
Dynamics of curved travelling fronts for the discrete
Allen-Cahn equation on a two-dimensional lattice

M. Jukić a,∗, H. J. Hupkes b,
a Mathematisch Instituut - Universiteit Leiden

P.O. Box 9512; 2300 RA Leiden; The Netherlands
Email: m.jukic@math.leidenuniv.nl

b Mathematisch Instituut - Universiteit Leiden
P.O. Box 9512; 2300 RA Leiden; The Netherlands

Email: hhupkes@math.leidenuniv.nl

Abstract

In this paper we consider the discrete Allen-Cahn equation posed on a two-dimensional rectangular lattice.
We analyze the large-time behaviour of solutions that start as bounded perturbations to the well-known
planar front solution that travels in the horizontal direction. In particular, we construct an asymptotic
phase function γj(t) and show that for each vertical coordinate j the corresponding horizontal slice of the
solution converges to the planar front shifted by γj(t). We exploit the comparison principle to show that
the evolution of these phase variables can be approximated by an appropriate discretization of the mean
curvature flow with a direction-dependent drift term. This generalizes the results obtained in [47] for the
spatially continuous setting. Finally, we prove that the horizontal planar wave is nonlinearly stable with
respect to perturbations that are asymptotically periodic in the vertical direction.
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1 Introduction
Our main aim in this paper is to explore the large time behaviour of the Allen-Cahn lattice differential
equation (LDE)

u̇i,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j + g(ui,j ; a) (1.1)
posed on the planar lattice (i, j) ∈ Z2. The nonlinearity g(·; a) ∈ C2(R) is of bistable type, in
the sense that it has two stable equilibria at u = 0 and u = 1 and one unstable equilibrium at
u = a ∈ (0, 1). The prototypical example is the cubic

gcub(u; a) = u(1− u)(u− a). (1.2)
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We are interested in the stability properties of curved versions of the horizontal travelling front

ui,j(t) = Φ(i− ct), Φ(−∞) = 0, Φ(+∞) = 1 (1.3)

in the case where c 6= 0. In particular, for initial conditions that are j-uniformly ‘front-like’ in the
sense

lim sup
i→−∞

sup
j∈R

ui,j(0) < a, lim inf
i→∞

inf
j∈R

ui,j(0) > a, (1.4)

we establish the uniform convergence

ui,j(t)→ Φ
(
i− γj(t)

)
, t→∞, (1.5)

for some appropriately constructed transverse phase variables γj(t). In addition, we show that the
evolution of these phases can be approximated by a discrete version of the mean curvature flow.

After adding further restrictions to (1.4), a detailed analysis of this curvature flow allows us
to establish the convergence γj(t) → ct + µ. In fact, it turns out that the set of initial conditions
covered by this result is significantly broader than the sets considered in earlier work [31, 30]. As a
consequence, we widen the known basin of attraction for the planar horizontal wave (1.3).

Continuous setting The LDE (1.1) can be seen as a discrete analogue of the two-dimensional
Allen-Cahn PDE

ut = uxx + uyy + g(u; a). (1.6)

Our primary interest here is in planar travelling travelling front solutions

u(x, y, t) = Φ(x cos θ + y sin θ − ct) (1.7)

that connect the two stable equilibria, in the sense that the waveprofile Φ satisfies

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→∞

Φ(ξ) = 1. (1.8)

Direct substitution shows that the wave (Φ, c) must satisfy the θ-independent ODE

− cΦ′(ξ) = Φ′′(ξ) + g
(
Φ(ξ); a

)
, (1.9)

reflecting the rotational symmetry of (1.6). Indeed, (1.9) also arises as the wave ODE for the one-
dimensional counterpart

ut = uxx + g(u; a). (1.10)

of (1.6). The existence of solutions to (1.9) can be obtained via phase-plane analysis [25] for any
parameter a ∈ (0, 1). Moreover, the pair (Φ, c) is unique up to translations, depends smoothly on
the parameter a, and admits the strict monotonicity Φ′ > 0.

