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Abstract. We study the behaviour of solutions to nonlinear autonomous functional differential
equations of mixed type in the neighbourhood of an equilibrium. We show that all solutions that
remain sufficiently close to an equilibrium can be captured on a finite dimensional invariant center
manifold, that inherits the smoothness of the nonlinearity. In addition, we provide a Hopf bifurcation
theorem for such equations. We illustrate the application range of our results by discussing an
economic life-cycle model that gives rise to functional differential equations of mixed type.
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1 Introduction

The purpose of this paper is to provide a tool to analyze the behaviour of solutions to a nonlinear

functional differential equation of mixed type

ẋ(ξ) = G(xξ), (1.1)

in the neighbourhood of an equilibrium x. Here x is a continuous Cn-valued function and for any

ξ ∈ R the state xξ ∈ C([rmin, rmax],Cn) is defined by xξ(θ) = x(ξ + θ). We allow rmin ≤ 0 and

rmax ≥ 0, hence the nonlinearity Gmay depend on advanced and retarded arguments simultaneously.

We establish a center manifold theorem for solutions to (1.1) close to x, that is, we show that all

sufficiently small solutions to the equation

u̇(ξ) = DG(x)uξ + (G(x+ uξ)−DG(x)uξ) (1.2)

can be captured on a finite dimensional invariant manifold and we explicitly describe the dynamics

on this manifold. This reduction allows us to establish a Hopf bifurcation theorem for (1.1), yielding

a very powerful tool to perform a bifurcation analysis on parameter dependent versions of this

equation. If the linearization u̇(ξ) = DG(x)uξ has no bounded solutions on the line, we say that the

equilibrium x is hyperbolic and in this case the center manifold contains only the zero function. We

will thus be particularly interested in situations where the linear operator DG(x) has eigenvalues

on the imaginary axis, implying that x is a nonhyperbolic equilibrium.

The study of center manifolds in infinite dimensions forms one of the cornerstones of the theory of

dynamical systems. During the last two decades, many authors have contributed towards developing

the general theory. We mention specially the comprehensive overview by Iooss and Vanderbauwhede

[41] and the work of Mielke on elliptic partial differential equations [38, 39], in which linear unbounded

operators that have infinite spectrum to the right and left of the imaginary axis were analyzed. This

type of operator also arises when studying (1.1), but our aproach in this paper is more closely related

to the ideas developed in [17], where the theory of semigroups was used to succesfully construct center

manifolds for delay equations.

Recent developments in the area of economic research have led to an increased interest in mixed

type functional differential equations of the form (1.1). As an interesting example, we discuss here in
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some detail the work of Albis et al. [16], who analyze the dynamic behaviour of the capital growth

rate in a market economy by using a continuous overlapping-generations model. In particular, they

consider a population that consists of individuals that all live for a fixed time T = 1. They introduce

the quantity c(s, t) ≥ 0 as the consumption at time t of an individual born at time s and similarly

a(s, t) for the assests that such an invidual owns. Everybody earns an age-independent income w(t)

and receives interest on their assets at the rate r(t), which leads to the following budget contraint,

∂a(s, t)
∂t

= r(t)a(s, t) + w(t)− c(s, t). (1.3)

The goal of every individual born at time s is to maximize his total life-time welfare, which is related

to his consumption and is given by
∫ s+1

s
ln(c(s, τ))dτ . Every individual except those that already

exist at the start of the economy at t = 0, is born with zero assets and may not die in debt, i.e.,

a(s, s + 1) ≥ a(s, s) = 0 for all s ≥ 0. Solving the above optimization problem shows that for any

s ≥ 0 and t ∈ [s, s+1] the optimal amount of assets a∗(s, t) is a function of the interest rates rs+ and

wages ws+ during the lifetime of an individual. Here rs+ ∈ C([0, 1],R) is given by rs+(τ) = r(s+ τ)

and ws+ is similarly defined. We can thus write for some F : C([0, 1],R)× C([0, 1],R)× R → R,

a∗(s, t) = F (rs+, ws+, t− s). (1.4)

The dynamics of the interest rates and wages is governed by the capital and labour market. We write

l(t) for the amount of labour available at any time t and similarly k(t) for the amount of available

capital. Since the population is of fixed size we have l(t) = 1. The total capital is given by the sum

of the assets of all individuals alive at time t, i.e.,

k(t) =
∫ t

t−1

a∗(σ, t)dσ. (1.5)

There is a unique material good of unit price, which can be used for both consumption and invest-

ments and is produced at the rate Q given by

Q(k(t), e(t), l(t)) = Ak(t)α(e(t)l(t))β , (1.6)

for some A > 0 and exponents α > 0 and β > 0. Here e(t) is a factor to correct for the increase

in labour efficiency over time. Since the prices for capital and employment equal their respective

marginal products, we can calculate the interest rate and the height of the wages at any time t by
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partial differentiation of Q, yielding

r(t) = αAk(t)α−1(e(t)l(t))β ,

w(t) = βAk(t)αe(t)βl(t)β−1.

(1.7)

Inserting (1.7) into (1.4) and using the definition (1.5) for k(t), one obtains the market equilibrium

condition

k(t) = G(kt, α, β). (1.8)

Here kt ∈ C([−1, 1]) is defined by kt(τ) = k(t+ τ) and the nonlinearity G : C([−1, 1],R)×R×R →

R will be defined explicitly in the sequel. Differentiation of (1.8) yields a mixed-type functional

differential equation of the form (1.1). In [16] the authors choose β = 1 − α and e(t) = k(t), which

using l(t) = 1 yields a constant interest rate r(t) = αA and wages w(t) = (1− α)Ak(t) that depend

linearly on the capital. This in turn leads to the fact that G introduced above is linear in kt, which

enables a global analysis of the long term market behaviour. However, in the literature many other

choices for the production function Q are considered, which often lead to nonlinear equations that

could be analyzed locally using the theory developed in this paper. We refer to Section 12 for further

details.

The interesting feature of the model in [16] is that even in this relatively simple situation with

only one market product, oscillatory transitional behaviour is exhibited as the market converges

to its stable growth rate. In the absence of delayed and advanced terms, a more involved model is

typically needed to obtain this type of dynamics, due to the Poincaré-Bendixson theorem. As an

example, we mention the work of Benhabib and Nishimura [6], who obtain periodic solutions to

a market model without delays, but with at least n = 3 distinct capital goods. In [40] Rustichini

considers a similar model as an optimal control problem with time delays, in which case taking

n = 1 suffices to obtain the desired oscillatory behaviour. The Euler Lagrange equations that arise

from his analysis of the control problem are in fact functional differential equations of mixed type

and again the Hopf bifurcation theorem plays an important role when establishing the presence of

periodic solutions.

Another important application area in which equations of the form (1.1) arise naturally, is the

study of travelling wave solutions to so-called lattice differential equations (LDEs). Such equations

are infinite systems of ordinary differential equations indexed by points on a spatial lattice. As an
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example we mention the system

u̇i,j = α
(
(J ∗ u)i,j − ui,j

)
− f(ui,j , ρ) (1.9)

on the lattice Z2, where

(J ∗ u)i,j =
∑

(l,m)∈Z2\{0}

J(l,m)ui+l,j+m, (1.10)

with
∑

(l,m)∈Z2\{0} J(l,m) = 1. The function f : R × R → R typically is a bistable nonlinearity of

the form f(u, ρ) = (u2 − 1)(u − ρ) for some parameter −1 < ρ < 1. Typically the support of the

discrete kernel J is limited to close neighbours of 0 ∈ Z2, but we specifically mention here the work

of Bates [3], who analyzed a model incorporating infinite range interactions. Similarly as in the study

of partial differential equations (see e.g. the classic work by Fife and McLeod [21]), travelling wave

solutions play an important role in the analysis of the discrete system (1.9). Indeed, in [13] results

are given concerning the asymptotic stability of travelling wave solutions to (1.9), illustrating that

it is worth the effort to study such solutions.

Substituting the travelling wave ansatz ui,j(t) = φ(ik1 + jk2 − ct) into (1.9), where the unit

vector k = (k1, k2) denotes the direction of propagation and c is the wavespeed, we obtain

−cφ′(ξ) = α((Jkφ)(ξ)− φ(ξ)
)
− f(φ(ξ), ρ). (1.11)

Here we have introduced the notation (Jkφ)(ξ) =
∑

(l,m)∈Z2\{0} J(l,m)φ(ξ+k1l+k2m), from which

we see that the travelling wave equation (1.11) is indeed of the form (1.1).

Setting α = 4h−2 and J(0,±1) = J(±1, 0) = 1
4 in (1.9), we arrive at the discrete Nagumo

equation, which arises when one discretizes the two dimensional reaction diffusion equation,

ut = ∆u− f(u) (1.12)

on a rectangular lattice with spacing h. In the literature, the discrete Nagumo equation has served

as a prototype system for investigating the properties of lattice differential equations. We mention

here the work of Mallet-Paret [35, 36], who analyzed travelling wave solutions to this equation

connecting the two equilibria u = ±1 and found that in general there exist nontrivial intervals of the

detuning parameter ρ for which the wavespeed satisfies c = 0 and hence the waves fail to propagate.

This feature, which distinguishes the discrete version of (1.12) from its continuous counterpart, is
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called propagation failure and it has been extensively studied both theoretically [11, 26, 35, 36]

and numerically [1, 18, 26]. A second distinguishing feature is immediately visible from the discrete

travelling wave equation (1.11): the waves depend upon the direction of propagation through the

lattice. The consequences of this lattice anisotropy have been numerically illustrated in [18, 26].

The ability to incorporate nonlocal interactions into a model, together with the relatively rich

structure of lattice differential equations, presents a strong motivation for the study of such systems.

At present, models involving LDEs can be found in many scientific disciplines, including chemical

reaction theory [20, 32], image processing and pattern recognition [14], material science [4, 10] and

biology [5, 30]. Early papers on the subject by Chi, Bell and Hassard [12] and by Keener [31] were

followed by many others which developed the basic theory; see, for example, [11, 13, 23, 27, 28, 33,

35, 37, 44, 45, 46]. We also note the natural occurence of these equations when one studies numerical

methods to solve continuous PDEs and analyzes the effects of the employed spatial discretization

[19]. In this context we specially mention the work of Benzoni-Gavage et al. [7, 8, 9], where the

numerical computation of shock waves is considered in the setting of LDEs and nonhyperbolic

functional differential equations of mixed type are encountered.

In [4] Bates shows how an Ising spin model from material science leads to lattice equations (1.9)

in which the coefficients of J may be both positive and negative. As long as the convolution operator

J is symmetric around zero, i.e. J(i, j) = J(−i,−j), all equilibria of the cubic f lead to hyperbolic

systems that admit no nontrivial small solutions around the equilibria. However, as soon as one

considers asymmetric kernels J , which arise for example when studying inhomogeneous lattices, or

studies a different class of nonlinearities f , the equilibria will in general no longer be hyperbolic and

thus small solutions around these fixed points may arise.

When studying the nonlinear mixed-type functional differential equation (1.1), it is essential to

have results for linear systems

ẋ(ξ) = L(ξ)xξ + f(ξ). (1.13)

Mallet-Paret provided the basic theory in [34], showing that a Fredholm alternative theorem holds

for hyperbolic systems (1.13) and providing exponential estimates for solutions to such equations.

Later, the existence of exponential dichotomies for (1.13) was established independently by Mallet-

Paret and Verduyn Lunel [37] and Härterich et al. [24]. In the present work, we extend the framework
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developed in [34] to nonhyperbolic but autonomous versions of (1.13), which allows us to generalize

the center manifold theory developed for delay equations in [17] to equations of mixed type.

Our main results are stated in Section 2 and proved in Sections 3 through 10, where the necessary

theory is developed. In particular, in Section 3 we discuss and apply the results of Mallet Paret to

linear systems (1.13) that violate the hyperbolicity condition needed in [34]. In Section 4 we introduce

an operator associated with (1.13) on the state space X = C([rmin, rmax],Cn), that in the case of

delay equations reduces to the generator of the semigroup associated with the homogeneous version

of (1.13). Laplace transform techniques are used in Section 5 to combine the results from the previous

two sections in order to define a pseudo-inverse K for (1.13), in the sense that inhomogeneities f

are mapped to their corresponding solutions x = Kf modulo a finite dimensional set of solutions to

(1.13) with f = 0. This set is isomorphic to a finite dimensional subspace X0 ⊂ X and the operator

K is used in Section 6 in a fixed point argument to construct small solutions u∗φ to the nonlinear

equation (1.2) for any small φ ∈ X0. This map u∗ is shown to be of class Ck in Section 7, while

Section 8 shows that these small solutions can in fact be described as solutions to a finite dimensional

ordinary differential equation. This reduction is used in Section 10 to establish a Hopf bifurcation

theorem for parameter dependent versions of (1.2). In Section 11 we discuss some examples and

explicitly describe the dynamics on the center manifold for a functional differential equation of

mixed type that admits a double eigenvalue at zero after linearization. In particular, we exhibit a

Takens-Burganov bifurcation and show that for delay equations the results from [17] can be recovered

from our framework. We conclude in Section 12 by returning to the model of the capital market

discussed here and using this example to illustrate the application range of our results.

2 Main Results

Consider for some N ≥ 0 the functional differential equation of mixed type

ẋ(ξ) =
N∑

j=0

Ajx(ξ + rj) +R(x(ξ + r0), . . . , x(ξ + rN )), (2.1)

in which x is a mapping from R into Cn for some integer n ≥ 1 and each Aj is a n× n matrix with

complex entries. The shifts rj ∈ R may be both positive and negative and for convenience we assume

that they are ordered and distinct, i.e., r0 < r1 < . . . < rN . Defining rmin = r0 and rmax = rN , we
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require rmin ≤ 0 ≤ rmax.

The space X = C([rmin, rmax],Cn) of continuous Cn-valued functions defined on the interval

[rmin, rmax] will serve as a state space when analyzing (2.1). In particular, for any x ∈ C(R,Cn) and

any ξ ∈ R, we define the state xξ ∈ X as the function xξ(θ) = x(ξ + θ) for any rmin ≤ θ ≤ rmax.

Introducing the bounded linear operator L : X → Cn given by

Lφ =
N∑

j=0

Ajφ(rj), (2.2)

one can rewrite (2.1) as

ẋ(ξ) = Lxξ +R(xξ). (2.3)

In our analysis of (2.3) we will be particularly interested in the scale of Banach spaces

BCη(R,Cn) =

{
x ∈ C(R,Cn) | sup

ξ∈R
e−η|ξ| |x(ξ)| <∞

}
, (2.4)

parametrized by η ∈ R. The corresponding norm is given by ‖x‖η = supξ∈R e
−η|ξ| |x(ξ)|. We also

need the Banach spaces

BC1
η(R,Cn) =

{
x ∈ BCη(R,Cn) ∩ C1(R,Cn) | ẋ ∈ BCη(R,Cn)

}
, (2.5)

with corresponding norm ‖x‖BC1
η

= ‖x‖η + ‖ẋ‖η. Notice that we have continuous inclusions

BCη1(R,Cn) ↪→ BCη2(R,Cn) and BC1
η1

(R,Cn) ↪→ BC1
η2

(R,Cn) for any pair η2 ≥ η1. We will

write Jη2η1 and J 1
η2η1

respectively for the corresponding embedding operators.

In the analysis of (2.3), it is essential to study the behaviour of the homogeneous linear equation

ẋ(ξ) = Lxξ. (2.6)

Associated with this system (2.6) one has the characteristic matrix ∆ : C → Cn×n, given by

∆(z) = zI −
N∑

j=0

Aje
zrj . (2.7)

A value of z such that det ∆(z) = 0 is called an eigenvalue for the system (2.6). In order to formulate

our main results, we need the following proposition.

Proposition 2.1. For any homogeneous linear equation of the form (2.6), there exists a finite

dimensional linear subspace X0 ⊂ X with the following properties.

9



(i) Suppose x ∈
⋂

η>0BC
1
η(R,Cn) is a solution of (2.6). Then for any ξ ∈ R we have xξ ∈ X0.

(ii) For any φ ∈ X0, we have φ̇ ∈ X0.

(iii) For any φ ∈ X0, there is a unique solution x = Tφ ∈
⋃

η>0BCη(R,Cn) of (2.6) such that

x0 = φ. Moreover, we have that x ∈ BC1
η(R,Cn) for any η > 0.

We will write Q0 for the projection operator from X onto X0, which will be defined precisely in

the sequel. The following two assumptions on the nonlinearity R : X → Cn will be needed in our

results.

(HR1) The nonlinearity R is Ck-smooth for some k ≥ 1.

(HR2) We have R(0) = 0 and DR(0) = 0.

We remark here that the smoothness requirement in condition (HR1) in fact refers to the Fréchet

differentiability of R, since this operator is defined on the infinite dimensional space X. This techni-

cality should be implicitly understood throughout the remainder of this paper. However, one should

note that this issue becomes irrelevant when considering nonlinearities R as in (2.1), which have a

finite dimensional domain.

Theorem 2.2. Consider the nonlinear equation (2.3) and assume that (HR1) and (HR2) are sat-

isfied. Then there exists γ > 0 such that the characteristic equation det∆(z) = 0 has no roots with

0 < |Re z| < γ. Fix an interval I = [ηmin, ηmax] ⊂ (0, γ) such that ηmax > kηmin, with k as introduced

in (HR1). Then there exists a mapping u∗ : X0 →
⋂

η>0BC
1
η(R,Cn) and constants ε > 0, ε∗ > 0

such that the following statements hold.

(i) For any η ∈ (kηmin, ηmax], the function u∗ viewed as a map from X0 into BC1
η(R,Cn) is

Ck-smooth.

(ii) Suppose for some ζ > 0 that x ∈ BC1
ζ (R,Cn) is a solution of (2.3) with supξ∈R |x(ξ)| < ε∗.

Then we have x = u∗(Q0x0). In addition, the function Φ : R → X0 defined by Φ(ξ) = Q0xξ ∈

X0 is of class Ck+1 and satisfies the ordinary differential equation

Φ̇(ξ) = AΦ(ξ) + f(Φ(ξ)), (2.8)
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in which A : X0 → X0 is the linear operator φ→ φ̇ for φ ∈ X0. The function f : X0 → X0 is

Ck-smooth with f(0) = 0 and Df(0) = 0 and is explicitly given by

f(ψ) = Q0

(
L(u∗ψ − Tψ)θ +R((u∗ψ)θ)

)
, (2.9)

in which the projection Q0 is taken with respect to the variable θ. Finally, we have xξ =

(u∗Φ(ξ))0 for all ξ ∈ R.

(iii) For any φ ∈ X0 such that supξ∈R |(u∗φ)(ξ)| < ε∗, the function u∗φ satisfies (2.3).

(iv) For any continuous function Φ : R → X0 that satisfies (2.8) and has ‖Φ(ξ)‖ < ε for all ξ ∈ R,

we have that x = u∗Φ(0) is a solution of (2.3). In addition, we have xξ = (u∗Φ(ξ))0 for any

ξ ∈ R.

