.220)

together with

Qnl;U (V ) = Q(U + V )−Q(U)−Qlin;U [V ]. (10.221)

Lemma 10.21. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise approximation

estimate

|Q(U)−Qapx(U)| ≤ Kh (10.222)

holds for all h > 0 and all U ∈ Ωh;κ.

Proof. Writing

Qapx;I(U) = h
∑
−;h qapx(U)

= h
∑
−;h γ

−2
U ∂0US+[∂0∂U ],

(10.223)
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Lemma 10.20 implies that

|Q(U)−Qapx;I(U)| ≤ h
∑
−;h |q(U)− qapx(U)|

≤ C ′1h
[
‖∂+U‖`2h + ‖∂+∂+U‖`2h

]
‖∂+∂+U‖`2h

≤ C ′2h.

(10.224)

On the other hand, Lemma 7.12 yields the bound

|Qapx;I(U) + ln[γU ]| = |Qapx;I(U)−Qapx(U)|

≤ C ′3h,
(10.225)

which completes the proof.

Lemma 10.22. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the the residual bound

|Qnl;U (V )| ≤ K
[
‖∂+V ‖`2h + h

][
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
+Kh

∣∣∂0V
∣∣ (10.226)

holds for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. Writing

Qlin;U ;I [V ] = h
∑
−;h qlin;U [V ]

= h
∑
−;h

[
γ−4
U (2− γ2

U )S+[∂0∂U ]∂0V + γ−2
U ∂0US+[∂0∂V ]

]
,

(10.227)

we compute

|Q(U + V )−Q(U)−Qlin;U ;I [V ]| ≤ h
∑
−;h |qnl;U (V )|

≤ K
[
‖∂+V ‖`2h + h

][
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
.

(10.228)

Recalling the definition (7.60), we see that

Qlin;U ;I [V ] = h
∑
−;h

[
T−
[
γ−4
U (2− γ2

U )S+[∂0∂U ]
]
∂0V + γ−2

U ∂0US+[∂0∂V ]
]

+h
∑
−;h Esm(U)∂0V.

(10.229)

The summation-by-parts identity (4.13) implies that

h
∑
−;h γ

−2
U ∂0US+[∂0∂V ] = h

∑
−;h γ

−2
U [∂0U ]∂+∂0V

= T−
[
γ−2
U ∂0U

]
∂0V

−h
∑
−;h ∂

−[γ−2
U ∂0U

]
∂0V

= γ−2
U ∂0U∂0V − h∂−

[
γ−2
U ∂0U

]
∂0V

−h
∑
−;h T

−
[
∂+
[
γ−2
U ∂0U

]]
∂0V.

(10.230)

In particular, upon writing

Qlin;U ;II [V ] =
∑
−;h T

−
[
γ−4
U (2− γ2

U )S+[∂0∂U ]− ∂+
[
γ−2
U ∂0U

]]
∂0V

+γ−2
U ∂0U∂0V + h

∑
−;h Esm(U)∂0V,

(10.231)
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we see that

|Qlin;U ;II [V ]−Qlin;U ;I [V ]| = h
∣∣∂−[γ−2

U ∂0U
]
∂0V

∣∣
≤ hC ′1

∣∣∂0V
∣∣ . (10.232)

Observing that

Qlin;U ;II [V ]−Qlin;U [V ] =
∑
−;h

T−
[
γ−4
U (2− γ2

U )S+[∂0∂U ]− ∂+
[
γ−2
U ∂0U

]]
∂0V, (10.233)

we may apply Lemma 7.9 to conclude

|Qlin;U ;II [V ]−Qlin;U [V ]| ≤ hC ′2 ‖∂+V ‖`2h , (10.234)

as desired.

We now recall the definitions

Z+
apx(U) = γ−1

U , Z+
lin;U [V ] = γ−3

U ∂0U∂0V + γ−1
U h

∑
−;h Esm(U)∂0V,

Z−apx(U) = γU , Z−lin;U [V ] = −γ−1
U ∂0U∂0V − γUh

∑
−;h Esm(U)∂0V

(10.235)

and write

Z±nl;U (V ) = Z±(U + V )−Z±(U)−Z±lin;U [V ]. (10.236)

Lemma 10.23. Fix 0 < κ < 1
12 . Then there exists K > 0 so that the pointwise approximation

estimate ∣∣Z+(U)−Z+
apx(U)

∣∣+
∣∣Z−(U)−Z−apx(U)

∣∣ ≤ Kh (10.237)

and the residual bound∣∣Z+
nl(V )

∣∣+
∣∣Z−nl(V )

∣∣ ≤ K
[
‖∂+V ‖2`2h + ‖∂+∂+V ‖2`2h

]
+Kh

[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
+Kh

∣∣∂0V
∣∣ (10.238)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. Motivated by the definitions (8.4), we write

f+(x) = exp[x], f−(x) = exp[−x], (10.239)

together with

φ(∂+U, ∂0∂U) = Q(U) (10.240)

and finally

P±(∂+U, ∂0∂U) = f±
(
φ(∂+U, ∂0∂U)

)
. (10.241)

One readily verifies that

Z±(U) = P±(∂+U, ∂0∂U). (10.242)
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We now define the approximants

φapx(∂+U, ∂0∂U) = − ln γU ,

φlin;U [∂+V, ∂0∂V ] = γ−2
U ∂0U∂0V + h

∑
−;h Esm(U)∂0V.

(10.243)

Lemma 10.22 provides the pointwise bound∣∣φ(∂+U, ∂0∂U)− φapx(∂+U, ∂0∂U)
∣∣ = |Q(U)−Qapx(U)|

≤ C ′1h,
(10.244)

together with

|φnl;U [V ]| = |Qnl;U (V )|

≤ C ′1

[
‖∂+V ‖`2h + h

][
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
+ C ′1h

∣∣∂0V
∣∣ . (10.245)

Noting that Df±(x) = ±f±(x), we see that the functions defined in (6.19) satisfy

P±apx(U) = f±
(
φapx(∂+U, ∂0∂U)

)
= exp

[
∓ ln[γU ]

]
= γ∓1

U ,

(10.246)

together with

P±lin;U [V ] = ±f±(− ln[γU ])
[
φlin;U [V ]

]
= ±γ∓1

U

[
γ−2
U ∂0U∂0V + h

∑
−;h Esm(U)∂0V

]
= ±γ−(2±1)

U ∂0U∂0V ± γ∓1
U h

∑
−;h Esm(U)∂0V.

(10.247)

The desired estimates now follow from Lemma 6.4.

Proof of Proposition 10.4. The results follow directly from Lemma 10.23.

10.6 Estimates for g

We recall the notation g+(U) = ∂+g(U) together with the definitions

gapx(U) = g(U), glin;U [V ] = g′(U)V,

g+
apx(U) = g′(U)∂0U, g+

lin;U [V ] = g′′(U)[∂0U ]V + g′(U)∂0V
(10.248)

and write

gnl;U (V ) = g(U + V )− g(U)− glin;U [V ],

g+
nl;U (V ) = g+(U + V )− g+(U)− g+

lin;U [V ].
(10.249)

Lemma 10.24. Suppose that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists K > 0 so that

the pointwise approximation estimate∣∣g+(U)− g+
apx(U)

∣∣ ≤ Kh
[ ∣∣∂0∂U

∣∣+ |∂+U |
]

(10.250)
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and the residual bounds

|gnl;U (V )| ≤ K |V |2 ,∣∣∣g+
nl;U (V )

∣∣∣ ≤ K
[
|V |2 + T+ |V |2 + |∂+V |2

]
+Kh

[
|V |+ T+ |V |+ |∂+V |+

∣∣∂0∂V
∣∣ ] (10.251)

all hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. We first note that

gnl;U (V ) = g(U + V )− g(U)− g′(U)V

=
∫ 1

0

∫ σ
0
g′′(U + σ′V )V 2 dσ′dσ,

(10.252)

which yields the desired estimate for gnl. In addition, for any pair (U (1), U (2)) ∈ Ω2
h;κ, the C3-

smoothness of g implies the pointwise bound∣∣gnl;U(1)(V )− gnl;U(2)(V )
∣∣ ≤ C ′1 ∣∣U (1) − U (2)

∣∣V 2. (10.253)

Finally, upon writing

g
(1)
nl;U (V ) = g′(U + V )− g′(U)− g′′(U)V, (10.254)

the C3-smoothness of g implies the bound∣∣∣g(1)
nl;U (V )

∣∣∣ ≤ C ′2 |V |2 . (10.255)

We now compute

g+(U) = h−1
[
g(T+U)− g(U)

]
= g′(U)∂+U + h−1gnl;U (h∂+U)

= g′(U)∂0U + hg′(U)∂0∂U + h−1gnl;U (h∂+U),

(10.256)

which yields (10.250). In addition, we compute

g+(U + V ) = h−1
[
g(T+U + T+V )− g(U + V )

]
= h−1

[
g(T+U + T+V )− g(U + T+V )

]
+h−1

[
g(U + T+V )− g(U + V )

]
= IA + IB ,

(10.257)

in which we have

IA = h−1
[
g′(U + T+V )h∂+U + gnl;U+T+V (h∂+U)

]
,

IB = h−1
[
g′(U + V )h∂+V + gnl;U+V (h∂+V )

]
.

(10.258)

We compute

IA = g′(U)∂+U + [g′(U + T+V )− g′(U)]∂+U + h−1gnl;U (h∂+U)

+h−1
[
gnl;U+T+V (h∂+U)− gnl;U (h∂+U)

]
= g+(U) + g

(1)
nl;U (T+V )∂+U + g′′(U)∂+UT+V

+h−1
[
gnl;U+T+V (h∂+U)− gnl;U (h∂+U)

]
,

(10.259)
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together with

IB = g′(U)∂+V + [g′(U + V )− g′(U)]∂+V + h−1gnl;U+V (h∂+V ). (10.260)

In particular, we see that

g+
nl;U (V ) = g′′(U)

[
∂+UT+V − [∂0U ]V

]
+ g′(U)

[
∂+V − ∂0V

]
+g(1)

nl;U (T+V )∂+U + h−1
[
gnl;U+T+V (h∂+U)− gnl;U (h∂+U)

]
+[g′(U + V )− g′(U)]∂+V + h−1gnl;U+V (h∂+V ).

(10.261)

Using (10.253) and (10.255), the desired estimate can now be read off from this identity.

Proof of Proposition 10.5. The results follow directly from Lemma 10.24.

11 Component estimates - II

In this section, we are interested in the set of nonlinearities

Snl;short = {Y1,Y2,F�0;+,F�−;+,XA,XB ,XC ,XD}, (11.1)

which contains all the components featuring in the decomposition (9.9) for G. In addition, we consider
the set

Snl;short = Snl;short ∪ {Y+
1 ,Y

+
2b}, (11.2)

which contains all the components that feature in the decompositions (9.14) and (9.15) for G+(U),
with the exception of Y+

2a.
Exploiting the definitions (9.7) and (9.11), we define the standard approximants

Y1;apx(U) = F�0apx(U)Z−apx(U),

Y2;apx(U) = 2F��0apx (U) + g(U),

Y+
1;apx(U) = p̃apx(U)F�0;+

apx (U)T+[Z−apx(U)],

Y+
2a;apx(U) = 2F��0;+

a;apx (U),

Y+
2b;apx(U) = 2F��0;+

b;apx (U) + g+
apx(U),

(11.3)

together with

Y1;lin;U [V ] = F�0lin;U [V ]Z−apx(U) + F�0apx(U)Z−lin;U [V ],

Y2;lin;U [V ] = 2F��0lin;U [V ] + g′(U)V,

Y+
1;lin;U [V ] = p̃lin;U [V ]F�0;+

apx (U)T+[Z−apx(U)] + p̃apx(U)F�0;+
lin;U [V ]T+[Z−apx(U)]

+p̃apx(U)F�0;+
apx (U)T+

[
Z−lin;U [V ]

]
,

Y+
2a;lin;U [V ] = 2F��0;+

a;lin;U [V ],

Y+
2b;lin;U [V ] = 2F��0;+

b;lin;U [V ] + g+
lin;U [V ].

(11.4)

In addition, exploiting the definitions (9.8), we write

XA;apx(U) = papx(U)Z+
apx(U),

XB;apx(U) = S+[Z+
apx(U)]p�+apx(U),

XC;apx(U) = S+[Z+
apx(U)]p�0apx(U),

XD;apx(U) = S+[papx(U)]Z+
apx(U)papx(U),

(11.5)
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together with

XA;lin;U [V ] = plin;U [V ]Z+
apx(U) + papx(U)Z+

lin;U [V ],

XB;lin;U [V ] = S+
[
Z+

lin;U [V ]
]
p
�+
apx(U) + S+[Z+

apx(U)]p�+lin;U [V ],

XC;lin;U [V ] = S+
[
Z+

lin;U [V ]
]
p�0apx(U) + S+[Z+

apx(U)]p�0lin;U [V ],

XD;lin;U [V ] = S+
[
plin;U [V ]

]
Z+

apx(U)papx(U) + S+[papx(U)]Z+
lin;U [V ]papx(U)

+S+
[
papx(U)

]
Z+

apx(U)plin;U [V ].

(11.6)

These approximants can be used as building blocks for the expressions Papx and Plin;U defined in
(6.67) that arise when applying Lemma 6.6 to G and G(U).

Using the expressions introduced in §10 all these approximants can be explicitly evaluated. How-
ever, as we shall see in the sequel, the resulting identities are not always easy to handle. Our goal
in this section is to introduce a framework that allows us to keep track of the errors that arise when
simplifying these expressions. In particular, for any f ∈ Snl;short ∪ Snl;short we introduce decomposi-
tions

fapx(U) = fapx;expl(U) + fapx;sh(U) + fapx;rem(U),

flin;U [V ] = flin;U ;expl[V ] + flin;U ;sh[V ] + flin;U ;rem[V ].
(11.7)

The expressions with the label ‘expl’ are the actual simplifications. The label ‘sh’ is used for terms
which are always small, while the label ‘rem’ is used for terms which are small when using U = Ψ∗.

In addition, we define sets

Qf ;pref ⊂ {2,∞} (11.8)

for f ∈ Snl;short, together with sets

Qf ;pref ⊂ {2,∞} (11.9)

for f ∈ Snl;short, so that the decomposition Lemma’s 9.7 and 9.8 remain valid upon replacing
(Snl,Snl) by (Snl;short,Snl;short). Finally, for each f ∈ Snl;short ∪ Snl;short, we define sets

Qf ⊂ {2,∞}, QAf ;lin ⊂ {2,∞}, QBf ;lin ⊂ {2,∞} (11.10)

so that the main spirit of the framework developed in §10 transfers directly to the estimates consid-
ered here. Indeed, for f ∈ {F�0;+,F�−;+} these sets are identical to those defined earlier.

11.1 Summary of estimates

In order to state our results, we introduce the expressions

Ssh;full(U) = h, Ssh;2;fix(U) = 0,

Ssh;full(U) = h
[
1 + ‖∂+∂+∂+U‖`2h + ‖∂+∂+∂+U‖`∞h

]
, Ssh;2;fix(U) = 0,

(11.11)

together with

Srem;full(U) = ‖Etw(U)‖`2h + ‖Etw(U)‖`∞h , Srem;2;fix(U) = 0,

Srem;full(U) = Srem;full(U) + ‖∂+[Etw(U)]‖`2h , Srem;2;fix(U) = 0
(11.12)
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and finally

Sdiff;full(U (1), U (2)) =
∥∥U (2) − U (1)

∥∥
`2;2
h

+
∥∥U (2) − U (1)

∥∥
`∞;1
h

,

Sdiff;2;fix(U (1), U (2)) =
∥∥U (2) − U (1)

∥∥
`2;2
h

.
(11.13)

These expressions are all related to the fapx functions and play a very similar role as the quantities
Sfull and S2;fix that were defined in §10.

We state our estimates for the approximants flin in terms of the quantities

Esh;U (V ) = h ‖V ‖`2;2
h
,

Esh;U (V ) = h ‖V ‖`3;2
h

+
[
‖∂+∂+∂+U‖`2h + ‖∂+∂+∂+U‖`∞h

]
‖V ‖`2;2

h
,

(11.14)

together with

Erem;U (V ) = ‖V ‖`2;2
h

[
‖Etw(U)‖`2h + ‖Etw(U)‖`∞h + ‖Esm(U)‖`2h

]
,

Erem;U (V ) = ‖V ‖`2;2
h

[
‖Etw(U)‖`2h + ‖Etw(U)‖`∞h + ‖Esm(U)‖`2h

]
+ ‖V ‖`2;1

h
‖∂+[Etw(U)]‖`∞h

(11.15)

and finally

Eprod(W (1),W (2)) =
∥∥W (1)

∥∥
`2;2
h

∥∥W (2)
∥∥
`2;2
h

+
∥∥W (1)

∥∥
`2;2
h

∥∥W (2)
∥∥
`∞;1
h

+
∥∥W (1)

∥∥
`∞;1
h

∥∥W (2)
∥∥
`2;2
h

.
(11.16)

These expressions should be compared to Enl in §10.
Our main results summarize the structure that the decompositions described in the sequel will

adhere to. Propositions 11.1 and 11.2 state that the approximants fapx;# are all uniformly bounded
and that the full linear approximants flin;U share the structure and estimates of the nonlinearities
in Snl ∪ Snl. Propositions 11.3-11.4 should be seen as the equivalents of of Corollary 10.7, while
Propositions 11.5-11.6 are the equivalents of Corollary 10.9.

Proposition 11.1. The statements in Corollary 10.6 also hold upon replacing (Snl,Snl) by their
counterparts (Snl;short,Snl;short). In addition, for every f ∈ Snl ∪ Snl there exists K > 0 so that for
each q ∈ Qf , the bound

‖fapx;expl(U)‖`qh + ‖fapx;sh(U)‖`qh + ‖fapx;rem(U)‖`qh ≤ K (11.17)

holds for all h > 0 and U ∈ Ωh;κ.

Proposition 11.2. The statements in Corollary 10.8 also hold upon replacing (Snl,Snl) by their
counterparts (Snl;short,Snl;short) and picking fAlin;U = flin;U ;rem.

Proposition 11.3. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists K > 0 so

that for every f ∈ Snl, q ∈ Qf ;pref and # ∈ {sh, rem}, we have

‖fapx;#(U)‖`qh ≤ KS#;full(U) (11.18)

for any h > 0 and U ∈ Ωh;κ.
In addition, if 2 ∈ Qf ;pref then for every # ∈ {sh, rem} at least one of the following two properties

hold true.
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(a) There exists K > 0 so that

‖fapx;#(U)‖`2h ≤ KS#;2;fix(U) (11.19)

holds for every h > 0 and U ∈ Ωh;κ.

(b) There exists K > 0 so that

‖fapx;#(U)‖`∞h ≤ KS#;full(U) (11.20)

holds for every h > 0 and U ∈ Ωh;κ.

The same properties hold upon making the replacement

(Snl;short, Qf ;pref , S#;full, S#;2;fix) 7→ (Snl;short, Qf ;pref , S#;full, S#;2;fix). (11.21)

Proposition 11.4. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists K > 0 so

that for every f ∈ Snl, q ∈ Qf ;pref and # ∈ {expl, sh, rem}, we have∥∥fapx;#(U (2))− fapx;#(U (1))
∥∥
`qh
≤ KSdiff;full(U (1), U (2)) (11.22)

for any h > 0 and any pair (U (1), U (2)) ∈ Ω2
h;κ.

In addition, if 2 ∈ Qf ;pref , then for every # ∈ {expl, sh, rem} at least one of the following two
properties hold true.

(a) There exists K > 0 so that∥∥fapx;#(U (2))− fapx;#(U (1))
∥∥
`2h
≤ KSdiff;2;fix(U (1), U (2)) (11.23)

holds for every h > 0 and any pair (U (1), U (2)) ∈ Ω2
h;κ.

(b) There exists K > 0 so that∥∥fapx;#(U (2))− fapx;#(U (1))
∥∥
`∞h

≤ KSdiff;full(U (1), U (2)) (11.24)

holds for every h > 0 and any pair (U (1), U (2)) ∈ Ω2
h;κ.

Proposition 11.5. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Consider any f ∈ Snl and

any # ∈ {sh, rem}. Then if 2 ∈ Qf ;pref , there exists a constant K > 0 so that

‖flin;U ;#(V )‖`2h ≤ KE#;U (V ) (11.25)

holds for all h > 0, U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ.
Otherwise, there exists q ∈ {2,∞} together with a constant K > 0 so that

‖flin;U ;#(V )‖`qh ≤ KE#;U (V ) (11.26)

holds for all h > 0, U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ. The same properties hold upon
making the replacement

(Snl;short, Qf ;pref , E#) 7→ (Snl;short, Qf ;pref , E#). (11.27)

Proposition 11.6. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . Consider any f ∈ Snl and

any # ∈ {expl, sh, rem}. Then if 2 ∈ Qf ;pref , there exists a constant K > 0 so that∥∥flin;U(2);#(V )− flin;U(1);#(V )
∥∥
`2h
≤ KEprod(U (2) − U (1), V ) (11.28)

holds for all h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h.

Otherwise, there exists q ∈ {2,∞} together with a constant K > 0 so that∥∥flin;U(2);#(V )− flin;U(1);#(V )
∥∥
`qh
≤ KEprod(U (2) − U (1), V ) (11.29)

holds for all h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h.
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11.2 Decomposition for Y1 and XA
Identities for Y1 Substituting the relevant expressions from §10 into (11.3)-(11.4), we compute

Y1;apx(U) = γ−1
U ∂0UγU

= ∂0U,

Y1;lin;U [V ] = γ−3
U ∂0V γU − γ−2

U (∂0U)2∂0V

−γ−1
U ∂0UγUh

∑
−;h Esm(U)∂0V

= ∂0V − ∂0U
[
h
∑
−;h Esm(U)∂0V

]
.

(11.30)

We realize the splittings (11.7) by writing

Y1;apx;expl(U) = ∂0U, Y1;lin;U ;expl[V ] = ∂0V,

Y1;apx;sh(U) = 0, Y1;lin;U ;sh[V ] = 0,

Y1;apx;rem(U) = 0, Y1;lin;U ;rem[V ] = −∂0U
[
h
∑
−;h Esm(U)∂0V

]
.

(11.31)

In addition, we introduce the sets

QY1;pref = QY1;pref = {2,∞}, (11.32)

together with

QY1 = {2,∞}, QAY1;lin = QBY1;lin = {2,∞}. (11.33)

Identities for XA Substituting the relevant expressions from §10 into (11.5)-(11.6), we compute

XA;apx(U) = γ∂0Uγ−1
U

= ∂0U,

XA;lin;U [V ] = γ−1
U (2γ2

U − 1)∂0V γ−1
U + γU∂

0Uγ−3
U ∂0U∂0V

+γU∂0Uγ−1
U

[
h
∑
−;h Esm(U)∂0V

]
= ∂0V + ∂0U

[
h
∑
−;h Esm(U)∂0V

]
.

(11.34)

We realize the splittings (11.7) by writing

XA;apx;expl(U) = ∂0U, XA;lin;U ;expl[V ] = ∂0V,

XA;apx;sh(U) = 0, XA;lin;U ;sh[V ] = 0,

XA;apx;rem(U) = 0, XA;lin;U ;rem[V ] = +∂0U
[
h
∑
−;h Esm(U)∂0V

]
.