Let us remark that one can also study (generalized) traveling waves in the setting where g is also
allowed to depend on the spatial variables. For example, in [22] the authors construct nonlinearities
that depend periodically on x and show that the resulting θ-dependence of the wavespeed can be
quite intricate.

Modelling background Reaction-diffusion equations have been used as modelling tools in many
different fields. For example, the classical papers [3, 4] use both one- and multi-dimensional versions
of such equations to describe the expression of genes throughout a population. Bistable nonlinearities
such as (1.2) are typically used to model the strong Allee effect - a biological phenomenon which
arises in the field of the population dynamics [55]. Indeed, the parameter a can be seen as a type of
minimum viability threshold that a population needs to reach in order to grow, in contrast to the
standard logistic dynamics. Adding the ability for the population to diffuse throughout its spatial
habitat results in systems such as (1.6) [54]. In this setting, travelling waves provide a mechanism
by which species can invade (or withdraw from) the spatial domain.
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In many applications this spatial domain has a discrete structure, in which case it is more natural
to consider the LDE (1.1). For example, in [42, 40] the authors use this LDE to study populations in
patchy landscapes. This allows them to describe and analyze a so-called ‘invasion pinning’ scenario,
wherein a species fails to propagate as a direct consequence of the spatial discreteness.

By now, models involving LDEs have appeared in many other scientific and technological fields.
For example, they have been used to describe phase transitions in Ising models [7], nerve pulse
propagation in myelinated axons [9, 10, 38, 39], calcium channels dynamics [5], crystal growth in
materials [14] and wave propagation through semiconductors [15]. For a more extensive list we
recommend the surveys [19, 17, 34].

Stability of PDE waves The first stability result for the wave (1.7) in the one-dimensional setting
of (1.10) was established by Fife and McLeod in [26]. In particular, they showed that this wave (and
its translates) attracts all solutions u with initial conditions that satisfy

lim sup
x→−∞

u(x, 0) < a, lim inf
x→+∞

u(x, 0) > a, (1.11)

together with u(·, 0) ∈ [0, 1]. This latter restriction was later weakened to u(·, 0) ∈ L∞(R) in [24].
Both these proofs rely on the construction of super- and sub-solutions for (1.10) in order to exploit
the comparison principle for parabolic equations. More recently, similar large-basin stability results
have been obtained using variational methods that do not appeal to the comparison principle [27, 50].

In [37], Kapitula established the multidimensional stability of traveling waves in Hk(Rn), for n ≥
2 and k ≥ bn+1

2 c. These results were recently extended by Zeng [58], who considered perturbations in
L∞(Rn). An alternate stability proof exploiting the comparison principle can be found in the seminal
paper [13], where the authors study the interaction of travelling fronts with compact obstacles. Let
us also mention the pioneering works [57, 41] which contain the first stability results for n ≥ 4
together with partial results for n = 2, 3.

Based on the techniques developed by Kapitula, Roussier [51] was able to consider ‘asymptoti-
cally spherical’ waves and establish their stability under spherically symmetric perturbations. Such
solutions behave as

u(x, y, t)→ Φ
(√

x2 + y2 − ct− c−1 ln t
)
, t→∞ (1.12)

and were first studied by Uchiyama and Jones [36, 56]. Note that the extra time dependence highlights
the important role that curvature-driven effects have to play.