(v) Consider the interval I = (ξ−, ξ+), where ξ− = −∞ and ξ+ = ∞ are allowed. Let Φ : I → X0

be a continuous function that satisfies (2.8) for every ξ ∈ I and in addition has ‖Φ(ξ)‖ < ε for

all such ξ. Then for any ζ ∈ (ξ−, ξ+) we have that x(ξ) = (u∗Φ(ζ))(ξ − ζ) satisfies (2.3) for

all ξ ∈ I. In addition, we have xξ = (u∗Φ(ξ))0 for all ξ ∈ I.

The results above should be compared to similar results for delay differential equations, see e.g.

[17, Chp. VIII and IX]. When considering delay equations, it is possible to capture all sufficiently

small solutions defined only on the half lines R± on invariant manifolds. This feature is absent when

considering mixed type equations, due to the fact that (2.6) is ill-posed as an initial value problem.

We believe that the same ill-posedness can be used to explain the fact that the nonlinearity (2.9) on

the center manifold cannot immediately be simplified to its delay equation counterpart [17, (IX.8.3)].

An interesting application of statement (v) above arises when one considers functional differential

equations of mixed type on finite intervals. This situation arises for example when studying numerical

methods to solve such equations on the line [26]. These methods typically truncate the problem to

a finite interval, possibly introducing extra solutions. The center manifold reduction will allow us to

at least partially analyze the presence of such solutions. Other preliminary research in this area can

be found in [37].

In order to state the Hopf bifurcation theorem, it is necessary to include parameter dependance

into our framework. In particular, we introduce an open parameter set Ω ⊂ Rd for some integer
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d ≥ 1 and consider for µ ∈ Ω the equation

ẋ(ξ) = L(µ)xξ +R(xξ, µ), (2.10)

in which R is a nonlinear mapping from X × Ω into Cn and

L(µ)φ =
N∑

j=0

Aj(µ)φ(rj). (2.11)

We will need the following assumptions on the system (2.10).

(HLµ) The mapping (µ, φ) → L(µ)φ from Ω×X into Cn is Ck-smooth for some k ≥ 1.

(HRµ1) The nonlinearity R : X × Ω → Cn is Ck-smooth for some k ≥ 1.

(HRµ2) We have R(0, µ) = 0 and D1R(0, µ) = 0 for all µ ∈ Ω.

These assumptions are sufficient in order to rewrite the parameter dependent equation (2.10) as

an equation of the form (2.3) that satisfies the assumptions of Theorem 2.2. This implies that for

fixed µ0 ∈ Ω and corresponding subspace X0 = X0(µ0) ⊂ X, it is possible to define a mapping

u∗ : X0 ×Ω →
⋂

ζ>0BC
1
ζ (R,Cn) that is Ck-smooth when considered as a map into BC1

η(R,Cn) for

suitable values of η. To establish the Hopf bifurcation theorem, we also need the following.

(Hζ1) The parameter space is one-dimensional, i.e., d = 1. In addition, the matrices Aj(µ) have real

valued coefficients and the nonlinearity R maps into Rn. Finally, in (HLµ) and (HRµ1) we

have k ≥ 2.

(Hζ2) For some µ0 ∈ Ω and ω0 > 0, the characteristic equation det ∆(z, µ0) = 0 has simple roots at

z = ±iω0 and no other root belongs to iω0Z.

(Hζ3) Letting p, q ∈ Cn be non-zero vectors such that ∆(iω0, µ0)p = 0 and ∆(iω0, µ0)T q = 0,

normalized such that qTD1∆(iω0, µ0)p = 1, we have that Re qTD2∆(iω0, µ0)p 6= 0.

With p as in (Hζ3), we can define the functions φ = peiω0· and φ = pe−iω0· and it is easy to see that

both functions are solutions to the homogeneous equation ẋ = L(µ0)xξ.

Theorem 2.3. Consider the nonlinear equation (2.10) and assume that (HLµ), (HRµ1), (HRµ2)

and (Hζ1) -(Hζ3) all hold. There exist Ck−1-smooth functions τ → µ∗(τ), τ → ρ∗(τ) and τ → ω∗(τ)
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taking values in R and a mapping τ → ψ∗(τ) taking values in X0, all defined for τ sufficiently small,

such that x∗(τ) = u∗(ρ∗(τ)(φ+ φ+ ψ∗(τ)), µ∗(τ)) is a periodic solution of (2.10) at µ = µ∗(τ) with

period 2π
ω∗(τ) . Moreover, µ∗(τ) and ω∗(τ) are even in τ , µ∗(0) = µ0 and if x is any sufficiently small

periodic solution of (2.10) with µ close to µ0 and period close to 2π
ω0

, then µ = µ∗(τ) for some τ

and there exists ξ0 ∈ [0, 2π
ω∗(τ) ) such that x(·+ ξ0) = x∗(τ)(·). Finally, we have ρ∗(τ) = τ + o(τ) and

ψ∗(τ) = o(1) as τ → 0.

We wish to emphasize here that the corresponding result for delay equations [17, Chp X] can

be recovered almost verbatim from the conditions and statement above by making the appropriate

restrictions. Our last main theorem establishes a result on the direction of the Hopf bifurcation.

Theorem 2.4. Consider the nonlinear equation (2.10) and assume that (HLµ), (HRµ1), (HRµ2)

and (Hζ1) -(Hζ3) all hold, but with k ≥ 3 in (Hζ1). Let µ∗(τ) be as defined in Theorem 2.3. Then

we have µ∗(τ) = µ0 + µ2τ
2 + o(τ2), with

µ2 =
Re c

Re qTD2∆(iω0, µ0)p
, (2.12)

in which

c = 1
2q

TD3
1R(0, µ0)(φ, φ, φ)

+ qTD2
1R(0, µ0)(φ,1∆(0, µ0)−1D2

1R(0, µ0)(φ, φ))

+ 1
2q

TD2
1R(0, µ0)(φ, e2iω0·∆(2iω0, µ0)−1D2

1R(0, µ0)(φ, φ)).

(2.13)

We conclude this section by remarking that the restriction to point delays in (2.1) is merely a

notational convenience to improve the readability of our arguments. In fact, all results carry over

almost verbatim to the more general system (2.3) with arbitrary linear L : X → Cn and nonlinear

R : X → Cn.

3 Linear Inhomogeneous Equations

In this section we develop some results for linear inhomogeneous functional differential equations of

mixed type,

ẋ(ξ) = Lxξ + f(ξ). (3.1)

The techniques used here should be compared to similar ones employed in the context of delay

equations, see e.g. [2, 29].
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For the moment we take x ∈ W 1,1
loc (R,Cn) ∩ C(R,Cn) and f ∈ L1

loc(R,Cn), with the bounded

linear operator L as defined in (2.2). Associated to the system (3.1) we define a linear operator

Λ : W 1,1
loc (R,Cn) ∩ C(R,Cn) → L1

loc(R,Cn) by

(Λx)(ξ) = ẋ(ξ)− Lxξ. (3.2)

We recall the characteristic matrix ∆(z) associated to (3.1) as defined in (2.7),

∆(z) = zI −
N∑

j=0

Aje
zrj . (3.3)

The following result establishes some elementary properties concerning the behaviour of ∆(z) on

vertical strips in the complex plane.

Lemma 3.1. Consider any closed vertical strip S = {z ∈ C | γ− ≤ Re z ≤ γ+} and for any ρ > 0

define Sρ = {z ∈ S | |Im z| > ρ}. Then there exist K, ρ > 0 such that det∆(z) 6= 0 for all z ∈ Sρ

and in addition
∣∣∆(z)−1

∣∣ < K
|Im z| for each such z. In particular, there are only finitely many zeroes

of det ∆(z) in S. Furthermore, if det ∆(z) 6= 0 for all z ∈ S, then for any α /∈ S the function

Rα(z) = ∆(z)−1 − (z − α)−1I is holomorphic in an open neighbourhood of S and in addition there

exists K > 0 such that |Rα(z)| ≤ K
1+|Im z|2 for all z ∈ S.

Proof. For any z ∈ S, define A(z) =
∑N

j=0Aje
zrj and A = supz∈S |A(z)| <∞. For any z ∈ S with

|z| > 2A, we have that ∆(z) = z(I − A(z)
z ) is invertible. The inverse is given by

∆(z)−1 =
1
z

∞∑
j=0

A(z)j

zj
, (3.4)

and satisfies the bound ∣∣∆(z)−1
∣∣ ≤ 1

|z| (1− 1
|z| |A(z)|)

≤ 2
|z|
. (3.5)

Now consider the case that det ∆(z) 6= 0 for all z ∈ S. Since all zeroes of det ∆(z) are isolated, there

exists an open neighbourhood of S on which ∆(z)−1 and hence Rα(z) is holomorphic. Note that for

|z| > 2A we have

|Rα(z)| =

∣∣∣∣∣∣ α

z(α− z)
I +

1
z

∞∑
j=1

A(z)j

zj

∣∣∣∣∣∣ ≤ |α|
|z(z − α)|

+
|A(z)|
|z|2

1

1− |A(z)|
|z|

≤ |α|
|z(z − α)|

+
2A
|z|2

, (3.6)

which yields the final estimate using the fact that Rα(z) is bounded on the set
{
z ∈ S | |z| < 2A

}
.
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The inhomogeneous system (3.1) has been analyzed with respect to the space

W 1,∞(R,Cn) = {x ∈ L∞(R,Cn) | x is absolutely continuous and ẋ ∈ L∞(R,Cn)} (3.7)

by Mallet-Paret in [34], where he obtained the following result.

Theorem 3.2 (Mallet-Paret). Consider the operator L in (2.2) and suppose that the characteristic

equation det ∆(z) = 0 has no roots on the imaginary axis. Then the operator Λ defined in (3.2) is a

bounded linear isomorphism from W 1,∞(R,Cn) onto L∞(R,Cn). In particular, there exists a Green’s

function G : R → Cn×n such that the equation Λx = f has the unique solution

x(ξ) =
∫ ∞
−∞

G(ξ − s)f(s)ds. (3.8)

In addition, we have G ∈ Lp(R,Cn×n) for any 1 ≤ p ≤ ∞ and the following identity holds for the

Fourier transform (B.1) of G,

Ĝ(η) = ∆(iη)−1. (3.9)

Corollary 3.3. Fix an a− < 0 and a+ > 0 such that det∆(z) 6= 0 for all a− ≤ Re z ≤ a+ and

choose an α < a−. Then we have

|G(ξ)| ≤

 (1 +K(a−))ea−ξ for all ξ ≥ 0,

K(a+)ea+ξ for all ξ < 0,
(3.10)

in which

K(a) =
1
2π

∫ ∞
−∞

|Rα(a+ iω)| dω. (3.11)

In particular, we have the estimate

∥∥Λ−1
∥∥ ≤ 1 + (

1 +K(a−)
−a−

+
K(a+)
a+

)(1 +
N∑

j=0

|Aj |). (3.12)

Finally, suppose f satisfies a growth condition f(ξ) = O(e−λξ) as ξ → ∞ for some 0 < λ < −a−.

Then also x = Λ−1f satisfies x(ξ) = O(e−λξ) as ξ → ∞. The analogous statement also holds for

ξ → −∞.

Proof. Write ∆(z)−1 = (z−α)−1I +Rα(z). Writing E(ξ) for the inverse transform of (z−α)−1, we

have that E(ξ) = eαξ for ξ > 0 while E(ξ) = 0 for ξ < 0. We thus obtain for ξ > 0

G(ξ) = eαξI +
1
2π

∫ ∞
−∞

eiξωRα(iω)dω = eαξI +
ea−ξ

2π

∫ ∞
−∞

eiξωRα(a− + iω)dω, (3.13)
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where the integration contour was shifted to the line Re z = a− in the last step. A similar estimate

can be obtained for ξ < 0 by shifting the integration contour to Re z = a+. Lemma 3.1 ensures that

both Rα(a− + iω) and Rα(a+ + iω) are integrable and this concludes the proof of the exponential

decay of G.

Consider the equation Λx = f and notice that ‖x‖L∞ ≤ ‖G‖L1 ‖f‖L∞ . Using the estimates above

we compute ‖G‖L1 ≤ 1+K(a−)
−a−

+ K(a+)
a+

. The differential equation (3.1) now implies

‖x‖W 1,∞ = ‖x‖L∞ + ‖ẋ‖L∞ ≤ ‖x‖L∞ + ‖f‖L∞ +
N∑

j=0

|Aj | ‖x‖L∞ , (3.14)

from which the bound for
∥∥Λ−1

∥∥ follows.

Finally, if f(ξ) = O(e−λξ) as ξ →∞, there exists M > 0 such that |f(ξ)| ≤Me−λξ for all ξ > 0.

Hence for all such ξ we compute

x(ξ) =
∫∞
−∞G(ξ − s)f(s)ds ≤ 1+K(a−)

−a−
ea−ξ ‖f‖∞ +

∫∞
0
G(ξ − s)f(s)ds

≤ 1+K(a−)
−a−

ea−ξ ‖f‖∞ + (1 +K(a−))ea−ξ M
−a−−λ

(
e(−a−−λ)ξ − 1

)
+ M

λ+a+
K(a+)e−λξ,

(3.15)

which concludes the proof.

In order to proceed, we need to generalize the results above to the situation where the charac-

teristic equation does have roots on the imaginary axis. The key observation which we shall use is

that one can shift the roots of the characteristic equation by multiplying the functions in (3.1) by a

suitable exponential. In order to make this precise, we introduce the notation eνf = eν·f(·) for any

ν ∈ R and any f ∈ L1
loc(R,Cn).

Taking any y ∈W 1,1
loc (R,Cn) ∩ C(R,Cn), one can compute

(
e−ηΛeηy

)
(ξ) = ẏ(ξ) + ηy(ξ)−

N∑
j=0

Aje
ηrjy(ξ + rj). (3.16)

Upon defining the linear operator Λη : W 1,1
loc (R,Cn) ∩ C(R,Cn) → L1

loc(R,Cn) by

(Ληx)(ξ) = ẋ(ξ)− ηx(ξ)−
N∑

j=0

Aje
−ηrjx(ξ + rj) (3.17)

and writing ∆η(z) for the corresponding characteristic matrix, we see that for any x ∈W 1,1
loc (R,Cn)∩

C(R,Cn) we have

Ληeηx = eηΛx and ∆η(z) = (z − η)I −
∑N

j=0Aje
(z−η)rj = ∆(z − η). (3.18)
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In view of these observations we introduce for any η ∈ R the Banach spaces

L∞η (R,Cn) =
{
x ∈ L1

loc(R,Cn) | e−ηx ∈ L∞(R,Cn)
}
,

W 1,∞
η (R,Cn) =

{
x ∈ L1

loc(R,Cn) | e−ηx ∈W 1,∞(R,Cn)
}
,

(3.19)

with norms given by ‖x‖L∞η
= ‖e−ηx‖L∞ and similarly ‖x‖W 1,∞

η
= ‖e−ηx‖W 1,∞ . The next proposi-

tion provides the appropriate generalization of Theorem 3.2.

Proposition 3.4. Fix η ∈ R. Consider the operator L in (2.2) and suppose that the characteristic

function ∆(z) has no eigenvalues with Re z = η. The operator Λ is a bounded linear isomorphism

from W 1,∞
η (R,Cn) onto L∞η (R,Cn), with inverse given by Λ−1f = eηΛ−1

−ηe−ηf . In particular, we

have
∥∥Λ−1

∥∥ =
∥∥Λ−1
−η

∥∥. In addition, there exists ε0 > 0 such that ∆(z) has no eigenvalues in the

strip η − ε0 < Re z < η + ε0. Finally, for any 0 < ε < ε0 and f ∈ L∞η (R,Cn), we have the following

explicit expression for x = Λ−1f ,

x(ξ) =
1

2πi

∫ η+ε+i∞

η+ε−i∞
eξz∆(z)−1f̃+(z)dz +

1
2πi

∫ η−ε+i∞

η−ε−i∞
eξz∆(z)−1f̃−(z)dz, (3.20)

where the Laplace transforms f̃+ and f̃− are as defined in Appendix B.

Proof. Note that ∆−η has no eigenvalues on the imaginary axis and hence Λ−η is an isomorphism

from W 1,∞(R,Cn) onto L∞(R,Cn). Since eη is an isometric isomorphism between W 1,∞(R,Cn) and

W 1,∞
η (R,Cn) and also between L∞(R,Cn) and L∞η (R,Cn), this proves that Λ is an isomorphism

and yields the supplied bound for the norm of the inverse.

Now let f ∈ L∞η (R,Cn) and consider x = Λ−1f ∈ W 1,∞
η (R,Cn). Write f = f+ + f− with

f+(ξ) = 0 for ξ < 0 and f−(ξ) = 0 for ξ ≥ 0. Let x± = Λ−1f± = eηΛ−1
−ηe−ηf±. Using the

exponential decay (3.10) of G for a = ε0+ε
2 , we easily see that x+(ξ) = O(e(η+a)ξ) as ξ → −∞,

and similarly x−(ξ) = O(e(η−a)ξ) as ξ → ∞. Using the differential equation (3.1) one sees that

similar asymptotic estimates apply for ẋ±. This implies that both x± = e−(η±ε)x± and their first

derivatives have exponential decay at both ±∞ and in particular satisfy x± ∈ W 1,∞(R,Cn) ∩

W 1,2(R,Cn)∩W 1,1(R,Cn). Similarly, upon defining f± = e−(η±ε)f±, we easily see f± ∈ L∞(R,Cn)∩

L1(R,Cn) ∩ L2(R,Cn). Using the identity (3.18) and the fact that both Λ−(η±ε) are isomorphisms

fromW 1,∞(R,Cn) onto L∞(R,Cn), we have x± = Λ−1
−(η±ε)f± . Since x±, f± ∈ L2(R,Cn)∩L1(R,Cn)

we may take the Fourier transform and obtain

x̂±(k) = ∆−1
−(η±ε)(ik)f̂±(k). (3.21)
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Inversion yields

x±(ξ) =
1
2π

∫ ∞
−∞

eikξ∆−1
−(η±ε)(ik)f̂±(k)dk. (3.22)

Writing z = η ± ε+ ik and noting ∆−(η±ε)(ik) = ∆(z) together with

f̂+(k) =
∫∞
0
e−ikξe−(η+ε)ξf+(ξ)dξ = f̃+(z),

f̂−(k) =
∫ 0

−∞ e−ikξe−(η−ε)ξf−(ξ)dξ = f̃−(z),
(3.23)

we obtain

x±(ξ) =
1

2πi

∫ η±ε+i∞

η±ε−i∞
ezξ∆(z)−1f̃±(z)dz. (3.24)

4 The State Space

In this section we focus our attention on the state space X = C([rmin, rmax],Cn). We define a closed

and densely defined operator A : D(A) ⊂ X → X, via

D(A) =
{
φ ∈ X ∩ C1([rmin, rmax],Cn) | φ̇(0) = Lφ =

∑N
j=0Ajφ(rj)

}
,

Aφ = φ̇.