(11.35)

In addition, we introduce the sets

QXA;pref = QXA;pref = {∞}, (11.36)

together with

QXA = {∞}, QAXA;lin = {∞}, QBXA;lin = {2,∞}. (11.37)
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Estimates

Lemma 11.7. Fix 0 < κ < 1
12 and pick f ∈ {Y1,XA}. Then the conditions in (hf)lin are satisfied

with fAlin;U = flin;U ;rem and there exists a constant K > 0 so that the bounds∥∥∥fAlin;U [V ]
∥∥∥
`2h

≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),∥∥∥fAlin;U [V ]
∥∥∥
`∞h

≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),∥∥∥fBlin;U [V ]
∥∥∥
`2h

≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),∥∥∥fBlin;U [V ]
∥∥∥
`∞h

≤ K ‖∂+V ‖`∞h ≤ KT∞;opt(V )

(11.38)

hold for all h > 0, U ∈ Ωh;κ and V ∈ `2h.

Proof. Writing fBlin;U [V ] = flin;U ;expl[V ], the bounds follow from inspection.

Lemma 11.8. Fix 0 < κ < 1
12 and pick f ∈ {Y1,XA}. There exists a constant K > 0 so that the

following properties are true.

(i) For any h > 0 and U ∈ Ωh;κ we have the bound

‖fapx;expl(U)‖`2h + ‖fapx;expl(U)‖`∞h ≤ K. (11.39)

(ii) For any h > 0 and any pair (U (1), U (2)) ∈ Ωh;κ, we have the bounds∥∥fapx;expl(U (1))− fapx;expl(U (2))
∥∥
`2h

≤ K
∥∥∂+U (1) − ∂+U (2)

∥∥
`2h

≤ KSdiff;full

(
U (1), U (2)

)
,∥∥fapx;expl(U (1))− fapx;expl(U (2))

∥∥
`∞h

≤ K
∥∥∂+U (1) − ∂+U (2)

∥∥
`∞h

≤ KSdiff;full

(
U (1), U (2)

)
.

(11.40)

Proof. These estimates follow by inspection.

Lemma 11.9. Fix 0 < κ < 1
12 and pick f ∈ {Y1,XA}. There exists a constant K > 0 so that the

following properties are true.

(i) For any h > 0, any pair U ∈ Ωh;κ and any V ∈ `2h, we have the bound

‖flin;U ;rem[V ]‖`2h ≤ K ‖Esm(U)‖`2h ‖∂
+V ‖`2h

≤ KErem;U (V ).
(11.41)

(ii) For any h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the bounds∥∥flin;U(1);expl[V ]− flin;U(2);expl[V ]

∥∥
`2h

= 0,∥∥flin;U(1);rem[V ]− flin;U(2);rem[V ]
∥∥
`2h

≤ K ‖∂+V ‖`2h
[ ∥∥∂+U (1) − ∂+U (2)

∥∥
`2h

+
∥∥∂0∂U (1) − ∂0∂U (2)

∥∥
`2h

]
≤ KEprod(U (2) − U (1), V ).

(11.42)

Proof. Recalling the Lipschitz bound (7.65), the estimates follow by inspection.
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11.3 Decomposition for Y2

Substituting the relevant expressions from §10 into (11.3)-(11.4), we compute

Y2;apx(U) = 2γ−4
U ∂0∂U + g(U),

Y2;lin[V ] = 8γ−6
U ∂0U [∂0∂U ]∂0V + 2γ−4

U ∂0∂V + g′(U)[V ]

= γ−2
U MU [V ] + c∗γ

−3
U ∂0V.

(11.43)

Recalling the function Etw introduced in (7.61), we realize the splittings (11.7) by writing

Y2;apx;expl(U) = c∗γ
−1
U ∂0U, Y2;lin;U ;expl[V ] = γ−2

U MU [V ] + c∗γ
−3
U ∂0V,

Y2;apx;sh(U) = 0, Y2;lin;U ;sh[V ] = 0,

Y2;apx;rem(U) = Etw(U), Y2;lin;U ;rem[V ] = 0.

(11.44)

In addition, we introduce the sets

QY2;pref = QY2;pref = {2}, (11.45)

together with

QY2 = {2,∞}, QAY2;lin = QBY2;lin = {2}. (11.46)

Lemma 11.10. Fix 0 < κ < 1
12 and write f = Y2. Then the conditions in (hf)lin are satisfied with

fAlin;U = flin;U ;rem = 0 and there exists a constant K > 0 so that the bound∥∥∥fBlin;U [V ]
∥∥∥
`2h

≤ K ‖V ‖`2;2
h
≤ KTsafe(V ) (11.47)

holds for all h > 0, U ∈ Ωh;κ and V ∈ `2h.

Proof. This follows from Proposition 7.15.

Lemma 11.11. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that the following properties are

true.

(i) For any h > 0 and U ∈ Ωh;κ we have the bound

‖Y2;apx;expl(U)‖`2h + ‖Y2;apx;expl(U)‖`∞h + ‖Y2;apx;rem(U)‖`2h + ‖Y2;apx;rem(U)‖`∞h ≤ K.

(11.48)

(ii) For any h > 0 and U ∈ Ωh;κ, we have the bounds

‖Y2;apx;rem(U)‖`2h ≤ ‖Etw(U)‖`2h ≤ Srem;full(U),

‖Y2;apx;rem(U)‖`∞h ≤ ‖Etw(U)‖`∞h ≤ Srem;full(U). (11.49)

(iii) For any h > 0 and any pair (U (1), U (2)) ∈ Ωh;κ, we have the bounds∥∥Y2;apx;expl(U (1))− Y2;apx;expl(U (2))
∥∥
`2h
≤ K

∥∥∂+U (1) − ∂+U (2)
∥∥
`2h

≤ K min{Sdiff;2;fix

(
U (1), U (2)

)
,

Sdiff;full

(
U (1), U (2)

)
},∥∥Y2;apx;rem(U (1))− Y2;apx;rem(U (2))

∥∥
`2h

≤ K
∥∥U (1) − U (2)

∥∥
`2;2
h

≤ K min{Sdiff;2;fix

(
U (1), U (2)

)
,

Sdiff;full

(
U (1), U (2)

)
}.

(11.50)
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Proof. Recalling (7.65), these bounds follow by inspection.

Lemma 11.12. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that we have the bound∥∥Y2;lin;U(1);expl[V ]− Y2;lin;U(2);expl[V ]

∥∥
`2h
≤ K

∥∥U (1) − U (2)
∥∥
`2;2
h

‖V ‖`∞;1
h

+K
∥∥U (1) − U (2)

∥∥
`∞;1
h

‖V ‖`2;2
h

≤ KEprod(U (1) − U (2), V )

(11.51)

for any h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h.

Proof. This bound follows directly from Corollary 7.2 and Proposition 7.15.

11.4 Decomposition for F�0;+ and F�−;+

For both functions f ∈ {F�0;+,F�−;+} we write fapx;sh(U) = fapx;rem(U) = 0 and flin;sh(U) =
flin;rem(U) = 0. Besides the Lipschitz estimates below, all the estimates we require here can be
found in Proposition 10.3.

Lemma 11.13. Fix 0 < κ < 1
12 and pick f ∈ {F�0;+,F�−;+}. There exists a constant K > 0 so

that the following properties are true.

(i) For any h > 0 and any pair (U (1), U (2)) ∈ Ωh;κ, we have the bounds∥∥fapx;expl(U (1))− fapx;expl(U (2))
∥∥
`2h
≤ K

[ ∥∥∂+U (1) − ∂+U (2)
∥∥
`2h

+
∥∥∂+∂+U (1) − ∂+∂+U (2)

∥∥
`2h

]
≤ K min{Sdiff;2;fix

(
U (1), U (2)

)
,

Sdiff;full

(
U (1), U (2)

)
}.

(11.52)

(ii) For any h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the bound∥∥flin;U(1);expl[V ]− flin;U(2);expl[V ]

∥∥
`2h
≤ K ‖∂+V ‖`∞h

∥∥∂+∂+U (1) − ∂+∂+U (2)
∥∥
`2h

+K
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

] ∥∥∂+U (1) − ∂+U (2)
∥∥
`∞h

≤ KEprod(U (2) − U (1), V ).

(11.53)

Proof. These bounds follow by inspecting the definitions (10.22).

11.5 Decompositions for XB, XC and XD
Identities for XB Substituting the relevant expressions from §10 into (11.5)-(11.6), we compute

XB;apx(U) = S+[γ−1
U ]γ4

U ,

XB;lin;U [V ] = S+
[
γ−3
U ∂0U∂0V + γ−1

U

[
h
∑
−;h Esm(U)∂0V

]]
γ4
U

+S+[γ−1
U ](−4γ2

U )∂0U∂0V.

(11.54)
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We realize the splittings (11.7) by writing

XB;apx;expl(U) = 2T+[γ3
U ],

XB;apx;sh(U) = −hS+[γ−1
U ]∂+[γ4

U ]− h∂+[γ−1
U ]T+[γ4

U ],

XB;apx;rem(U) = 0,

(11.55)

together with

XB;lin;U ;expl[V ] = −6T+
[
γU∂

0U∂0V
]
,

XB;lin;U ;sh[V ] = −h∂+
[
γ−3
U ∂0U∂0V

]
γ4
U

−hS+[γ−1
U ]∂+[−4γ2

U∂
0V ]− h∂+[γ−1

U ]T+
[
− 4γ2

U∂
0V ],

XB;lin;U ;rem[V ] = S+
[
γ−1
U

[
h
∑
−;h Esm(U)∂0V

]]
γ4
U .

(11.56)

Identities for XC Substituting the relevant expressions from §10 into (11.5)-(11.6), we compute

XC;apx(U) = S+[γ−1
U ](γ4

U − γ2
U ),

XC;lin;U [V ] = S+
[
γ−3
U ∂0U∂0V + γ−1

U h
∑
−;h Esm(U)∂0V

]
(γ4
U − γ2

U )

+S+[γ−1
U ][2− 4γ2

U ]∂0U∂0V.

(11.57)

We realize the splittings (11.7) by writing

XC;apx;expl(U) = 2γU (γ2
U − 1),

XC;apx;sh(U) = h∂+[γ−1
U ]γ2

U (γ2
U − 1),

XC;apx;rem(U) = 0,

(11.58)

together with

XC;lin;U ;expl[V ] = 2γ−1
U (1− 3γ2

U )∂0U∂0V,

XC;lin;U ;sh[V ] = h∂+
[
γ−3
U ∂0U∂0V

]
γ2
U (γ2

U − 1)

+h∂+
[
γ−1
U

]
[2− 4γ2

U ]∂0U∂0V,

XC;lin;U ;rem[V ] = S+
[
γ−1
U h

∑
−;h Esm(U)∂0V

]
(γ4
U − γ2

U ).

(11.59)

Identities for XD Substituting the relevant expressions from §10 into (11.5)-(11.6), we compute

XD;apx(U) = S+[γU∂0U ]γ−1
U γU∂

0U

= S+[γU∂0U ]∂0U,

XD;lin;U [V ] = S+[γ−1
U (2γ2

U − 1)∂0V ]γ−1
U γU∂

0U

+S+[γU∂0U ]
[
γ−3
U ∂0U∂0V + γ−1

U h
∑
−;h Esm(U)∂0V

]
γU∂

0U

+S+[γU∂0U ]γ−1
U γ−1

U (2γ2
U − 1)∂0V

= S+[γ−1
U (2γ2

U − 1)∂0V ]∂0U + S+[γU∂0U ]∂0V

+S+[γU∂0U ]∂0Uh
∑
−;h Esm(U)∂0V.

(11.60)
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We realize the splittings (11.7) by writing

XD;apx;expl(U) = 2γU (1− γ2
U ),

XD;apx;sh(U) = h∂+[γU∂0U ]∂0U,

XD;apx;rem(U) = 0,

(11.61)

together with

XD;lin;U ;expl[V ] = 2γ−1
U (3γ2

U − 1)∂0U∂0V,

XD;lin;U ;sh[V ] = h∂+
[
γ−1
U (2γ2

U − 1)∂0V
]
∂0U + h∂+[γU∂0U ]∂0V,

XD;lin;U ;rem[V ] = S+[γU∂0U ]∂0Uh
∑
−;h Esm(U)∂0V.

(11.62)

Exponent sets For any f ∈ {XB ,XC ,XD}, we introduce the sets

Qf ;pref = Qf ;pref = {∞}, (11.63)

together with

Qf = {∞}, QAf ;lin = {∞}, QBf ;lin = {2,∞}. (11.64)

Estimates

Lemma 11.14. Fix 0 < κ < 1
12 and pick f ∈ {XB ,XC ,XD}. Then the conditions in (hf)lin are

satisfied with fAlin;U = flin;U ;rem and there exists a constant K > 0 so that the bounds∥∥∥fAlin;U [V ]
∥∥∥
`∞h

≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),∥∥∥fBlin;U [V ]
∥∥∥
`2h

≤ K ‖∂+V ‖`2h ≤ KTsafe(V ),∥∥∥fBlin;U [V ]
∥∥∥
`∞h

≤ K ‖∂+V ‖`∞h ≤ KT∞;opt(V )

(11.65)

hold for all h > 0, U ∈ Ωh;κ and V ∈ `2h.

Proof. Writing fBlin;U [V ] = flin;U ;expl[V ] + flin;U ;sh[V ], the bounds follow by inspection.

Lemma 11.15. Fix 0 < κ < 1
12 and pick f ∈ {XB ,XC ,XD}. There exists a constant K > 0 so that

the following properties are true.

(i) For any h > 0 and U ∈ Ωh;κ we have the bound

‖fapx;expl(U)‖`∞h + ‖fapx;sh(U)‖`∞h ≤ K. (11.66)

(ii) For any h > 0 and U ∈ Ωh;κ, we have the bound

‖fapx;sh(U)‖`∞h ≤ Kh ≤ KSsh;full(U). (11.67)

(iii) For any h > 0 and any pair (U (1), U (2)) ∈ Ωh;κ, we have the bounds∥∥fapx;expl(U (1))− fapx;expl(U (2))
∥∥
`∞h

≤ K
∥∥∂+U (1) − ∂+U (2)

∥∥
`∞h

≤ KSdiff;full

(
U (1), U (2)

)
,∥∥fapx;sh(U (1))− fapx;sh(U (2))

∥∥
`∞h

≤ K
∥∥∂+U (1) − ∂+U (2)

∥∥
`∞h

≤ KSdiff;full

(
U (1), U (2)

)
.

(11.68)
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Proof. These bounds follow from the discrete derivative expressions (4.2) and the Lipschitz bounds
for γU in Corollary 7.2.

Lemma 11.16. Fix 0 < κ < 1
12 and pick f ∈ {XB ,XC ,XD}. There exists a constant K > 0 so that

the following properties are true.

(i) For any h > 0, any pair U ∈ Ωh;κ and any V ∈ `2h, we have the bounds

‖flin;U ;sh[V ]‖`2h ≤ Kh
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEsh;U (V ),

‖flin;U ;rem[V ]‖`∞h ≤ K ‖Esm(U)‖`2h ‖∂
+V ‖`2h

≤ KErem;U (V ).

(11.69)

(ii) For any h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the bounds∥∥flin;U(1);expl[V ]− flin;U(2);expl[V ]

∥∥
`2h
≤ K

∥∥∂+U (2) − ∂+U (1)
∥∥
`∞h
‖∂+V ‖`2h

≤ KEprod(U (2) − U (1), V ),∥∥flin;U(1);sh[V ]− flin;U(2);sh[V ]
∥∥
`2h

≤ K
∥∥∂+U (2) − ∂+U (1)

∥∥
`∞h
‖∂+V ‖`2h

≤ KEprod(U (2) − U (1), V ),∥∥flin;U(1);rem[V ]− flin;U(2);rem[V ]
∥∥
`∞h

≤ K ‖∂+V ‖`2h
[ ∥∥U (1) − U (2)

∥∥
`2,2h

+
∥∥∂+U (1) − ∂+U (2)

∥∥
`∞h

]
≤ KEprod(U (2) − U (1), V ).

(11.70)

Proof. Recalling the Lipschitz bounds (7.65), these estimates follow from inspection.

11.6 Decomposition for Y+
1

Substituting the relevant expressions from §10 into (11.3)-(11.4), we compute

Y+
1;apx(U) = γ2

Uγ
−3
U S+[∂0∂U ]T+γU

= γ−1
U S+[∂0∂U ]T+γU ,

Y+
1;lin;U [V ] = −2∂0U∂0V γ−3

U S+[∂0∂U ]T+γU

+γ2
U

[
3γ−5
U ∂0U [S+∂0∂U ]∂0V + γ−3

U S+∂0∂V
]
T+γU

−γ2
Uγ
−3
U S+[∂0∂U ]T+

[
γ−1
U ∂0U∂0V + γUh

∑
−;h Esm(U)∂0V

]
=

[
γ−3
U ∂0U [S+∂0∂U ]∂0V + γ−1

U S+∂0∂V
]
T+γU

−γ−1
U S+[∂0∂U ]T+

[
γ−1
U ∂0U∂0V + γUh

∑
−;h Esm(U)∂0V

]
.

(11.71)

We realize the splittings (11.7) by writing

Y+
1;apx;expl(U) = 2∂0∂U,

Y+
1;apx;sh(U) = h∂+∂0∂U + h∂+[γU ]γ−1

U S+[∂0∂U ],

Y+
1;apx;rem(U) = 0,

(11.72)
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together with

Y+
1;lin;U ;expl[V ] = S+[∂0∂V ],

Y+
1;lin;U ;sh[V ] = hγ−3

U ∂+[γU ]∂0US+[∂0∂U ]∂0V

+hγ−1
U ∂+[γU ]S+[∂0∂V ]

−hγ−1
U S+[∂0∂U ]∂+

[
γ−1
U ∂0U∂0V

]
,

Y+
1;lin;U ;rem[V ] = γ−1

U S+[∂0∂U ]T+
[
γUh

∑
−;h Esm(U)∂0V

]
.

(11.73)

Notice that we have eliminated the T+[∂0∂U ] term in the explicit expressions, while keeping the
T+[∂0∂V ] dependency. This inconsistency is deliberate as it will help us to make a useful substitution
in the sequel.

In addition, we introduce the sets

QY+
1 ;pref = {2,∞}, (11.74)

together with

QY+
1

= {2,∞}, QAY+
1 ;lin

= QBY+
1 ;lin

= {2,∞}. (11.75)

Lemma 11.17. Fix 0 < κ < 1
12 and write f = Y+

1 . Then the conditions in (hf)lin are satisfied with
fAlin;U = flin;U ;rem and there exists a constant K > 0 so that the bounds∥∥∥fAlin;U [V ]

∥∥∥
`2h

≤ K ‖∂+V ‖`2h ≤ KT safe(V ),∥∥∥fAlin;U [V ]
∥∥∥
`∞h

≤ K ‖∂+V ‖`2h ≤ KT safe(V ),∥∥∥fBlin;U [V ]
∥∥∥
`2h

≤ K
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KT safe(V ),∥∥∥fBlin;U [V ]

∥∥∥
`∞h

≤ K
[
‖∂+V ‖`∞h + ‖∂+∂+V ‖`∞h

]
≤ KT∞;opt(V )

(11.76)

hold for all h > 0, U ∈ Ωh;κ and V ∈ `2h.

Proof. Writing fBlin;U [V ] = flin;U ;expl[V ] + flin;U ;sh[V ], the bounds follow by inspection.

Lemma 11.18. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that the following properties are

true.

(i) For any h > 0 and U ∈ Ωh;κ we have the bound∥∥∥Y+
1;apx;expl(U)

∥∥∥
`2h

+
∥∥∥Y+

1;apx;expl(U)
∥∥∥
`∞h

+
∥∥∥Y+

1;apx;sh(U)
∥∥∥
`2h

+
∥∥∥Y+

1;apx;sh(U)
∥∥∥
`∞h

≤ K.

(11.77)

(ii) For any h > 0 and U ∈ Ωh;κ, we have the bound∥∥∥Y+
1;apx;sh(U)

∥∥∥
`2h

≤ Kh[1 + ‖∂+∂+∂+U‖`2h ] ≤ KSsh;full(U),∥∥∥Y+
1;apx;sh(U)

∥∥∥
`∞h

≤ Kh[1 + ‖∂+∂+∂+U‖`∞h ] ≤ KSsh;full(U).
(11.78)

Proof. These bounds follow from the discrete derivative identities in Lemma 4.2.
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Lemma 11.19. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that we have the bounds∥∥∥Y+

1;lin;U ;sh[V ]
∥∥∥
`2h

≤ Kh
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEsh;U (V ),∥∥∥Y+

1;lin;U ;rem[V ]
∥∥∥
`2h

≤ K ‖Esm(U)‖`2h ‖∂
+V ‖`2h

≤ KErem;U (V )

(11.79)

for any h > 0, any pair U ∈ Ωh;κ and any V ∈ `2h.

Proof. These estimates follow by inspection.

11.7 Decomposition for Y+
2b

Substituting the relevant expressions from §10 into (11.5) and recalling (7.62), we compute

Y+
2b;apx(U) = 8γ−6

U ∂0US+[∂0∂U ]T+[∂0∂U ] + g′(U)∂0U

=
[
E+

tw;apx(U)− 2γ−4
U ∂+∂0∂U

]
+ c∗γ

−3
U S+[∂0∂U ].

(11.80)

We can hence realize the first splitting in (11.7) by writing

Y+
2b;apx;expl(U) =

[
E+

tw;apx(U)− 2γ−4
U ∂+∂0∂U

]
+ 2c∗γ−3

U ∂0∂U,

Y+
2b;apx;sh(U) = c∗hγ

−3
U ∂+[∂0∂U ],

Y+
2b;apx;rem(U) = 0.

(11.81)

Substituting the relevant expressions from §10 into (11.4), we compute

Y+
2b;lin;U [V ] = 8[6γ−8

U − 5γ−6
U ]S+[∂0∂U ]T+[∂0∂U ]∂0V

+8γ−6
U ∂0U

[
T+[∂0∂U ]S+[∂0∂V ] + S+[∂0∂U ]T+[∂0∂V ]

]
+g′′(U)[∂0U ]V + g′(U)∂0V.

(11.82)

We realize the second splitting (11.7) implicitly by writing

Y+
2b;lin;U ;expl[V ] = γ−2

U ∂+
[
MU [V ]

]
+ 4γ−4

U ∂0U [∂0∂U ]MU [V ]− M̃U ;E [V ]

+c∗
[
6γ−5
U ∂0U [∂0∂U ]∂0V + γ−3

U S+[∂0∂V ]
]
,

Y+
2b;lin;U ;sh[V ] = Y+

2b;lin;U [V ]− Y+
2b;lin;U ;expl[V ],

Y+
2b;lin;U ;rem[V ] = 0.

(11.83)

In addition, we introduce the sets

QY+
2b;pref = {2}, (11.84)

together with

QY+
2b

= {2,∞}, QAY+
2b;lin

= QBY+
2b;lin

= {2}. (11.85)

Lemma 11.20. Fix 0 < κ < 1
12 and write f = Y+

2b. Then the conditions in (hf)lin are satisfied with
fAlin;U = flin;U ;rem = 0 and there exists a constant K > 0 so that the bound∥∥∥fBlin;U [V ]

∥∥∥
`2h

≤ K ‖V ‖`2;2
h
≤ KT safe(V ) (11.86)

holds for all h > 0, U ∈ Ωh;κ and V ∈ `2h.
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Proof. The bound follows by inspection.