Curved PDE fronts Our work in the present paper is inspired heavily by the results for (1.6)
obtained by Matano and Nara in [47]. They considered bounded initial conditions satisfying the
limits

lim sup
x→−∞

sup
y∈R

u0(x, y) < a, lim inf
x→∞

inf
y∈R

u0(x, y) > a, (1.13)

which form the natural two-dimensional generalization of (1.11). They show that eventually hori-
zontal cross-sections of u become sufficiently monotonic to allow a phase γ = γ(y, t) to be uniquely
defined by the requirement

u
(
γ(y, t), y, t

)
= Φ(0). (1.14)

These phase variables can be used to characterize the asymptotic behaviour of u. In particular,
the authors establish the limit

lim
t→∞

sup
(x,y)∈R2

|u(x, y, t)− Φ
(
x− γ(y, t)

)
| = 0 (1.15)

and show that - asymptotically - the phase γ closely tracks solutions Γ to the PDE

Γt√
1 + Γ2

y

=
Γyy

(1 + Γ2
y)3/2

+ c. (1.16)
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Upon supplementing (1.13) with the requirement that the initial condition u(·, ·, 0) is uniquely er-
godic in the x-direction, a careful analysis of (1.16) can be used to show that γ(y, t) → ct + µ for
some µ ∈ R. This can hence be interpreted as a stability result for the planar waves (1.7) under
a large class of non-localized perturbations. Note however that no information is provided on the
rate at which the convergence takes place. Very recently - and simultaneously with our analysis
here - Matano, Mori and Nara generalized this approach to consider radially expanding surfaces in
anisotropic continuous media [46].

Mean curvature flow In order to interpret the PDE (1.16), we consider the interfacial graph
G(t) := {(Γ(y, t), y) : y ∈ R}. Writing ν(y, t) for the rightward-pointing normal vector, V (y, t) for
the horizontal velocity vector and H(y, t) for the curvature at the point (Γ(y, t), y), we obtain

ν =
[
1 + Γ2

y

]−1/2
(1,−Γy), V = (Γt, 0

)
, H =

[
1 + Γ2

y

]−3/2
Γyy. (1.17)

In particular, (1.16) can be written in the form

V · ν = H + c, (1.18)

which can be interpreted as a mean curvature flow with an additional normal drift of size c. It is
no coincidence that this drift does not depend on ν: it reflects the fact that the speed of the planar
waves (1.7) does not depend on the angle θ.

In a sense, it is not too surprising that the mean curvature flow plays a role in the asymptotic
dynamics of wave interfaces. Indeed, one of the main historical reasons for considering the Allen-
Cahn PDE is that it actually desingularizes this flow by smoothing out the transition region [1, 21].
However, from a technical point of view, its role in [47] is actually rather minor.

Instead, the main PDE used to capture the behaviour of the phase γ is the nonlinear heat
equation

Vt = Vyy +
c

2
V 2
y + c. (1.19)

This PDE can be reformulated as a standard linear heat equation by a Cole-Hopf transformation
and hence explicitly solved. These solutions can subsequently be used to construct super- and sub-
solutions to (1.6) of the form

u±(x, y, t) = Φ

x− V (y, t)√
1 + V 2

y

± q(t)

± p(t), (1.20)

in which q and p are small correction terms that allow spatially homogeneous perturbations at t = 0
to be traded off for phase-shifts as t→∞.

Using the comparison principle, one can use the functions (1.20) to show that the phase γ can
be approximated asymptotically by V . A second comparison principle argument subsequently shows
that V can be used to track the solution Γ of (1.16). It therefore plays a crucial role as an intermediary
to obtain the desired relation between γ and Γ.

Spatially discrete travelling waves Plugging the travelling wave ansatz

uij(t) = Φ(i cos θ + j sin θ − ct), Φ(−∞) = 0, Φ(+∞) = 1 (1.21)

into the Allen-Cahn LDE (1.1), we obtain the functional differential equation of mixed type (MFDE)

− cΦ′(ξ) = Φ(ξ + cos θ) + Φ(ξ − cos θ) + Φ(ξ + sin θ) + Φ(ξ − sin θ)− 4Φ(ξ) + g
(
Φ(ξ); a

)
. (1.22)