(4.1)

Note that the closedness of A can be easily established using the fact that differentiation is a closed

operation, together with the continuity of L. The density of the domain D(A) follows from the density

of C1-smooth functions in X, together with the fact that for any ε > 0 and any neighbourhood of

zero, one can modify an arbitrary C1 function φ in such a way that φ̇(0) can be set at will, while

φ(0) remains unchanged and ‖φ‖X changes by at most ε. The first lemma of this section shows that

X is indeed a state space for the homogeneous equation Λx = 0 in some sense, even though one

cannot view this equation as an initial value problem.

Lemma 4.1. Suppose that for some x ∈W 1,1
loc (R,Cn) ∩ C(R,Cn) we have the identity Λx = 0 with

xξ0 = 0 for some ξ0 ∈ R. If x satisfies the growth condition x(ξ) = O(ebξ) as ξ →∞ for any b ∈ R,

then x(ξ) = 0 for all ξ ≥ ξ0 + rmin. Similarly, if x(ξ) = O(ebξ) as ξ → −∞, then x(ξ) = 0 for all

ξ ≤ ξ0 + rmax.

Proof. Without loss of generality take ξ0 = 0 and assume that the growth condition at +∞ holds.

Introducing the function y with y(ξ) = 0 for all ξ ≤ 0 and y(ξ) = x(ξ) for all ξ > 0, we see that
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Λy = 0. Consider any η > b such that det ∆(z) 6= 0 for all z ∈ C with Re z = η and notice that

y ∈W 1,∞
η (R,Cn). It now follows from Proposition 3.4 that y = 0.

The next lemma establishes the relationship between the characteristic equation det∆(z) = 0

and the spectrum of A.

Lemma 4.2. The operator A has only point spectrum, with σ(A) = σp(A) = {λ ∈ C | det∆(λ) = 0}.

In addition, for z ∈ ρ(A), the resolvent of A is given by

(zI −A)−1ψ = e·zK(·, z, ψ), (4.2)

in which K : [rmin, rmax]× C×X → Cn is given by

K(θ, z, ψ) =
∫ 0

θ

e−zσψ(σ)dσ + ∆(z)−1
(
ψ(0) +

N∑
j=0

Aje
zrj

∫ 0

rj

e−zσψ(σ)dσ
)
. (4.3)

Proof. Fix ψ ∈ X and consider the equation (zI − A)φ = ψ for φ ∈ D(A), which is equivalent to

the system

φ̇ = zφ− ψ,

φ̇(0) =
∑N

j=0Ajφ(rj).
(4.4)

Suppose det ∆(z) 6= 0. Solving the first equation yields

φ(θ) = eθzφ(0) + eθz

∫ 0

θ

e−zσψ(σ)dσ (4.5)

and hence using the second equation

φ̇(0) = zφ(0)− ψ(0) =
N∑

j=0

Aje
zrj (φ(0) +

∫ 0

rj

e−zσψ(σ)dσ). (4.6)

Thus if we set

φ(0) = ∆(z)−1
(
ψ(0) +

N∑
j=0

Aje
zrj

∫ 0

rj

e−zσψ(σ)dσ
)
, (4.7)

we see that (4.5) yields a solution to (4.4), showing that indeed z ∈ ρ(A). On the other hand,

consider any z ∈ C such that det∆(z) = 0. Choosing a non-zero v ∈ Rn such that ∆(z)v = 0, one

sees that the function φ(θ) = ezθv satisfies φ ∈ D(A) and Aφ = zφ. This shows that z ∈ σp(A),

completing the proof.

The next lemma enables us to compute spectral projections corresponding to sets of eigenvalues

in vertical strips in the complex plane. We will particularly be interested in the projection operator

corresponding to all eigenvalues on the imaginary axis.
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Lemma 4.3. For any pair µ, ν ∈ R, set Σ = Σµ,ν = {z ∈ σ(A) | µ < Re z < ν}. Then Σ is a finite

set, consisting of poles of (zI −A)−1 that all have finite order. Furthermore, we have the decompo-

sition X = MΣ ⊕RΣ, where MΣ is the generalized eigenspace corresponding to the eigenvalues in

Σ. For any µ < γ− < γ+ < ν such that Σγ−,γ+ = Σ, the spectral projection QΣ onto MΣ along RΣ

is given by

(QΣφ)(θ) =
1

2πi

∫ γ++i∞

γ+−i∞
eθzK(θ, z, φ)dz +

1
2πi

∫ γ−−i∞

γ−+i∞
eθzK(θ, z, φ)dz. (4.8)

If there are no z ∈ σ(A) with Re z = µ, then γ− = µ is allowed. Similary, one may choose γ+ = ν

if there are no z ∈ σ(A) with Re z = ν.

Proof. Lemma 3.1 shows that Σ is finite. Since det∆(z) is a non-zero entire function all zeroes are

of finite order, hence the representation (4.2) implies that (zI −A)−1 has a pole of order k ≤ k0 at

λ0 if λ0 is a zero of det ∆(z) of order k0. It now follows from standard spectral theory (see e.g. [17,

Theorem IV.2.5]) that we have the decomposition X = MΣ ⊕RΣ, for some closed linear subspace

MΣ. Using Dunford calculus, it follows that for any Jordan path Γ ⊂ ρ(A) with int(Γ)∩ σ(A) = Σ,

we have

QΣ =
1

2πi

∫
Γ

(zI −A)−1dz. (4.9)

For any ρ > 0 such that |Imλ| < ρ for any λ ∈ Σ, we introduce the path Γρ = Γ↑ρ ∪ Γ←ρ ∪ Γ↓ρ ∪ Γ→ρ ,

in which we have introduced the line segments

Γ↑ρ = seg[γ+ − iρ, γ+ + iρ], Γ↓ρ = seg[γ− + iρ, γ− − iρ],

Γ←ρ = seg[γ+ + iρ, γ− + iρ], Γ→ρ = seg[γ− − iρ, γ+ − iρ].
(4.10)

Note that the proof is completed if we show that for every θ ∈ [rmin, rmax], we have

lim
ρ→∞

∫
Γ�

ρ

eθz
( ∫ 0

θ

e−zσφ(σ)dσ + ∆(z)−1
(
φ(0) +

N∑
j=0

Aje
zrj

∫ 0

rj

e−zσφ(σ)dσ
))
dz = 0. (4.11)

We treat the case for Γ←, as the other case is analogous. First note that for some K > 0 we have

the uniform bound ∣∣∣∣∣∣eθz
(
φ(0) +

N∑
j=0

Aje
zrj

∫ 0

rj

e−zσφ(σ)dσ
)∣∣∣∣∣∣ ≤ K (4.12)

in the strip γ− ≤ Re z ≤ γ+, while by Lemma 3.1 ∆(z)−1 = O(|Im z|−1) uniformly in this strip. In

addition, using Fubini to change the order of integration and applying Lemma B.1, we compute

lim
ρ→∞

∫ γ−

γ+

∫ 0

θ

e(iρ+w)(θ−σ)φ(σ)dσdw = lim
ρ→∞

∫ 0

θ

eiρv e
γ−v − eγ+v

v
φ(θ − v)dv = 0, (4.13)
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which concludes the proof.

In order to show that MΣ is finite dimensional, we introduce a new operator Â on the larger

space X̂ = Cn ×X,

D(Â) =
{

(c, φ) ∈ X̂ | φ̇ ∈ X, c = φ(0)
}
,

Â(c, φ) = (Lφ, φ̇).
(4.14)

Writing j : X → X̂ for the continuous embedding φ→ (φ(0), φ), we see that the part of Â in jX is

equivalent to A and that the closure of D(Â) is given by jX. Hence the spectral analysis of A and Â

is one and the same. The next lemma shows that ∆(z) is a characteristic matrix for Â, in the sense

of [17, Def. IV.4.17].

Lemma 4.4. Consider the holomorphic functions E : C → L(X̂,D(Â)) and F : C → L(X̂, X̂) given

by

E(z)(c, ψ)(θ) = (c, eθzc+ eθz
∫ 0

θ
e−zσψ(σ)dσ),

F (z)(c, ψ)(θ) = (c+
∑N

j=0Aje
zrj

∫ 0

rj
e−zσψ(σ)dσ, ψ(θ)),

(4.15)

in which D(Â) is considered as a Banach space with the graph norm. Then E(z) and F (z) are

bijective for every z ∈ C and we have the identity ∆(z) 0

0 I

 = F (z)(zI − Â)E(z). (4.16)

Proof. Writing E2(z) for the projection of E(z) onto the X component of X̂, we compute

ψ(θ) = zE2(z)(c, ψ)(θ)−D(E2(z)(c, ψ))(θ). (4.17)

On the other hand, using partial integration we find

E2(z)(ψ(0), (zI −D)ψ) = eθzψ(0) + eθz

∫ 0

θ

e−zσ(zψ(σ)− ψ̇(σ))dσ = ψ(θ), (4.18)

from which it easily follows that E(z) is bijective for all z ∈ C. The bijectivity of F (z) is almost

immediate. The last identity in the statement of the lemma follows easily by using the definition of

∆(z) and computing

(zI − Â)E(z)(c, ψ) = ((z −
N∑

j=0

Aje
zrj )c−

N∑
j=0

Aje
zrj

∫ 0

rj

e−zσψ(σ)dσ, ψ). (4.19)
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Using the theory of characteristic matrices (see e.g. [17, Theorem IV.4.18], one now obtains the

following result.

Corollary 4.5. For any Σ as in the statement of Lemma 4.3, the generalized eigenspace MΣ is

finite dimensional.

We conclude this section by referring the reader to [2, 22], where similar results are obtained in

the framework of delay equations.

5 Pseudo-Inverse for Linear Inhomogeneous Equations

The goal of this section is to define a pseudo-inverse K : BCη(R,Cn) → BC1
η(R,Cn) for the linear

inhomogeneous equation (3.1) in the spirit of Theorem 3.2, that however can still be defined when

the system has eigenvalues on the imaginary axis.

We first need to introduce two families of Banach spaces, parametrized by µ, ν ∈ R, that describe

distributions that have controlled exponential growth at ±∞.

BXµ,ν(R,Cn) =
{
x ∈ L1

loc(R,Cn) | ‖x‖BXµ,ν
:= supξ<0 e

−µξ |x(ξ)|+ supξ≥0 e
−νξ |x(ξ)| <∞

}
,

BX1
µ,ν(R,Cn) =

{
x ∈W 1,1

loc (R,Cn) ∩ C(R,Cn) | ‖x‖BX1
µ,ν

:= ‖x‖BXµ,ν
+ ‖ẋ‖BXµ,ν

<∞
}
.

(5.1)

For any η > 0, we have continuous inclusions

i±η : W 1,∞
±η (R,Cn) ↪→ BX1

−η,η(R,Cn), (5.2)

with ‖i±η‖ ≤ 2+ |η|. Indeed, this can be seen by considering x ∈W 1,∞
±η (R,Cn), defining y = e∓ηx ∈

W 1,∞(R,Cn) and noting that

∣∣∣e−η|ξ|ẋ(ξ)
∣∣∣ =

∣∣∣e−η|ξ|D(e±ηξy(ξ))
∣∣∣ =

∣∣∣e±ηξ−η|ξ|(ẏ(ξ)± ηy(ξ))
∣∣∣ ≤ (1 + η) ‖y‖W 1,∞ . (5.3)

The following important result allows us to relate the projection operators QΣ as defined in (4.8) to

the solution operator (3.20).

Proposition 5.1. Consider any x ∈ BX1
µ,ν(R,Cn) and write Λx = f ∈ BXµ,ν(R,Cn). Then for

any γ+ > ν and γ− < µ such that the characteristic equation det∆(z) = 0 has no roots with
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Re z = γ±, and for any ξ ∈ R, we have

x(ξ) = 1
2πi

∫ γ++i∞
γ+−i∞ eξz

(
K(ξ, z, x) + ∆(z)−1f̃+(z)

)
dz

+ 1
2πi

∫ γ−−i∞
γ−+i∞ eξz

(
K(ξ, z, x)−∆(z)−1f̃−(z)

)
dz,

(5.4)

in which the operator K defined in (4.3) has been canonically extended to R × C × BX1
µ,ν(R,Cn).

The Laplace transforms f̃+ and f̃− are again as defined in Appendix B.

Proof. An application of Lemma B.2 shows that

1
2
x(ξ) =

1
2πi

∫ γ++i∞

γ+−i∞
eξz

( ∫ 0

ξ

e−zσx(σ)dσ + x̃+(z)
)
dz. (5.5)

Taking the Laplace transform of (3.1) yields

zx̃+(z)− x(0) =
∑N

j=0Aj

∫∞
0
e−zux(u+ rj)du+ f̃+(z)

=
∑N

j=0Aje
zrj

(
x̃+(z) +

∫ 0

rj
e−zσx(σ)dσ

)
+ f̃+(z)

(5.6)

and thus after rearrangement we have

x̃+(z) = ∆(z)−1
(
x(0) +

N∑
j=0

Aje
zrj

∫ 0

rj

e−zσx(σ)dσ + f̃+(z)
)
. (5.7)

Now define y(ξ) = x(−ξ) and notice that y satisfies the following equation on [0,∞),

ẏ(ξ) = −f(−ξ)−
N∑

j=0

Ajy(ξ − rj). (5.8)

Taking the Laplace transform of this identity yields

zỹ+(z)− y(0) = −
N∑

j=0

Aje
−zrj

(
ỹ+(z) +

∫ 0

−rj

e−zσy(σ)dσ
)
− f̃−(−z) (5.9)

and thus after rearrangement

ỹ+(z) = ∆(−z)−1
(
− y(0) +

N∑
j=0

Aje
−zrj

∫ 0

−rj

e−zσy(σ)dσ + f̃−(−z)
)
. (5.10)

Reasoning as in the derivation of (5.5) we obtain the identity

1
2
y(ξ) =

1
2πi

∫ −γ−+i∞

−γ−−i∞
eξz

( ∫ 0

ξ

e−zσy(σ)dσ + ỹ+(z)
)
dz (5.11)

and thus 1
2x(ξ) = 1

2πi

∫ −γ−+i∞
−γ−−i∞ e−ξz(Ψ(ξ, z) + ∆(−z)−1f̃−(−z))dz, with

Ψ(ξ, z) =
∫ 0

−ξ

e−zσx(−σ)dσ −∆(−z)−1
(
x(0)−

N∑
j=0

Aje
−zrj

∫ 0

−rj

e−zσx(−σ)dσ
)
. (5.12)
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Substituting z → −z, we obtain 1
2x(ξ) = 1

2πi

∫ γ−−i∞
γ−+i∞ eξz(Ψ(ξ,−z)−∆(z)−1f̃−(z))dz with

Ψ(ξ,−z) =
∫ 0

ξ

e−zσx(σ)dσ + ∆(z)−1
(
x(0) +

N∑
j=0

Aje
zrj

∫ 0

rj

e−zσx(σ)dσ
)
, (5.13)

which follows from (5.12) after the substitution σ → −σ and concludes the proof.

Using Lemma 3.1 one sees that there exists γ > 0 such that (3.1) has no eigenvalues z with

0 < |Re z| < γ. Throughout the rest of this section we fix an arbitrary η ∈ (0, γ). We introduce

L∞(R,Cn×n) functions χ± such that χ+(ξ) = I for ξ ≥ 0, χ−(ξ) = I for ξ < 0 and χ+ + χ− = I.

Associated with these functions we define bounded linear cutoff operators Φ± : BCη(R,Cn) →

L∞±η(R,Cn) by Φ±x(ξ) = χ±(ξ)x(ξ) and notice that Φ+ + Φ− = IBCη(R,Cn).

Using Proposition 3.4 we can define the isomorphisms Λ± = Λ(η)
± : W 1,∞

±η (R,Cn) → L∞±η(R,Cn)

and a linear operator Pη : BC1
η(R,Cn) → BC1

η(R,Cn) by

Pηx = Λ−1
+ Φ+Λx+ Λ−1

− Φ−Λx. (5.14)

Notice that Pη is well defined, since ΛPηx = Φ+Λx + Φ−Λx = Λx ∈ BCη(R,Cn), which together

with the differential equation (3.1) implies that the derivative of Pηx is continous, yielding Pηx ∈

BC1
η(R,Cn) instead of merely Pηx ∈ BX1

−η,η(R,Cn). Define the space Rη ⊂ BC1
η(R,Cn) as the

range of Pη and the space N0 ⊂ BC1
η(R,Cn) as the kernel of Pη. Notice that the set of eigenvalues

Σ = Σ−ζ,ζ is independent of ζ for 0 < ζ < γ. We introduce the projection Q0 : X → X with

Q0 = QΣ and define the finite dimensional linear subspace X0 = MΣ ⊂ X.

Proposition 5.2. The operator Pη defined above is bounded and in addition is a projection, i.e., it

satisfies P 2
η = Pη. The range Rη is a closed linear subspace of BC1

η(R,Cn) and for any x ∈ Rη we

have Q0x0 = 0. The kernel N0 is finite dimensional and does not depend on η, with dimN0 = dimX0.

In particular, for any x ∈ N0 we have xξ ∈ X0 for all ξ ∈ R and conversely, for any φ ∈ X0 there

exists a unique x = Tφ in N0 with x0 = φ. For any ζ0 > 0, we have that T viewed as a linear

operator from X0 into BC1
ζ0

(R,Cn) is bounded with norm ‖T‖ζ0
that satisfies ‖T‖ζ1

≤ ‖T‖ζ0
for

ζ1 ≥ ζ0.

Proof. The boundedness of Pη follows from the boundedness of Λ, Φ± and Λ−1
± , together with the

continuous embeddings i±η : W 1,∞
±η (R,Cn) ↪→ BX1

−η,η(R,Cn). For all x ∈ BC1
η(R,Cn), we notice

ΛPηx = Φ+Λx+ Φ−Λx = Λx, (5.15)
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which yields

P 2
η x = Λ−1

+ Φ+ΛPηx+ Λ−1
− Φ−ΛPηx

= Λ−1
+ Φ+Λx+ Λ−1

− Φ−Λx = Pηx.

(5.16)

The range Rη can now immediately be seen to be closed, since if Pηxn → z, then P 2
η xn = Pηxn → z,

but also Pηxn → Pηz, yielding Pηz = z and thus z ∈ Rη. Consider any x ∈ Rη and write f = Φ+Λx

and g = Φ−Λx. It is clear that f̃−(z) = 0 and similarly g̃+(z) = 0. Combining Propositions 3.4 and

5.1, we conclude that Q0x0 = 0.

Now consider any x ∈ N0. It follows from Proposition 5.1 that x0 = Q0x0 and sinceN0 is invariant

under translation, we see xξ = Q0xξ for any ξ ∈ R. Let y0 ∈ N0 be such that y0 = x0, then x−y ∈ N0

with (x − y)0 = 0, but then Lemma 4.1 implies that x = y. We thus have dimN0 ≤ dimX0. On

the other hand, any φ ∈ X0 has the form φ(θ) =
∑M

j=0 pj(θ)eλjθ with Reλj = 0 and polynomials

pj and can thus be extended to a function x = Tφ on the line, with x ∈ N0 and x0 = φ. Thus

dimN0 = dimX0 and the properties of T easily follow from the specific form of φ(ξ). This completes

the proof.