Lemma 11.21. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that the following properties are

true.

(i) For any h > 0 and U ∈ Ωh;κ we have the bound∥∥∥Y+
2b;apx;expl(U)

∥∥∥
`2h

+
∥∥∥Y+

2b;apx;sh(U)
∥∥∥
`2h

+
∥∥∥Y+

2b;apx;expl(U)
∥∥∥
`∞h

+
∥∥∥Y+

2b;apx;sh(U)
∥∥∥
`∞h

≤ K.

(11.87)

(ii) For any h > 0 and U ∈ Ωh;κ, we have the bound∥∥∥Y+
2b;apx;sh(U)

∥∥∥
`2h

≤ Kh[1 + ‖∂+∂+∂+U‖`2h ] ≤ KSsh;full(U),∥∥∥Y+
2b;apx;sh(U)

∥∥∥
`∞h

≤ Kh[1 + ‖∂+∂+∂+U‖`∞h ] ≤ KSsh;full(U).
(11.88)

Proof. Recalling (7.62), the bounds follow by inspection.

Lemma 11.22. Fix 0 < κ < 1
12 . There exists a constant K > 0 so that we have the bound∥∥∥Y+

2b;lin;U ;sh[V ]
∥∥∥
`2h

≤ Kh
[
‖V ‖`2h + ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h + ‖∂+∂+∂+V ‖`2h

]
+Kh ‖∂+∂+∂+U‖`∞h

[
‖V ‖`2h + ‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEsm;U (V )

(11.89)

for any h > 0, any pair U ∈ Ωh;κ and any V ∈ `2h.

Proof. We proceed by obtaining the decomposition

Y+
2b;lin;U [V ] = Y+

2b;lin;U ;I [V ] + Y+
2b;lin;U ;sh;a[V ], (11.90)

in which we have introduced the function

Y+
2b;lin;U ;I [V ] = 16[6γ−8

U − 5γ−6
U ][∂0∂U ]2∂0V

+32γ−6
U ∂0U [∂0∂U ]∂0∂V

+g′′(U)[∂0U ]V + g′(U)∂0V,

(11.91)

together with

Y+
2b;lin;U ;sh;a[V ] = 8h[6γ−8

U − 5γ−6
U ][∂0∂U ]∂+[∂0∂U ]∂0V

+8h[6γ−8
U − 5γ−6

U ]S+[∂0∂U ]∂+[∂0∂U ]∂0V

+8hγ−6
U ∂0U

[
∂+[∂0∂U ]∂0∂V + [∂0∂U ]∂+[∂0∂V ]

]
+16hγ−6

U ∂0U
[
∂+[∂0∂U ]T+[∂0∂V ] + [∂0∂U ]∂+[∂0∂V ]

]
.

(11.92)

Using Proposition 7.16, we see that

Y+
2b;lin;U ;I [V ] = M̃U ;A[V ] + M̃U ;B [V ] + M̃U ;C [V ]− M̃U ;E [V ]. (11.93)

Introducing the function

Y+
2b;lin;U ;sh;b[V ] = −γ−2

U

[
∂+
[
MU [V ]

]
−M+

U ;apx[V ]
]
− hc∗γ−3

U ∂+[∂0∂V ], (11.94)
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we see that

Y+
2b;lin;U ;expl[V ] + Y+

2b;lin;U ;sh;b[V ] = γ−2
U M+

U ;apx[V ] + 4γ−4
U ∂0U [∂0∂U ]MU [V ]− M̃U ;E [V ]

+c∗
[
6γ−5
U ∂0U [∂0∂U ]∂0V + 2γ−3

U [∂0∂V ]
]

= M̃U ;A[V ] + M̃U ;B [V ] + M̃U ;C [V ] + M̃U ;D[V ]

−M̃U ;E [V ]− M̃U ;D[V ]

= M̃U ;A[V ] + M̃U ;B [V ] + M̃U ;C [V ]− M̃U ;E [V ]

= Y+
2b;lin;U − Y

+
2b;lin;U ;sh;a[V ].

(11.95)

In particular, we obtain

Y+
2b;lin;U ;sh[V ] = Y+

2b;lin;U ;sh;a[V ] + Y+
2b;lin;U ;sh;b[V ]. (11.96)

Recalling Proposition 7.15, the desired bound now follows by inspection.

Proof of Propositions 11.1-11.6. The statements can be readily verified by inspecting the results in
§11.2-§11.7.

12 Estimates for G
In this section we exploit the component estimates from §10 to analyze the function G discussed in
§9. In particular, we introduce the approximants

Gapx(U) = c∗∂
0U,

Glin;U [V ] = c∗∂
0V +MU [V ] + 2∂0Uh

∑
−;h γ

−2
U [∂0∂U ]MU [V ] (12.1)

and write

Gnl;U (V ) = G(U + V )− G(U)− Glin;U (V ). (12.2)

Our main result quantifies the approximation errors in terms of the quantities

Esh;U (V ) = h ‖V ‖`2;2
h
,

Erem;U (V ) = ‖V ‖`2;2
h

[
‖Etw(U)‖`2h + ‖Etw(U)‖`∞h + ‖Esm(U)‖`2h

]
,

Eprod(W (1),W (2)) =
∥∥W (1)

∥∥
`2;2
h

∥∥W (2)
∥∥
`2;2
h

+
∥∥W (1)

∥∥
`2;2
h

∥∥W (2)
∥∥
`∞;1
h

+
∥∥W (1)

∥∥
`∞;1
h

∥∥W (2)
∥∥
`2;2
h

(12.3)

that were originally introduced in §11.1.

Proposition 12.1. Suppose that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists K > 0 so

that the following properties hold.

(i) For every h > 0 and U ∈ Ωh;κ we have

‖G(U)− Gapx(U)‖ ≤ K
[
h+ ‖Etw(U)‖`2h + ‖Etw(U)‖`∞h

]
. (12.4)

(ii) For any h > 0, U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ, we have the estimate

‖Gnl;U (V )‖`2h ≤ KEprod(V, V ) +KEsh;U (V ) +KErem;U (V ) (12.5)
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(iii) Consider any h > 0, U ∈ Ωh;κ and any pair (V (1), V (2)) ∈ `2h × `2h for which the inclusions
U + V (1) ∈ Ωh;κ and U + V (2) ∈ Ωh;κ both hold. Then we have the Lipschitz estimate∥∥Gnl;U (V (2))− Gnl;U (V (1))

∥∥
`2h
≤ KEprod(V (1), V (2) − V (1)) +KEprod(V (2), V (2) − V (1))

+KEsh;U (V (2) − V (1)) +KErem;U (V (2) − V (1)).
(12.6)

Proof of Proposition 2.4. On account of Proposition 6.2, it is possible to pick constants 0 < κ < 1
12

and ε0 such that for any V ∈ `2h with ‖V ‖`2h < ε0, we have U0 + V ∈ Ωh;κ. Recall the continuous
embedding `∞h ⊂ `2h. Inspecting Glin;U using (7.82), we see that item (iii) of Proposition 12.1 implies
that the map

V 7→ G(U0 + V ) ∈ `2h (12.7)

is Lipschitz smooth on the set {V ∈ `2h : ‖V ‖`2h < ε0}. The result now follows from standard ODE
theory.

In §12.1 we apply the theory developed in §6.2 to estimate the nonlinear component of our error,
exploiting the structural decomposition of G(U) described in §9.2 and the estimates obtained in §10.
In the remainder of the section we discuss the linear terms. Considerable effort will be required to
reduce the expressions (6.67) to our relatively simple approximants (12.1).

12.1 Nonlinear estimates

Applying the expressions (6.67) to the terms (9.9), we obtain the initial expressions

GA;apx;I(U) =
[
1− Y1;apx(U)T−

[
XA;apx(U)

]]
Y2;apx(U),

GB;apx;I(U) = 1
2Y1;apx(U)h

∑
−;h Y2;apx(U)T−

[
XB;apx(U)

]
F�−;+

apx (U),

GC;apx;I(U) = 1
2Y1;apx(U)h

∑
−;h Y2;apx(U)T−

[
XC;apx(U)F�0;+

apx (U)
]
,

GD;apx;I(U) = 1
2Y1;apx(U)h

∑
−;h Y2;apx(U)T−

[
XD;apx(U)F�0;+

apx (U)
]
,

(12.8)

together with

GA;lin;U ;I [V ] = −Y1;lin;U [V ]T−
[
XA;apx(U)

]
Y2;apx(U)

−Y1;apx(U)T−
[
XA;lin;U [V ]

]
Y2;apx(U)

+
[
1− Y1;apx(U)T−

[
XA;apx(U)

]]
Y2;lin;U [V ],

GB;lin;U ;I [V ] = 1
2Y1;lin;U [V ]h

∑
−;h Y2;apx(U)T−

[
XB;apx(U)

]
F�−;+

apx (U)

+ 1
2Y1;apx(U)h

∑
−;h Y2;lin;U [V ]T−

[
XB;apx(U)

]
F�−;+

apx (U)

+ 1
2Y1;apx(U)h

∑
−;h Y2;apx(U)T−

[
XB;lin;U [V ]

]
F�−;+

apx (U)

+ 1
2Y1;apx(U)h

∑
−;h Y2;apx(U)T−

[
XB;apx(U)

]
F�−;+

lin;U [V ]

(12.9)
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and finally

G#;lin;U ;I [V ] = 1
2Y1;lin;U [V ]h

∑
−;h Y2;apx(U)T−

[
X#;apx(U)F�0;+

apx (U)
]

+ 1
2Y1;apx(U)h

∑
−;h Y2;lin;U [V ]T−

[
X#;apx(U)F�0;+

apx (U)
]

+ 1
2Y1;apx(U)h

∑
−;h Y2;apx(U)T−

[
X#;lin;U [V ]F�0;+

apx (U)
]

+ 1
2Y1;apx(U)h

∑
−;h Y2;apx(U)T−

[
X#;apx(U)F�0;+

lin;U [V ]
]

(12.10)

for # ∈ {C,D}. Combining these expressions, we introduce the initial approximants

Gapx;I(U) = GA;apx;I(U) + GB;apx;I(U) + GC;apx;I(U) + GD;apx;I(U),

Glin;U ;I [V ] = GA;lin;U ;I [V ] + GB;lin;U ;I [V ] + GC;lin;U ;I [V ] + GD;lin;U ;I [V ]
(12.11)

and write

Gnl;U ;I(V ) = G(U + V )− G(U)− Glin;U ;I [V ]. (12.12)

Lemma 12.2. Suppose that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists K > 0 so that

the approximation estimate

‖G(U)− Gapx;I(U)‖`2h ≤ Kh (12.13)

and the residual bound

‖Gnl;U ;I(V )‖`2h ≤ KEprod(V, V ) +KEsh;U (V ) (12.14)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. Our strategy is to apply Lemma 6.6 to each of the products in the decomposition of G(U)
obtained in Lemma 9.7. Let us therefore consider a single element of the sum (9.42), which we
characterize by the set (π,qπ, f , k).

We first claim that

Jnl;U (V ) ≤ C ′1Enl(V ) ≤ C ′2Eprod(V, V ) + C ′2h ‖V ‖`2;2
h
. (12.15)

Indeed, consider any 1 ≤ i ≤ k and any # ∈ {A,B}. If qπ;i = 2, then certainly 2 ∈ Qfi;pref by item
(iii) of Lemma 9.7, which allows us to take

q#
i,nl = qπ (12.16)

for the sequences in item (c) of Lemma 6.6. This allows us to apply (10.47), as desired. Suppose
therefore that qπ;i =∞ and consider the integer q defined in Corollary 10.9. If q =∞, then we can
again take q#

i,nl = qπ and apply (10.48). If q = 2, then we choose q#
i,nl to be the admissable sequence

defined by the swapping Lemma 9.9, which has

q#
i,nl;i = 2, q#

i,nl;j∗[i]
=∞. (12.17)

Corollary 10.6 shows that ∞ ∈ Qfj∗[i] , which now again allows us to apply (10.48).
Our second claim is that

Jcross;U (V ) ≤ C ′3

[
Tsafe(V )Sfull(V ) + T∞;opt(V )S2;fix(V )

]
≤ C ′4Eprod(V, V ).

(12.18)
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Indeed, consider any # ∈ {A,B} and any pair (i, j) ∈ {1, . . . , k}2 with i 6= j. If item (a) in Corollary
10.8 holds for fi and q = qπ;i, then the claim follows from (10.42). Suppose therefore that item (b)
in Corollary 10.8 holds for fi and q = qπ;i =∞.

Write qsw for the admissable sequence defined by the swapping Lemma 9.9. If j∗[i] 6= j, then we
have qsw;j = qπ;j . Writing q#

ij,lin = qsw for the sequence in item (d) of Lemma 6.6, the contribution
from the pair (i, j) can be absorbed by Tsafe(V )Sfull(V ). On the other hand, if j∗[i] = j, then
qsw;j =∞ and qπ;j = 2. If item (b) of Corollary 10.7 holds, then we again write q#

ij,lin = qsw, noting
that the contribution can be bounded by Tsafe(V )Sfull(V ). However, we write q#

ij,lin = qπ if item
(a) of Corollary 10.7 holds. In this case the contribution from the pair (i, j) can be bounded by
T∞;opt(V )S2;fix(V ).

Our final claim is that

Japx;U (V ) ≤ C ′5hTsafe(V ) = C ′5h ‖V ‖`2;2
h
. (12.19)

This follows directly from the fact that ‖f(U)− fapx(U)‖`qh ≤ Kh for every f ∈ Snl and q ∈ Qf ,
together with the swapping technique described above. We note that this observation also implies
the bound (12.13).

12.2 Error terms

We now introduce the expressions

{GA;apx;II(U),GB;apx;II(U),GC;apx;II(U),GD;apx;II(U)} (12.20)

together with

{GA;lin;U ;II [V ],GB;lin;U ;II [V ],GC;lin;U ;II [V ],GD;lin;U ;II [V ]} (12.21)

by inspecting the definitions (12.8)-(12.9) and making the replacements

fapx(U) 7→ fapx;expl(U), flin;U [V ] 7→ flin;U ;expl[V ] (12.22)

for each f ∈ Snl;short.

Lemma 12.3. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . There exists a constant K > 0

together with sequences

Gapx;sh;a(U) ∈ `2h, Gapx;rem;a(U) ∈ `2h, (12.23)

defined for every h > 0 and U ∈ Ωh;κ, so that the following properties hold true.

(i) For every h > 0 and U ∈ Ωh;κ we have the identity

Gapx;I(U) = Gapx;II(U) + Gapx;sh;a(U) + Gapx;rem;a(U). (12.24)

(ii) For every h > 0 and U ∈ Ωh;κ we have the bounds

‖Gapx;sh;a(U)‖`2h ≤ KSsh;full(U) = Kh,

‖Gapx;rem;a(U)‖`2h ≤ KSrem;full(U) = K
[
‖Etw(U)‖`2h + ‖Etw(U)‖`∞h

]
.

(12.25)

Proof. We consider a single element of the sum (9.42) obtained by using Snl;short instead of Snl. We
characterize this element by the set (π,qπ, f , k), taking f ⊂ Snl;short.
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We introduce the expression

Iπ(U) = π
[
f1;apx(U), . . . , fk;apx(U)

]
− π

[
f1;apx;expl(U), . . . , fk;apx;expl(U)

]
(12.26)

and note that Gapx;I(U)− Gapx;II(U) can be written as a sum expressions of the form Iπ.
Recalling the general identity

(a1 + b1)(a2 + b2)(a3 + b3)− a1a2a3 = b1(a2 + b2)(a3 + b3) + a1b2(a3 + b3) + a1a2b3 (12.27)

and its extensions, we write

Iπ;#(U) = π
[
f1;apx;#(U), f2;apx(U), . . . , fk;apx(U)

]
+π
[
f1;apx;expl(U), f2;apx;#(U), . . . , fk;apx(U)

]
+ . . .+ π

[
f1;apx;expl(U), f2;apx;expl(U), . . . , fk;apx;#(U)

] (12.28)

for # ∈ {sh, rem} and observe that

Iπ(U) = Iπ;sh(U) + Iπ;rem(U). (12.29)

We now use (11.17) together with Proposition 11.3 to derive the bound

‖Iπ;#(U)‖`2h ≤ C ′1S#;full(U), (12.30)

from which the desired estimates follow.

Lemma 12.4. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . There exists a constant K > 0

together with linear maps

Glin;U ;sh;a ∈ L(`2h, `
2
h), Glin;U ;rem;a ∈ L(`2h, `

2
h), (12.31)

defined for all h > 0 and U ∈ Ωh;κ, so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the identity

Glin;U ;I [V ] = Glin;U ;II [V ] + Glin;U ;sh;a[V ] + Glin;U ;rem;a[V ]. (12.32)

(ii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds

‖Glin;U ;sh;a[V ]‖`2h ≤ KEsh;U (V ),

‖Glin;U ;rem;a[V ]‖`2h ≤ KErem;U (V ). (12.33)

(iii) For every h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the bound∥∥Glin;U(2);rem;a[V ]− Glin;U(1);rem;a[V ]
∥∥
`2h
≤ KEprod(U (2) − U (1), V ). (12.34)

Proof. Reconsider the set (π,qπ, f , k) discussed in the proof of Lemma 12.3. We introduce the two
expressions

Iπ;a;U [V ] = π
[
f1;lin;U [V ], f2;apx(U), . . . , fk;apx(U)

]
−π
[
f1;lin;U [V ], f2;apx;expl(U), . . . , fk;apx;expl(U)

]
,

Iπ;b;U [V ] = π
[
f1;lin;U [V ], f2;apx;expl(U), . . . , fk;apx;expl(U)

]
−π
[
f1;lin;U ;expl[V ], f2;apx;expl(U), . . . , fk;apx;expl(U)

] (12.35)
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and note that Glin;U ;I [V ]−Glin;U ;II [V ] can be written as a sum of expressions of the form Iπ;a+Iπ;b,
together with their obvious permutations.

Writing

Iπ;a;U ;#[V ] = π
[
f1;lin;U [V ], f2;apx;#(U), . . . , fk;apx(U)

]
+ . . .+ π

[
f1;lin;U [V ], f2;apx;expl(U), . . . , fk;apx;#(U)

]
,

Iπ;b;U ;#[V ] = π
[
f1;lin;U ;#[V ], f2;apx;expl(U), . . . , fk;apx;expl(U)

] (12.36)

for # ∈ {sh, rem}, we see that

Iπ;a;U [V ] = Iπ;a;U ;sh[V ] + Iπ;a;U ;rem[V ],

Iπ;b;U [V ] = Iπ;b;U ;sh[V ] + Iπ;b;U ;rem[V ].
(12.37)

Following the same reasoning used above to obtain (12.18), we may use Propositions 11.2 and 11.3
to derive the bound

‖Iπ;a;#‖`2h ≤ C ′1

[
Tsafe(V )S#;full(V ) + T∞;opt(V )S#;2;fix(V )

]
≤ C ′2E#;U (V ).

(12.38)

In addition, following the arguments used above to derive (12.15), we may use Proposition 11.5 to
obtain the bound

‖Iπ;a;#‖`2h ≤ C ′3E#;U (V ). (12.39)

Writing

∆b;i = π
[
f1;lin;U(2);rem[V ]− f1;lin;U(1);rem[V ], f2;apx;expl(U (2)), . . . , fk;apx;expl(U (2))

]
,

∆b;ii = π
[
f1;lin;U(1);rem[V ], f2;apx;expl(U (2))− f2;apx;expl(U (1)), . . . , fk;apx;expl(U (2))

]
+ . . .

+π
[
f1;lin;U(1);rem[V ], f2;apx;expl(U (1)), . . . , fk;apx;expl(U (2))− fk;apx;expl(U (1))

]
,

(12.40)

we easily see that

∆b;i + ∆b;ii = Iπ;b;U(2);rem − Iπ;b;U(1);rem. (12.41)

Arguing as above, Proposition 11.6 yields

‖∆b;i‖`2h ≤ C ′1Eprod(U (2) − U (1), V ), (12.42)

while Propositions 11.2 and 11.4 imply

‖∆b;ii‖`2h ≤ C ′2

[
Tsafe(V )Sdiff;full(V ) + T∞;opt(V )Sdiff;2;fix(V )

]
≤ C ′3Eprod(U (2) − U (1), V ).

(12.43)

Finally, we write

∆a = Iπ;a;U(2);rem[V ]− Iπ;a;U(1);rem[V ]. (12.44)
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We note that ∆a consists of sums of expressions that arise from ∆b;i and ∆b;ii after replacing
f1;lin;U(i);rem by f1;lin;U(i) and each occurrence of fj;apx;expl by an element of the set

{fj;apx, fj;apx;expl, fj;apx;rem}. (12.45)

We can hence again use Propositions 11.2, 11.4 and 11.6 to conclude that ‖∆a‖`2h can be bounded
by terms that have already appeared above.

12.3 Simplifications for GA
We recall the definition

GA;apx;II(U) = −Y1;apx;expl(U)T−
[
XA;apx;expl(U)

]
Y2;apx;expl(U). (12.46)

Substituting the relevant expressions from §11, we find

GA;apx;II(U) =
[
1− ∂0UT−

[
∂0U

]](
c∗γ
−1
U ∂0U

)
. (12.47)

We now make the decomposition

GA;apx;II(U) = GA;apx;III(U) + GA;apx;sh;b(U), (12.48)

by introducing

GA;apx;III(U) =
[
1− (∂0U)2

](
c∗γ
−1
U ∂0U

)
= c∗γU∂

0U
(12.49)

together with

GA;apx;sh;b(U) = −h∂0U∂−
[
∂0U

](
c∗γ
−1
U ∂0U

)
. (12.50)

We also recall the definition

GA;lin;U ;II [V ] = −Y1;lin;U ;expl[V ]T−1
[
XA;apx;expl(U)

]
Y2;apx;expl(U)

−Y1;apx(U)T−1
[
XA;lin;U ;expl[V ]

]
Y2;apx;expl(U)

+
[
1− Y1;apx(U)T−1

[
XA;apx;expl(U)

]]
Y2;lin;U [V ].

(12.51)

Substituting the relevant expressions from §11, we find

GA;lin;U ;II [V ] = −∂0V T−1
[
∂0U

](
c∗γ
−1
U ∂0U

)
−∂0UT−1

[
∂0V

](
c∗γ
−1
U ∂0U

)
+
[
1− ∂0UT−1

[
∂0U

]](
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

)
.

(12.52)

We now make the decomposition

GA;lin;U ;II [V ] = GA;lin;U ;III [V ] + GA;lin;U ;sh;b[V ] (12.53)

by introducing

GA;lin;U ;III [V ] = −∂0V ∂0U
(
c∗γ
−1
U ∂0U

)
−∂0U∂0V

(
c∗γ
−1
U ∂0U

)
+
[
1− ∂0U∂0U

](
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

)
= c∗γ

−1
U (2γ2

U − 1)∂0V +MU [V ],

(12.54)
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together with

GA;lin;U ;sh;b[V ] = −h∂0V ∂−
[
∂0U

](
c∗γ
−1
U ∂0U

)
−h∂0U∂−

[
∂0V

](
c∗γ
−1
U ∂0U

)
−h∂0U∂−

[
∂0U

](
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

)
.