The existence of such waves (Φθ, cθ) was first obtained for the horizontal direction θ = 0 [29, 60]
and subsequently generalized to arbitrary directions [44]. This θ-dependence is a direct consequence
of the anisotropy of the lattice, which breaks the rotational symmetry of the PDE (1.6).
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A second important difference between (1.9) and (1.22) is that the character of the latter system
depends crucially on the speed c, which depends uniquely but intricately on the parameters (θ, a).
When c 6= 0 the associated waveprofile is unique up to translation and satisfies Φ′ > 0. When c = 0
however, one loses the uniqueness and smoothness of waveprofiles. In addition, monotonic and non-
monotonic profiles typically coexist. This behaviour is a direct consequence of the fact that (1.22)
reduces to a difference equation, posed on a discrete (tan θ ∈ Q) or dense (tan θ /∈ Q) subset of R.
The transition between these two regimes is a highly interesting and widely studied topic, focusing
on themes such as propagation failure [35, 32, 38], crystallographic pinning [45, 32] and frictionless
kink propagation [6, 23]; see [34] for an overview.

For the remainder of the present paper we only consider the case c 6= 0 and shift our attention
to the stability properties of the associated waves. In one spatial dimension Zinner obtained the
first stability result [59], which was followed by the development of a diverse set of tools exploiting
either the comparison principle [16], monodromy operators [18] or spatial-temporal Green’s functions
[8, 52]. The first stability result in two spatial dimensions was obtained in [30] for waves travelling in
arbitrary rational (tan θ ∈ Q) directions. Taking θ = 0 here for presentation purposes, the authors
consider initial conditions of the form

ui,j(0) = Φ(i) + v0
i,j (1.23)

and show that u converges algebraically to the horizontal wave Φ(i−ct). Here the initial perturbation
v0 is taken to be sufficiently small in `∞

(
Z; `1(Z;R)

)
. In particular, the perturbation v0 is only

required to be localized in the direction perpendicular to the wave propagation.
The restriction tan θ ∈ Q was removed in the sequel paper [31], where the initial perturbation v0

in (1.23) can be of arbitrary size as long as it is localized in the sense that

lim
|i|+|j|→∞

|v0
i,j | = 0. (1.24)

The proof relies on the construction of explicit sub- and super-solutions to the LDE (1.1), generalizing
the PDE constructions from [12]. This construction is especially delicate for the cases θ /∈ π

4Z, where
the disalignment with the lattice directions causes slowly decaying modes that need to be carefully
controlled.

Curved LDE fronts In order to avoid the problematic slowly decaying terms discussed above, we
restrict ourselves to the horizontal waves (1.3) throughout the remainder of the paper. The novelty
is that we allow general bounded initial conditions that satisfy the limits (1.4). To compare this with
the discussion above, we note that this class includes initial conditions of the form

ui,j(0) = Φ
(
i− κj

)
+ v0

i,j , (1.25)

in which κ is an arbitrary bounded sequence and v0 is allowed to be small in `∞
(
Z; `1(Z;R)

)
or

to satisfy the localization condition (1.24). In particular, we significantly expand the set of initial
conditions that were considered in [30, 31].

Our main aim is to follow the program of [47] that we outlined above as closely as possible.
However, the first obstacle already arises when one attempts to define appropriate phase coordinates
γj(t) for t � 1. Indeed, it no longer makes sense to define the interface of u(t) as the set of points
where ui,j(t) = Φ(0), since this solution set can behave highly erratically due to the discreteness of
the spatial variables. To resolve this, we establish an asymptotic monotonicity result in the interfacial
region where ui,j(t) ≈ Φ(0). This allows us to ‘fill’ the troublesome gaps between lattice points by
performing a spatial interpolation based on the shape of Φ; see Fig. 1.