We remark here that all the statements in Proposition 2.1 have now been proved. Furthermore,

we currently have all the ingredients we need to define a bounded pseudo-inverse for Λ. We thus

introduce the operator Kη : BCη(R,Cn) → Rη, given by

Kηx = Λ−1
+ Φ+x+ Λ−1

− Φ−x. (5.17)

Notice that the range of Kη is indeed contained in Rη, since x = ΛKηx and hence Kηx = PηKηx.

This also immediately shows the injectivity of Kη, since if Kηx = 0, we have x = Λ(0) = 0. The

surjectivity of Kη follows from the identity y = Pηy = KηΛy for any y ∈ Rη. The following result

shows that Kη behaves nicely on the scale of Banach spaces BCζ(R,Cn).

Lemma 5.3. Consider any pair 0 < η1 < η2 < γ. Then for any f ∈ BCη1(R,Cn) we have

Kη1f = Kη2f. (5.18)

Proof. Note that f+ = e−η2Φ+f ∈ L∞(R,Cn) satisfies a growth condition f+(ξ) = O(e−(η2−η1)ξ)

as ξ → ∞ and hence x+ = Λ−1
−η2

f+ shares this growth condition by Corollary 3.3. This implies

that the function x+ = eη2x+ satisfies x+ = O(eη1ξ) as ξ → ∞ and since x+ is bounded on
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R, we have x+ = O(e−η2|ξ|) as ξ → −∞. Using the differential equation (3.1) it follows that

x+ ∈ W 1,∞
η1

(R,Cn) ∩ W 1,∞
η2

(R,Cn). Since Λx+ = Φ+f ∈ L1
η1

(R,Cn) ∩ L1
η2

(R,Cn), we see that

x+ = (Λ(η1)
+ )−1Φ+f = (Λ(η2)

+ )−1Φ+f . A similar argument for Φ−f completes the proof.

The next lemma shows that Kη and the translation operator do not commute.

Lemma 5.4. For any f ∈ BCη(R,Cn) and ξ0 ∈ R, define the function y ∈ BC1
η(R,Cn) by

y(ξ) = (Kηf)(ξ0 + ξ)− (Kηf(ξ0 + ·))(ξ). (5.19)

Then we have y ∈ N0. In particular, we have the identity

(I −Q0)(Kηf)ξ0 = (Kηf(ξ0 + ·))0. (5.20)

Proof. Define functions x0(ξ) = (Kηf)(ξ0 +ξ) and x1(ξ) = (Kηf(ξ0 + ·))(ξ). Notice that for all ξ ∈ R

we have (Λx0)(ξ) = f(ξ0 + ξ) but also (Λx1)(ξ) = f(ξ0 + ξ). This implies Λ(x0 − x1) = 0 and hence

y = x0−x1 ∈ N0. The final statement follows from the fact that Q0yξ = yξ for any y ∈ N0 together

with the identity Q0(Kηf)0 = 0 for any f ∈ BCη(R,Cn).

For notational convenience, we introduce the quantity

w = max(e−rmin , ermax) ≥ 1 (5.21)

and note that for any η > 0, ξ ∈ R and rmin ≤ θ ≤ rmax, we have e−η|ξ|eη|ξ+θ| ≤ wη. This in turn

implies that for any x ∈ BCη(R,Cn) and any ξ ∈ R, we have

‖xξ‖ = sup
rmin≤θ≤rmax

eη|ξ+θ|e−η|ξ+θ| |x(ξ + θ)| ≤ eη|ξ|wη ‖x‖η . (5.22)

The following corollary to Lemma 5.4 shows that the hyperbolic component of Kf remains bounded

whenever f is bounded, which in the sequel will allow us to restrict our attention to the growth rate

on the center component.

Corollary 5.5. Suppose that f ∈ BC0(R,Cn). Then for any ξ ∈ R we have

‖(I −Q0)(Kηf)ξ‖ ≤ wη ‖Kη‖ ‖f‖0 . (5.23)
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Proof. Using Lemma 5.4 we compute

‖(I −Q0)(Kηf)ξ‖ = ‖(Kηf(ξ + ·))0‖ ≤ wη ‖Kη‖ ‖f(ξ + ·)‖η . (5.24)

The statement now follows from the observation ‖f(ξ + ·)‖η ≤ ‖f(ξ + ·)‖0 = ‖f‖0.

Finally, we show that we can bound the norm of Kη uniformly on closed intervals.

Lemma 5.6. Consider any interval I = [η−, η+] ⊂ (0, γ). Then ‖Kη‖ is uniformly bounded for

η ∈ I.

Proof. In view of the bounds ‖i±η‖ ≤ 2 + |η| for the embedding operators introduced in (5.2),

it is enough to show that we can uniformly bound B±η =
∥∥Λ−1
±

∥∥
L(L∞±η(R,Cn),W 1,∞

±η )(R,Cn)
. We here

concentate on the + case, as the remaining case follows analogously. From Proposition 3.4 we know

Bη = ‖Λ−η‖. Fix a = min( 1
2η−,

1
2 ( γ − η+)) and choose any α < −a. Using Corollary 3.3 and the

fact that the norms |Aje
ηrj | are uniformly bounded, we see it is enough to show that the quantities

K±η are uniformly bounded for η ∈ I, where

K±η =
1
2π

∫ ∞
−∞

∣∣∣∣∆−η(±a+ iz)−1 − 1
z − α

I

∣∣∣∣ dz =
1
2π

∫ ∞
−∞

∣∣∣∣∆(±a+ η + iz)−1 − 1
z − α

I

∣∣∣∣ dz. (5.25)

This however follows immediately from Lemma 3.1.

6 A Lipschitz Smooth Center Manifold

Using the pseudo-inverse K defined in the previous section for the inhomogeneous linear equation

(3.1), we are now in a position to construct a Lipschitz smooth center manifold for the nonlinear

equation (2.3). Throughout this section we consider a fixed nonlinearity R : X → Cn that satisfies

the assumptions (HR1) and (HR2). In order to employ the Banach contraction theorem, we need to

modify the nonlinearity R so that it becomes globally Lipschitz continuous with a sufficiently small

Lipschitz constant. To this end, we let χ : [0,∞) → R be any C∞-smooth function that satisfies

χ(ξ) = 0 for ξ ≥ 2, χ(ξ) = 1 for ξ ≤ 1 and 0 ≤ χ(ξ) ≤ 1 for all 1 ≤ ξ ≤ 2. For any δ > 0, we

define χδ : [0,∞) → R by χδ(ξ) = χ( ξ
δ ). Following the approach in [17], we modify the nonlinearity

separately in the hyperbolic and nonhyperbolic directions and define Rδ : X → Cn by

Rδ(φ) = χδ(‖Q0φ‖)χδ(‖(I −Q0)φ‖)R(φ). (6.1)
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Lemma 6.1. Let E and F be Banach spaces and let f : E → F with f(0) = 0 be a Lipschitz

continuous mapping with Lipschitz constant L(δ) on on the ball of radius δ. Let V,W ∈ L(E,E) with

V +W = I. Then there exists C > 0 such that for all δ > 0 the mapping x→ χδ(‖V x‖)χδ(‖Wx‖)f(x)

is globally Lipschitz continuous with Lipschitz constant (4C ‖V ‖+ 4C ‖W‖+ 1)L(4δ).

Proof. There exists C > 0 such that χδ is globally Lipschitz continuous with Lipschitz constant C/δ.

Introduce the shorthands fx = f(x), χV
x = χδ(‖V x‖) and χW

x = χδ(‖Wx‖) and the corresponding

notations for y. We obtain the following estimate,

∆ = ‖f(x)χδ(‖V x‖)χδ(‖Wx‖)− f(y)χδ(‖V y‖)χδ(‖Wy‖)‖ =
∥∥fxχ

V
x χ

W
x − fyχ

V
y χ

W
y

∥∥
≤ ‖fx − fy‖χV

y χ
W
y + ‖fx‖

∣∣χV
x − χV

y

∣∣χW
y + ‖fx‖χV

x

∣∣χW
x − χW

y

∣∣ . (6.2)

We now treat the three different cases. Suppose that both χV
x χ

W
x = 0 and χV

y χ
W
y = 0, then it

immediately follows that ∆ = 0. Now suppose that both χV
x χ

W
x 6= 0 and χV

y χ
W
y 6= 0, which implies

‖x‖ , ‖y‖ ≤ 4δ. This means ‖fx‖ , ‖fy‖ ≤ 4δL(4δ) and hence

∆ ≤ L(4δ) ‖x− y‖+ 4δL(4δ)C
δ ‖V ‖ ‖x− y‖+ 4δL(4δ)C

δ ‖W‖ ‖x− y‖

= (4C ‖V ‖+ 4C ‖W‖+ 1)L(4δ) ‖x− y‖ .
(6.3)

Notice the only case left to consider is the situation where χV
x χ

W
x 6= 0 but χV

y χ
W
y = 0, since x and

y are interchangeable. We obtain

∆ ≤ 4δL(4δ)
C

δ
‖V ‖ ‖x− y‖+ 4δL(4δ)

C

δ
‖W‖ ‖x− y‖ = (4C ‖V ‖+ 4C ‖W‖)L(4δ) ‖x− y‖ . (6.4)

Corollary 6.2. The mappings Rδ : X → Cn are globally Lipschitz continuous with Lipschitz con-

stants LRδ
that go to zero as δ goes to zero. In addition, ‖Rδ(φ)‖ ≤ 4δLRδ

for all φ ∈ X.

Proof. The first statement follows from assumption (HR2). The second statement follows by noting

that if Rδ(φ) 6= 0, then ‖φ‖ ≤ ‖Q0φ‖+ ‖(I −Q0)φ‖ ≤ 2δ + 2δ = 4δ.

We observe here that the nonlinearity Rδ induces a map R̃δ : C(R,Cn) → C(R,Cn) via substi-

tution, i.e.,

R̃δx(ξ) = Rδxξ. (6.5)
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Notice that R̃δ is well-defined, since ix : R → X which sends ξ → xξ is a continuous mapping for any

continuous x and hence the same holds for R̃δx = Rδ ◦ ix. The next lemma shows that R̃δ inherits

the global Lipschitz continuity of Rδ.

Lemma 6.3. For any η ∈ R, the substitution operator R̃δ viewed as an operator from BCη(R,Cn)

into BCη(R,Cn) is globally Lipschitz continuous with Lipschitz constant wηLRδ
.

Proof. Write x = R̃δu, y = R̃δv and compute

e−η|ξ| |y(ξ)− x(ξ)| = e−η|ξ| |Rδuξ −Rδvξ| ≤ e−η|ξ|LRδ
‖uξ − vξ‖ ≤ wηLRδ

‖u− v‖η . (6.6)

We are now ready to construct solutions to the system (2.3) with the modified nonlinearity Rδ

substituted for R. This will be done by employing a fixed point argument. To this end, we recall the

extension operator T : X0 →
⋂

ζ>0BC
1
ζ (R,Cn) introduced in Proposition 5.2 and define an operator

G : BC1
η(R,Cn)×X0 → BC1

η(R,Cn) via

G(u, φ) = Tφ+KηR̃δ(u). (6.7)

Choose δ > 0 small enough to guarantee

wηLRδ
‖Kη‖ <

1
2
. (6.8)

Note that if ‖T‖η ‖φ‖ <
ρ
2 , then G(·, φ) leaves the ball with radius ρ in BC1

η(R,Cn) invariant. Notice

in addition that G(·, φ) is Lipschitz continuous with Lipschitz constant 1
2 . Since ρ can be chosen

arbitrarily, the following theorem can be established using standard arguments.

Theorem 6.4. Consider the system (2.3) and suppose that the conditions (HR1) and (HR2) are

satisfied. Fix γ > 0 such that the characteristic equation det∆(z) = 0 has no roots with 0 < |Re z| <

γ. Fix any η ∈ (0, γ) and choose δ > 0 such that (6.8) is satisfied. Then there exists a globally

Lipschitz continuous mapping u∗η from X0 into BC1
η(R,Cn) such that u = u∗ηφ is the unique solution

in BC1
η(R,Cn) of the equation

u = G(u, φ). (6.9)

The following results show that the family of mappings u∗ζ defined above behaves appropriately

under translations and under shifts of the parameter ζ.
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Lemma 6.5. Consider the setting of Theorem 6.4 and let φ ∈ X0. Then for any ξ0 ∈ R we have

the identity

(u∗ηφ)(ξ0 + ·) = (u∗ηQ0(u∗ηφ)ξ0)(·). (6.10)

Proof. Using Lemma 5.4 we compute

ψ := Q0(u∗ηφ)ξ0 = (Tφ)ξ0 + (KηR̃δ(u∗ηφ))ξ0 − (KηR̃δ((u∗ηφ)(ξ0 + ·)))0, (6.11)

hence upon defining

y(ξ) = Tφ(ξ0 + ξ) +KηR̃δ(u∗ηφ)(ξ0 + ξ)−KηR̃δ((u∗ηφ)(ξ0 + ·))(ξ), (6.12)

we conclude that y ∈ N0 by Lemma 5.4 and in addition that y = Tψ. Upon calculating

G((u∗ηφ)(ξ0 + ·), ψ)(ξ) = y(ξ) +KηR̃δ((u∗ηφ)(ξ0 + ·))(ξ)

= Tφ(ξ0 + ξ) +KηR̃δ(u∗ηφ)(ξ0 + ξ) = (u∗ηφ)(ξ0 + ξ),
(6.13)

we see that due to uniquess of solutions we must have

(u∗ηψ)(ξ) = (u∗ηφ)(ξ0 + ξ), (6.14)

from which the claim follows.

Combining Lemma 5.3 and Corollary 6.2 immediately yields the final result of this section.

Lemma 6.6. Consider any pair 0 < η1 < η2 < γ and suppose that (6.8) holds for both η1 and η2.

Then we have u∗η2
= J 1

η2η1
u∗η1

.

7 Smoothness of the center manifold

In the previous section we saw that the mapping u∗η : X0 → BC1
η(R,Cn) is Lipschitz continuous. In

this section we will extend this result and show that u∗η inherits the Ck-smoothness of the nonlinearity

R. More precisely, we shall establish the following theorem.

Theorem 7.1. Consider the system (2.3) and suppose that the conditions (HR1) and (HR2) are

satisfied. Fix γ > 0 such that the characteristic equation det∆(z) = 0 has no roots with 0 < |Re z| < γ

and consider any interval [ηmin, ηmax] ⊂ (0, γ) with kηmin < ηmax, where k is as defined in (HR1).

Then there exists δ > 0 such that the following statements hold.
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(i) For any η ∈ [ηmin, ηmax], we have the inequality

wηLRδ
‖Kη‖ <

1
4
. (7.1)

(ii) For each integer 1 ≤ p ≤ k and for each η ∈ (pηmin, ηmax], the mapping J 1
ηηmin

◦ u∗ηmin
: X0 →

BC1
η(R,Cn) is of class Cp, where u∗ζ for ζ ∈ [ηmin, ηmax] is as defined in Theorem 6.4 with the

above value for δ.

We remark here that the arguments in this section follow closely the lines of [17, Section IX.7].

Throughout this entire section we consider a fixed system (2.3) that satisfies the conditions (HR1)

and (HR2), i.e., we shall use the corresponding integer k and Ck-smooth nonlinearity R without

further comment in our results.

As a first step towards proving the above theorem, we need to find a suitable domain of definition

for R̃δ to ensure that this operator becomes sufficiently smooth. Due to the presence of the cutoff

function on the infinite dimensional complement of X0, the nonlinearity Rδ loses the Ck-smoothness

on X and becomes merely Lipschitz continuous. In view of these observations, we introduce for any

η > 0 the space

V 1
η (R,Cn) =

{
u ∈ BC1

η(R,Cn) | sup
ξ∈R

‖Qhuξ‖ <∞

}
, (7.2)

in which Qh = (I−Q0) is the projection onto the hyperbolic part of X. We provide the above space

with the norm

‖u‖V 1
η

= sup
ξ∈R

e−η|ξ| ‖Q0uξ‖+ sup
ξ∈R

‖Qhuξ‖+ ‖u̇‖η , (7.3)

with which V 1
η (R,Cn) is a Banach space that has continuous inclusions V 1

η (R,Cn) ↪→ BC1
η(R,Cn).

In addition, for any δ > 0 we define the open set

V 1,δ
η =

{
u ∈ BC1

η(R,Cn) | sup
ξ∈R

‖Qhuξ‖ < δ

}
⊂ V 1

η (R,Cn). (7.4)

Since X0 is finite dimensional, we have that Rδ is of class Ck on the set Bh
δ = {φ ∈ X | ‖Qhφ‖ < δ}.

In addition, the norms ‖DpRδφ‖ are uniformly bounded on Bh
δ for all 0 ≤ p ≤ k. Thus, for any

u ∈ C(R,Cn) for which supξ∈R ‖Qhuξ‖ < δ and any 0 ≤ p ≤ k, we can define a map R̃
(p)
δ (u) ∈

L(p)(C(R,Cn), C(R,Cn)) by

R̃
(p)
δ (u)(v1, . . . , vp)(ξ) = DpRδ(uξ)

(
(v1)ξ, . . . , (vp)ξ

)
. (7.5)
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Here the symbol L(p)(Y1× . . .×Yp, Z) denotes the space of p-linear mappings from Y1× . . .×Yp into

Z. If Y1 = . . . = Yp = Y , we use the shorthand L(p)(Y, Z). Note that the map R̃(p)
δ (u) defined above

is well defined, since DpRδ is a continuous map from Bh
δ ×Xp into Cn, as is the map ix : R → X

which sends ξ → xξ, for any x ∈ C(R,Cn).

The next lemma shows that for sufficiently small δ, the operator u∗η maps precisely into the

region on which the modification of R in the hyperbolic direction is trivial, which means that Rδ is

Ck-smooth on this region.

Lemma 7.2. Let δ > 0 be so small that for some 0 < η0 < γ,

wη0LRδ
< (4 ‖Kη0‖)−1. (7.6)

Then for any φ ∈ X0 and 0 < η < γ, we have that for all ξ ∈ R,

∥∥Qh(u∗ηφ)ξ

∥∥ < δ. (7.7)

Proof. Note first that the cutoff function ensures that∥∥∥R̃δ(u∗ηφ)
∥∥∥

0
≤ 4δLRδ

. (7.8)

Since Lemma 5.3 guarantees that Kη and Kη0 agree on BC0(R,Cn), we can use Corollary 5.5 to

compute ∥∥Qh(u∗ηφ)ξ

∥∥ =
∥∥∥QhKη0(R̃δ(u∗ηφ))ξ

∥∥∥ ≤ wη0 ‖Kη0‖ 4δLRδ
. (7.9)

The next series of results establishes conditions under which the maps R̃δ : V 1,δ
σ (R,Cn) →

BC1
ζ (R,Cn) are smooth. In the remainder of this section we will for convenience adopt the shorthand

BC1
ζ = BC1

ζ (R,Cn), together with similar ones for the other function spaces.