(12.55)

We summarize our results by writing

GA;apx(U) = GA;apx;III(U)

= c∗γU∂
0U,

GA;lin;U [V ] = GA;lin;U ;III [V ]

= c∗γ
−1
U (2γ2

U − 1)∂0V +MU [V ]

(12.56)

and obtaining the following bound.

Lemma 12.5. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identities

GA;apx;II(U) = GA;apx(U) + GA;apx;sh;b(U),

GA;lin;U ;II [V ] = GA;lin;U [V ] + GA;lin;U ;sh;b[V ].
(12.57)

(ii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds

‖GA;apx;sh;b(U)‖`2h ≤ Kh = KSsh;full(U),

‖GA;lin;U ;sh;b[V ]‖`2h ≤ Kh ‖V ‖`2;2
h
≤ KEsh;U (V ).

(12.58)

Proof. Recalling Proposition 7.15, the bounds follow by inspection.

12.4 Simplifications for GB
We recall the definition

GB;apx;II(U) = 1
2Y1;apx;expl(U)h

∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
F�−;+

apx (U). (12.59)

Substituting the relevant expressions from §11, we find

GB;apx;II(U) = 2∂0Uh
∑
−;h

[
c∗γ
−1
U ∂0U

]
∂0∂U. (12.60)

In view of Lemma 7.11, we introduce the expressions

GB;apx;III(U) = c∗∂
0U(1− γU ),

GB;apx;sh;b(U) = GB;apx;II(U)− GB;apx;III(U).
(12.61)

We also recall the definition

GB;lin;U ;II [V ] = 1
2Y1;lin;U ;expl[V ]h

∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
F�−;+

apx (U)

+ 1
2Y1;apx;expl(U)h

∑
−;h Y2;lin;U ;expl[V ]T−

[
XB;apx;expl(U)

]
F�−;+

apx (U)

+ 1
2Y1;apx;expl(U)h

∑
−;h Y2;apx;expl(U)T−

[
XB;lin;U ;expl[V ]

]
F�−;+

apx (U)

+ 1
2Y1;apx;expl(U)h

∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
F�−;+

lin;U [V ].
(12.62)
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Substituting the relevant expressions from §11, we find

GB;lin;U ;II [V ] = +2∂0V h
∑
−;h

[
c∗γ
−1
U ∂0U

]
∂0∂U

+2∂0Uh
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
∂0∂U

−6∂0Uh
∑
−;h

[
c∗γ
−1
U ∂0U

][
∂0U∂0V

]
γ−2
U ∂0∂U

+∂0Uh
∑
−;h

[
c∗γ
−1
U ∂0U

](
6γ−2
U ∂0U [∂0∂U ]∂0V + 2∂0∂V

)
.

(12.63)

A little algebra yields

GB;lin;U ;II [V ] = 2∂0V h
∑
−;h

[
c∗γ
−1
U ∂0U

]
∂0∂U

+2∂0Uh
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
∂0∂U

+2c∗∂0Uh
∑
−;h γ

−1
U [∂0U ]∂0∂V.

(12.64)

In view of Lemma’s 7.10 and 7.11, we introduce the expressions

GB;lin;U ;III [V ] = c∗∂
0V (1− γU )

+2∂0Uh
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
∂0∂U

+c∗∂0Uγ−1
U ∂0U∂0V − 2c∗∂0Uh

∑
−;h

[
γ−3
U [∂0∂U ]∂0V

]
,

GB;lin;U ;sh;b[V ] = GB;lin;U ;II [V ]− GB;lin;U ;III [V ].

(12.65)

After a short computation, we find

GB;lin;U ;III [V ] = c∗∂
0V (1 + γ−1

U − 2γU )

+2∂0Uh
∑
−;h γ

−2
U [∂0∂U ]MU [V ].

(12.66)

We summarize our results by writing

GB;apx(U) = GB;apx;III(U)

= c∗∂
0U(1− γU ),

GB;lin;U [V ] = GB;lin;U ;III [V ]

= c∗∂
0V (1 + γ−1

U − 2γU )

+2∂0Uh
∑
−;h γ

−2
U [∂0∂U ]MU [V ]

(12.67)

and obtaining the following bounds.

Lemma 12.6. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identities

GB;apx;II(U) = GB;apx(U) + GB;apx;sh;b(U),

GB;lin;U ;II [V ] = GB;lin;U [V ] + GB;lin;U ;sh;b[V ].
(12.68)

(ii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds

‖GB;apx;sh;b(U)‖`2h ≤ Kh = KSsh;full(U),

‖GB;lin;U ;sh;b[V ]‖`2h ≤ Kh
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KEsh;U (V ).

(12.69)

Proof. The estimates follow from Lemma’s 7.10 and 7.11.
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12.5 Simplifications for GC and GD
We recall the definition

G#;apx;II(U) = 1
2Y1;apx;expl(U)h

∑
−;h Y2;apx;expl(U)T−

[
X#;apx;expl(U)F�0;+

apx (U)
]

(12.70)

for # ∈ {C,D}. Inspecting (11.58) and (11.61), we see that

GC;apx;II(U) = −GD;apx;II(U). (12.71)

We also recall the definition

G#;lin;U ;II [V ] = 1
2Y1;lin;U ;expl[V ]h

∑
−;h Y2;apx;expl(U)T−

[
X#;apx;expl(U)F�0;+

apx (U)
]

+ 1
2Y1;apx;expl(U)h

∑
−;h Y2;lin;U ;expl[V ]T−

[
X#;apx;expl(U)F�0;+

apx (U)
]

+ 1
2Y1;apx;expl(U)h

∑
−;h Y2;apx;expl(U)T−

[
X#;lin;U ;expl[V ]F�0;+

apx (U)
]

+ 1
2Y1;apx;expl(U)h

∑
−;h Y2;apx;expl(U)T−

[
X#;apx;expl(U)F�0;+

lin;U [V ]
]
(12.72)

for # ∈ {C,D}. Using (11.59) and (11.62) we hence see

GC;lin;U ;II [V ] = −GD;lin;U ;II [V ]. (12.73)

12.6 Summary

Recalling the definitions (12.1), we observe that

GA;apx(U) + GB;apx(U) = c∗γU∂
0U + c∗∂

0U(1− γU )

= c∗∂
0U

= Gapx(U),

(12.74)

together with

GA;lin;U [V ] + GB;lin;U [V ] = c∗γ
−1
U (2γ2

U − 1)∂0V +MU [V ]

+c∗∂0V (1 + γ−1
U − 2γU ) + 2∂0Uh

∑
−;h γ

−2
U [∂0∂U ]MU [V ]

= c∗∂
0V +MU [V ] + 2∂0Uh

∑
−;h γ

−2
U [∂0∂U ]MU [V ]

= Glin;U [V ].
(12.75)

We define the error terms

Gapx;rem(U) = Gapx;rem;a(U),

Glin;U ;rem[V ] = Glin;U ;rem;a[V ],
(12.76)

together with

Gapx;sh(U) = Gapx;sh;a(U) + GA;apx;sh;b(U) + GB;apx;sh;b(U),

Glin;U ;sh[V ] = Glin;U ;sh;a[V ] + GA;lin;U ;sh;b[V ] + GB;lin;U ;sh;b[V ].
(12.77)
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The computations above show that

Gapx;I(U) = Gapx(U) + Gapx;rem(U) + Gapx;sh(U),

Glin;U ;I [V ] = Glin;U [V ] + Glin;U ;rem[V ] + Glin;U ;sh[V ].
(12.78)

Recalling the definition (12.12), this implies that

Gnl;U (V ) = Gnl;U ;I(V ) + Glin;U ;rem[V ] + Glin;U ;sh[V ]. (12.79)

Corollary 12.7. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(i) For every h > 0 and U ∈ Ωh;κ we have the bounds

Gapx;sh(U) ≤ Kh,

Gapx;rem(U) ≤ K
[
‖Etw(U)‖`2h + ‖Etw(U)‖`∞h

]
.

(12.80)

(ii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the bounds

Glin;U ;sh[V ] ≤ KEsh;U (V ),

Glin;U ;rem[V ] ≤ KErem;U [V ].
(12.81)

(iii) For any h > 0, any pair (U (1), U (2)) ∈ Ω2
h;κ and any V ∈ `2h, we have the bound∥∥Glin;U(2);rem[V ]− Glin;U(1);rem[V ]
∥∥
`2h
≤ KEprod

(
U (2) − U (1), V

)
. (12.82)

Proof. These estimates follow directly from Lemma’s 12.3, 12.4, 12.5 and 12.6.

Lemma 12.8. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . There exists a constant K > 0

so that the estimate ∥∥Glin;U(2) [V ]− Glin;U(1) [V ]
∥∥
`2h
≤ KEprod

(
U (2) − U (1), V

)
(12.83)

holds for all h > 0, all V ∈ `2h and all pairs (U (1), U (2)) ∈ Ω2
h;κ.

Proof. We compute∥∥Glin;U(2) [V ]− Glin;U(1) [V ]
∥∥
`2h
≤ ‖MU(2) [V ]−MU(1) [V ]‖`2h + C ′1

∥∥∂0U (2) − ∂0U (1)
∥∥
`2h
‖MU2 [V ]‖`2h

+C ′1
∥∥γU(2)∂0∂U (2) − γU(1)∂0∂U (1)

∥∥
`2h
‖MU2 [V ]‖`2h

+C ′1 ‖MU(2) [V ]−MU(1) [V ]‖`2h .

(12.84)

Exploiting the a-priori bound (7.82) together with the Lipschitz bounds (7.3) and (7.84), this yields
the desired estimate.

Lemma 12.9. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . There exists a constant K > 0

so that the estimate∥∥Gnl;U (V (2))− Gnl;U (V (1))
∥∥
`2h
≤ KEprod

(
V (2) − V (1), V (2) − V (1)

)
+Kh

∥∥V (2) − V (1)
∥∥
`2;2
h

+KErem;U

(
V (2) − V (1)

)
+KEprod

(
V (1), V (2) − V (1)

)
(12.85)

holds for all h > 0, all U ∈ Ωh;κ and all pairs (V (1), V (2)) ∈ `2h × `2h for which the inclusions
U + V (1) ∈ Ωh;κ and U + V (2) ∈ Ωh;κ both hold.
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Proof. By definition, we have

Gnl;U (V ) = G(U + V )− G(U)− Glin;U [V ]. (12.86)

In particular, we get

Gnl;U (V (2))− Gnl;U (V (1)) = G(U + V (2))− Glin;U [V (2)] + Glin;U [V (1)]− G(U + V (1))

= G
(
U + V (1) + (V (2) − V (1))

)
− G(U + V (1))

−Glin;U [V (2) − V (1)]

= Glin;U+V (1) [V (2) − V (1)] + Gnl;U+V (1)(V (2) − V (1))

−Glin;U [V (2) − V (1)]

= Gnl;U+V (1)(V (2) − V (1))

+
[
Glin;U+V (1) − Glin;U

]
[V (2) − V (1)].

(12.87)

Substituting (12.79), we find

Gnl;U (V (2))− Gnl;U (V (1)) = Gnl;U+V (1);I(V (2) − V (1))

+Glin;U+V (1);rem(V (2) − V (1)) + Glin;U+V (1);sh(V (2) − V (1))

+
[
Glin;U+V (1) − Glin;U

]
[V (2) − V (1)]

= Gnl;U+V (1);I(V (2) − V (1))

+Glin;U ;rem(V (2) − V (1)) + Glin;U+V (1);sh(V (2) − V (1))

+
[
Glin;U+V (1);rem − Glin;U ;rem

]
(V (2) − V (1))

+
[
Glin;U+V (1) − Glin;U

]
[V (2) − V (1)].

(12.88)

The desired bound now follows from Lemma 12.2 and Corollary 12.7.

Proof of Proposition 12.1. In view of the expression (12.79), the statements follow from Lemma 12.2,
Corollary 12.7 and Lemma 12.9.

13 Estimates for G+

In this section we exploit the component estimates from §10-§11 to analyze the function G+ discussed
in §9. In particular, we introduce the approximants

G+
apx(U) = c∗S

+[∂0∂U ],

G+
lin;U [V ] = c∗S

+[∂0∂V ] + ∂+
[
MU [V ]

]
+ 2γ−2

U ∂0U [∂0∂U ]MU [V ]

+2S+[∂0∂U ]T+h
∑
−;h γ

−2
U ∂0∂UMU [V ]

(13.1)

and write

G+
nl;U (V ) = G+(U + V )− G+(U)− G+

lin;U (V ). (13.2)

Using (4.4), (4.5) and (4.11) one may readily verify the identities

G+
apx(U) = ∂+

[
Gapx(U)

]
,

G+
lin;U [V ] = ∂+

[
Glin;U [V ]

]
,

(13.3)
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which implies that also

G+
nl;U (V ) = ∂+

[
Gnl;U (V )

]
. (13.4)

Our main result quantifies the approximation errors in terms of the quantities

Esh;U (V ) = ‖V ‖`2;3
h

+
[
‖∂+∂+∂+U‖`2h + ‖∂+∂+∂+U‖`∞h

]
‖V ‖`2;2

h
,

Erem;U (V ) = K ‖V ‖`2;2
h

[
‖Etw(U)‖`2h + ‖Etw(U)‖`∞h + ‖Esm(U)‖`2h

]
+K ‖V ‖`2;1

h
‖∂+[Etw(U)]‖`∞h

(13.5)

that were originally introduced in §11.1, together with

Eprod;U (W (1),W (2)) = ‖∂+∂+∂+U‖`∞h
[ ∥∥W (1)

∥∥
`2;1
h

∥∥W (2)
∥∥
`∞;1
h

+
∥∥W (1)

∥∥
`∞;1
h

∥∥W (2)
∥∥
`2;1
h

]
+
∥∥W (1)

∥∥
`2;2
h

∥∥W (2)
∥∥
`2;2
h

+
∥∥W (1)

∥∥
`2;2
h

∥∥W (2)
∥∥
`∞;2
h

+
∥∥W (1)

∥∥
`∞;2
h

∥∥W (2)
∥∥
`2;2
h

+
∥∥W (1)

∥∥
`2;3
h

∥∥W (2)
∥∥
`∞;1
h

+
∥∥W (1)

∥∥
`∞;1
h

∥∥W (2)
∥∥
`2;3
h

.

(13.6)

Proposition 13.1. Suppose that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists K > 0 so

that the following properties hold.

(i) For every h > 0 and U ∈ Ωh;κ, we have∥∥G+(U)− G+
apx(U)

∥∥
`2h
≤ Kh

[
1 + ‖∂+∂+∂+U‖`2h + ‖∂+∂+∂+U‖`∞h

]
+K

[
‖Etw(U)‖`2h + ‖Etw(U)‖`∞h + ‖∂+Etw(U)‖`2h

]
.

(13.7)

(ii) For any h > 0, U ∈ Ωh;κ and V ∈ `2h for which U + V ∈ Ωh;κ, we have the estimate∥∥∥G+
nl;U (V )

∥∥∥
`2h

≤ KEprod;U (V, V ) +KhEsh;U (V ) +KErem;U (V ). (13.8)

(iii) For any h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bound∥∥∥G+
lin;U [V ]− Glin;U [∂+V ]

∥∥∥
`2h

≤ K
[
1 + ‖∂+∂+∂+U‖`∞h + ‖∂+∂+∂+U‖`2h

]
‖V ‖`2;2

h
.

(13.9)

13.1 Nonlinear estimates

Applying the expressions (6.67) to the term

G+
A′a(U) = 2p̃(U)I��0;+

+ (U)∂+∂0∂U (13.10)

defined in (9.39), we obtain the initial approximants

G+
A′a;apx;I(U) = 2p̃apx(U)I��0;+

+;apx(U)∂+∂0∂U,

G+
A′a;lin;U ;I [V ] = 2p̃lin;U [V ]I��0;+

+;apx(U)∂+∂0∂U + 2p̃apx(U)I��0;+
+;lin;U [V ]∂+∂0∂U

+2p̃apx(U)I��0;+
+;apx(U)∂+∂0∂V

(13.11)

and write

G+
A′a;nl;U ;I(V ) = G+

A′a(U + V )− G+
A′a(U)− G+

A′a;lin;U ;I [V ]. (13.12)
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Lemma 13.2. Suppose that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists K > 0 so that

the approximation estimate∥∥∥G+
A′a(U)− G+

A′a;apx;I(U)
∥∥∥
`2h

≤ Kh ‖∂+∂+∂+U‖`2h (13.13)

and the residual bound∥∥∥G+
A′a;nl;U ;I(V )

∥∥∥
`2h

≤ K
[
‖∂+V ‖∞ + h

]
‖∂+∂+∂+V ‖`2h

+K ‖∂+V ‖`∞h ‖∂
+V ‖`2h ‖∂

+∂+∂+U‖`∞h
+Kh

[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
‖∂+∂+∂+U‖`∞h

≤ KEprod;U (V, V ) +KEsh;U (V )

(13.14)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. The first estimate follows immediately from Proposition 10.2. To obtain the second estimate,
we observe that the uniform bound in item (i) of this proposition shows that∥∥∥G+

A′a;nl;U ;I(V )
∥∥∥
`2h

≤ C ′1 ‖∂+∂+∂+V ‖`2h
[
‖p̃lin;U [V ]‖`∞h + ‖p̃nl;U (V )‖`∞h

+
∥∥∥I��0;+

+;lin;U [V ]
∥∥∥
`∞h

+
∥∥∥I��0;+

+;nl;U (V )
∥∥∥
`∞h

]
+C ′1 ‖∂+∂+∂+U‖`∞h

[
‖p̃nl;U (V )‖`2h +

∥∥∥I��0;+
+;nl;U (V )

∥∥∥
`2h

+ ‖p̃lin;U [V ]‖`2h

∥∥∥I��0;+
+;lin;U [V ]

∥∥∥
`∞h

]
.

(13.15)

We note that Lemma’s 10.15 and 10.17 yield the preliminary estimates

‖p̃nl;U (V )‖∞ +
∥∥∥I��0;+

+;nl;U (V )
∥∥∥
∞
≤ C ′2 ‖∂+V ‖2`∞h + C ′2h

[
‖∂+V ‖2`∞h + ‖∂+∂+V ‖`∞h

]
≤ C ′3

[
‖∂+V ‖`∞h + h

]
.

(13.16)

In addition, Proposition 10.2 yields the bounds

‖p̃lin;U [V ]‖`2h ≤ C ′4 ‖∂+V ‖`2h ,

‖p̃lin;U [V ]‖`∞h +
∥∥∥I��0;+

+;lin;U [V ]
∥∥∥
`∞h

≤ C ′4 ‖∂+V ‖`∞h ,
(13.17)

together with

‖p̃nl;U (V )‖`2h +
∥∥∥I��0;+

+;nl;U (V )
∥∥∥
`2h

≤ C ′6 ‖∂+V ‖`∞h ‖∂
+V ‖`2h + C ′6h

[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
.

(13.18)

Substituting these bounds into (13.15) yields the desired estimate.

We now apply (6.67) to the terms (9.14) to obtain the initial approximants

G+
A′b;apx;I(U) =

[
1− Y1;apx(U)XA;apx(U)

]
Y+

2b;apx(U),

G+
A′c;apx;I(U) = −Y+

1;apx(U)XA;apx(U)T+
[
Y2;apx(U)

]
,

(13.19)
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together with

G+
A′b;lin;U ;I [V ] = −Y+

1;lin;U [V ]XA;apx(U)Y+
2b;apx(U)

]
−Y+

1;apx(U)XA;lin;U [V ]Y+
2b;apx(U)

]
[
1− Y1;apx(U)XA;apx(U)

]
Y+

2b;lin;U [V ]
]
,

G+
A′c;lin;U ;I [V ] = −Y+

1;lin;U [V ]XA;apx(U)T+
[
Y2;apx(U)

]
−Y+

1;apx(U)XA;lin;U [V ]T+
[
Y2;apx(U)

]
−Y+

1;apx(U)XA;apx(U)T+
[
Y2;lin;U [V ]

]
.

(13.20)

Applying the expressions (6.67) one final time to the terms (9.15), we also obtain

G+
B′;apx;I(U) = 1

2Y
+
1;apx(U)hT+

∑
−;h Y2;apx(U)T−

[
XB;apx(U)

]
F�−;+

apx (U)
]
,

G+
B′;lin;U ;I [V ] = 1

2Y
+
1;lin;U [V ]T+h

∑
−;h Y2;apx(U)T−

[
XB;apx(U)

]
F�−;+

apx (U)

+ 1
2Y

+
1;apx;expl(U)T+h

∑
−;h Y2;lin;U [V ]T−

[
XB;apx(U)

]
F�−;+

apx (U)

+ 1
2Y

+
1;apx(U)T+h

∑
−;h Y2;apx(U)T−

[
XB;lin;U [V ]

]
F�−;+

apx (U)

+ 1
2Y

+
1;apx(U)T+h

∑
−;h Y2;apx(U)T−

[
XB;apx(U)

]
F�−;+

lin;U [V ]

(13.21)

together with

G+
#′;apx;I(U) = 1

2Y
+
1;apx(U)T+h

∑
−;h Y2;apx(U)T−

[
X#;apx(U)F�0;+

apx (U)
]
,

G+
#′;lin;U ;I [V ] = 1

2Y
+
1;lin;U [V ]T+h

∑
−;h Y2;apx(U)T−

[
X#′;apx(U)F�0;+

apx (U)
]

+ 1
2Y

+
1;apx;expl(U)T+h

∑
−;h Y2;lin;U [V ]T−

[
X#′;apx(U)F�0;+

apx (U)
]

+ 1
2Y

+
1;apx(U)T+h

∑
−;h Y2;apx(U)T−

[
X#′;lin;U [V ]F�0;+

apx (U)
]

+ 1
2Y

+
1;apx(U)T+h

∑
−;h Y2;apx(U)T−

[
X#′;apx(U)F�0;+

lin;U [V ]
]

(13.22)

for # ∈ {C,D}.
Writing

G+
low(U) = G+(U)− G+

A′a(U) (13.23)

we use the expressions above to introduce the initial approximants

G+
low;apx;I(U) = G+

A′b;apx;I(U) + G+
A′c;apx;I(U)

+G+
B′;apx;I(U) + G+

C′;apx;I(U) + G+
D′;apx;I(U),

G+
low;lin;U ;I [V ] = G+

A′b;lin;U ;I [V ] + G+
A′c;lin;U ;I [V ]

+G+
B′;lin;U ;I [V ] + G+

C′;lin;U ;I [V ] + G+
D′;lin;U ;I [V ]

(13.24)

and write

G+
low;nl;U ;I(V ) = G+

low(U + V )− G+
low(U)− G+

low;lin;U ;I [V ]. (13.25)

Lemma 13.3. Suppose that (Hg) is satisfied and fix 0 < κ < 1
12 . Then there exists K > 0 so that

the approximation estimate ∥∥∥G+
low(U)− G+

low;apx;I(U)
∥∥∥
`2h

≤ Kh (13.26)
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and the residual bound ∥∥∥G+
low;nl;I(V )

∥∥∥
`2h

≤ K ‖V ‖`2;2
h

[
‖V ‖`2;2

h
+ ‖V ‖`∞;2

h

]
+Kh ‖V ‖`2;2

h

≤ KEprod;U (V, V ) +KEsh;U (V )

(13.27)

both hold for any h > 0, any U ∈ Ωh;κ and any V ∈ `2h for which U + V ∈ Ωh;κ.

Proof. Following the strategy developed in the proof of Lemma 12.2, the error terms in Lemma 6.6
can be controlled by

Jnl;U (V ) ≤ C ′1Enl(V )

≤ C ′2 ‖V ‖`2;2
h

[
‖V ‖`2;2

h
+ ‖V ‖`2;∞

h
+ h
]
,

Jcross;U (V ) ≤ C ′1

[
T safe(V )Sfull(V ) + T∞;opt(V )S2;fix(V )

]
≤ C ′2 ‖V ‖`2;2

h

[
‖V ‖`2;2

h
+ ‖V ‖`2;∞

h

]
,

Japx;U (V ) ≤ C ′1hT safe(V )

= C ′1h ‖V ‖`2;2
h
,

(13.28)

which yields the desired bounds.

13.2 Error terms

We now introduce the set of expressions

{G+
A′b;apx;II(U),G+

A′c;apx;II(U),G+
B′;apx;II(U),G+

C′;apx;II(U),G+
D′;apx;II(U) (13.29)

together with

{G+
A′b;lin;U ;II [V ],G+

A′c;lin;U ;II [V ],G+
B′;lin;U ;II [V ],G+

C′;lin;U ;II [V ],G+
D′;lin;U ;II [V ]} (13.30)

by inspecting the definitions (13.19), (13.20), (13.21) and (13.22) and making the replacements

fapx(U) 7→ fapx;expl(U), flin;U [V ] 7→ flin;U ;expl[V ] (13.31)

for each f ∈ Snl;short.
In addition, we simply write

G+
A′a;apx;II(U) = G+

A′a;apx;I(U)

G+
A′a;lin;U ;II [V ] = G+

A′a;lin;U ;I [V ].
(13.32)

We now define

G+
apx;II(U) = G+

A′a;apx;II(U) + G+
A′b;apx;II(U) + G+

A′c;apx;II(U)

+G+
B′;apx;II(U) + G+

C′;apx;II(U) + G+
D′;apx;II(U),

G+
lin;U ;II [V ] = G+

A′a;lin;U ;II [V ] + G+
A′b;lin;U ;II [V ] + G+

A′c;lin;U ;II [V ]

+G+
B′;lin;U ;II [V ] + G+

C′;lin;U ;II [V ] + G+
D′;lin;U ;II [V ].

(13.33)

Lemma 13.4. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . There exists a constant K > 0

together with quantities

G+
apx;sh;a(U) ∈ `2h, G+

apx;rem;a(U) ∈ `2h, (13.34)

defined for every h > 0 and U ∈ Ωh;κ, so that the following properties hold true.
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(i) For every h > 0 and U ∈ Ωh;κ we have the identity

G+
A′a;apx;I(U) + G+

low;apx;I(U) = G+
apx;II(U) + G+

apx;sh;a(U) + G+
apx;rem;a(U). (13.35)

(ii) For every h > 0 and U ∈ Ωh;κ we have the bounds∥∥∥G+
apx;sh;a(U)

∥∥∥
`2h

≤ KSsh;full(U) = Kh
[
1 + ‖∂+∂+∂+U‖`2h + ‖∂+∂+∂+U‖`∞h

]
,∥∥G+

apx;rem;a(U)
∥∥
`2h
≤ KSrem;full(U) = K

[
‖Etw(U)‖`2h + ‖Etw(U)‖`∞h

]
.

(13.36)

Proof. The arguments in the proof of Lemma 12.3 also work in the current setting.

Lemma 13.5. Assume that (Hg) is satisfied and fix 0 < κ < 1
12 . There exists a constant K > 0

together with linear maps

G+
lin;U ;sh;a ∈ L(`2h, `

2
h), G+

lin;U ;rem;a ∈ L(`2h, `
2
h), (13.37)

defined for all h > 0 and U ∈ Ωh;κ, so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the identity

G+
A′a;lin;U ;I [V ] + G+

low;lin;U ;I [V ] = G+
lin;U ;II [V ] + G+

lin;U ;sh;a[V ] + G+
lin;U ;rem;a[V ]. (13.38)

(ii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds∥∥∥G+
lin;U ;sh;a[V ]

∥∥∥
`2h

≤ KEsh;U (V ),∥∥∥G+
lin;U ;rem;a[V ]

∥∥∥
`2h

≤ KErem;U (V ).
(13.39)

Proof. The arguments in Lemma 12.4 show that for # ∈ {sh, rem} we have

‖Glin;U ;#;a[V ]‖`2h ≤ C ′1

[
T safe(V )S#;full(V ) + T∞;opt(V )S#;2;fix(V )

]
+C ′1E#;U (V ),

(13.40)

from which the desired bounds can be read off.

13.3 Simplifications for G+
A′a

We recall the definition

G+
A′a;apx;II(U) = 2p̃apx(U)I��0;+

+;apx(U)∂+∂0∂U. (13.41)

Substituting the relevant expressions from §10, we find

G+
A′a;apx;II(U) = 2γ−2

U ∂+∂0∂U. (13.42)

We also recall the definition

G+
A′a;lin;U ;II [V ] = 2p̃lin;U [V ]I��0;+

+;apx(U)∂+∂0∂U + 2p̃apx(U)I��0;+
+;lin;U [V ]∂+∂0∂U

+2p̃apx(U)I��0;+
+;apx(U)∂+∂0∂V.

(13.43)
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Substituting the relevant expressions from §10 and recalling (7.86), we find

G+
A′a;lin;U ;II [V ] = −4γ−4

U [∂+∂0∂U ]∂0U∂0V

+8γ−4
U ∂0U [∂+∂0∂U ]∂0V

+2γ−2
U ∂0∂V

= γ2
UM̃U ;E [V ]− 4γ−4

U ∂0U [∂+∂0∂U ]∂0V.

(13.44)

We conclude by writing

G+
A′a;apx(U) = G+

A′a;apx;II(U),

G+
A′a;lin;U [V ] = G+

A′a;lin;U ;II [V ].
(13.45)

13.4 Simplifications for G+
A′b

We recall the definition

G+
A′b;apx;II(U) =

[
1− Y1;apx;expl(U)XA;apx;expl(U)

]
Y+

2b;apx;expl(U). (13.46)

Substituting the relevant expressions from §11, we find

G+
A′b;apx;II(U) = γ2

U [E+
tw;apx(U)− 2γ−4

U ∂+∂0∂U + 2c∗γ−3
U ∂0∂U ]

= γ2
UE

+
tw;apx(U)− 2γ−2

U ∂+∂0∂U + 2c∗γ−1
U ∂0∂U.

(13.47)

We now make the decomposition

G+
A′b;apx;II(U) = G+

A′b;apx;III(U) + G+
A′b;apx;sh;b(U) (13.48)

by introducing

G+
A′b;apx;III(U) = γ2

UE
+
tw;apx(U)− 2γ−2

U ∂+∂0∂U + c∗γ
−1
U S+[∂0∂U ], (13.49)

together with

G+
A′b;apx;sh;b(U) = −c∗hγ−1

U ∂+[∂0∂U ]. (13.50)

We also recall the definition

G+
A′b;lin;U ;II [V ] = −Y1;lin;U ;expl[V ]XA;apx;expl(U)Y+

2b;apx;expl(U)

−Y1;apx;expl(U)XA;lin;U ;expl[V ]Y+
2b;apx;expl(U)[

1− Y1;apx;expl(U)XA;apx;expl(U)
]
Y+

2b;lin;U ;expl[V ].
(13.51)

Substituting the relevant expressions from §11, we find

G+
A′b;lin;U ;II [V ] = −2∂0U∂0V

[
E+

tw;apx(U)− 2γ−4
U ∂+∂0∂U + 2c∗γ−3

U ∂0∂U
]

+γ2
U

[
γ−2
U ∂+

[
MU [V ]

]
+ 4γ−4

U ∂0U [∂0∂U ]MU [V ]− M̃U ;E [V ]
]

+γ2
Uc∗

[
6γ−5
U ∂0U [∂0∂U ]∂0V + γ−3

U S+[∂0∂V ]
]

= 2c∗γ−3
U ∂0U [∂0∂U ]∂0V + c∗γ

−1
U S+[∂0∂V ]

+∂+
[
MU [V ]

]
+ 4γ−2

U ∂0U [∂0∂U ]MU [V ]− γ2
UM̃U ;E [V ]

−2∂0U
[
E+

tw;apx(U)− 2γ−4
U ∂+∂0∂U

]
∂0V.

(13.52)
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We conclude by writing

G+
A′b;apx(U) = G+

A′b;apx;III(U)

= γ2
UE

+
tw;apx(U)− 2γ−2

U ∂+∂0∂U + c∗γ
−1
U S+[∂0∂U ],

G+
A′b;lin;U [V ] = G+

A′b;lin;U ;II [V ]

(13.53)

and obtaining the following bound.

Lemma 13.6. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identity

G+
A′b;apx;II(U) = G+

A′b;apx(U) + G+
A′b;apx;sh;b(U). (13.54)

(ii) For every h > 0 and U ∈ Ωh;κ we have the bound∥∥∥G+
A′b;apx;sh;b(U)

∥∥∥
`2h

≤ Kh ‖∂+∂+∂+U‖`2h ≤ KSsh;full(U). (13.55)

Proof. The results follow by inspection.

13.5 Simplifications for G+
A′c

We recall the definition

G+
A′c;apx;II(U) = −Y+

1;apx;expl(U)XA;apx;expl(U)T+
[
Y2;apx;expl(U)

]
. (13.56)

Substituting the relevant expressions from §11, we find

G+
A′c;apx;II(U) = −2[∂0∂U ]∂0UT+

[
c∗γ
−1
U ∂0U

]
. (13.57)

We now make the decomposition

GA′c;apx;II(U) = GA′c;apx;III(U) + GA′c;apx;sh;b(U) (13.58)

by introducing

G+
A′c;apx;III(U) = −2c∗[∂0∂U ]∂0U

[
γ−1
U ∂0U

]
= −2c∗γ−1

U (1− γ2
U )[∂0∂U ],

(13.59)

together with

G+
A′c;apx;sh;b(U) = −2h[∂0∂U ]∂0U∂+

[
c∗γ
−1
U ∂0U

]
. (13.60)

In addition, we make the splitting

GA′c;apx;III(U) = GA′c;apx;IV (U) + GA′c;apx;sh;c(U) (13.61)

by writing

G+
A′c;apx;IV (U) = −c∗γ−1

U (1− γ2
U )S+[∂0∂U ], (13.62)

145



together with

G+
A′c;apx;sh;c(U) = hc∗γ

−1
U (1− γ2

U )∂+[∂0∂U ]. (13.63)

We also recall the definition

G+
A′c;lin;U ;II [V ] = −Y+

1;lin;U ;expl[V ]XA;apx;expl(U)T+
[
Y2;apx;expl(U)

]
−Y+

1;apx;expl(U)XA;lin;U ;expl[V ]T+
[
Y2;apx;expl(U)

]
−Y+

1;apx;expl(U)XA;apx;expl(U)T+
[
Y2;lin;U ;expl[V ]

]
.

(13.64)

Substituting the relevant expressions from §11, we find

G+
A′c;lin;U ;II [V ] = −S+[∂0∂V ]∂0UT+

[
c∗γ
−1
U ∂0U

]
−2[∂0∂U ]∂0V T+

[
c∗γ
−1
U ∂0U

]
−2[∂0∂U ]∂0UT+

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
.

(13.65)

We now make the decomposition

G+
A′c;lin;U ;II [V ] = G+

A′c;lin;U ;III [V ] + G+
A′c;lin;U ;sh;b[V ] (13.66)

by introducing

G+
A′c;lin;U ;III [V ] = −c∗γ−1

U (1− γ2
U )S+[∂0∂V ]

−2c∗γ−3
U (1 + γ2

U )[∂0∂U ]∂0U∂0V

−2[∂0∂U ]∂0U
[
γ−2
U MU [V ]

]
,

(13.67)

together with

G+
A′c;lin;U ;sh;b[V ] = −hS+[∂0∂V ]∂0U∂+

[
c∗γ
−1
U ∂0U

]
−2h[∂0∂U ]∂0V ∂+

[
c∗γ
−1
U ∂0U

]
−2h[∂0∂U ]∂0U∂+

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
.

(13.68)

We summarize our results by writing

G+
A′c;apx(U) = G+

A′c;apx;IV (U)

= −c∗γ−1
U (1− γ2

U )S+[∂0∂U ],

G+
A′c;lin;U [V ] = G+

A′c;lin;U ;III [V ]

= −c∗γ−1
U (1− γ2

U )S+[∂0∂V ]

−2c∗γ−3
U (1 + γ2

U )[∂0∂U ]∂0U∂0V

−2[∂0∂U ]∂0U
[
γ−2
U MU [V ]

]
(13.69)

and obtaining the following bounds.

Lemma 13.7. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

146



(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identities

G+
A′c;apx;II(U) = G+

A′c;apx(U) + G+
A′c;apx;sh;b(U) + G+

A′c;apx;sh;c(U),

G+
A′c;lin;U ;II [V ] = G+

A′c;lin;U [V ] + G+
A;lin;U ;sh;b[V ].

(13.70)

(ii) For every h > 0 and U ∈ Ωh;κ we have the bounds∥∥∥G+
A′c;apx;sh;b(U)

∥∥∥
`2h

≤ Kh ≤ KSsh;full(U),∥∥∥G+
A′c;apx;sh;c(U)

∥∥∥
`2h

≤ Kh
∥∥∂+∂0∂U

∥∥
`2h
≤ KSsh;full(U),

(13.71)

(iii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds∥∥∥G+
A′c;lin;U ;sh;b[V ]

∥∥∥
`2h

≤ Kh ‖V ‖`2;3
h

+Kh ‖∂+∂+∂+U‖`∞h ‖∂
+V ‖`2h

≤ KhEsh;U [V ]
(13.72)

Proof. Recalling Proposition 7.15, the bounds follow by inspection.

13.6 Simplifications for G+
B′

We recall the definition

G+
B′;apx;II(U) = 1

2Y
+
1;apx;expl(U)T+h

∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
F�−;+

apx (U) (13.73)

Substituting the relevant expressions from §11, we find

G+
B′;apx;II(U) = [∂0∂U ]T+h

∑
−;h c∗γ

−1
U ∂0U

[
2γ3
U [2γ−3

U ∂0∂U
]]

= 4[∂0∂U ]T+h
∑
−;h c∗γ

−1
U ∂0U

[
∂0∂U

]]
.

(13.74)

In view of Lemma 7.11, we introduce the expressions

G+
B′;apx;III(U) = 2c∗[∂0∂U ]T+(1− γU ),

G+
B′;apx;sh;b(U) = G+

B′;apx;II(U)− G+
B′;apx;III(U).

(13.75)

In addition, we make the splitting

G+
B′;apx;III(U) = G+

B′;apx;IV (U) + G+
B′;apx;sh;c(U) (13.76)

by writing

G+
B′;apx;IV (U) = c∗S

+[∂0∂U ](1− γU ), (13.77)

together with

G+
B′;apx;sh;c(U) = −c∗h∂+[∂0∂U ]T+(1− γU )

+c∗hS+[∂0∂U ]∂+(1− γU ).
(13.78)

We also recall the definition

G+
B′;lin;U ;II [V ] = 1

2Y
+
1;lin;U ;expl[V ]T+h

∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
F�−;+

apx (U)

+ 1
2Y

+
1;apx;expl(U)T+h

∑
−;h Y2;lin;U ;expl[V ]T−

[
XB;apx;expl(U)

]
F�−;+

apx (U)

+ 1
2Y

+
1;apx;expl(U)T+h

∑
−;h Y2;apx;expl(U)T−

[
XB;lin;U ;expl[V ]

]
F�−;+

apx (U)

+ 1
2Y

+
1;apx;expl(U)T+h

∑
−;h Y2;apx;expl(U)T−

[
XB;apx;expl(U)

]
F�−;+

lin;U [V ].
(13.79)
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Substituting the relevant expressions from §11, we find

G+
B′;lin;U ;II [V ] = 1

2S
+[∂0∂V ]T+h

∑
−;h c∗γ

−1
U ∂0U

[
2γ3
U [2γ−3

U ∂0∂U
]]

+[∂0∂U ]T+h
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

][
2γ3
U [2γ−3

U ∂0∂U
]]

+[∂0∂U ]T+h
∑
−;h c∗γ

−1
U ∂0U

[
(−6)γU∂0U∂0V [2γ−3

U ∂0∂U
]]

+[∂0∂U ]T+h
∑
−;h c∗γ

−1
U ∂0U

[
2γ3
U [6γ−5

U ∂0U∂0∂U∂0V + 2γ−3
U ∂0∂V ]

]
.

(13.80)

A little algebra yields

G+
B′;lin;U ;II [V ] = 2S+[∂0∂V ]T+h

∑
−;h c∗γ

−1
U ∂0U∂0∂U

+4[∂0∂U ]T+h
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
∂0∂U

+4[∂0∂U ]T+h
∑
−;h c∗γ

−1
U ∂0U [∂0∂V ].

(13.81)

In view of Lemma’s 7.11 and 7.10, we introduce the expressions

G+
B′;lin;U ;III [V ] = c∗S

+[∂0∂V ]T+(1− γU )

+4[∂0∂U ]T+h
∑
−;h

[
γ−2
U MU [V ] + c∗γ

−3
U ∂0V

]
∂0∂U

+4c∗[∂0∂U ]T+
[

1
2γ
−1
U ∂0U∂0V − h

∑
−;h

[
γ−3
U ∂0∂U∂0V

]]
,

G+
B′;lin;U ;sh;b[V ] = G+

B′;lin;U ;II [V ]− G+
B′;lin;U ;III [V ].

(13.82)

A short computation yields

G+
B′;lin;U ;III [V ] = c∗S

+[∂0∂V ]T+(1− γU ) + 2c∗[∂0∂U ]T+
[
γ−1
U ∂0U∂0V

]
+4[∂0∂U ]T+h

∑
−;h

[
γ−2
U ∂0∂UMU [V ]

]
.

(13.83)

We now make the decomposition

G+
B′;lin;U ;III [V ] = G+

B′;lin;U ;IV [V ] + G+
B′;lin;U ;sh;c[V ] (13.84)

by writing

G+
B′;lin;U ;IV [V ] = c∗S

+[∂0∂V ](1− γU ) + 2c∗[∂0∂U ]
[
γ−1
U ∂0U∂0V

]
+2S+[∂0∂U ]T+h

∑
−;h

[
γ−2
U ∂0∂UMU [V ]

]
,

(13.85)

together with

G+
B′;lin;U ;sh;c[V ] = c∗hS

+[∂0∂V ]∂+[1− γU ] + 2hc∗[∂0∂U ]∂+
[
γ−1
U ∂0U∂0V

]
−2h∂+[∂0∂U ]T+h

∑
−;h

[
γ−2
U ∂0∂UMU [V ]

]
.

(13.86)

We summarize our results by writing

G+
B′;apx(U) = G+

B′;apx;IV (U)

= c∗S
+[∂0∂U ](1− γU ),

G+
B′;lin;U [V ] = G+

B′;lin;U ;IV [V ]

= c∗S
+[∂0∂V ](1− γU ) + 2c∗[∂0∂U ]

[
γ−1
U ∂0U∂0V

]
+2S+[∂0∂U ]T+h

∑
−;h

[
γ−2
U ∂0∂UMU [V ]

]
(13.87)

and obtaining the following bounds.
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Lemma 13.8. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(a) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identities

G+
B′;apx;II(U) = G+

B′;apx(U) + G+
B′;apx;sh;b(U) + G+

B′;apx;sh;c(U),

G+
B′;lin;U ;II [V ] = G+

B′;lin;U [V ] + G+
B′;lin;U ;sh;b[V ] + G+

B′;lin;U ;sh;c[V ].
(13.88)

(ii) For every h > 0 and U ∈ Ωh;κ we have the bounds∥∥∥G+
B′;apx;sh;b(U)

∥∥∥
`2h

≤ Kh ≤ KSsh;full(U),∥∥∥G+
B′;apx;sh;c(U)

∥∥∥
`2h

≤ Kh
∥∥∂+∂0∂U

∥∥
`2h
≤ KSsh;full(U).

(13.89)

(iii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds∥∥∥G+
B′;lin;U ;sh;b[V ]

∥∥∥
`2h

≤ Kh
[
‖∂+V ‖`2h + ‖∂+∂+V ‖`2h

]
≤ KhEsh;U (V ),∥∥∥G+

B′;lin;U ;sh;c[V ]
∥∥∥
`2h

≤ Kh ‖V ‖`2;2
h

+Kh ‖∂+∂+∂+U‖`2h ‖V ‖`2;2
h

≤ KhEsh;U (V ).

(13.90)

Proof. Recalling Lemma’s 7.10 and 7.11, the bounds in (ii) and the first bound in (iii) follow by
inspection. The final bound in (iii) follows from Proposition 7.15.

13.7 Simplifications for G+
C′ and G+

D′

Arguing as in §12.5 we see that

G+
C;apx;II(U) = −G+

D;apx;II(U),

G+
C;lin;U ;II [V ] = −G+

D;lin;U ;II [V ].
(13.91)

13.8 Intermediate total

We now define the total

G+
apx;III(U) = G+

A′a;apx(U) + G+
A′b;apx(U) + G+

A′c;apx(U) + G+
B′;apx(U). (13.92)

Substituting the relevant expressions from §13.3-13.6 we obtain

G+
apx;III(U) = 2γ−2

U ∂+∂0∂U

γ2
UE

+
tw;apx(U)− 2γ−2

U ∂+∂0∂U + c∗γ
−1
U S+[∂0∂U ]

−c∗γ−1
U (1− γ2

U )S+[∂0∂U ]

c∗S
+[∂0∂U ](1− γU )

= c∗S
+[∂0∂U ] + γ2

UE
+
tw;apx(U).

(13.93)

In order to suppress the final term, we introduce the expressions

G+
apx;sh;d(U) = γ2

U

[
E+

tw;apx(U)− ∂+[Etw(U)]
]
,

G+
apx;rem;d(U) = γ2

U∂
+[Etw(U)].

(13.94)
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Moving on to the linear approximants, we define the function

G+
lin;U ;III [V ] = G+

A′a;lin;U [V ] + G+
A′b;lin;U [V ] + G+

A′c;lin;U [V ] + G+
B′;lin;U [V ]. (13.95)

As a first step towards evaluating this expression, we substitute the relevant identities from §13.3-13.6
to compute

G+
A′a;lin;U [V ] + G+

A′b;lin;U [V ] = γ2
UM̃U ;E [V ]− 4γ−4

U ∂0U [∂+∂0∂U ]∂0V

+2c∗γ−3
U ∂0U [∂0∂U ]∂0V + c∗γ

−1
U S+[∂0∂V ]

+∂+
[
MU [V ]

]
+ 4γ−2

U ∂0U [∂0∂U ]MU [V ]− γ2
UM̃U ;E [V ]

−2∂0U
[
E+

tw;apx(U)− 2γ−4
U ∂+∂0∂U

]
∂0V

= 2c∗γ−3
U ∂0U [∂0∂U ]∂0V + c∗γ

−1
U S+[∂0∂V ]

+∂+
[
MU [V ]

]
+ 4γ−2

U ∂0U [∂0∂U ]MU [V ]

−2∂0U
[
E+

tw;apx(U)
]
∂0V.