Lemma 7.3. Let 1 ≤ p ≤ k, ζi > 0 for 1 ≤ i ≤ p, ζ = ζ1 + . . . + ζp and η ≥ ζ. Then for any

u ∈ C(R,Cn) such that supξ∈R ‖Qhuξ‖ < δ, we have

R̃
(p)
δ (u) ∈ L(p)(BC1

ζ1
× . . .×BC1

ζp
, BCη), (7.10)

where the norm is bounded by∥∥∥R̃(p)
δ

∥∥∥
L(p)

≤ wζ sup
ξ∈R

e−(η−ζ)|ξ| ‖DpRδ(uξ)‖ <∞. (7.11)
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If η > ζ and σ > 0, then in addition u→ R̃
(p)
δ (u) is continuous as a map from V 1,δ

σ into L(p)(BC1
ζ1
×

. . .×BC1
ζp
, BCη).

Finally, in the statements above, any subset of the BC1
ζi

spaces may be replaced by V 1
ζi

.

Proof. We define r = supξ∈R ‖Qhuξ‖ < δ. The bound for
∥∥∥R̃(p)

δ

∥∥∥
L(p)

follows from the estimates

‖(vi)ξ‖ ≤ wζieζi|ξ| ‖vi‖ζi
and ‖vi‖ζi

≤ ‖vi‖BC1
ζi

. Since ‖DpRδ‖ is uniformly bounded on Bh
δ , the

norm above can be seen to be finite and hence R̃(p)
δ (u) is well defined.

We now consider the case that η > ζ and prove the continuity of u → R̃
(p)
δ (u). Let B̃ ⊂ V 1

σ be

the open ball of radius δ − r and note that for any 0 < ε < 1, we have

supg∈ eB
∥∥∥R̃(p)

δ (u+ εg)− R̃
(p)
δ (u)

∥∥∥
L(p)

≤ supg∈ eB supξ∈R e
−(η−ζ)|ξ| ‖DpRδ(uξ + εgξ)−DpRδ(uξ)‖ .

(7.12)

Fix an arbitrary κ > 0. Exploiting the fact that DpRδ is uniformly bounded on Bh
δ , we choose an

A > 0 such that

2e−(η−ζ)A sup
φ∈Bh

δ

‖DpRδ(φ)‖ ≤ κ, (7.13)

which implies

sup
g∈ eB sup

|ξ|≥A

e−(η−ζ)|ξ| ‖DpRδ(uξ + εgξ)−DpRδ(uξ)‖ ≤ κ. (7.14)

Due to the compactness of the interval [−A,A], we can choose a finite open covering Cov =⋃M
j=1Bρj (uξj ) ⊂ Bh

δ ⊂ X, with standard open balls Bρ(ψ) ⊂ X, such that uξ ∈ Cov for all

ξ ∈ [−A,A] and in addition
∥∥DpRδ(φ)−DpRδ(uξj

)
∥∥ ≤ κ

2 for all φ ∈ B2ρj
(uξj

). Choose any

ε > 0 such that εwσeσA(δ − r) < min {ρj | 1 ≤ j ≤M}. This implies that for every g ∈ B̃ and

any 1 ≤ j ≤M we have ‖εgξ‖ ≤ εwσeσ|ξ| ‖g‖V 1
σ
< ρj and hence

‖DpRδ(uξ + εgξ)−DpRδ(uξ)‖ ≤
∥∥DpRδ(uξ + εgξ)−DpRδ(uξj0

)
∥∥

+
∥∥DpRδ(uξj0

)−DpRδ(uξ)
∥∥

≤ κ
2 + κ

2 = κ,

(7.15)

where we have chosen j0 such that uξ ∈ Bρj0
(uξj0

). Since ξ > 0 was arbitrary, we have that

u → R̃
(p)
δ (u) is indeed continuous as a map from V 1,δ

σ into L(p)(BC1
ζ1
× . . . × BC1

ζp
, BCη). Finally,

note that the arguments above carry over upon replacing any subset of the BC1
ζi

spaces by their

corresponding V 1
ζi

spaces.
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Lemma 7.4. Let 0 ≤ p < k, ζi > 0 for 1 ≤ i ≤ p, ζ = ζ1 + . . .+ ζp and η > ζ + σ. Then the map

R̃
(p)
δ : V 1,δ

σ → L(p)(BC1
ζ1
× . . .×BC1

ζp
, BCη) is of class C1 with derivative

DR̃
(p)
δ (u) = R̃

(p+1)
δ (u) ∈ L(p+1)(BC1

ζ1
× . . .×BC1

ζp
× V 1

σ , BCη). (7.16)

In addition, the same statement holds upon replacing any subset of the BC1
ζi

spaces with the corre-

sponding V 1
ζi

spaces.

Proof. Pick an arbitrary u ∈ V 1,δ
σ and write r = supξ∈R ‖Qhuξ‖ < δ. Write B̃ ⊂ V 1

σ for the open

ball with radius δ − r and note that for any 0 < ε < 1, we have

supg∈ eB 1
ε

∥∥∥R̃(p)
δ (u+ εg)− R̃

(p)
δ (u)− εR̃

(p+1)
δ (u)g

∥∥∥
= supg∈ eB supξ∈R sup‖v1‖BC1

ζ1
=1 . . . sup‖vp‖BC1

ζp

=1
1
ε ||D

pRδ(uξ + εgξ)((v1)ξ, . . . (vp)ξ)

−DpRδ(uξ)((v1)ξ, . . . , (vm)ξ)− εDp+1Rδ(uξ)((v1)ξ, . . . , (vp)ξ, gξ)||η

≤ supξ∈R supφ∈Bh
(ξ)
wζ+σe(−η+ζ+σ)|ξ|

∥∥Dp+1Rδ(uξ + εφ)−Dp+1Rδ(uξ)
∥∥ ,

(7.17)

where we have introduced Bh
(ξ) =

{
φ ∈ X | ‖φ‖ < (δ − r)wσeσ|ξ| and ‖Qhφ‖ < δ − r

}
. Since the

exponent −η + ζ + σ is negative, one can reason as in the proof of Lemma 7.3 to conclude that

the last expression tends to zero as ε → 0. This implies DR̃(p)
δ (u) = R̃

(p+1)
δ (u) as an operator

in L(p+1)(BC1
ζ1
× BC1

ζp
× V 1

σ , BCη). Lemma 7.3 ensures that this derivative u → R̃
(p+1)
δ (u) is

continuous. Again, the arguments above carry over upon replacing any subset of the BC1
ζi

spaces

by their corresponding V 1
ζi

spaces.

Corollary 7.5. Let η2 > kη1 > 0 and 1 ≤ p ≤ k. Then the mapping R̃δ : V 1,δ
η1

→ BCη2 is of class

Ck with

DpR̃δ(u) = R̃
(p)
δ (u) ∈ L(p)(V 1

η1
, BCη2) ∩ L(p)(BC1

η1
, BCη2). (7.18)

Proof. The fact that R̃δ is of class Ck follows by repeated application of Lemma 7.4. In addition,

Lemma 7.3 implies that the derivatives R̃(p)
δ (u) ∈ L(p)(V 1

η1
, BCη2) can be naturally extended to

elements in L(p)(BC1
η1
, BCη2).

Corollary 7.6. Let 1 ≤ p ≤ k, ζi > 0 for 1 ≤ i ≤ p, ζ = ζ1 + . . . + ζp and η > ζ + (k − p)σ for

some σ > 0. Then the mapping R̃(p)
δ : V 1,δ

σ → L(p)(BC1
ζ1
× . . .×BC1

ζp
, BCη) is of class Ck−p.

34



Lemma 7.7. Let 1 ≤ p < k, ζi > 0 for 1 ≤ i ≤ p, ζ = ζ1 + . . . + ζp and η > ζ + σ for some

σ > 0. Let Φ be a mapping of class C1 from X0 into V 1,δ
σ . Then the mapping R̃(p)

δ ◦Φ from X0 into

L(p)(BC1
ζ1
, . . . , BC1

ζp
, BCη) is of class C1 with

D(R̃(p)
δ ◦ Φ)(φ)(v1, . . . vp, ψ) = R̃(p+1)(Φ(φ))(v1, . . . , vp,Φ′(φ)ψ). (7.19)

Proof. Let M = supφ∈Bh
δ

∥∥D(p+1)Rδ(φ)
∥∥. Fix v = (v1, . . . , vp), with ‖vi‖ηi

= 1. Observe that if

S(ξ) = R̃
(p)
δ (Φ(φ))(v)(ξ)− R̃

(p)
δ (Φ(ψ))(v)(ξ)− R̃(p+1)(Φ(ψ))(v,Φ′(ψ)(φ− ψ))(ξ), (7.20)

then S can be written as S(ξ) = S1(ξ) + S2(ξ), with

S1(ξ) =
∫ 1

0

(
Dp+1Rδ(θΦ(φ)ξ + (1− θ)Φ(ψ)ξ)−Dp+1Rδ(Φ(ψ)ξ)

)(
vξ, (Φ′(ψ)(φ− ψ))ξ

)
dθ,

S2(ξ) =
∫ 1

0
Dp+1Rδ(θΦ(φ)ξ + (1− θ)Φ(ψ)ξ)

(
vξ,Φ(φ)ξ − Φ(ψ)ξ − (Φ′(ψ)(φ− ψ))ξ

)
dθ.

(7.21)

Define I(ξ) =
∫ 1

0

∥∥Dp+1Rδ(θΦ(φ)ξ + (1− θ)Φ(ψ)ξ)−Dp+1Rδ(Φ(ψ)ξ)
∥∥ dθ and calculate

e−η|ξ| |S1(ξ)| ≤ wζ+σe(−η+ζ+σ)|ξ| ‖φ− ψ‖ ‖Φ′(ψ)‖V 1
σ
I(ξ)

≤ wζ+σ ‖φ− ψ‖ ‖Φ′(ψ)‖V 1
σ

max
{

2Me(−η+ζ+σ)A, supξ∈[−A,A] I(ξ)
}
,

e−η|ξ| |S2(ξ)| ≤ Mwζ+σe(−η+ζ+σ)|ξ| ‖Φ(φ)− Φ(ψ)− Φ′(ψ)(φ− ψ)‖V 1
σ

≤ Mwζ+σ ‖Φ(φ)− Φ(ψ)− Φ′(ψ)(φ− ψ)‖V 1
σ
.

(7.22)

Fixing some ε > 0 and letting A > 0 be such that 2Me(−η+ζ+σ)A < ε, we define

Ω = {Φ(ψ)ξ | ξ ∈ [−A,A]} ⊂ X. (7.23)

We can argue as in the proof of Lemma 7.3 to show that there exists δ1 > 0 such that

∥∥Dp+1Rδ(φ+ ψ)−Dp+1Rδ(φ)
∥∥ < ε (7.24)

for any φ ∈ Ω and
∥∥ψ∥∥ < δ1. Since supξ∈[−A,A] ‖Φ(φ)ξ − Φ(ψ)ξ‖ → 0 as φ → ψ, there exists

δ2 > 0 such that ‖φ− ψ‖ < δ2 implies ‖Φ(φ)ξ − Φ(ψ)ξ‖ < δ1 for all ξ ∈ [−A,A]. In addition, as

Φ is differentiable at ψ, there exists δ3 > 0 such that ‖Φ(φ)− Φ(ψ)− Φ′(ψ)(φ− ψ)‖V 1
σ
≤ ‖φ− ψ‖ ε

whenever ‖φ− ψ‖ < δ3. Together this implies that if ‖φ− ψ‖ < min(δ2, δ3), we have

‖S(·)‖η ≤ ‖φ− ψ‖wσ+ζ(M + ‖Φ′(ψ)‖V 1
σ
)ε, (7.25)
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which proves that R̃(p) ◦ Φ is differentiable. The continuity of this derivative follows from the fact

that Φ is of class C1 together with the continuity of the mapping u → R̃(p+1)(u) from V 1,δ
σ into

L(p+1)(BC1
ζ1
× . . .×BC1

ζp
× V 1

σ , BCη).

Corollary 7.8. Consider any pair 0 < η1 < η2 < γ. Then the map from V 1,δ
η1

into BC1
η2

defined by

u→ J 1
η2η1

Kη1R̃δ(u) (7.26)

is of class C1 with derivative u→ J 1
η2η1

◦ Kη1 ◦ R̃
(1)
δ (u) ∈ L(V 1

η1
, BC1

η2
) ∩ L(BC1

η1
, BC1

η2
).

Proof. Using Lemma 5.3 and Corollary 6.2 we observe that J 1
η2η1

Kη1R̃δ(u) = Kη2R̃δ(u). This last

map is C1-smooth by Lemma 7.4 and the fact that Kη2 is a bounded linear operator from BCη2 into

BC1
η2

, with derivative Kη2 ◦ R̃
(1)
δ (u). The proof is completed upon noting that R̃(1)

δ (u) in fact maps

BC1
η1

into BCη1 by Lemma 7.3.

Proof of Theorem 7.1. In view of Lemma 5.6 we can choose the constant δ > 0 in such a way

that both (7.1) and (7.6) are satisfied. We start with the case k = 1. Let η ∈ (ηmin, ηmax]. We

will apply Lemma A.2 with the Banach spaces Y0 = V 1
ηmin

, Y = BC1
ηmin

, Y1 = BC1
η with the

corresponding natural inclusions and Λ = X0. We fix Ω0 = V 1,δ
ηmin

⊂ V 1
ηmin

, recall the extension

operator T : X0 →
⋂

ζ>0BC
1
ζ (R,Cn) introduced in Proposition 5.2 and choose

F (u, φ) = Tφ+KηminR̃δ(u), φ ∈ X0, u ∈ BC1
ηmin

,

F (1)(u, φ) = Kηmin ◦ R̃
(1)
δ (u) ∈ L(BC1

ηmin
), φ ∈ X0, u ∈ V 1,δ

ηmin
,

F
(1)
1 (u, φ) = Kη ◦ R̃(1)

δ (u) ∈ L(BC1
η), φ ∈ X0, u ∈ V 1,δ

ηmin
.

(7.27)

In the context of Lemma A.2, we have that G : V 1
ηmin

×X0 → BC1
η is defined by

G(u, φ) = Tφ+ J 1
ηηmin

KηminR̃δ(u), (7.28)

and hence using Corollary 7.8 and Lemma 7.3 we see that condition (HC1) is satisfied. Since

supφ∈Bh
δ
‖DRδ(φ)‖ ≤ LRδ

, we see that (7.1) in combination with Lemma 7.3 implies condition

(HC2). Condition (HC3) follows from Corollary 7.8, (HC4) is evident since D2G(u, φ)ψ = Tψ ∈

BC1
ηmin

, (HC5) follows from (7.1) and finally (HC6) follows from Lemma 7.2. We conclude that

J 1
ηηmin

◦ u∗ηmin
is of class C1 and that D(J 1

ηηmin
◦ u∗ηmin

)(φ) = J 1
ηηmin

◦ u∗(1)ηmin(φ) ∈ L(X0, BC
1
η), where
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u
∗(1)
ηmin(φ) is the unique solution of the equation

u(1) = Kηmin ◦ R̃(1)(u∗ηmin
(φ))u(1) + T (7.29)

in the space L(X0, BC
1
ηmin

).

We now assume that k ≥ 2 and use induction on p. Let 1 ≤ p < k and suppose that for all

1 ≤ q ≤ p and all η ∈ (qηmin, ηmax], the mapping J 1
ηηmin

◦u∗ηmin
is of class Cq withDq(J 1

ηηmin
◦u∗ηmin

) =

J 1
η qηmin

u
∗(q)
ηmin , for some map u

∗(q)
ηmin : X0 → L(q)(X0, BC

1
qηmin

). In addition, assume that u∗(p)
ηmin(φ) is

the unique solution at η = ηmin of an equation of the form

u(p) = Kpη ◦ R̃(1)
δ (u∗ηmin

(φ))u(p) +H
(p)
η (φ) = F

(p)
η (u(p), φ), (7.30)

in L(p)(X0, BC
1
pη). Here we have H(1)(φ) = T and for p ≥ 2 we can write H(p)

η (φ) as a finite sum of

terms of the form

Kpη ◦ R̃(q)
δ (u∗ηmin

(φ))(u∗(e1)
ηmin

(φ), . . . , u∗(eq)
ηmin

(φ)) (7.31)

with 2 ≤ q ≤ p and integers ei ≥ 1 such that e1 + . . .+ eq = p. Notice that these conditions ensure

that F (p)
η : L(p)(X0, BC

1
pη) × X0 → L(p)(X0, BC

1
pη) is well-defined for all η ∈ [ηmin,

1
pηmax] and,

in addition, is a uniform contraction for these values of η. We now fix η ∈ ((p + 1)ηmin, ηmax] and

choose σ and ζ such that ηmin < σ < (p + 1)σ < ζ < η. We wish to apply Lemma A.2 in the

setting Ω0 = Y0 = L(p)(X0, BC
1
pσ), Y = L(p)(X0, BC

1
ζ ), Y1 = L(p)(X0, BC

1
η) with the corresponding

natural inclusions and Λ = X0. We use the functions

F (u(p), φ) = Kζ ◦ R̃(1)
δ (u∗ηmin

(φ))u(p) +H
(p)
ζ/p(φ), φ ∈ X0, u(p) ∈ L(p)(X0, BC

1
ζ ),

F (1)(u(p), φ) = Kζ ◦ R̃(1)
δ (u∗ηmin

(φ)) ∈ L(L(p)(X0, BC
1
ζ )), φ ∈ X0, u(p) ∈ L(p)(X0, BC

1
pσ),

F
(1)
1 (u(p), φ) = Kη ◦ R̃(1)

δ (u∗ηmin
(φ)) ∈ L(L(p)(X0, BC

1
η)), φ ∈ X0, u(p) ∈ L(p)(X0, BC

1
pσ).
(7.32)

To check (HC1), we need to show that the map G : L(p)(X0, BC
1
pσ)×X0 → L(p)(X0, BC

1
η) given by

G(u(p), φ) = J 1
ηζ ◦ Kζ ◦ R̃(1)

δ (u∗ηmin
(φ))u(p) + J 1

ηζH
(p)
ζ/p(φ) (7.33)

is of class C1. In view of the linearity of this map with respect to u(p), it is sufficient to show that

φ→ Kζ ◦ R̃(1)
δ (u∗ηmin

(φ)) is of class C1 as a map from X0 into L(BC1
pσ, BC

1
ζ ) and, in addition, that

φ→ H
(p)
ζ/p(φ) is of class C1 as a map from X0 into L(p)(X0, BC

1
ζ ). The first fact follows from Lemma
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7.7 using ζ > (p + 1)σ and the C1-smoothness of the map φ → J 1
σηmin

u∗ηmin
φ. To verify the second

fact, we use Lemma 7.7 and the chain rule to compute

DφKζ ◦ R̃(q)
δ (u∗ηmin

φ)(u∗(e1)
ηmin (φ), . . . , u∗(eq)

ηmin (φ))

= Kζ ◦ R̃(q+1)
δ (u∗ηmin

φ)(u∗(e1)
ηmin (φ), . . . , u∗(eq)

ηmin (φ), u∗(1)ηmin(φ))

+
∑q

j=1Kζ ◦ R̃(q)(u∗ηmin
φ)(u∗(e1)

ηmin (φ), . . . , u∗(ej+1)
ηmin (φ), . . . , u∗(eq)

ηmin (φ)),

(7.34)

in which each occurrence of u∗(j)ηmin is understood to map into BC1
jσ. An application of Lemma 7.3

with ζ > (p + 1)σ, shows that the above map is indeed continuous from X0 into L(p+1)(X0, BC
1
ζ ).

These arguments immediately show that also (HC4) is satisfied. Condition (HC3) can be verified by

writing J 1
ηζ ◦ Kζ ◦ R̃(1)

δ (u∗ηmin
φ) = Kη ◦ R̃(1)

δ (u∗ηmin
φ) and applying Lemma 7.3 to conclude that φ→

R̃
(1)
δ (u∗ηmin

φ) ∈ L(BC1
ζ , BCη) is continuous. Conditions (HC2) and (HC5) again follow from (7.1)

and Lemma 7.3 and (HC6) follows from the fact that the fixed point of (7.30) lies in L(p)(X0, BC
1
pσ)

since pσ > pηmin. We thus conclude from Lemma A.2 that J 1
η pηmin

◦ u∗(p)
ηmin is of class C1 with

D(J 1
η pηmin

◦ u∗(p)
ηmin)(φ) = J 1

ηζ ◦ u∗(p+1)(φ), in which u∗(p+1)(φ) is the unique solution of the equation

u(p+1) = Kζ ◦ R̃(1)
δ (u∗ηmin

(φ))u(p+1) +H
(p+1)
ζ/(p+1)(φ) (7.35)

in L(p+1)(X0, BC
1
ζ ), with

H
(p+1)
ζ/(p+1)(φ) = Kζ ◦ R̃(2)

δ (u∗ηmin
φ)(u∗(p)(φ), u∗(1)(φ)) +DH

(p)
ζ/p(φ). (7.36)

The arguments in the first part of this proof show that the fixed point u∗(p+1)(φ) is also contained in

L(p+1)(X0, BC
1
(p+1)ηmin

). We can hence write u∗(p+1)
ηmin = u∗(p+1)(φ) ∈ L(p+1)(X0, BC

1
(p+1)ηmin

), upon

which the proof is completed.

Corollary 7.9. Consider the setting of Theorem 7.1. Then for any ζ ∈ [ηmin, ηmax] and any ξ ∈ R,

the mapping φ→ (u∗ζφ)ξ from X0 into X is Ck-smooth.

Proof. For any η ∈ (kηmin, ηmax], we have (u∗ζφ)ξ = (u∗ηφ)ξ. The latter mapping is Ck-smooth as a

consequence of Theorem 7.1 and the fact that the evaluation at ξ is a bounded linear mapping.

As a conclusion of this section, we use the explicit expression (7.35) for the derivatives of u∗,

together with the fact that u∗η(0) = 0, to compute the Taylor expansion of u∗ηφ around φ = 0 up to
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second order. This can be done if k ≥ 2 and yields

u∗ηφ = Tφ+
1
2
KηD

2Rδ(0)((Tφ)ξ, (Tφ)ξ) + o(‖φ‖2), (7.37)

in which the operator Kη acts with respect to the variable ξ.

8 Dynamics on the Center Manifold

In this section we show that the dynamics on the center manifold can be described by an ordinary

differential equation. In addition, this reduction will be used to supply the proof of Theorem 2.2.

Theorem 8.1. Consider the setting of Theorem 7.1 and choose η ∈ (kηmin, ηmax]. Then for any

φ ∈ X0, the function Φ : R → X0 given by Φ(ξ) = Q0(u∗ηφ)ξ is Ck+1-smooth and satisfies an

ordinary differential equation

Φ̇(ξ) = AΦ(ξ) + f(Φ(ξ)). (8.1)

Here the function f : X0 → X0 is Ck-smooth and is explicitly given by

f(ψ) = Q0(L(u∗ηψ − Tψ)θ +Rδ((u∗ηψ)θ)), (8.2)

where the projection Q0 is taken with respect to the variable θ. Finally, we have f(0) = 0 and

Df(0) = 0.

Proof. Notice first that Φ is a continuous function, since ξ → (u∗ηφ)ξ is continuous. We calculate

Φ̇(ξ)(θ) = limh→0
1
h (Φ(ξ + h)(θ)− Φ(ξ)(θ))

= limh→0
1
h (Q0(u∗ηφ)ξ+h(θ)−Q0(u∗ηφ)ξ(θ))

= Q0(D(u∗ηφ)(ξ + ·))(θ),

(8.3)

where the continuity of the projection Q0 together with the fact that Kη maps into C1(R,Cn) was

used in the last step. Using the definition of Kη we compute

D(u∗ηφ)(ξ + θ) = L(u∗ηφ)ξ+θ +Rδ((u∗ηφ)ξ+θ). (8.4)

For convenience, define ψ = Φ(ξ). Lemma 6.5 implies that (u∗ηφ)ξ+θ = (u∗ηψ)θ. The ODE (8.1) now

follows upon noting that

Q0(L(Tψ)θ) = Q0(ψ̇(θ)) = Q0((Aψ)(θ)) = Aψ. (8.5)
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The fact that f is Ck-smooth follows from the fact that the Ck-smooth function u∗η : X0 →

BC1
η(R,Cn) maps into a region on which R̃δ is itself Ck-smooth by Corollary 7.5. It is easy to

see that f(0) = 0 and from (HR2) and the Taylor expansion (7.37), it follows that Df(0) = 0. The

fact that Φ is Ck+1-smooth follows from repeated differentiation of (8.1).

In order to lift solutions of (8.1) back to the original equation (2.3), we need to establish that

the nonlinearity in (2.9) agrees with the version in (8.2) in a small neighbourhood of zero. The next

lemma shows that this can indeed be realized.

Lemma 8.2. Let δ > 0 and ε > 0 be so small that for some 0 < η0 < γ,

LRδ
(w2η0 + wη0) < (8 ‖Kη0‖)−1,

εw2η0 ‖T‖η0
< 1

2δ,

(8.6)

with the Lipschitz constant LRδ
as introduced in Corollary 6.2 and the extension operator T as

defined in Proposition 5.2. Then for any 0 < η < γ and any φ ∈ X0 with ‖φ‖ < ε, we have for all

rmin ≤ θ ≤ rmax that ∥∥Q0(u∗ηφ)θ

∥∥ < δ. (8.7)

Proof. Similarly as in the proof of Lemma 7.2, we compute

Q0(u∗ηφ)θ = (Tφ)θ + (Kη0R̃δ(u∗ηφ))θ − (Kη0R̃δ((u∗ηφ)(θ + ·)))0 (8.8)

and hence using (5.22) we obtain

∥∥Q0(u∗ηφ)θ

∥∥ ≤ wη0wη0 ‖T‖η0
‖φ‖+ 4δLRδ

(wη0wη0 ‖Kη0‖+ wη0 ‖Kη0‖) < δ, (8.9)

which completes the proof.

Proof of Theorem 2.2. Choose δ > 0 such that (7.1), (7.6) and (8.6) are all satisfied and fix the

constant ε∗ > 0 such that ε∗max(‖Q0‖ , ‖I −Q0‖) < δ. Fix 0 < ε < δ such that (8.6) is satisfied,

pick any η ∈ (kηmin, ηmax] and write u∗ = u∗η.

(i) This follows from Theorem 7.1 together with u∗ = u∗ζ = J 1
ζηmin

u∗ηmin
for any ζ ∈ (kηmin, ηmax].

(ii) First note that (i) and the conditions (HR1)-(HR2) imply that f is Ck-smooth with f(0) = 0

and Df(0) = 0. Since ξ 7→ xξ maps into the subset of X on which R and Rδ agree, we

40



have Λx = R̃δ(x) and hence Px = KηΛx = KηR̃δ(x). Since Px = x − TQ0x0 we see that

G(x,Q0x0) = x and hence due to uniqueness of solutions we indeed have x = u∗Q0x0. Note

that for all ξ ∈ R we have ‖Φ(ξ)‖ < δ, which by Lemma 6.5 implies that ‖Q0(u∗Φ(ξ))θ‖ < δ

for any ξ ∈ R and θ ∈ [rmin, rmax]. Thus the function f defined in (8.2) agrees with (2.9) and

hence an application of Theorem 8.1 shows that Φ satisfies the ODE (2.8). An application of

Lemma 6.5 completes the proof.

(iii) This is clear from the fact that ξ → (u∗φ)ξ maps into the subset of X on which R and Rδ

agree.

(iv) See (v) with ξ− = −∞ and ξ+ = +∞.

(v) Define the function Ψ(ξ) = Q0(u∗Φ(ζ))ξ−ζ and note that it satisfies (8.1) on R, with Ψ(ζ) =

Φ(ζ). Note further that Lemmas 7.2 and 8.2 imply that the nonlinearities (2.9) and (8.2) agree

on the set {φ ∈ X0 | ‖φ‖ < ε}. Since both nonlinearities are locally Lipschitz continuous, this

implies that in fact Ψ(ξ) = Φ(ξ) for all ξ ∈ (ξmin, ξmax). Thus defining x(ξ) = (u∗Φ(ζ))(ξ− ζ),

we see that Q0xξ = Ψ(ξ) and hence ‖Q0xξ‖ < ε < δ for all ξ ∈ (ξmin, ξmax). Since (Λx)(ξ) =

Rδ(xξ) = R(xξ) for all such ξ, we see that x indeed satisfies (2.3) on the interval (ξmin, ξmax).

Finally, Lemma 6.5 shows that for any ξ in this interval we have xξ = (u∗Ψ(ξ))0 = (u∗Φ(ξ))0.

9 Parameter Dependence

We now wish to incorporate parameter dependent equations into our framework. In particular, we

will study equations of the form

ẋ(ξ) = L(µ)xξ +R(xξ, µ) (9.1)

for parameters µ ∈ Ω ⊂ Cd in some open subset Ω and linearities

L(µ)φ =
N∑

j=0

Aj(µ)φ(rj). (9.2)

We assume here that the conditions (HLµ), (HRµ1) and (HRµ2) all hold. Suppose that for some

µ0 ∈ Ω we have that det ∆L(µ0)(z) = 0 has roots on the imaginary axis. Introducing new coordinates
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ν = µ− µ0 and defining y = (x, ν), we obtain the system

ẏ(ξ) = Lyξ + R(yξ), (9.3)

in which L = (L(µ0), 0) and R((φ, ν)) = ((L(µ0 + ν) − L(µ0))φ + R(φ, µ0 + ν), 0). Notice that R

satisfies the assumptions (HR1) and (HR2), which enables the application of the theory developed

above. Notice that for any x ∈ N0, we have that y = (x, ν) satisfies ẏ(ξ) = Lyξ and hence we have

the identity X0 = X0 × Cd for the respective center spaces.

From now on we will simply write u∗ for the function u∗η defined in Theorem 6.4. We split off

the part of this operator which acts on the state space for the parameter ν and write u∗ = (u∗1, u
∗
2),

with u∗2(φ, ν) = ν. The first component of the differential equation (2.8) on the center manifold in

our setting becomes

Φ̇(ξ) = AΦ(ξ) + f(Φ(ξ), ν), (9.4)

for Φ : R → X0, where f : X0 × Cd → X0 is given by

f(ψ, ν) = Q0(L(u∗1(ψ, ν)− Tψ)θ + (L(µ0 + ν)− L(µ0))(u∗1(ψ, ν))θ +R((u∗1(ψ, ν))θ, µ0 + ν)), (9.5)

in which the projection Q0 is taken with respect to the variable θ. We finish by computing the Taylor

expansion of u∗1 to second order, which is possible if k ≥ 2. We have

u∗1(φ, ν) = Tφ+K
(
L′(µ0)ν(Tφ)ξ +

1
2
D2

1R(0, µ0)((Tφ)ξ, (Tφ)ξ)
)

+ o((|ν|+ |φ|)2), (9.6)

in which K acts with respect to the variable ξ.

10 Hopf Bifurcation

In this section we use the projection on the center manifold to apply the finite dimensional Hopf

bifurcation theorem to our infinite dimensional setting. In particular, we will consider a system of

the form (2.10) that depends on a parameter µ ∈ R. We will assume that for some µ0 ∈ R the

linear operator L = L(µ0) has simple eigenvalues at ±iω0 for some ω0 > 0 and we write X0 for

the center subspace at this parameter value µ0. We will look for small continuous periodic solutions

Φ : R → X0 to the equation

Φ̇(ξ) = AΦ(ξ) + f(Φ(ξ), ν), (10.1)
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for small values of ν, with f as in (9.5). Using Theorem 2.2 these solutions can be lifted to periodic

solutions of the original equation (2.10).

Before we can apply Theorem C.1, we need to study the generalized eigenspace of A for simple

eigenvalues.

Lemma 10.1. Consider the system (2.3) and suppose that the characteristic equation det∆(z) = 0

has a simple root at z = iω0. Then the matrix valued function

H(z) = (z − iω0)∆(z)−1 (10.2)

is analytic in a neighbourhood of z = iω0. In addition, there exist p, q ∈ Cn such that ∆(iω0)p =

∆(iω0)T q = 0, while qT ∆′(iω0)p 6= 0. For any such pair the function φ = eiω0·p is an eigenvector

of the operator A defined in (4.1) corresponding to the algebraically simple eigenvalue iω0 and in

addition we have the identities

H(iω0) = pqT (qT ∆′(iω0)p)−1,

Qφψ = eiω0·H(iω0)(ψ(0) +
∑N

j=0Aje
iω0rj

∫ 0

rj
e−iω0σψ(σ)dσ).

(10.3)

Here Qφ : X0 → X0 denotes the spectral projection onto the generalized eigenspace of A for the

eigenvalue iω0.

Proof. Since ∆(z) is a characteristic matrix for A and det ∆(z) = 0 has a simple root at z = iω0,

it follows from the theory of characteristic matrices (see e.g. [17, Theorem IV.4.18]) that ∆(z) has

a pole of order one at z = iω0 and A has a simple eigenvalue at z = iω0. This proves that H(z)

is analytic in a neigbourhood of z = iω0. It also follows that the nullspace N (∆(iω0)) is the one

dimensional span of some p ∈ Cn. Similarly, we have N (∆(iω0)T ) = span{q} for some q ∈ Cn. It

is easy to check that φ = eiω0·p is indeed a corresponding eigenvector for A. Using residue calculus

and the formula (4.2) for the resolvent of A to simplify the Dunford integral (4.9), the expression

(10.3) for the spectral projection follows easily.

It remains to derive the explicit expression (10.3) for H(iω0). To this end, observe that

∆(z)H(z) = H(z)∆(z) = (z − iω0)I, (10.4)

which implies RH(iω0) ⊂ N∆(iω0) andRH(iω0)T ⊂ N∆(iω0)T . From this it follows that H(iω0) =
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CpqT for some constant C. Expanding (10.4) in a Taylor series we obtain

I = H ′(iω0)∆(iω0) +H(iω0)∆′(iω0) = ∆′(iω0)H(iω0) + ∆(iω0)H ′(iω0),

0 = H ′′(iω0)∆(iω0) + 2H ′(iω0)∆′(iω0) +H(iω0)∆′′(iω0).
(10.5)

Noting that p = H(iω0)∆′(iω0)p = CpqT ∆′(iω0)p completes the proof.

Since we are interested in real valued functions, we need to treat the two complex eigenvalues at

±iω0 together. To this end, we introduce the real valued functions ψ± ∈ X0 via

ψ+(θ) = 1
2 (φ(θ) + φ(θ)),

ψ−(θ) = − i
2 (φ(θ)− φ(θ))

(10.6)

and we note that the part of A on this basis takes the form
(

0
ω0

−ω0
0

)
. On the other hand, we consider

the two dimensional real ODE (
ẏ+
ẏ−

)
=

(
a11

a21

a12

a22

)(
y+
y−

)
(10.7)

and observe that under the complexification z = y+ + iy−, this system is transformed into

ż =
1
2
(a11 + a22 + i(a21 − a12))z +

1
2
(a11 + a22 + i(a12 − a21))z. (10.8)

The only nontrivial hypothesis we need to check before we can apply Theorem C.1 is the condition

(HH3), i.e. ReDσ(µ0) 6= 0 for the branch σ(µ) of eigenvalues of D1g(0, µ) through iω0 at µ = µ0.

The following lemma indicates how this quantity can be explicitly calculated.

Lemma 10.2. Consider real m ×m matrices M0 and M1(ν) for some integer m ≥ 2, where each

entry M (ij)
1 (ν) of M1(ν) is a C1-smooth function of the real parameter ν with M (ij)

1 (0) = 0 for all

1 ≤ i ≤ m and 1 ≤ j ≤ m. Suppose that for some ω0 ∈ R and (m − 2) × (m − 2) matrix B we

have M0 = diag(A(ω0), B) with A(ω0) =
(

0
ω0

−ω0
0

)
. Suppose further that the matrices B ± iω0I are

both invertible, i.e., M0 has simple eigenvalues ±iω0. Write σ(ν) for the branch of eigenvalues of

M = M0 +M1(ν) through iω0 at ν = 0. Then we have ReDσ(0) = 1
2 (Ṁ (11)

1 (0)+Ṁ
(22)
1 (0)), in which

the dot denotes differentiation with respect to ν.

Proof. We define the function ∆(ν, λ) = det(M0 +M1(ν) − (iω0 + λ)I) and note that we have the

identity ∆(ν, σ(ν)− iω0) = 0 for small ν. Using implicit differentiation it follows that

Dσ(0) = −D1∆(0, 0)/D2∆(0, 0) (10.9)
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and hence it suffices to compute

D1∆(0, 0) = (−iω0Ṁ
(11)
1 (0)− iω0Ṁ

(22)
1 (0)− ω0Ṁ

(12)
1 (0) + ω0Ṁ

(21)
1 (0)) det(B − iω0I),

D2∆(0, 0) = 2iω0 det(B − iω0I),
(10.10)

from which the claim immediately follows.

Thus in order to calculate Dσ(µ0), it suffices to expand (10.1) up to terms involving O(νφ), i.e.,

Φ̇ = AΦ +Q0h(Φ, ν) +O(|Φ|2 + |ν|2 + (|Φ|+ |ν|)3), (10.11)

where h : X0 × R → X is the bilinear operator

h(ψ, ν)(θ) = (LevθK + pevθ)
(
νL′(µ0)ev(·)Tψ

)
, (10.12)

in which we have introduced the evaluation function evθ′f(·) = fθ′ and the point evaluation

pevθ′f(·) = f(θ′). In view of Lemma 10.2, the specific form of the transformation of the real ODE

(10.7) into (10.8) and the fact that φ = ψ+ + iψ−, it is clear that

ReDσ(0) = Re Q̃φQ0h(φ/ν, ν), with Qφ = φQ̃φ. (10.13)

In order to evaluate (10.13), we need to calculate Keiω0·v for arbitrary v ∈ Cn. As a preparation,

we compute

Qφe
iω0θv = eiω0·H(iω0)∆′(iω0)v,

Qφθe
iω0θv = 1

2e
iω0·H(iω0)∆′′(iω0)v,

(10.14)

in which the projections Qφ were taken with respect to the variable θ.