(13.96)

In a similar fashion, we find

G+
A′c;lin;U [V ] + G+

B′;lin;U [V ] = −c∗γ−1
U (1− γ2

U )S+[∂0∂V ]

−2c∗γ−3
U (1 + γ2

U )[∂0∂U ]∂0U∂0V

−2[∂0∂U ]∂0U
[
γ−2
U MU [V ]

]
+c∗S+[∂0∂V ](1− γU ) + 2c∗[∂0∂U ]

[
γ−1
U ∂0U∂0V

]
+2S+[∂0∂U ]T+h

∑
−;h

[
γ−2
U ∂0∂UMU [V ]

]
= c∗S

+[∂0∂V ]− c∗γ−1
U S+[∂0∂V ]− 2c∗γ−3

U ∂0U [∂0∂U ]∂0V

−2γ−2
U ∂0U [∂0∂U ]MU [V ]

+2S+[∂0∂U ]T+h
∑
−;h

[
γ−2
U ∂0∂UMU [V ]

]
.

(13.97)

In particular, we see that

G+
apx;lin;U ;III [V ] = c∗S

+[∂0∂V ] + ∂+
[
MU [V ]

]
+ 2γ−2

U ∂0U [∂0∂U ]MU [V ]

+2S+[∂0∂U ]T+h
∑
−;h

[
γ−2
U ∂0∂UMU [V ]

]
−2∂0U [E+

tw;apx(U)]∂0V.

(13.98)

Comparing this expression with (13.1), we set out to suppress the final term by introducing the
functions

G+
lin;U ;sh;d[V ] = −2∂0U

[
E+

tw;apx(U)− ∂+[Etw(U)]
]
∂0V,

G+
lin;U ;rem;d[V ] = −2∂0U∂+[Etw(U)]∂0V.

(13.99)

Lemma 13.9. Assume that (Hg) is satisfied, pick 0 < κ < 1
12 and recall the definitions (13.1).

There exists a constant K > 0 so that the following properties hold true.

(i) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the identities

G+
apx;III(U) = G+

apx(U) + G+
apx;sh;d(U) + G+

apx;rem;d(U),

G+
lin;U ;III [V ] = G+

lin;U [V ] + G+
lin;U ;sh;d[V ] + G+

lin;U ;rem;d[V ].
(13.100)
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(ii) For every h > 0 and U ∈ Ωh;κ we have the bounds∥∥∥G+
apx;sh;d(U)

∥∥∥
`2h

≤ Kh ≤ KSsh;full(U),∥∥∥G+
apx;rem;d(U)

∥∥∥
`2h

≤ K ‖∂+[Etw(U)]‖`2h ≤ KSrem;full(U).
(13.101)

(iii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h we have the bounds∥∥∥G+
lin;U ;sh;d[V ]

∥∥∥
`2h

≤ Kh ‖∂+V ‖`2h
≤ KEsh;U (V ),∥∥∥G+

lin;U ;rem;d[V ]
∥∥∥
`2h

≤ K ‖∂+[Etw(U)]‖`∞h ‖∂
+V ‖`2h

≤ KErem;U (V ).

(13.102)

Proof. Recalling (7.64), the bounds follow by inspection.

13.9 Summary

We define the final error terms

G+
apx;rem(U) = G+

apx;rem;a(U) + G+
apx;rem;d(U),

G+
lin;U ;rem[V ] = G+

lin;U ;rem;a[V ] + G+
lin;U ;rem;d[V ],

(13.103)

together with

G+
apx;sh(U) = G+

apx;sh;a(U) + G+
A′b;apx;sh;b(U) + G+

A′c;apx;sh;b(U) + G+
A′c;apx;sh;c(U)

+G+
B′;apx;sh;b(U) + G+

B′;apx;sh;c(U) + G+
apx;sh;d(U),

G+
lin;U ;sh[V ] = G+

lin;U ;sh;a[V ] + G+
A′c;lin;U ;sh;b[V ]

+G+
B′;lin;U ;sh;b[V ] + G+

B′;lin;U ;sh;c[V ] + G+
lin;U ;sh;d[V ].

(13.104)

The computations above show that

G+
A′a;apx;I(U) + G+

low;apx;I(U) = G+
apx(U) + G+

apx;sh(U) + G+
apx;rem(U),

G+
A′a;lin;U ;I [V ] + G+

low;lin;U ;I [V ] = G+
lin;U [V ] + G+

lin;U ;sh[V ] + G+
lin;U ;rem[V ].

(13.105)

Recalling the definitions (13.12) and (13.25), this implies that

G+
nl;U (V ) = G+

A′a;nl;U ;I(V ) + G+
low;nl;U ;I(V ) + G+

lin;U ;rem[V ] + G+
lin;U ;sh[V ]. (13.106)

Corollary 13.10. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that the following properties hold true.

(i) For every h > 0 and U ∈ Ωh;κ we have the bounds

G+
apx;sh(U) ≤ KSsh;full(U),

G+
apx;rem(U) ≤ KSrem;full(U).

(13.107)

(ii) For every h > 0, U ∈ Ωh;κ and V ∈ `2h, we have the bounds

G+
lin;U ;sh[V ] ≤ KEsh;U (V ),

G+
lin;U ;rem[V ] ≤ KErem;U (V ).

(13.108)
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Proof. These estimates follow directly from Lemma’s 13.4-13.9.

Lemma 13.11. Assume that (Hg) is satisfied and pick 0 < κ < 1
12 . Then there exists a constant

K > 0 so that for any h > 0, U ∈ Ωh;κ and V ∈ `2h we have the estimate∥∥∥∂+
[
Glin;U [V ]

]
− Glin;U [∂+V ]

∥∥∥
`2h

≤ K
[
1 + ‖∂+∂+∂+U‖`∞h + ‖∂+∂+∂+U‖`2h

]
‖V ‖`2;2

h
.

(13.109)

Proof. Systematically applying (4.5), we compute

∂+
[
Glin;U [V ]

]
= c∗S

+[∂0∂V ] + ∂+
[
MU [V ]

]
+2S+[∂0U ]T+h

∑
−;h γ

−2
U [∂0∂U ]MU [V ]

+2∂0Uh
∑
−;h ∂

+
[
γ−2
U

]
T+
[
∂0∂UMU [V ]

]
+2∂0Uh

∑
−;h γ

−2
U ∂+

[
∂0∂U

]
T+
[
MU [V ]

]
+2∂0Uh

∑
−;h γ

−2
U [∂0∂U ]∂+

[
MU [V ]

]
.

(13.110)

On the other hand, a direct substitution yields

Glin;U

[
∂+V

]
= c∗S

+[∂0∂V ] +MU

[
∂+V

]
+ 2∂0Uh

∑
−;h γ

−2
U [∂0∂U ]MU

[
∂+V

]
. (13.111)

Comparing these two expressions, we obtain the bound∥∥∥∂+
[
Glin;U [V ]

]
− Glin;U [∂+V ]

∥∥∥
`2h

≤ C ′1
∥∥∂+

[
MU [V ]

]
−MU [∂+V

]∥∥
`2h

+ C ′1 ‖MU [V ]‖`2h
+C ′1 ‖∂+∂+∂+U‖`2h ‖MU [V ]‖`2h .

(13.112)

The desired estimate now follows from (7.82).

Proof of Proposition 13.1. In view of the expression (13.106), the statements follow from Lemma’s
13.2, 13.3 and 13.11 together with Corollary 13.10 .

14 The full linear operator

In this section we study the linear operators Lh : H1 → L2 that act as

Lhv = −c∗v′ + Glin;Ψ∗ [v]. (14.1)

Strictly speaking, the equation Lhv = f with v ∈ H1 and f ∈ L2 needs to be interpreted as the
statement that

Glin;evϑΨ∗ [evϑv] = evϑ[c∗v′ + f ] (14.2)

for almost all ϑ ∈ [0, h]. We remark that the left-hand side is continuous in `2h as a function of ϑ as a
consequence of (5.13) and the continuity of the translation operator on H1. Throughout the sequel
we simply use the notation (14.1) and keep this interpretation in mind.

Our main result provides a quasi-inverse for Lh that bifurcates off a twisted version of the
operator Lcmp discussed in §3. This accounts for the presence in (iii) of the integral transform T∗
that was defined in (3.14).

The crucial point in (i) is that we also obtain control on the L2-norm of the second discrete
derivative of v. This is slightly weaker than full H2-control of v, but turns out to be sufficient to
bound our nonlinear terms. In addition, item (ii) allows us to control an extra discrete derivative of
v provided one is available for f .
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Proposition 14.1. Suppose that (Hg) and (HΦ∗) are satisfied. Then there exist constants K > 0
and h0 > 0 together with linear maps

β∗h : L2 → R, V∗h : L2 → H1, (14.3)

defined for all h ∈ (0, h0), so that the following properties hold true.

(i) For all f ∈ L2 and 0 < h < h0, we have the bound

|β∗hf |+ ‖V∗hf‖H1 +
∥∥∂+

h ∂
+
h V
∗
hf
∥∥
L2 ≤ K ‖f‖L2 . (14.4)

(ii) For all f ∈ L2 and 0 < h < h0, we have the bound∥∥∂+
h V
∗
hf
∥∥
H1 +

∥∥∂+
h ∂

+
h ∂

+
h V
∗
hf
∥∥
L2 ≤ K

[
‖f‖L2 +

∥∥∂+
h f
∥∥
L2

]
. (14.5)

(iii) For all f ∈ L2 and 0 < h < h0, the pair

(β, v) =
(
β∗hf,V∗hf

)
∈ R×H1 (14.6)

is the unique solution to the problem

Lhv = f + βΨ′∗ (14.7)

that satisfies the normalization condition

〈Ψadj
∗ , T∗v〉L2 = 0. (14.8)

(iv) We have β∗hΨ′∗ = −1 for all h ∈ (0, h0).

Our strategy is to apply the spirit of the ideas in [4] to our present more convoluted setting.
In particular, in §14.1 we analyze the structure of the terms contained in the definition Lh and
its adjoint and provide a decomposition that isolates the crucial expressions. In §14.2 we show
how Proposition 14.1 can be established provided that a technical lower bound related to the sets
{[Lh − δ]v}‖v‖H1=1 can be obtained. We set out to derive this bound in §14.3, using a generalized
version of the arguments in [4].

14.1 Structure

For any v ∈ L2 and h > 0, we introduce the function

Mh[v] = −c∗γ−1
Ψ∗
∂0
hv + 8γ−4

Ψ∗
∂0
hΨ∗

[
[∂0∂]hΨ∗

]
∂0
hv + 2γ−2

Ψ∗
[∂0∂]hv + γ2

Ψ∗
g′(Ψ∗)v. (14.9)

Here we recall the definition

γΨ∗ =
√

1− (∂0
hΨ∗)2, (14.10)

which should not be confused with

γ∗ =
√

1− (Ψ′∗)2. (14.11)

Upon writing

Madj
h [w] = c∗∂

0
h[γ−1

Ψ∗
w]− ∂0

h

[
8γ−4

Ψ∗
∂0
hΨ∗

[
[∂0∂]hΨ∗

]
w
]

+ [∂0∂]h
[
2γ−2

Ψ∗
w
]

+ γ2
Ψ∗
g′(Ψ∗)w,

(14.12)
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one readily checks that for any pair (v, w) ∈ L2 × L2 we have

〈Mh[v], w〉L2 = 〈v,Madj
h [w]〉L2 . (14.13)

From now on, we simply write ∂± and ∂0 for the discrete derivatives if the value for h is clear from
the context.

With this notation in hand, the operator Lh can be written as

Lhv = −c∗v′ + c∗∂
0v +Mh[v] + 2∂0Ψ∗h

∑
−;h γ

−2
Ψ∗

[∂0∂Ψ∗]Mh[v]. (14.14)

We now introduce the formal adjoint Ladj
h : H1 → L2 that acts as

Ladj
h w = c∗w

′ − c∗∂0w +Madj
h [w] +Madj

h

[
γ−2

Ψ∗
[∂0∂Ψ∗]h

∑
+;h 2w∂0Ψ∗

]
. (14.15)

Indeed, using the computation

〈2∂0Ψ∗h
∑
−;h

[
γ−2

Ψ∗
[∂0∂Ψ∗]Mh[v]

]
, w〉L2 = 〈γ−2

Ψ∗
[∂0∂Ψ∗]Mh[v], h

∑
+;h 2w∂0Ψ∗〉L2

= 〈Mh[v], γ−2
Ψ∗

[∂0∂Ψ∗]h
∑

+;h 2w∂0Ψ∗〉L2

= 〈v,Madj
h

[
γ−2

Ψ∗
[∂0∂Ψ∗]h

∑
+;h 2w∂0Ψ∗

]
〉L2 ,

(14.16)

one can verify that

〈Lhv, w〉L2 = 〈v,Ladj
h w〉L2 (14.17)

for any pair (v, w) ∈ H1 ×H1.
Our goal here is to establish the following structural decomposition of Lh and Ladj

h . Roughly
speaking, this decomposition isolates all the terms that cannot be exponentially localized. In ad-
dition, it explicitly describes how the formal h ↓ 0 limit can be related to twisted versions of the
operators Lcmp and Ladj

cmp that were discussed in §3.

Proposition 14.2. Suppose that (Hg) and (HΦ∗) are satisfied and pick η > 0 sufficiently small.
There exists a constant K > 0 together with linear maps

Lc;h : H1 → L2, Ladj
c;h : H1 → L2, (14.18)

defined for all 0 < h < 1, so that the following properties hold true.

(i) For every 0 < h < 1 the identities

Lhv = −c∗v′ + 2γ−2
Ψ∗
∂0∂v + γ2

Ψ∗
g′(Ψ∗)v + Lc;h[v],

Ladj
h w = c∗w

′ + 2γ−2
Ψ∗
∂0∂w + γ2

Ψ∗
g′(Ψ∗)w + Ladj

c;h [w]
(14.19)

hold for all v ∈ H1 and w ∈ H1.

(ii) For any 0 < h < 1 we have the bounds

‖Lc;h[v]‖L2 ≤ K ‖v‖H1 ,∥∥∥Ladj
c;h [w]

∥∥∥
L2
≤ K ‖w‖H1

(14.20)

for all v ∈ H1 and w ∈ H1.
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(iii) For every 0 < h < 1 we have the bounds∥∥e−1
2η Lc;h[v]

∥∥
L2
η

≤ K
[
‖v‖L2

η
+ ‖∂+v‖L2

η

]
,∥∥∥e−1

2η L
adj
c;h [w]

∥∥∥
L2
η

≤ K
[
‖w‖L2

η
+ ‖∂+w‖L2

η

] (14.21)

for all v ∈ H1 and w ∈ H1.

(iv) Consider two sequences {(hj , vj)} and {(hj , wj)} that both satisfy the condition (hSeq) intro-
duced in §5.3. Then there exist two pairs (V∗,W∗) ∈ H2 × H2 and (F∗, F

adj
∗ ) ∈ L2 × L2 for

which the weak convergences

(vj ,Lhj [vj ]) ⇀ (V∗, F∗) ∈ H1 × L2, (wj ,Ladj
hj

[wj ]) ⇀ (W∗, F adj
∗ ) ∈ H1 × L2 (14.22)

both hold, possibly after passing to a further subsequence. In addition, we have the identity

LcmpV∗ = T∗F∗ (14.23)

and we have

W∗ = T adj
∗ H∗ (14.24)

for some H∗ ∈ H2 that satisfies

Ladj
cmp[H∗] = F adj

∗ . (14.25)

Decomposition for Lh
We set out to identify all the terms in Lh that can be exponentially localized in the sense of (14.20).
We start by analyzing the function Mh[v], which can be treated by direct inspection.

Lemma 14.3. Suppose that (Hg) and (HΦ∗) are satisfied and pick η > 0 sufficiently small. There
exists a constant K > 0 together with functions α0;h ∈ H1, defined for 0 < h < 1, so that the
following properties hold.

(i) For every 0 < h < 1 and τ ∈ R we have

|α0;h(τ)| ≤ Ke2η(τ). (14.26)

(ii) For any 0 < h < 1 and v ∈ H1 we have the identity

c∗∂
0v +Mh[v] = 2γ−2

Ψ∗
∂0∂v + γ2

Ψ∗
g′(Ψ∗)v + α0;h∂

0v. (14.27)

(iii) For any sequence {(hj , vj)} that satisfies (hSeq), there exists V∗ ∈ L2 for which the weak
convergences

vj ⇀ V∗, Mhj [vj ] ⇀ γ2
∗Lcmp[V∗] ∈ L2 (14.28)

both hold as j →∞, possibly after passing to a subsequence.

Proof. Writing

α0;h = c∗(1− γ−1
Ψ∗

) + 8γ−4
Ψ∗
∂0Ψ∗[∂0∂Ψ∗], (14.29)

item (ii) follows by inspection. Item (i) follows from the exponential bounds (3.4) together with an
application of the Lipschitz bound (4.23) with U (1) = 0 and γU(1) = 1.
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Turning to (iii), we may exploit the fact that Ψ∗ ∈ H4 to reason as in the proof of Proposition
7.14 and obtain the strong limits

γ−2
Ψ∗
→ γ−2

∗ ∈ H1, γ2
Ψ∗g

′(Ψ∗)→ γ2
∗g
′(Ψ∗) ∈ H1, (14.30)

together with

α0;hj → c∗(1− γ−1
∗ ) + 2γ−4

∗ Ψ′∗Ψ
′′
∗ ∈ H1. (14.31)

In particular, we may apply Lemma’s 5.10 and 5.11 to obtain the weak convergence

Mhj [vj ] ⇀ −c∗γ−1
∗ V ′∗ + 4γ−4

∗ Ψ′∗Ψ
′′
∗V
′
∗ + γ−2

∗ V ′′∗ + γ2
∗g
′(Ψ∗)V∗ ∈ L2. (14.32)

Inspecting the definition (3.8) yields (iii).

It is convenient to introduce the notation

Ωh[v] = h
∑
−;h γ

−2
Ψ∗

[∂0∂Ψ∗]Mh[v], (14.33)

which in view of (14.27) allows us to obtain the expression (14.19) for Lh by writing

Lc;h[v] = α0;h∂
0v + 2[∂0Ψ∗]Ωh[v]. (14.34)

Lemma 14.4. Suppose that (Hg) and (HΦ∗) are satisfied and pick η > 0 sufficiently small. There
exists a constant K > 0 so that the following properties hold.

(i) For any v ∈ H1 and 0 < h < 1, we have the estimate

‖Ωh[v]‖L2
η
≤ K

[
‖vj‖L2

η
+ ‖∂+vj‖L2

η

]
. (14.35)

(ii) For any sequence {(hj , vj)} that satisfies (hSeq), there exists V∗ ∈ L2 for which the weak
convergences

vj ⇀ V∗, 2[∂0Ψ∗]Ωhj [vj ] ⇀ Ψ′∗

∫
−

Ψ′′∗LcmpV∗ ∈ L2 (14.36)

both hold as j →∞, possibly after passing to a subsequence.

Proof. We make the splitting Ωh[v] = ΩA;h[v] + ΩB;h[v] by introducing the notation

ΩA;h[v] = h
∑
−;h γ

−2
Ψ∗
∂0∂Ψ∗

[
Mh[v]− 2γ−2

Ψ∗
∂0∂v

]
,

ΩB;h[v] = 2h
∑
−;h γ

−4
Ψ∗

[∂0∂Ψ∗]∂0∂v.
(14.37)

Applying Lemma 5.9 and inspecting (14.27), we see that

‖ΩA;h[v]‖L2
η
≤ C ′1

∥∥Mh[v]− 2γ−2
Ψ∗
∂0∂v

∥∥
L2
η

≤ C ′2

[
‖vj‖L2

η
+ ‖∂+vj‖L2

η

]
.

(14.38)

Applying the summation-by-parts identity (4.13), we compute

ΩB;h[v] = h
∑
−;h γ

−4
Ψ∗

[∂0∂Ψ∗]∂+∂−v

= T−
[
γ−4

Ψ∗
∂0∂Ψ∗

]
∂−v

−
∑
−;h ∂

−v∂−
[
γ−4

Ψ∗
∂0∂Ψ∗

]
.

(14.39)
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Item (i) now follows from a second application of Lemma 5.9.
To obtain (ii), we set out to apply Lemma 5.11 with fj = Mhj [vj ], α2;j = γ−2

Ψ∗
∂0∂Ψ∗ and

α1;j = 2∂0Ψ∗. Exploiting the fact that Ψ∗ ∈ H4, we may reason as in the proof of Proposition 7.14
to obtain the strong limits

α1;j → 2Ψ′∗ ∈ H1, α2;j →
1
2
γ−2
∗ Ψ′′∗ ∈ H1. (14.40)

Item (iii) of Lemma 14.3 implies that

f∗ = γ2
∗Lcmp[V∗], (14.41)

from which the desired weak limit follows.

Decomposition for Ladj
h

We set out to here to mimic the procedure above for Ladj
h , which has a more convoluted structure.

Special care needs to be taken to handle the fact that Madj
h acts on a discrete sum. The identities

(4.11) play a crucial role here.

Lemma 14.5. Suppose that (Hg) and (HΦ∗) are satisfied and pick η > 0 sufficiently small. There
exists a constant K > 0 together with a set of functions

(α0;h, α0s;h, α+;h, α−;h) ∈ H1 ×H1 ×H1 ×H1, (14.42)

defined for 0 < h < 1, so that the following properties hold.

(i) For every 0 < h < 1 and τ ∈ R we have

|α0;h(τ)|+ |α0s;h(τ)|+ |α−;h(τ)|+ |α+;h(τ)| ≤ Ke2η(τ). (14.43)

(ii) For any 0 < h < 1 and w ∈ H1 we have the identity

−c∗∂0w +Madj
h [w] = 2γ−2

Ψ∗
∂0∂w + γ2

Ψ∗
g′(Ψ∗)w

+α0;hw + α0s;hT
+w + α+;h∂

+w + α−;h∂
−w.

(14.44)

(iii) For any sequence {(hj , wj)} that satisfies (hSeq), there exists W∗ ∈ L2 for which the weak
convergences

wj ⇀W∗, Madj
hj

[wj ] ⇀ Ladj
cmp[γ2

∗W∗] ∈ L2 (14.45)

both hold as j →∞, possibly after passing to a subsequence.