Lemma 10.3. Consider (2.3) and suppose that the characteristic equation det ∆(z) = 0 has a simple

root at z = iω0. Let H(z), p and q be as in Lemma 10.1. Then for arbitrary v ∈ Cn we have

(Keiω0·v)(ξ) = eiω0ξ(H(iω0)ξ +H ′(iω0))v + (Tψ)(ξ), (10.15)

for some ψ ∈ X0 with Qφψ = 0. In addition, we have

Qφ((LevθK + pevθ)e
iω0·v) = φqT v(qT ∆′(iω0)p)−1. (10.16)
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Proof. For convenience, define Ψ(ξ) = eiω0ξ(H(iω0)ξ +H ′(iω0))v. We first check that the function

above indeed satisfies the differential equation. We compute

Ψ̇(ξ) = eiω0ξ((iω0ξ + 1)H(iω0) + iω0H
′(iω0))v. (10.17)

Similarly, we compute

LΨξ = eiω0ξ
(
(iω0 −∆(iω0))H(iω0)ξ + (I −∆′(iω0))H(iω0) + (iω0 −∆(iω0))H ′(iω0)

)
v

= eiω0ξ
(
(iω0ξ + 1)H(iω0) + iω0H

′(iω0)− I
)
v,

(10.18)

from which we see that indeed (ΛΨ)(ξ) = Ψ̇(ξ) − LΨξ = eiω0ξv. In addition, using (10.5) we can

calculate

e−iω0·QφΨ0 = ( 1
2H(iω0)∆′′(iω0)H(iω0) +H(iω0)∆′(iω0)H ′(iω0))v

= − 1
2H(iω0)∆(iω0)H ′′(iω0)v = 0,

(10.19)

as required. Finally, we compute

Qφ(LΨθ + eiω0θv) = Qφ(eiω0θ((iω0θ + 1)H(iω0) + iω0H
′(iω0))v)

= eiω0·( 1
2 iω0H(iω0)∆′′(iω0)H(iω0) +H(iω0)∆′(iω0)(H(iω0) + iω0H

′(iω0)))v

= eiω0·H(iω0)∆′(iω0)H(iω0)v

= φqT v(qT ∆′(iω0)p)−1.

(10.20)

Using the above lemma we can now calculate

ReDσ(0) = Re Q̃φQ0((LevθK + pevθ)L′(µ0)φ)

= −Re Q̃φ((LevθK + pevθ)D2∆(iω0, µ0)eiω0·p)

= −Re qTD2∆(iω0, µ0)p(qT ∆′(iω0)p)−1.

(10.21)

Proof of Theorem 2.3. We apply Theorem C.1 to the ODE (10.1). Conditions (HH1)-(HH2) are

immediate from the assumptions on (2.10) and (HH3) follows from (Hζ3) and (10.21). Restricting

the allowed values of τ in Theorem C.1 to a small interval I around zero such that |µ∗(τ)− µ0| < ε
2

and |x∗(τ)(ξ)| < ε
2 for all ξ ∈ R and τ ∈ I, with ε as in the statement of Theorem 2.2, it follows

from part (iv) of this theorem that each x∗(τ) can be lifted to a periodic solution of (2.10). Similarly,
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every small periodic solution of (2.10) corresponds to a small periodic solution of (10.1), which is

captured by Theorem C.1.

We now set out to compute the direction of bifurcation using Theorem C.2. Notice first that

(Tφ)(ξ) = peiω0ξ and similarly (Tφ)(ξ) = pe−iω0ξ. In particular, this implies that (Tφ)ξ = eiω0ξφ ∈

X0 and similarly (Tφ)ξ = e−iω0ξφ ∈ X0. In order to evaluate the constant c appearing in Theorem

C.2, we need to calculate Keiζω0θv for arbitrary v ∈ Cn and ζ ∈ R such that det ∆(iζω0) 6= 0. We

obtain the following result.

Lemma 10.4. Consider (2.3) and suppose that the characteristic equation det∆(z) = 0 has a simple

root at z = iω0. Let H(z), p and q be as in Lemma 10.1. Then for arbitrary v ∈ Cn and ζ ∈ R such

that det∆(iζω0) 6= 0, we have

(Keiζω0·v)(ξ) = eiζω0ξ∆(iζω0)−1v −Q0(eiζω0·∆(iζω0)−1v). (10.22)

In addition, we have the identity

Q0((LevθK + pevθ)e
iζω0·v) = (iζω0 −A)Q0(eiζω0·∆(iζω0)−1v). (10.23)

Proof. For convenience, define Ψ(ξ) = eiζω0ξ∆(iζω0)−1v. First note that

LΨξ = eiζω0ξ(iζω0 −∆(iζω0))∆(iζω0)−1v = iζω0Ψ(ξ)− eiζω0ξv, (10.24)

from which it follows that

(ΛΨ)(ξ) = iζω0Ψ(ξ)− LΨξ = eiζω0ξv, (10.25)

which implies the first claim. To substantiate the second claim, note that

Q0((LevθK + pevθ)eiζω0·v) = Q0(LΨθ + eiζω0θv − L(TQ0(eiζω0·∆(iζω0)−1v))θ)

= Q0(iζω0e
iζω0θ∆(iζω0)−1v −AQ0(eiζω0·∆(iζω0)−1v))

= (iζω0)Q0(eiζω0θ∆(iζω0)−1v)

−AQ0(eiζω0·∆(iζω0)−1v)

= (iζω0 −A)Q0(eiζω0·∆(iζω0)−1v).

(10.26)
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To explicitly calculate c, we write the nonlinearity f : X0 × R → X0 in (10.1) in the form

f(ψ, ν) = Q0((LevθK + pevθ)R̃1(u∗1(ψ, ν), ν)), (10.27)

in which R̃1 is the substitution operator associated with the first component of the compound

operator R defined in (9.3). We thus need to compute

D3
1(R̃1 ◦ u∗)(0, 0)(ψ1, ψ2, ψ3)(ξ)

= D3
1R(0, µ0)((Tψ1)ξ, (Tψ2)ξ, (Tψ3)ξ)

+D2
1R(0, µ0)((Tψ1)ξ, evξKD2

1R(0, µ0)((Tψ2)(·), (Tψ3)(·)))

+D2
1R(0, µ0)((Tψ2)ξ, evξKD2

1R(0, µ0)((Tψ3)(·), (Tψ1)(·)))

+D2
1R(0, µ0)((Tψ3)ξ, evξKD2

1R(0, µ0)((Tψ1)(·), (Tψ2)(·)))

(10.28)

and hence substituting ψ1 = ψ2 = φ and ψ3 = φ, we obtain

D3
1(R̃1 ◦ u∗)(0, 0)(φ, φ, φ)(ξ)

= eiω0ξD3
1R(0, µ0)(φ, φ, φ)

+ 2eiω0ξD2
1R(0, µ0)

(
φ,1∆(0)−1D2

1R(0, µ0)(φ, φ)
)

− 2D2
1R(0, µ0)

(
(Tφ)ξ, evξTQ0(1∆(0)−1D2

1R(0, µ0)(φ, φ))
)

+ eiω0ξD2
1R(0, µ0)

(
φ,∆(2iω0)−1D2

1R(0, µ0)(φ, φ)
)

−D2
1R(0, µ0)

(
(Tφ)ξ, evξTQ0(e2iω0·∆(2iω0)−1D2

1R(0, µ0)(φ, φ))
)
.

(10.29)

In addition, using Lemma 10.4 we calculate,

D2
1f(0, µ0)(φ, φ) = Q0((LevθK + pevθ)e2iω0·D2

1R(0, µ)(φ, φ))

= (2iω0 −A)Q0(e2iω0·∆(2iω0)−1D2
1R(0, µ)(φ, φ)).

(10.30)

A similar computation shows that

D2
1f(0, µ0)(φ, φ) = −AQ0(1∆(0)−1D2

1R(0, µ0)(φ, φ)). (10.31)

Using these identities we can write

D2
1(R̃1 ◦ u∗)(0, µ0)(φ,−A−1D2

1f(0, µ0)(φ, φ))(ξ)

= D2
1(R̃1 ◦ u∗)(0, µ0)

(
φ,Q0(1∆(0)−1D2

1R(0, µ0)(φ, φ))
)

= D2
1R(0, µ0)

(
(Tφ)ξ, evξTQ0(1∆(0)−1D2

1R(0, µ0)(φ, φ))
) (10.32)
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and similarly

D2
1(R̃1 ◦ u∗)(0, µ0)(φ, (2iω0 −A)−1D2

1f(0, µ0)(φ, φ))(ξ)

= D2
1R(0, µ0)

(
(Tφ)ξ, evξTQ0(e2iω0·∆(2iω0)−1D2

1R(0, µ0)(φ, φ))
)
.

(10.33)

Putting all our calculations together, we arrive at

cφ = QφQ0((LevθK + pevθ)Ψ(·)), (10.34)

in which

Ψ(ξ) = 1
2e

iω0ξD3
1R(0, µ0)(φ, φ, φ)

+ eiω0ξD2
1R(0, µ0)(φ,1∆(0)−1D2

1R(0, µ0)(φ, φ))

+ 1
2e

iω0ξD2
1R(0, µ0)(φ, e2iω0·∆(2iω0)−1D2

1R(0, µ0)(φ, φ)).

(10.35)

Finally, an application of Lemma 10.3 yields

(qT ∆′(iω0)p)c = 1
2q

TD3
1R(0, µ0)(φ, φ, φ)

+ qTD2
1R(0, µ0)(φ,1∆(0)−1D2

1R(0, µ0)(φ, φ))

+ 1
2q

TD2
1N(0, µ0)(φ, e2iω0·∆(2iω0)−1D2

1R(0, µ0)(φ, φ)).

(10.36)

Proof of Theorem 2.4. Using Theorem C.2, the statement follows immediately from the formulas

(10.21) and (10.36).

11 Example: Double Eigenvalue At Zero

We here give a concrete example of the power of the finite dimensional reduction by considering a

functional differential equation of mixed type that depends on four parameters. For certain values of

the parameters the equation reduces to a delay equation, which has already been studied in [17]. This

example hence allows us to check that our framework yields reproducable results when restricting

to delay equations. The equation we consider has the origin as an equilibrium and in addition has a

double eigenvalue at zero with geometric multiplicity one, for certain critical parameter values. This

means that the origin is a Takens-Bogdanov point and it is known that for such equilibria only the

second order terms are needed to determine the local phase portrait.

In particular, we consider the equation

ẋ(ξ) = αx(ξ) + β−g(x(ξ − 1), µ) + β+g(x(ξ − 1), µ), (11.1)
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for some g ∈ C3(R×R,R). We enforce the conditions β+ + β− 6= 0 and β+ − β− 6= 0. Suppose that

g(0, µ) = 0 for any µ ∈ R and in addition g′(0, µ) = µ. Linearization around the zero equilibrium

yields

ẋ(ξ) = αx(ξ) + β−µx(ξ − 1) + β+µx(ξ + 1) (11.2)

and with a short calculation one can verify that this equation has a double eigenvalue zero at

(α, µ) = (α0, µ0) := (β−+β+
β−−β+

, 1
β+−β−

), with corresponding eigenvectors φ0 = 1 and φ1 = {θ 7→ θ}.

The projection operator Q0 : X → X0 onto the span of φ0 and φ1 can be calculated by using residue

calculus on the resolvent equation (4.2). We find

(Q0φ)(θ) = 2θ(β−−β+)2+ 2
3 (β−−β+)2

(β++β−)2 ψ(0)

+ β−
(β++β−)2

∫ 0

−1

(
2(σ − θ)(β+ + β−) + 8

3β+ + 4
3β−

)
ψ(σ)dσ

+ β+
(β++β−)2

∫ 1

0

(
2(θ − σ)(β+ + β−) + 8

3β− + 4
3β+

)
ψ(σ)dσ.

(11.3)

We introduce parameters λ = α−α0 and ν = µ− µ0 and investigate (11.1) for small values of λ

and ν, keeping β+ and β− fixed. Writing

R(φ, λ, ν) = β−g(φ(−1), µ0 + ν)− β−(µ0 + ν)φ(−1)

+ β+g(φ(+1), µ0 + ν)− β+(µ0 + ν)φ(+1)

= β−
2 g
′′(0, µ0 + ν)(φ(−1))2 + β+

2 g
′′(0, µ0 + ν)(φ(+1))2 +O(‖φ‖3),

(11.4)

equation (11.1) transforms into the system

ẋ(ξ) = β++β−
β−−β+

x(ξ) + β−
β+−β−

x(ξ − 1) + β+
β+−β−

x(ξ + 1)

+ λx(ξ) + νβ−x(ξ − 1) + νβ+x(ξ + 1) +R(xξ, λ, ν),
(11.5)

which satisfies the conditions (HRµ1)-(HRµ2) and (HLµ). Using the explicit form of R and the

linear part of (11.5), we see that the first component of the second order Taylor expansion (9.6) in

our case becomes

u∗1(φ, λ, ν) = Tφ+K
(
λ(Tφ)(·) + β−ν(Tφ)(· − 1) + β+ν(Tφ)(·+ 1)

+ β−
2 g
′′(0, µ0)((Tφ)(· − 1))2

)
+ β+

2 g
′′(0, µ0)((Tφ)(·+ 1))2)

+ O(|φ|3 + (|ν|+ |λ|) |φ| (|ν|+ |λ|+ |φ|)).

(11.6)

We now set out to calculate the differential equation that is satisfied on the center manifold up to

and including second order terms. Using Theorem 8.1 we calculate

Φ̇ = AΦ + f(Φ) +O(|Φ|3 + (|λ|+ |ν|) |Φ| (|λ|+ |ν|+ |Φ|)), (11.7)
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in which Aφ1 = φ0, Aφ0 = 0 and f : X0 → X0 is the function

f(ψ) = Q0(
β−−β+
β−+β+

pevθK + β−
β+−β−

pevθ−1K + β+
β+−β−

pevθ+1K + pevθ)(
λ(Tψ)(·) + β−ν(Tψ)(· − 1) + β+ν(Tψ)(·+ 1)

+ β−
2 g
′′(0, µ0)((Tψ)(· − 1))2 + β+

2 g
′′(0, µ0)((Tψ)(·+ 1))2

)
,

(11.8)

in which the projectionQ0 is taken with respect to the variable θ. We introduce coordinates Φ(ξ)(θ) =

u(ξ) + v(ξ)θ on the center space X0. Fixing a value of ξ ∈ R and writing ψ = Φ(ξ), u = u(ξ) and

v = v(ξ), we compute

λ(Tψ)(ξ′) + β−ν(Tψ)(ξ′ − 1) + β+ν(Tψ)(ξ′ + 1)

+ β−
2 g
′′(0, µ0)((Tψ)(ξ′ − 1))2 + β+

2 g
′′(0, µ0)((Tψ)(ξ′ + 1))2 = C0 + C1ξ

′ + C2(ξ′)2,
(11.9)

in which

C0 = λu+ β−ν(u− v) + β+ν(u+ v) + β−
2 g
′′(0, µ0)(u− v)2 + β+

2 g
′′(0, µ0)(u+ v)2,

C1 = (λ+ (β− + β+)ν)v + β−g
′′(0, µ0)v(u− v) + β+g

′′(0, µ0)v(u+ v),

C2 = β−+β+
2 g′′(0, µ0)v2.

(11.10)

In order to proceed, we need to calculate the action of the pseudo-inverse K on the powers of ξ′.

This can be done by using a polynomial ansatz and projecting out the X0 component at zero. We

obtain

(K1)(ξ) = β−−β+
β++β−

ξ2 + 2(β+−β−)2

3(β++β−)2 ξ + (β−−β+)(−14β−β++β2
−+β2

+)

18(β++β−)3 ,

(Kξ′)(ξ) = β−−β+
3(β++β−)ξ

3 + (β−−β+)2

3(β++β−)2 ξ
2 + (β−−β+)(−14β−β++β2

−+β2
+)

18(β++β−)3 ξ

+ (β−−β+)(81β−β2
+−81β2

−β+−β3
−+β3

+)

270(β++β−)4 ,

(K(ξ′)2)(ξ) = β−−β+
6(β++β−)ξ

4 + 2(β−−β+)2

9(β++β−)2 ξ
3 + ( β+−β−

6(β++β−) + 2(β−−β+)3

9(β++β−)3 )ξ2

+ (β−−β+)(81β−β2
+−81β2

−β+−β3
−+β3

+)

135(β++β−)4 ξ

+ (β+−β−)(212β−β3
+−858β2

−β2
++212β+β3

−+β4
−+β4

+)

1620(β++β−)5 .

(11.11)

Inserting (11.9) and (11.11) into (11.7), calculating the relevant projections and performing some

extensive formula manipulation now yields the system

u̇ = v + 2
3

(β−−β+)2

(β−+β+)2 h(u, v, λ, ν)

v̇ = 2β−−β+
β−+β+

h(u, v, λ, ν),
(11.12)
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with

h(u, v, λ, ν) = β−
2 g
′′(0, µ0)(u− v)2 + β+

2 g
′′(0, µ0)(u+ v)2 + λu+ β−ν(u− v) + β+ν(u+ v)

+ O((|u|+ |v|)3 + (|λ|+ |ν|)(|u|+ |v|)(|λ|+ |ν|+ |u|+ |v|)).
(11.13)

If we choose β− = 1 and β+ = 0, equation (11.1) reduces to a delay equation that has been studied

in [17]. The differential equation on the center manifold that was found there using specific delay

equation techniques, matches the equation (11.12) derived here.

12 Capital Market Dynamics

We now return to the model for capital market dynamics that was discussed in the introduction. In

this section we show that the model indeed leads to a functional differential equation of mixed type

that is linear only for special choices of the model parameters. Furthermore, we illustrate how the

results developed in this paper can be used in the analysis of the large time behaviour of the capital

market.

We recall the definition of the Cobb-Douglas production function for the economy under consid-

eration,

Q(k(t), e(t), l(t)) = Ak(t)α(e(t)l(t))β , (12.1)

for some A > 0 and exponents α > 0 and β > 0. We fix e(t) = k(t) and set l(t) = 1, since the work

force has fixed size. These choices lead to the following interest rates r(t) and wages w(t),

r(t) = αAk(t)α+β−1,

w(t) = βAk(t)α+β .

(12.2)

In [16] the following expression was derived for the optimal amount of assets at time t for an

individual born at time s ≥ t− 1,

a∗(s, t) = (s+ 1− t)
∫ s+1

s

w(σ)e−
R σ

t
r(τ)dτdσ −

∫ s+1

t

w(σ)e−
R σ

t
r(τ)dτdσ. (12.3)

Substituting these equations into the capital equilibrium condition k(t) =
∫ t

t−1
a∗(s, t)ds, we obtain

the following functional equation for k(t),

k(t) = βA
∫ t

t−1
(s+ 1− t)

∫ s+1

s
k(σ)α+βe−αA

R σ
t

k(τ)α+β−1dτdσds

− βA
∫ t

t−1

∫ s+1

t
k(σ)α+βe−αA

R σ
t

k(τ)α+β−1dτdσds.

(12.4)
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This integral equation can be transformed into a mixed type functional differential equation by

threefold differentiation. An involved computation leads to

k′′′(t) = [(α+ β)2A+ 2αA]k(t)α+β−1k′′(t) + (α+ β − 1)A((α+ β)2 + α)k(t)α+β−2k′(t)2

− αA2(3(α+ β)2 − β)k(t)2(α+β−1)k′(t) + (αA)2(α+ β)Ak(t)3(α+β)−2 + 2βAk(t)α+β

− βAk(t+ 1)α+βe−αA
R t+1

t
k(τ)α+β−1dτ − βAk(t− 1)α+βe−αA

R t−1
t

k(τ)α+β−1dτ .

(12.5)

Upon substitution of α+ β = 1, (12.5) reduces to the linear functional differential equation,

k′′′(t) = A(1 + 2α)k′′(t)− αA2(2 + α)k′(t)− (1− α)Ak(t− 1)eαA

+ [2(1− α) + (αA)2]Ak(t)− (1− α)Ak(t+ 1)e−αA.

(12.6)

This equation matches the expression derived in [16] by substituting α + β = 1 directly in (12.2).

Since (12.6) is linear, the global behaviour of the capital market can be analyzed by studying the

zeroes of the characteristic function

∆(z, α,A) = (z − αA)3 − (1− α)A[(z − αA)2 + 2− e−(z−αA) − ez−αA]. (12.7)

This was performed in [16], where the following result was found.

Lemma 12.1. Fix 0 < α < 1 and consider the entire function

∆̃(z,A) = (z − αA)−3∆(z, α,A). (12.8)

For every A > 0, the equation ∆̃(z,A) = 0 has precisely one real root g(A), an infinite number of

roots z with Re z < g(A) and an infinite number of roots z with Re z > g(A). In addition, there

exists a constant A > 0, such that for all A > A, the root g(A) satisfies 0 < g(A) < αA and there

are no other roots z with Re z = g(A).

We remark here that insertion of k(t) = CeαAt into (12.4) yields k(t) = 0, which is why this

root needs to be excluded. Using the above result, one concludes the existence of a balanced growth

path for the economy, namely k(t) ∼ egt. Demanding that k(t) should remain strictly positive, one

sees that the capital dynamics may exhibit oscillations at the start of the economy, but will finally

converge to the balanced growth path [16].

We now shift our attention to the case that α+β 6= 1 and look for non-zero equilibrium solutions

to (12.4). For convenience, we introduce the new variable y = e(α+β−1) ln k. Insertion into (12.4)
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yields the equilibrium condition f(y) = 0, in which the function f is given by

f(y) = (αA)2(α+ β)y2 + 2β(1− coshαAy). (12.9)

Lemma 12.2. For any A > 0 and parameters α > 0 and β > 0, the equation f(y) = 0 has a unique

strictly positive solution y = y(A,α, β) > 0.

Proof. Notice that f(0) = f ′(0) = 0. In addition, we calculate

f ′′(y) = 2(αA)2(α+ β(1− coshαAy)),

f ′′′(y) = −2β(αA)3 sinhαAy,
(12.10)

which implies that f ′′(0) = 2α(αA)2 > 0 and f ′′′(y) < 0 for all y > 0. The claim now immediately

follows upon observing that limy→∞ f(y) = −∞.

Please note that the equilibrium y found above does not translate into a valid equilibrium k for

the capital when α+ β = 1, due to the nature of the corresponding variable transformation.

Linearizing (12.5) around an equilibrium y and using the condition f(y) = 0 yields the following

characteristic function,

∆(z) = (z − αAy)3 +Ay(α− (α+ β)2)(z − αAy)2

− α(α+ β)A2y2(1− (α+ β))(z − αAy)− (α+ β)Ay(α2(α+ β − 1)A2y2 + 2β)

+ z−1[2βAy((α+ β)(z − αAy) + αAy) cosh(z − αAy)

+ αA2y2(α+ β − 1)(α2A2(α+ β)y2 + 2β)].
(12.11)

We remark here that the apparent singularity at z = 0 in the above expression can easily be seen

to be removable by invoking the equilibrium condition f(y) = 0. A short calculation shows that

∆(αAy) = 0 and using standard arguments one can prove that the characteristic equation ∆(z) = 0

has infinitely many roots to the right and left of z = αAy in the complex plane. For any root z

that has negative real part Re z = −λ < 0, one can use the techniques in this paper to construct

solutions k(t) to (12.5) that exists for all t > 0 and satisfy k(t) = k +O(e(−λ+ε)t) as t→∞, for all

sufficiently small ε > 0. In addition, if a complex conjugate pair of roots crosses the imaginary axis

at some parameter pair (α, β), the Hopf Bifurcation theorem could be used to establish the existence

of capital paths that oscillate periodically around the equilibrium value for (α, β) near (α, β).
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We conclude by remarking that these observations show that the qualitative behaviour of the

capital market critically depends on the choice of the exponents α and β. Thus even with this

relatively simple economic model, very diverse dynamical behaviour can be obtained by varying the

parameters. It is hence important to have accurate models for the production function Q.

A Embedded Contractions

In this appendix we develop a version of the embedded contraction theorem which we used to prove

that the center manifold is Ck-smooth. The presentation given here contains slight adapations of

results given in [42].

Let Y0, Y , Y1 and Λ be Banach spaces with norms denoted respectively by

‖·‖0 , ‖·‖ , ‖·‖1 and |·| , (A.1)

and suppose that we have continuous embeddings J0 : Y0 ↪→ Y and J : Y ↪→ Y1. Let Ω0 ⊂ Y0 be a

convex open subset of Y0. We consider the fixed-point equation

y = F (y, λ) (A.2)

for some F : Y × Λ → Y . Associated to F we define a function F0 : Y0 × Λ → Y via

F0(y0, λ) = F (J0y0, λ) (A.3)

and also a function G : Y0 × Λ → Y1 by G = J ◦ F0. The situation is illustrated by the following

commutative diagram.

Y0 × Λ G //

F0

##GG
GG

GG
GG

G

J0×I

��

Y1

Y × Λ F // Y

J

OO (A.4)

We shall need the following assumptions on F and G.

(HC1) The function G is of class C1. Fix any ω0 ∈ Ω0 and λ ∈ Λ and consider the partial derivative

D1G(ω0, λ) ∈ L(Y0, Y1). Then there exist F (1)(ω0, λ) ∈ L(Y ) and F
(1)
1 (ω0, λ) ∈ L(Y1) such
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that the following diagram is commutative,

Y0

J0

wwnnnnnnnnnnnnnnn

D1G

����
��
��
��
��
��
��
�

Y

F (1)

��

J
// Y1

F
(1)
1

��
Y

J // Y1

(A.5)

i.e., for any v0 ∈ Y0 we have

D1G(ω0, λ)v0 = JF (1)(ω0, λ)J0v0,

JF (1)(ω0, λ)y = F
(1)
1 (ω0, λ)Jy.

(A.6)

(HC2) There exists some κ1 ∈ [0, 1) such that for all ω0 ∈ Ω0 and λ ∈ Λ we have

∥∥F (1)(ω0, λ)
∥∥
L(Y )

≤ κ1 and
∥∥∥F (1)

1 (ω0, λ)
∥∥∥
L(Y1)

≤ κ1. (A.7)

(HC3) The mapping (ω0, λ) → J ◦ F (1)(ω0, λ) is continuous as a map from Ω0 × Λ into L(Y, Y1).

(HC4) The function F0 has a continuous partial derivative

D2F0 : Y0 × Λ → L(Λ, Y ). (A.8)

(HC5) There exists some κ2 ∈ [0, 1) such that for all y, y ∈ Y and all λ ∈ Λ we have

‖F (y, λ)− F (y, λ)‖ ≤ κ2 ‖y − y‖ . (A.9)

It follows from (HC4) that (A.2) has for each λ ∈ Λ a unique solution Ψ = Ψ(λ). We assume that

(HC6) For some continuous Φ : Λ → Ω0 we have Ψ = J0 ◦ Φ.

We define κ = max(κ1, κ2).

Lemma A.1. Assume that assumptions (HC1) through (HC6) hold, except possibly (HC3). Then

Ψ is locally Lipschitz continuous.

Proof. We calculate

‖Ψ(λ)−Ψ(µ)‖ = ‖F (Ψ(λ), λ)− F (Ψ(µ), µ)‖

≤ ‖F (Ψ(λ), λ)− F (Ψ(µ), λ)‖+ ‖F0(Φ(µ), λ)− F0(Φ(µ), µ)‖

≤ κ ‖Ψ(λ)−Ψ(µ)‖+ |λ− µ| sups∈[0,1] ‖D2F0(Φ(µ), sλ+ (1− s)µ)‖ .

(A.10)
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Now fix some λ ∈ Λ and let C(λ) > ‖D2F0(Φ(λ), λ)‖. Since both D2F0 and Φ are continuous, there

exists some δ > 0 such that for all µ with |µ− λ| < δ we have

sup
s∈[0,1]

‖D2F0(Φ(µ), sλ+ (1− s)µ)‖ ≤ C(λ). (A.11)

Using (A.10) we immediately conclude that for such µ we have

‖Ψ(λ)−Ψ(µ)‖ ≤ C(λ)(1− κ)−1 |λ− µ| , (A.12)

which concludes the proof.

Assuming that (HC1) through (HC6) hold, we can consider the following equation for A ∈

L(Λ, Y ),

A = F (1)(Φ(λ), λ)A+D2F0(Φ(λ), λ). (A.13)

Since
∥∥F (1)

∥∥
L(Y )

≤ κ < 1 by (HC2), we see that I − F (1)(Φ(λ), λ) is invertible in L(Y ) and hence

for each λ ∈ Λ (A.13) has a unique solution A = A(λ) ∈ L(Λ, Y ).

Lemma A.2. Assume that (HC1) through (HC6) hold. Then the mapping J ◦Ψ is of class C1 and

D(J ◦Ψ)(λ) = J ◦ A(λ) for all λ ∈ Λ.

Proof. Fix λ ∈ Λ. For any µ ∈ Λ write S(µ) = JΨ(µ)− JΨ(λ)− JA(λ)(µ− λ) and calculate

S(µ) = JF (Ψ(µ), µ)− JF (Ψ(λ), λ)− JF (1)(Φ(λ), λ)A(λ)(µ− λ)− JD2F0(Φ(λ), λ)(µ− λ)

= G(Φ(µ), µ)−G(Φ(λ), λ)− JF (1)(Φ(λ), λ)A(λ)(µ− λ)−D2G(Φ(λ), λ)(µ− λ)

= G(Φ(µ), µ)−G(Φ(λ), µ)− JF (1)(Φ(λ), λ)A(λ)(µ− λ)

+G(Φ(λ), µ)−G(Φ(λ), λ)−D2G(Φ(λ), λ)(µ− λ)

= JF (1)(Φ(λ), λ)[Ψ(µ)−Ψ(λ)−A(λ)(µ− λ)] +R(λ, µ)

= F
(1)
1 (Φ(λ), λ)[JΨ(µ)− JΨ(λ)− JA(λ)(µ− λ)] +R(λ, µ),

(A.14)

where

R(λ, µ) =
∫ 1

0
[JF (1)

(
sΦ(µ) + (1− s)Φ(λ), µ

)
− JF (1)(Φ(λ), λ)][Ψ(µ)−Ψ(λ)]ds

+
∫ 1

0
[D2G(Φ(λ), sµ+ (1− s)λ)−D2G(Φ(λ), λ)][µ− λ]ds.

(A.15)

Using (HC3) and the continuity of D2G and Φ, for each ε > 0 we can find some δ > 0 such that

sups∈[0,1]

∥∥JF (1)(sΦ(µ) + (1− s)Φ(λ), µ)− JF (1)(Φ(λ), λ)
∥∥ < ε,

sups∈[0,1] ‖D2G(Φ(λ), sµ+ (1− s)λ)−D2G(Φ(λ), λ)‖ < ε,

(A.16)
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whenever |µ− λ| < δ. Letting C(λ) be a Lipschitz constant for Ψ in a neighbourhood of λ, we obtain

‖R(λ, µ)‖ ≤ ε(C(λ) + 1) |µ− λ| (A.17)

for |µ− λ| < δ. From (A.14) and (HC2) it now follows that for such values of µ we have

‖S(µ)‖1 ≤ ε
C(λ) + 1

1− κ
|µ− λ| , (A.18)

which shows that J ◦Ψ is differentiable at λ with D(J ◦Ψ)(λ) = J ◦ A(λ). It remains to show that

λ→ J ◦ A(λ) is continuous. Since

JA(λ)− JA(µ) = JF (1)(Φ(λ), λ)A(λ) +D2G(Φ(λ), λ)

− JF (1)(Φ(µ), µ)A(µ)−D2G(Φ(µ), µ)

= F
(1)
1 (J0Φ(λ), λ)(JA(λ)− JA(µ))

+
(
JF (1)(Φ(λ), λ)− JF (1)(Φ(λ), µ)

)
A(µ)

+
(
JF (1)(Φ(λ), µ)− JF (1)(Φ(µ), µ)

)
A(µ)

+D2G(Φ(λ), λ)−D2G(Φ(µ), µ),

(A.19)

it follows that

(1− κ) ‖JA(λ)− JA(µ)‖ ≤
∥∥JF (1)(Φ(λ), λ)− JF (1)(Φ(λ), µ)

∥∥ ‖A(µ)‖

+
∥∥JF (1)(Φ(λ), µ)− JF (1)(Φ(µ), µ)

∥∥ ‖A(µ)‖

+ ‖D2G(Φ(λ), λ)−D2G(Φ(µ), µ)‖ .

(A.20)

Using the continuity of Φ, D2G and JF (1), the continuity of λ→ J ◦ A(λ) now easily follows.

B Fourier and Laplace Transform

We recall here the definitions of the Fourier transform f̂(k) of an L2(R,Cn) function f and the

inverse Fourier transform ǧ(ξ) for any g ∈ L2(R,Cn), given by

f̂(k) =
∫∞
−∞ e−ikξf(ξ)dξ, ǧ(ξ) = 1

2π

∫∞
−∞ eikξg(k)dk. (B.1)

We remark here that the integrals above are well defined only if f, g ∈ L1(R,Cn). If this is not the

case, the integrals have to be understood as integrals in the Fourier sense, i.e., the functions

hn(k) =
∫ n

−n

e−ikξf(ξ)dξ (B.2)
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satisfy hn(k) → f̂ in L2(R,Cn) and in addition there is a subsequence {n′} such that hn′(k) → f̂(k)

almost everywhere. We recall that the Fourier transform takes convolutions into products, i.e.,

(f̂ ∗ g)(k) = f̂(k)ĝ(k) for almost every k. As another useful tool, we state the Riemann Lebesgue

lemma [25, Thm. 21.39].

Lemma B.1. For any f ∈ L1(R+,Cn), we have

lim
ω→±∞

∣∣∣∣∫ ∞
0

eiωξf(ξ)dξ
∣∣∣∣ = 0. (B.3)

Suppose f : R → Cn satisfies f(ξ) = O(e−aξ) as ξ →∞. Then for any z with Re z > −a, define

the Laplace transform

f̃+(z) =
∫ ∞

0

e−zξf(ξ)dξ. (B.4)

Similarly, if f(ξ) = O(ebξ) as ξ → −∞, then for any z with Re z > −b, define

f̃−(z) =
∫ ∞

0

ezξf(−ξ)dξ. (B.5)

The inverse transformation is described in the next result, which can be found in the standard

Laplace transform literature [43, 7.3-5].

Lemma B.2. Let f : R → Cn satisfy a growth condition f(ξ) = O(e−aξ) as ξ → ∞ and suppose

that f is of bounded variation on bounded intervals. Then for any γ > −a and ξ > 0 we have the

inversion formula
f(ξ+) + f(ξ−)

2
= lim

ω→∞

1
2πi

∫ −a+iω

−a−iω

ezξ f̃+(z)dz, (B.6)

whereas for ξ = 0 we have

f(0+)
2

= lim
ω→∞

1
2πi

∫ −a+iω

−a−iω

ezξ f̃+(z)dz. (B.7)

C Hopf Bifurcation Theorem

In this appendix we state the Hopf bifurcation theorem for the finite dimensional system of ODE’s

ẋ = g(x, µ), (C.1)

for µ ∈ R and x ∈ Rn, where g satisfies the following assumptions.
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(HH1) For some integer k ≥ 2 we have g ∈ Ck(Rn × R,Rn), with g(0, µ) = 0 for all µ ∈ R.

(HH2) For some µ0 ∈ R the matrix A = D1g(0, µ0) has simple (i.e. of algebraic multiplicity one)

eigenvalues at ±iω0, where ω0 > 0. In addition, no other eigenvalue of A belongs to iω0Z.

(HH3) Writing σ(µ) for the branch of eigenvalues of D1g(0, µ) through iω0 at µ = µ0, we have

ReDσ(µ0) 6= 0.

Finally, we define the non-zero vector v ∈ Rn to be an arbitrary eigenvector of the matrix A at

the eigenvalue iω0 and we let w ∈ Rn be an arbitrary eigenvector of AT at iω0 normalized such

that wT v = 1, i.e., the spectral projection Piω0 corresponding to the eigenvalue iω0 is given by

Piω0x = vwTx. The following results are stated as in [17] and we refer to a paper by Crandall and

Rabinowitz [15] for proofs and additional information.

Theorem C.1. Consider (C.1) and suppose that (HH1)-(HH3) are satisfied. Then there exist Ck−1-

smooth functions τ → µ∗(τ) ∈ R, τ → ω∗(τ) ∈ R and τ → x∗(τ) ∈ C(R,Rn), all defined for τ

sufficiently small, such that at µ = µ∗(τ), x∗(τ) is a 2π
ω∗(τ) periodic solution of (C.1). Moreover, µ∗

and ω∗ are even, µ(0) = µ0, ω(0) = ω0, x∗(−τ)(ξ) = x∗(τ)(ξ+ π
ω∗(τ) ) and x∗(τ)(ξ) = τRe (eiω0ξv)+

o(τ), as τ → 0, uniformly on compact subsets of R. In addition, if x is a small periodic solution

of this equation with µ close to µ0 and minimal period close to 2π
ω0

, then x(ξ) = x∗(τ)(ξ + ξ0) and

µ = µ∗(τ) for some τ and ξ0 ∈ [0, 2π/ω∗(τ)), with τ unique modulo its sign.

We conclude this appendix with a result on the direction of bifurcation.

Theorem C.2. Consider (C.1) and suppose that (HH1)-(HH3) are satisfied, but with k ≥ 3. Let

µ∗ be as defined in Theorem C.1. Then we have µ∗(τ) = µ0 + µ2τ
2 + o(τ2), with

µ2 = − Re c
ReDσ(µ0)

. (C.2)

The constant c is uniquely determined by the following identity

cv = 1
2Piω0D

3
1g(0, µ0)(v, v, v)

+ Piω0D
2
1g(0, µ0)(v,−D1g(0, µ0)−1D2

1g(0, µ0)(v, v))

+ 1
2Piω0D

2
1g(0, µ0)(v, (2iω0 −D1g(0, µ0))−1D2

1g(0, µ0)(v, v)).

(C.3)
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