Proof. Applying (4.5) and (4.6), we obtain

Madj
h [w] = c∗∂

0[γ−1
Ψ∗

]T+[w] + c∗T
−[γ−1

Ψ∗
]∂0w

−∂0
[
8γ−4

Ψ∗
[∂0Ψ∗]∂0∂Ψ∗

]
T+w − T−

[
8γ−4

Ψ∗
∂0Ψ∗∂0∂Ψ∗

]
∂0w

+2[∂0∂γ−2
Ψ∗

]w + 2γ−2
Ψ∗
∂0∂w + ∂+[γ−2

Ψ∗
]∂+w + ∂−[γ−2

Ψ∗
]∂−w

+γ2
Ψ∗
g′(Ψ∗)w,

(14.46)

from which (i) and (ii) can be read off.
Turning to (iii), we note first that the identity

T+wj = wj + hj∂
+wj (14.47)
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shows that also T+wj ⇀ W∗ ∈ L2. Applying Lemma’s 5.10 and 5.11 to the representation (14.46),
we obtain the weak limit

Madj
hj

[wj ] ⇀ c∗[γ−1
Ψ∗

]′W∗ + c∗[γ−1
Ψ∗

]W ′∗

−
[
4γ−4
∗

Ψ′∗Ψ
′′
∗

]′
W∗ −

[
4γ−4
∗ Ψ′∗Ψ

′′
∗

]
W ′∗

+[γ−2
∗ ]′′W∗ + γ−2

∗ W ′′∗ + 2[γ−2
∗ ]′W ′∗

+γ2
∗g
′(Ψ∗)W∗

= c∗∂τ [γ−1
∗ W∗]− ∂τ

[
4γ−4
∗ Ψ′∗Ψ

′′
∗W∗] + ∂ττ

[
γ−2
∗ W∗

]
+ γ2
∗g
′(Ψ∗)W∗.

(14.48)

Inspecting the definition (3.9) now yields the result.

It is convenient to introduce the notation

Ωadj
h [w] = h

∑
+;h

2w∂0Ψ∗, (14.49)

which in view of (14.44) allows us to obtain the expression (14.19) for Ladj
h by writing

Ladj
c;h [w] = α0w + α0,sT

+w + α+∂
+w + α−∂

−w

+Madj
h

[
γ−2

Ψ∗
[∂0∂Ψ∗]Ω

adj
h [w]

]
.

(14.50)

Lemma 14.6. Suppose that (Hg) and (HΦ∗) are satisfied and pick η > 0 sufficiently small. There
exists a constant K > 0 together with a set of functions

(α̃0;h, α̃0s;h, α̃+;h, α̃ω;h, α̃ωs;h) ∈ H1 ×H1 ×H1 ×H1 ×H1, (14.51)

defined for 0 < h < 1, so that the following properties hold.

(i) For any 0 < h < 1 and w ∈ H1, we have the estimate∥∥∥Ωadj
h [w]

∥∥∥
L2
η

≤ K ‖w‖L2
η
. (14.52)

(ii) For every 0 < h < 1 and τ ∈ R we have

|α̃0;h(τ)|+ |α̃0s;h(τ)|+ |α̃+;h(τ)|+ |α̃ω;h(τ)|+ |α̃ωs;h(τ)| ≤ Ke2η(τ). (14.53)

(iii) For every 0 < h < 1 and w ∈ H1, we have the identity

Madj
h

[
γ−2

Ψ∗
[∂0∂Ψ∗]Ω

adj
h [wj ]

]
= α̃0;hw + α̃0s;hT

+w + α̃+;h∂
+w

+α̃ω;hΩadj
h [w] + α̃ωs;hT

+Ωadj
h [w].

(14.54)

(iv) For any sequence {(hj , wj)} that satisfies (hSeq), there exists W∗ ∈ L2 for which the weak
convergences

wj ⇀W∗, Madj
hj

[
γ−2

Ψ∗
[∂0∂Ψ∗]Ω

adj
hj

[wj ]
]
⇀ Ladj

cmp

[
Ψ′′∗

∫
+

Ψ′∗W∗
]
∈ L2 (14.55)

both hold as j →∞, possibly after passing to a subsequence.

158



Proof. Item (i) can be obtained in a similar fashion as item (i) of Lemma 14.4. Recalling the identities
(4.5)-(4.6) and (4.11), we compute

∂−
[
Ωadj
h [w]

]
= −2w∂0Ψ∗ (14.56)

and hence

∂0
[
Ωadj
h [w]

]
= −S+[w∂0Ψ∗]

∂0∂
[
Ωadj
h [w]

]
= 1

2∂
+∂−

[
Ωadj
h [w]

]
= −∂+[∂0Ψ∗]T+w − [∂0Ψ∗]∂+w.

(14.57)

Writing

I[w] = γ−2
Ψ∗

[∂0∂Ψ∗]Ω
adj
h [w], (14.58)

this gives

∂0
[
I[w]

]
= ∂0

[
γ−2

Ψ∗
∂0∂Ψ∗

]
T+
[
Ωadj
h [w]

]
−T−

[
γ−2

Ψ∗
[∂0∂Ψ∗]

]
S+[w∂0Ψ∗],

(14.59)

together with

∂0∂
[
I[w]

]
= ∂0∂

[
γ−2

Ψ∗
∂0∂Ψ∗

][
Ωadj
h [w]

]
+
[
γ−2

Ψ∗
∂0∂Ψ∗

][
− ∂+[∂0Ψ∗]T+w − [∂0Ψ∗]∂+w

]
+ 1

2∂
+[γ−2

Ψ∗
∂0∂Ψ∗

]
T+[−2w∂0Ψ∗]

+ 1
2∂
−[γ−2

Ψ∗
∂0∂Ψ∗

]
[−2w∂0Ψ∗].

(14.60)

Items (ii) and (iii) can now be read off from the representation (14.44) and the exponential bounds
(3.4).

Suppose now that {(hj , wj)} satisfies (hSeq) and write

Ij = γ−2
Ψ∗

[∂0∂Ψ∗]Ω
adj
hj

[wj ]. (14.61)

Using the same arguments as in the proof of item (ii) of Lemma 14.4, we can apply Lemma 5.11 to
obtain the weak convergence

Ij ⇀ γ−2
∗ Ψ′′∗

∫
+

Ψ∗W∗ ∈ L2. (14.62)

In addition, using the identity[
Ωadj
h [w]

]′
= h

∑
+;h

[
2w∂0Ψ′∗ + 2w′∂0Ψ∗

]
(14.63)

together with Lemma 5.9, we see that ‖Ij‖H1 can be uniformly bounded. Finally, (14.60) together
with the fact that Ψ∗ ∈ H5 implies that also ‖∂+∂+Ij‖L2 can be uniformly bounded. In particular,
the sequence {(hj , Ij)} also satisfies (hSeq). Applying item (iii) of Lemma 14.5 now yields (iv).

Proof of Proposition 14.2. Items (i) and (ii) follow directly from Lemma’s 14.3, 14.4, 14.5 and 14.6.
Under the assumptions of (iii), the weak limits (14.22) follow from the fact that {Lhj [vj ]} and
{Ladj

hj
[wj ]} are bounded sequences in L2. Using Lemma’s 14.3 and 14.4, we see that

F∗ = γ2
∗Lcmp[V∗] + Ψ′∗

∫
−

Ψ′′∗Lcmp[V∗]. (14.64)
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Applying (3.82) yields (14.23).
On the other hand, Lemma’s 14.5 and 14.6 show that

F adj
∗ = Ladj

cmp[γ2
∗W∗] + Ladj

cmp[Ψ′′∗

∫
+

Ψ′∗W∗]. (14.65)

In particular, we can satisfy (14.25) by writing

H∗ = γ2
∗W∗ + Ψ′′∗

∫
+

Ψ′∗W∗. (14.66)

Applying (3.83) we see that

W∗ = T adj
∗ H∗, (14.67)

as desired.

14.2 Strategy

In this subsection we show that Proposition 14.1 can be established by finding appropriate lower
bounds for the quantities

Eh(δ) = inf‖v‖H1=1

{
‖Lhv − δv‖L2 + δ−1

∣∣∣〈Ψadj
∗ , T∗

[
Lhv − δv

]
〉L2

∣∣∣ },
Eadj
h (δ) = inf‖w‖H1=1

{∥∥∥Ladj
h w − δw

∥∥∥
L2

+ δ−1
∣∣∣〈Ψ′∗,Ladj

h w − δw〉L2

∣∣∣ }. (14.68)

In particular, the required bounds are formulated in the following result, which is analogous to [4,
Lem. 6].

Proposition 14.7. Suppose that (Hg) and (HΦ∗) are satisfied. Then there exists µ > 0 and δ0 > 0
such that for every 0 < δ < δ0 we have

µ(δ) := liminfh↓0 Eh(δ) ≥ µ,

µadj(δ) := liminfh↓0 Eadj
h (δ) ≥ µ.

(14.69)

We postpone the proof of this result to §14.3, but set out to explore the consequences here. In
particular, it enables us to show that the operators Lh − δ are invertible for small h > 0 and δ > 0,
providing us with the analogue of [4, Thm. 4].

Proposition 14.8. Suppose that (Hg) and (HΦ∗) are satisfied. There exists constants K > 0 and
δ0 > 0 together with a map h0 : (0, δ0)→ (0, 1) so that the following holds true. For any 0 < δ < δ0
and any 0 < h < h0(δ), the operator Lh − δ is invertible as a map from H1 onto L2 and satisfies
the bound ∥∥(Lh − δ)−1f

∥∥
H1 ≤ K

[
‖f‖L2 + δ−1

∣∣〈Ψadj
∗ , T∗f〉

∣∣]. (14.70)

Proof. Following the proof of [4, Thm. 4], we fix 0 < δ < δ0 and a sufficiently small h > 0. By
Proposition 14.7, the operator Lh − δ is an homeomorphism from H1 onto its range

R = (Lh − δ)
(
H1
)
⊂ L2, (14.71)

with a bounded inverse I : R → H1. The latter fact shows that R is a closed subset of L2. If R 6= L2,
there exists a non-zero w ∈ L2 so that 〈w,R〉L2 = 0, i.e.,〈

w, (Lh − δ)v
〉
L2 = 0 for all v ∈ H1. (14.72)
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Restricting this identity to test functions v ∈ C∞c implies that in fact w ∈ H1. In particular, we find〈
(Ladj

h − δ)w, v
〉
L2 = 0 for all v ∈ H1, (14.73)

which by the density of H1 in L2 means that (Ladj
h − δ)w = 0. Applying Proposition 14.7 once more

yields the contradiction w = 0 and establishes R = L2. The bound (14.70) with the δ-independent
constant K > 0 now follows directly from the definition (14.68) of the quantities Eh(δ) and the
uniform lower bound (14.69).

Following the ideas in [42, §3.3], we can take the δ ↓ 0 limit and establish our main result
concerning Lh. The bounds in (ii) rely heavily on the preliminary work in §13 related to the quantity

G+
lin;U [V ]− Glin;U [∂+V ]. (14.74)

Proof of Proposition 14.1. For convenience, we introduce the set

Zh = {v ∈ H1 : 〈Ψadj
∗ , T∗v〉L2 = 0}. (14.75)

Our goal is to find, for any f ∈ L2, a solution (β, v) ∈ R×Zh to the problem

v = Vh;δ

[
f, v, β

]
:= (Lh − δ)−1

[
f + βΨ′∗ − δv

]
. (14.76)

In order to ensure that the linear operator Vh;δ indeed maps into Zh, it suffices to choose β in such
a way that

β〈Ψadj
∗ , T∗(Lh − δ)−1Ψ′∗〉L2 = −〈Ψadj

∗ , T∗(Lh − δ)−1(f − δv)〉L2 . (14.77)

Writing

(Lh − δ)−1Ψ′∗ = −δ−1Ψ′∗ + v (14.78)

we see that

[Lh − δ]v = δ−1LhΨ′∗, (14.79)

which shows that

‖v‖H1 ≤ C ′1hδ−2. (14.80)

Choosing δ < 1 and recalling the normalization

〈Ψadj, T∗Ψ′∗〉L2 = 1, (14.81)

we can impose a restriction h ≤ [C ′2]−1δ2 to ensure that∣∣〈Ψadj
∗ , T∗(Lh − δ)−1Ψ′∗〉L2

∣∣ ≥ 1
2
δ−1. (14.82)

In particular, we can find a unique solution β = βh;δ[f, v] to (14.77) for every v ∈ Zh and f ∈ L2.
The definition of Z implies the bound∥∥(Lh − δ)−1(f − δv)

∥∥ ≤ C ′3[δ−1 ‖f‖L2 + δ ‖v‖L2

]
, (14.83)

which allows us to obtain the estimate

|βh;δ[f, v]| ≤ C ′4
[
‖f‖L2 + δ2 ‖v‖L2

]
. (14.84)
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This in turn leads to the estimate∥∥Vh;δ

[
f, v, βh;δ[f, v]

]∥∥
H1 ≤ C ′5

[
δ−1 ‖f‖L2 + δ ‖v‖L2

]
. (14.85)

By choosing δ > 0 to be sufficiently small, we hence see that the linear fixed point problem

v = Vh;δ

[
f, v, βh;δ[f, v]

]
(14.86)

posed on Zh has a unique solution for all f ∈ L2. Writing v = V∗h;δf for this solution together with

β∗h;δf = βh;δ

[
f,V∗h;δf

]
, (14.87)

we obtain the estimates∥∥V∗h;δf
∥∥
H1 ≤ C ′6δ−1 ‖f‖L2 ,

∣∣β∗h;δf
∣∣ ≤ C ′6 ‖f‖L2 . (14.88)

The remarks above show that the problem (14.7)-(14.8) is equivalent to (14.86). We can hence fix a
sufficiently small δ > 0 and write β∗h = β∗h;δ and V∗h;δ, which are well-defined for all sufficiently small
h > 0. This establishes (iii). Item (iv) can be verified directly by noting that (v, β) = (0,−1) is a
solution to (14.7)-(14.8) for f = Ψ′∗.

Turning to (i) and (ii), let us pick f ∈ L2 and write

(v, β) = (V∗h[f ], β∗h[f ]). (14.89)

Item (iii) implies that

cv′ + f + βΨ′∗ = Glin;Ψ∗ [v]

= 2γ−2
Ψ∗
∂0∂v + γ2

Ψ∗
g′(Ψ∗)v + Lc;h[v].

(14.90)

The bound (i) follows from (14.88) and item (ii) of Proposition 14.2, which together provide L2-
bounds on all the terms in (14.90) that do not involve ∂0∂v. To see (ii), we compute

c∂+[v]′ + ∂+[f ] + β∂+[Ψ′∗] = ∂+
[
Glin;Ψ∗;expl[v]

]
= Glin;Ψ∗ [∂

+v]

+∂+
[
Glin;Ψ∗ [v]

]
− Glin;Ψ∗ [∂

+v].
(14.91)

In particular, we see that

Lh[∂+v] = ∂+[f ] + β∂+[Ψ′∗] + Glin;Ψ∗ [∂
+v]− ∂+

[
Glin;Ψ∗ [v]

]
. (14.92)

Using item (iii) of Proposition 13.1 together with item (iii) of Lemma 5.4, we obtain∥∥Glin;Ψ∗ [∂
+v]− ∂+

[
Glin;Ψ∗ [v]

]∥∥
L2 ≤ C ′7

[
‖v‖H1 + ‖∂+∂+v‖L2

]
≤ C ′8 ‖f‖L2 .

(14.93)

Using (i) we conclude that∥∥∂+v
∥∥
H1 +

∥∥∂+∂+[∂+v]
∥∥
L2 ≤ C ′9

[
‖f‖L2 +

∥∥∂+f
∥∥
L2

]
, (14.94)

which establishes (ii).
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14.3 Proof of Proposition 14.7

We set out here to obtain lower bounds for the quantities (14.68). As a first step, we show that the
limiting values can be approached via a sequence of realizations for which the weak limits described
in (iv) of Proposition 14.2 hold and for which the full power of Lemma 5.10 is available.

Lemma 14.9. Consider the setting of Proposition 14.7 and fix 0 < δ < δ0. Then there exist four
functions

(V∗,W∗) ∈ H2 ×H2, (Y∗, Z∗) ∈ L2(R), (14.95)

together with a sequence

{(hj , vj , yj , wj , zj)}j∈N ⊂ (0, 1)×H1 × L2 ×H1 × L2 (14.96)

that satisfies the following properties.

(i) For any j ∈ N, we have

‖vj‖H1 = ‖wj‖H1 = 1, (14.97)

together with

Lhj [vj ]− δvj = yj ,

Ladj
hj

[wj ]− δwj = zj .
(14.98)

(ii) Recalling the constants
(
µ(δ), µadj(δ)

)
defined in (14.69), we have the limits

µ(δ) = limj→∞{‖yj‖L2 + δ−1
∣∣〈Ψadj
∗ , T∗[yj ]〉L2

∣∣},
µadj(δ) = limj→∞{‖zj‖L2 + δ−1

∣∣〈Ψ′∗, zj〉L2

∣∣}. (14.99)

(iii) As j →∞, we have the weak convergences

vj ⇀ V∗ ∈ H1, wj ⇀W∗ ∈ H1, (14.100)

together with

yj ⇀ Y∗ ∈ L2, zj ⇀ Z∗ ∈ L2. (14.101)

(iv) The pairs {(hj , vj)} and {(hj , wj)} both satisfy (hSeq).

Proof. The existence of the sequences (14.96) that satisfy (i) and (ii) with hj ↓ 0 follows directly
from the definitions (14.69). Notice that (14.99) implies that we can pick C1 > 0 for which we have
the uniform bound

‖yj‖L2 + ‖zj‖L2 ≤ C1 (14.102)

for all j ∈ N. In particular, after taking a subspace we obtain (iii). In addition, item (ii) of Proposition
14.2 implies that also ∥∥[∂0∂]hjvj

∥∥
L2 +

∥∥[∂0∂]hjvj
∥∥
L2 ≤ C2 (14.103)

for some C2 > 0 and all j > 0, which implies (iv).
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Lemma 14.10. Consider the setting of Proposition 14.7. There exists a constant K1 > 0 so that
for any 0 < δ < δ0, the function V∗ defined in Lemma 14.9 satisfies the bound

‖V∗‖H2 ≤ K1µ(δ). (14.104)

Proof. Item (iv) of Proposition 14.2 implies that

Lcmp[V∗] = T∗[Y∗ + δV∗], (14.105)

which we rewrite as

Lcmp[V∗]− δT∗[V∗] = T∗Y∗. (14.106)

The lower-semicontinuity of the L2-norm under weak limits implies that

‖Y∗‖L2 + δ−1
∣∣〈Ψadj
∗ , T∗Y∗〉

∣∣ ≤ µ(δ), (14.107)

while Lemma 3.13 implies that

‖T∗Y∗‖L2 + δ−1
∣∣〈Ψadj
∗ , T∗Y∗〉

∣∣ ≤ C ′1µ(δ). (14.108)

The desired bound hence follows directly from Corollary 3.3.

Lemma 14.11. Consider the setting of Proposition 14.7. There exists a constant K1 > 0 so that
for any 0 < δ < δ0, the function W∗ defined in Lemma 14.9 satisfies the bound

‖W∗‖H2 ≤ K1µ
adj(δ). (14.109)

Proof. Item (iv) of Proposition 14.2 implies that

W∗ = T adj
∗ H∗ (14.110)

for some H∗ ∈ H2 that satisfies the identity

Ladj
cmp[H∗] = [Z∗ + δW∗] = [Z∗ + δT adj

∗ H∗]. (14.111)

In particular, we find

Ladj
cmp[H∗]− δT adj

∗ [H∗] = Z∗. (14.112)

The lower-semicontinuity of the L2-norm under weak limits implies that

‖Z∗‖L2 + δ−1
∣∣〈Ψ′∗, Z∗〉∣∣ ≤ µ(δ). (14.113)

Corollary 3.3 hence implies that

‖H∗‖H2 ≤ C ′1µ(δ). (14.114)

The desired bound hence follows from (14.110) and Lemma 3.13.

The next result controls the size of the derivatives (v′j , w
′
j), which is crucial to rule out the leaking

of energy into oscillations that are not captured by the relevant weak limits. The key novel element
here compared to the setting in [4] is that one needs to include ∂+vj in the bound. Our preparatory
work enables us to measure this contribution in a weighted norm, which allows us to capture the
bulk of the contribution on a compact interval.
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Lemma 14.12. Consider the setting of Lemma 14.9 and pick a sufficiently small η > 0. There
exists a constant K2 > 1 that does not depend on 0 < δ < δ0 so that the inequalities∥∥v′j∥∥2

L2
≤ K2

[
‖yj‖2L2 + ‖vj‖2L2 + ‖∂+vj‖

2

L2
η

]
,∥∥w′j∥∥2

L2
≤ K2

[
‖zj‖2L2 + ‖wj‖2L2 + ‖∂+wj‖

2

L2
η

] (14.115)

hold for all j > 0.

Proof. Using the representation in item (i) of Proposition 14.2, we expand the identity

〈Lhjvj − δvj , γ2
Ψ∗v

′
j〉L2 = 〈yj , γ2

Ψ∗v
′
j〉L2 (14.116)

to obtain

c∗〈γ2
Ψ∗
v′j , v

′
j〉L2 + 〈yj , γ2

Ψ∗
v′j〉L2 = −δ〈vj , γ2

Ψ∗
v′j〉L2 + 〈2∂0∂vj , v

′
j〉L2 + 〈γ4

Ψ∗
g′(Ψ∗)vj , v′j〉L2

+〈Lc;hj [vj ], γ2
Ψ∗
v′j〉L2 .

(14.117)

Applying (5.55) together with item (iii) of Proposition 14.2, we note that∣∣〈Lc;hj [vj ], γ2
Ψ∗
v′j〉L2

∣∣ =
∣∣〈e−1

2η Lc;hj [vj ], e2ηγ
2
Ψ∗
v′j〉L2

∣∣
≤

∥∥e−1
2η Lc;hj [vj ]

∥∥
L2
η

∥∥γ2
Ψ∗
v′j
∥∥
L2
η

≤ C ′1
[
‖v‖L2

η
+ ‖∂+v‖L2

η

] ∥∥v′j∥∥L2
η

.

(14.118)

Using the identity 〈∂0∂vj , v
′
j〉L2 = 0 together with the lower bound γ2

Ψ∗
≥ [C ′2]−1 we may hence

compute

|c∗| 〈v′j , v′j〉L2 ≤ |c∗|C ′2〈γ2
Ψ∗
v′j , v

′
j〉L2

≤ C ′3

[
‖vj‖L2

∥∥v′j∥∥L2 + ‖yj‖L2

∥∥v′j∥∥L2 + ‖v‖L2
η

∥∥v′j∥∥L2
η

+ ‖∂+vj‖L2
η

∥∥v′j∥∥L2
η

]
.

(14.119)

Recalling the bound ‖a‖L2
η
≤ ‖a‖L2 for a ∈ L2 and using c∗ 6= 0, we find

∥∥v′j∥∥2

L2 ≤ C ′4

[
‖vj‖L2 + ‖yj‖L2 + ‖∂+vj‖L2

η

] ∥∥v′j∥∥L2 . (14.120)

Dividing through by
∥∥v′j∥∥L2 and squaring, we obtain∥∥v′j∥∥2

L2
≤ C ′5

[
‖vj‖2L2 + ‖yj‖2L2 + ‖∂+vj‖

2

L2
η

]
. (14.121)

The same procedure works for w′j .

We are now almost ready to obtain lower bounds for ‖V∗‖H1 and ‖W∗‖H1 , exploiting the fact that
our nonlinearity is bistable. The next technical result is the analogue of the inequality 〈∂0∂u, u〉L2 ≤ 0
used in [4]. Due to the non-autonomous coefficient in front of the second difference, we obtain
localized correction terms that need to be controlled.

Lemma 14.13. Suppose that (Hg) and (HΦ∗) are satisfied. There exists a constant K > 0 so that
for any v ∈ H1 and any 0 < h < 1, we have the one-sided inequality

2〈γ−2
Ψ∗
∂0∂vj , vj〉L2 ≤ K

[
‖∂+v‖2L2

η
+ ‖v‖2L2

η

]
. (14.122)
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Proof. Using (4.5) we compute

−2〈γ−2
Ψ∗
∂0∂vj , vj〉L2 = −〈γ−2

Ψ∗
∂−∂+vj , vj〉L2

= 〈∂+vj , ∂
+
[
γ−2

Ψ∗
vj ]〉L2

= 〈∂+vj , ∂
+
[
γ−2

Ψ∗
]T+[vj ]〉L2 + 〈∂+vj , γ

−2
Ψ∗
∂+vj〉L2

= 〈∂+vj , ∂
+
[
γ−2

Ψ∗
]T+[vj ]〉L2 + 〈∂+vj , (γ−2

Ψ∗
− 1)∂+vj〉L2

+〈∂+vj , ∂
+vj〉L2

≥ 〈∂+vj , ∂
+
[
γ−2

Ψ∗
]T+[vj ]〉L2 + 〈∂+vj , (γ−2

Ψ∗
− 1)∂+vj〉L2 .

(14.123)

The result now follows from (5.55) together with the pointwise exponential bounds∣∣γ−2
Ψ∗
− 1
∣∣+
∣∣∂+
[
γ−2

Ψ∗
]
∣∣ ≤ C ′1e2η. (14.124)

Lemma 14.14. Consider the setting of Proposition 14.7. There exists constants K2 > 0 and K3 > 0
so that for any 0 < δ < δ0, the functions V∗ and W∗ defined in Lemma 14.9 satisfy the bounds

‖V∗‖2H1 ≥ K3 −K4µ(δ)2,

‖W∗‖2H1 ≥ K3 −K4µ
adj(δ)2.

(14.125)

Proof. Pick m > 1 and α > 0 in such a way that

γ2
Ψ∗(τ)g′

(
Ψ∗(τ)

)
≤ −α (14.126)

holds for all |τ | ≥ m. This is possible on account of the uniform lower bound γ2
Ψ∗
≥ [C ′1]−1 and the

fact that g′(0) < 0 and g′(1) < 0.
We now expand the identity

〈Lhjvj − δvj , vj〉L2 = 〈yj , vj〉L2 (14.127)

to obtain the estimate

〈yj , vj〉L2 = −c∗〈v′j , vj〉L2 − δ〈vj , vj〉L2

+2〈γ−2
Ψ∗
∂0∂vj , vj〉L2 + 〈γ−2

Ψ∗
g′(Ψ∗)vj , vj〉L2

+〈Lc;h[vj ], vj〉L2 .

(14.128)

Using 〈v′j , vj〉L2 = 0, Lemma 14.13 and item (iii) of Proposition 14.2, we find

〈yj , vj〉L2 ≤ C ′2
[
‖∂+v‖2L2

η
+ ‖v‖2L2

η

]
+ 〈γ−2

Ψ∗
g′(Ψ∗)vj , vj〉L2

≤ C ′2
[
‖∂+v‖2L2

η
+ ‖v‖2L2

η

]
−α ‖vj‖2L2 + C ′3

∫m
−m |vj(τ)|2 dτ.

(14.129)

Using the basic inequality

xy = (
√
αx)(y/

√
α) ≤ α

2
x2 +

1
2α
y2, (14.130)

166



we arrive at

C ′3
∫m
−m |vj(τ)|2 dτ ≥ α ‖vj‖2L2 − 〈yj , vj〉L2

−C ′2
[
‖∂+v‖2L2

η
+ ‖v‖2L2

η

]
≥ α ‖vj‖2L2 − ‖yj‖L2 ‖vj‖L2

−C ′2
[
‖∂+v‖2L2

η
+ ‖v‖2L2

η

]
≥ α

2 ‖vj‖
2
L2 − 1

2α ‖yj‖
2
L2

−C ′2
[
‖∂+v‖2L2

η
+ ‖v‖2L2

η

]
.

(14.131)

Multiplying the first inequality in (14.115) by α
2(1+K2) , we find

0 ≥ α

2(1 +K2)

∥∥v′j∥∥2

L2 −
αK2

2(1 +K2)
‖vj‖2L2 − C ′4

∥∥∂+v
∥∥2

L2
η
− C ′4 ‖yj‖

2
L2 . (14.132)

Adding (14.131) and (14.132), we may use the identity

α

2
− αK2

2(1 +K2)
=

α

2(1 +K2)
, (14.133)

to obtain

C ′3
∫m
−m |vj(τ)|2 dτ ≥ α

2(1+K2)

[
‖vj‖2L2 +

∥∥v′j∥∥2

L2

]
− C ′5 ‖yj‖

2
L2

−C ′5
[
‖∂+v‖2L2

η
+ ‖v‖2L2

η

]
= α

2(1+K2) − C
′
5 ‖yj‖

2
L2

−C ′5
[
‖∂+v‖2L2

η
+ ‖v‖2L2

η

]
.

(14.134)

For any M ≥ 0 and a ∈ L2 we may compute

‖a‖2L2
η

=
∫
e−2η|τ |a(τ)2 dτ

≤ e−2ηM ‖a‖2L2 +
∫M
−M e−2η|τ |a(τ)2 dτ

≤ e−2ηM ‖a‖2L2 +
∫M
−M a(τ)2 dτ.

(14.135)

Exploiting ‖∂+vj‖L2 ≤
∥∥v′j∥∥L2 and ‖vj‖H1 = 1, we hence see

‖vj‖L2
η

+ ‖∂+vj‖
2

L2
η
≤ e−2ηM +

∫M
−M [vj ](τ)2 dτ +

∫M
−M [∂+vj ](τ)2 dτ. (14.136)

In particular, by choosing M ≥ m to be sufficiently large, we find

C ′3
∫M
−M |vj(τ)|2 dτ ≥ C ′3

∫m
−m |vj(τ)|2 dτ

≥ α
4(1+K2) − C

′
5 ‖fj‖

2
L2

−C ′5
[ ∫M
−M [∂+vj ](τ)2 dτ +

∫M
−M vj(τ)2 dτ

]
.

(14.137)

We hence obtain

C ′6

[ ∫M
−M [∂+vj ](τ)2 dτ +

∫M
−M vj(τ)2 dτ

]
≥ α

4(1+K2) − C
′
5 ‖yj‖

2
L2 . (14.138)
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In view of the bound

lim sup
j→∞

‖yj‖2L2 ≤ µ(δ)2, (14.139)

the strong convergences vj → V∗ ∈ L2([−M,M ]) and ∂+vj → V ′∗ ∈ L2([−M,M ]) imply that

‖V∗‖2H1 ≥ [C ′6]−1
[ α

4(1 +K2)
− C ′5µ(δ)2

]
, (14.140)

as desired. The bound for W∗ follows in a very similar fashion.

Proof of Proposition 14.7. For any 0 < δ < 1, Lemma’s 14.10 and 14.14 show that the function V∗
defined in Lemma 14.9 satisfies

K2
1µ(δ)2 ≥ ‖V∗‖2H1 ≥ K3 −K4µ(δ)2, (14.141)

which gives
(
K2

1 +K4

)
µ(δ)2 ≥ K3 > 0, as desired. The same computation works for µadj, but now

one uses Lemma’s 14.11 and 14.14.

15 Travelling waves

Formally substituting the travelling wave Ansatz (2.42) into the reduced system (2.29) leads to the
nonlocal differential equation

cΨ′ = G(Ψ). (15.1)

In this section we set out to construct solutions to this equation for small h > 0 that can be written
as

Ψ = Ψ∗ + v, c = c∗ + c̃ (15.2)

for pairs (c̃, v) that tend to zero as h ↓ 0. Care must be taken to ensure that the expression G(Ψ) is
well-defined, but based on our preparations we are able to provide a relatively streamlined fixed-point
argument here, which allows us to prove the results stated in §2.2.

In order to control the size of the perturbation (c̃, v) ∈ R×H1, we introduce the norms

‖(c̃, v)‖Zh = |c̃|+ ‖v‖H1 +
∥∥∂+

h ∂
+
h v
∥∥
L2 (15.3)

for h > 0 and write Zh for the set R ×H1 equipped with this new norm. Observe that for fixed h
this norm is equivalent to the usual one on R×H1.

We note that Proposition 6.3 allows us to fix 0 < κ < 1
12 and ε0 > 0 in such a way that the

inclusion

evϑ[Ψ∗ + v] ∈ Ωh;κ (15.4)

holds for all 0 < h < 1, all ϑ ∈ [0, h] and all v ∈ H1 that have

‖v‖H1 + h−1/2
∥∥∂+

h v
∥∥
H1 < 2ε0. (15.5)

In order to accommodate this, we pick two parameters δ > 0 and δ+
v > 0 and introduce the set

Zh;δ,δ+
v

=
{

(c̃, v) ∈ Zh : ‖(c̃, v)‖Zh ≤ min{δ, ε0}

and ‖(0, ∂+v)‖Zh ≤ min{δ+
v , h

1/2ε0}
}
.

(15.6)
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Since ∂+
h is bounded on H1 and L2 for each fixed h, we note that this is a closed subset of Zh.

Substituting (15.2) into (15.1), we obtain

c∗Ψ′∗ + c̃Ψ′∗ + c̃v′ + c∗v
′ = G(Ψ∗ + v)

= G(Ψ∗) + Glin;Ψ∗ [v] + Gnl;Ψ∗(v),
(15.7)

which should be interpreted in the sense that was outlined at the start of §14.
Upon introducing the nonlinearity

Hh(c̃, v) = c̃v′ − Gnl;Ψ∗(v), (15.8)

we can rewrite (15.7) as

Lh[v] = c̃Ψ′∗ +HΨ∗(c̃, v) + c∗Ψ′∗ − G(Ψ∗). (15.9)

Recalling Proposition 14.1, we now introduce the map Wh : Zh;δ,δ+
v
→ Zh that acts as

Wh(c̃, v) = [β∗h,V∗h]
[
Hh(c̃, v) + c∗Ψ′∗ − G(Ψ∗)

]
, (15.10)

which allows us to recast (15.9) as the fixed point problem

(c̃, v) =Wh

(
c̃, v
)
. (15.11)

Lemma 15.1. Suppose that (Hg) and (HΦ∗) are satisfied. There exists K > 0 so that for any pair
(δ, δ+

v ) ∈ (0, 1)2 and any 0 < h < 1 the estimates

‖Hh(c̃, v)‖L2 ≤ K
[
hδ + δ2 + δδ+

v

]
,

‖∂+Hh(c̃, v)‖L2 ≤ K
[
[δ + δ+

v ]2 + h−1/2δ[δ + δ+
v ] + h[δv + δ+

v ]
] (15.12)

hold for each (c̃, v) ∈ Zh;δ,δ+
v

, while the estimate∥∥Hh(c̃(2), v(2))−Hh(c̃(1), v(1))
∥∥
L2 ≤ K

[
h−1/2[δ + δ+

v ] + h
] ∥∥(c̃(2) − c̃(1), v(2) − v(1))

∥∥
Zh

(15.13)

holds for each set of pairs (c̃(1), v(1)) ∈ Zh;δ,δ+
v

and (c̃(2), v(2)) ∈ Zh;δ,δ+
v

.

Proof. The first term in Hh can be handled by the elementary estimates

‖c̃v′‖L2 ≤ δ2,

‖c̃∂+v′‖L2 ≤ δ ‖∂+v‖H1

≤ δδ+
v ,

(15.14)

together with∥∥c̃(2)[v(2)]′ − c̃(1)[v(1)]′
∥∥
L2 ≤

∣∣c̃(2) − c̃(1)
∣∣ ∥∥v(2)

∥∥
H1 +

∣∣c̃(1)
∣∣ ∥∥v(1) − v(2)

∥∥
H1

≤ δ
∥∥(c̃(2) − c̃(1), v(2) − v(1)

)∥∥
Zh
.

(15.15)

Corollary 5.3 yields the bound

‖v‖`2;2
h

+ ‖v‖`∞;1
h
≤ C ′1[δ + δ+

v ] (15.16)
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for all (c̃, v) ∈ Zh;δ,δ+ . For any ϑ ∈ R, we may hence exploit Propositions 7.14 and 12.1 to obtain
the estimate

‖Gnl;Ψ∗(evϑv)‖`2h ≤ C ′2
[
δ + δ+

v + h
]
‖evϑv‖`2;2

h
, (15.17)

together with∥∥Gnl;Ψ∗(evϑv(2))− Gnl;Ψ∗(evϑv(1))
∥∥
`2h
≤ C ′2

[
δ + δ+

v + h
] ∥∥evϑv(1) − evϑv(2)

∥∥
`2;2
h

+C ′2
[
δ + δ+

v ]
∥∥evϑv(1) − evϑv(2)

∥∥
`∞;1
h

.
(15.18)

A second application of Corollary 5.3 yields the bound

‖v‖`2;2
h

+ ‖v‖`∞;2
h
≤ C ′3h−1/2[δ + δ+

v ]. (15.19)

For any ϑ ∈ R, we may hence use Propositions 7.14 and 13.1 to find∥∥∥G+
nl;Ψ∗

(evϑv)
∥∥∥
`2h

≤ C ′4
[
δ + δ+

v + h
]
‖evϑv‖`2;3

h

+C ′4h
−1/2[δ + δ+

v ] ‖evϑv‖`2;2
h
.

(15.20)

We now apply Lemma 5.4 to obtain

‖Gnl;Ψ∗(v)‖L2 ≤ C ′2
[
δ + δ+

v + h
][
‖v‖H1 + ‖∂+∂+v‖L2

]
≤ C ′2

[
δ + δ+

v + h
]
δ,∥∥∥G+

nl;Ψ∗
(v)
∥∥∥
L2
≤ C ′4

[
δ + δ+

v + h
][
‖v‖H1 + ‖∂+∂+v‖L2 + ‖∂+v‖H1 + ‖∂+∂+∂+v‖L2

]
+C ′4h

−1/2[δ + δ+
v ]
[
‖v‖H1 + ‖∂+∂+v‖L2

]
≤ C ′4

[
δ + δ+

v + h
][
δ + δ+

v

]
+C ′4h

−1/2[δ + δ+
v ]δ.

(15.21)

Using (5.13) we note that ∥∥∥v(2) − v(1)
∥∥∥
`∞;1
h

≤ 2h−1/2
∥∥∥v(2) − v(1)

∥∥∥
H1

. (15.22)

Applying Lemma 5.4 once more, we obtain∥∥Gnl;Ψ∗(v
(2))− Gnl;Ψ∗(v

(1))
∥∥
L2 ≤ C ′2

[
δ + δ+

v + h
][ ∥∥v(1) − v(2)

∥∥
H1 +

∥∥∂+∂+v(1) − ∂+∂+v(2)
∥∥
L2

]
+2C ′2

[
δ + δ+

v ]h−1/2
∥∥v(1) − v(2)

∥∥
H1 .

(15.23)

The desired bounds follow readily from these estimates.

Lemma 15.2. Suppose that (Hg) and (HΦ∗) are satisfied. There exists K > 0 so that for each
0 < h < 1 we have the bounds

‖c∗Ψ′∗ − G(Ψ∗)‖L2 ≤ Kh,∥∥∂+
[
c∗Ψ′∗ − G(Ψ∗)

]∥∥
L2 ≤ Kh.

(15.24)
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Proof. Applying Lemma 5.4 together with Propositions 7.14, 12.1 and 13.1, we find

‖Gapx(Ψ∗)− G(Ψ∗)‖L2 +
∥∥G+

apx(Ψ∗)− G+(Ψ∗)
∥∥
L2 ≤ C ′1h. (15.25)

We now compute

c∗Ψ′∗ − G(Ψ∗) = c∗Ψ′∗ − Gapx(Ψ∗) + Gapx(Ψ∗)− G(Ψ∗)

= c∗Ψ′∗ − c∗∂0Ψ∗ + Gapx(Ψ∗)− G(Ψ∗),
(15.26)

together with

∂+[c∗Ψ′∗ − G(Ψ∗)
]

= ∂+
[
c∗Ψ′∗ − Gapx(Ψ∗)

]
+ ∂+

[
Gapx(Ψ∗)− G(Ψ∗)

]
= c∗

[
∂+Ψ∗]′ − c∗∂0[∂+Ψ∗]

+G+
apx(Ψ∗)− G+(Ψ∗).

(15.27)

Applying Lemma 5.5, we see that

‖c∗Ψ′∗ − G(Ψ∗)‖L2 ≤ C ′2h ‖Ψ′′∗‖L2 + C ′1h

≤ C ′3h,
(15.28)

together with

‖∂+[c∗Ψ′∗ − G(Ψ∗)]‖L2 ≤ C ′2h ‖∂+Ψ′′∗‖L2 + C ′1h

≤ C ′3h,
(15.29)

as desired.

Lemma 15.3. Suppose that (Hg) and (HΦ∗) are satisfied. Then for each sufficiently small h > 0,
the fixed point problem (15.11) posed on the set Zh;h3/4,h3/4 has a unique solution.

Proof. Using Proposition 14.1, together with the a-priori bounds (h, δ, δ+
v ) ∈ (0, 1)3, we obtain the

estimates

‖Wh(c̃, v)‖Zh ≤ C ′1
[
‖Hh(c̃, v)‖L2 + ‖c∗Ψ′∗ − G(Ψ∗)‖L2

]
≤ C ′2

[
δ2 + δδ+

v + h
]
,

‖[0, ∂+]Wh(c̃, v)‖Zh ≤ C ′1
[
‖Hh(c̃, v)‖L2 + ‖∂+Hh(c̃, v)‖L2

]
+C ′1

[
‖c∗Ψ′∗ − G(Ψ∗)‖L2 +

∥∥∂+
[
c∗Ψ′∗ − G(Ψ∗)

]∥∥
L2

]
≤ C ′2

[
h−1/2δ[δ + δ+

v ] + (δ + δ+
v )2 + h

]
,

(15.30)

together with∥∥Wh

(
c̃(2), v(2)

)
−Wh

(
c̃(1), v(1)

)∥∥
Zh

≤ C ′1
∥∥Hh(c̃(2), v(2))−Hh(c̃(1), v(1))

∥∥
L2

≤ C ′2
[
h−1/2[δ + δ+

v ] + h
] ∥∥(c̃(2) − c̃(1), v(2) − v(1)

)∥∥
Zh
.

(15.31)

Picking

δ = δ+
v = h3/4, (15.32)
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we see that δ = δ+
v ≤ h1/2ε0 for all sufficiently small h > 0. In addition, we find

‖Wh(c̃, v)‖Zh ≤ C ′2
[
2h3/4 + h1/4

]
δ,

‖[0, ∂+]Wh(c̃, v)‖Zh ≤ C ′2

[
2h1/4 + 4h3/4 + h1/4

]
δ,

(15.33)

together with∥∥Wh

(
c̃(2), v(2)

)
−Wh

(
c̃(1), v(1)

)∥∥
Zh

≤ C ′2[2h1/4 + h]
∥∥(c̃(2) − c̃(1), v(2) − v(1)

)∥∥
Zh
. (15.34)

The result hence follows from the contraction mapping theorem.

Proof of Theorem 2.6. We write (c̃h, vh) for the unique solution to the fixed point problem (15.11)
that is provided by Lemma 15.3. This allows us to define

Ψh = Ψ∗ + vh, ch = c∗ + c̃h. (15.35)

For fixed h > 0, we claim that the map

ϑ 7→ evϑ[Ψ∗ + vh]− ev0Ψ∗ ∈ `2h (15.36)

is continous. Indeed, this follows from the smoothness of Ψ∗ together with (5.13) and the fact that
the translation operator is continuous on H1. Since the map

V 7→ G(Ψ∗ + V ) ∈ `2h (15.37)

is continuous on a subset of `2h that contains evϑvh for all ϑ ∈ [0, h], we conclude that

ϑ 7→ G
(
evϑΨh

)
∈ `2h (15.38)

is continuous. The travelling wave equation (15.1) now implies the inclusion (2.43).
In a similar fashion, the inclusion (2.47) follows from (5.13) and the continuity of the translation

operator on H1. The remaining statements are a direct consequence of Lemma 15.3.

Proof of Corollary 2.7. Upon defining

Ψ(x)
h = −h

∑
−;h

(∂+Ψh)2√
1− (∂+Ψh)2 + 1

, (15.39)

Proposition 2.3 implies that (i) is satisfied. Using Proposition 8.2, we see that

ẋjh(t) = ch[Ψ(x)
h ]′(jh+ cht) =

[
Y
(
Ψh(·+ cht)

)]
jh
. (15.40)

Inspecting the computations in §9 and §12.3-12.4, we can recover an approximant for Y(U) by
making the replacements

GA;apx;III(U) 7→ −γU∂0U(c∗γ−1
U ∂0U)

= c∗(γ2
U − 1),

GB;apx;III(U) 7→ c∗γU (1− γU ).

(15.41)

In particular, upon defining

Yapx(U) = c∗(γU − 1), (15.42)
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we obtain the error bound

‖Y(U)− Yapx(U)‖`∞h ≤ C
′
1

[
h+ ‖Etw(U)‖`2h + ‖Etw(U)‖`∞h

]
. (15.43)

Substituting U = Ψh and applying the Lipschitz bounds (7.65), we find

‖Etw(Ψh)− Etw(Ψ∗)‖`2h ≤ C ′2 ‖Ψh −Ψ∗‖`2;2
h

≤ C ′2
[
‖Ψh −Ψ∗‖H1 + ‖∂+[Ψh −Ψ∗]‖H1

]
≤ C ′2h

3/4.

(15.44)

Using Proposition 7.14, we obtain

‖Etw(Ψh)‖`2h ≤ C
′
3h

3/4 (15.45)

and hence

‖Etw(Ψh)‖`∞h ≤ C
′
3h

1/4. (15.46)

In a similar fashion, we may exploit (7.3) to conclude

‖γΨh − γΨ∗‖`2h ≤ C
′
2h

3/4 (15.47)

and hence

‖γΨh − γΨ∗‖`∞h ≤ C
′
2h

1/4. (15.48)

Together, these observations yield the pointwise bound

|Y(Ψh)− c∗(γΨ∗ − 1)| ≤ C ′4h1/4. (15.49)

Assuming for clarity that c∗ > 0, this implies the pointwise inequality

Y(Ψh) > c∗(γΨ∗ − 1)− C ′4h1/4. (15.50)

Since |ch − c∗| ≤ h3/4, we find

ch

[
[Ψ(x)
h ]′ + 1

]
> c∗(γΨ∗ − 1) + ch − C ′4h1/4

> c∗γΨ∗ − C ′5h1/4.
(15.51)

Since γΨ∗ is strictly bounded away from zero, uniformly in h, we conclude that

[Ψ(x)
h ]′(τ) > −1 (15.52)

for all sufficiently small h > 0 and all τ ∈ R. This shows that the coordinate transformation (2.53)
is invertible, as desired.
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