This fundamental problem of not being able to move continuously between lattice points occurs
in many other parts of our analysis. For example, we need to construct so-called ω-limit points of
solution sequences in order to establish the uniform convergence (1.5). In [47] this is achieved by
passing to a new coordinate x′ = x − ct that ‘freezes’ the wave at the cost of an extra convective
term in the PDE (1.6). Such a coordinate transformation does not exist in the discrete case, forcing
us to use a more involved discontinuous version of this freezing process.
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Fig. 1: In §5 we show that for each j ∈ Z and t � 0, the function i 7→ ui,j(t) is monotonic inside
an interfacial region I that is depicted in light blue. The dark blue dots represent the horizontal
solution slice i 7→ ui,j(t). Since u is monotonic inside I, we can find an unique value i∗ for which
ui∗,j(t) ≤ 1/2 < ui∗+1,j(t). We subsequently shift the travelling wave profile Φ in such a way that it
matches the solution slice at i∗. The phase γj(t) is then defined as the argument where this shifted
profile equals one half.

Discrete curvature flow We remark that it is by no means a-priori clear how the mean curvature
PDE (1.16) should be discretized in order to track the discrete phase coordinates γj(t). For example,
there is more than one reasonable way to define geometric notions such as normal vectors and
curvature in discrete settings [20]. On the other hand, the discussion above shows that there may
be range of ‘suitable’ choices, as we only desire the tracking to be approximate.

Introducing the convenient notation

[βΓ]j =

√
1 +

(Γj+1 − Γj)
2 + (Γj−1 − Γj)

2

2
, [∂(2)Γ]j = Γj+1 + Γj−1 − 2Γj , (1.26)

we will use the standard symmetric discretizations

V · ν 7→ β−1
Γ Γ̇, H 7→ β−3

Γ ∂(2)Γ (1.27)

for the normal velocity and curvature terms in (1.18). However, the remaining normal drift term
requires more care to account for the direction dependence of the planar front speeds. In particular,
it seems natural make the replacement

c 7→ 1

2

(
cθ+ + cθ−

)
, (1.28)

in which the angles

θ− = arctan (Γj − Γj−1), θ+ = arctan (Γj+1 − Γj) (1.29)

measure the orientation of the normal vectors for the lower and upper segments of the interface at
(Γj , j); see Fig. 2.

In order to make this more explicit, we use the identity [∂θcθ]θ=0 = 0 derived in [33, Lem. 2.2]
to obtain the expansions

cθ− ∼ c+
1

2
[∂2
θcθ]θ=0(Γj − Γj−1)2, cθ+ ∼ c+

1

2
[∂2
θcθ]θ=0(Γj+1 − Γj)

2, (1.30)

which suggests the replacement

c 7→ c+
1

2
[∂2
θcθ]θ=0

(
β2

Γ − 1
)
. (1.31)
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Fig. 2: The panel on the left represents a graph j 7→ Γj(t) at a fixed time t. The right panel zooms
in on three nodes of this graph to illustrate the identities (1.28) and (1.29) that underpin the drift
term in our discrete curvature flow.

In order to prevent the quadratic growth in this term, we make the final adjustment

c 7→ c+ [∂2
θcθ]θ=0

(
1− β−1

Γ

)
, (1.32)

which agrees with (1.31) up to second order in the differences Γj±1 − Γj .
All in all, the discrete mean curvature flow that we use in this paper to approximate the phases

γj can be written as
β−1

Γ Γ̇ = β−3
Γ ∂(2)Γ + c+ [∂2

θcθ]θ=0

(
1− β−1

Γ

)
. (1.33)

While this justification appears to be rather ad-hoc, it turns out that our approximation procedure
is not sensitive to O

(
(Γj±1 − Γj)

3
)
-correction terms. In addition, we explain below how the crucial

lower order terms can be recovered by independent technical considerations.

Super- and sub-solutions The technical heart of this paper is formed by our construction of
suitable spatially discrete versions of the sub- and super-solutions (1.20). The correct generalization
of (1.19) that preserves the Cole-Hopf structure turns out to be

V̇j =
1

d

(
ed(Vj+1−Vj) − 2 + ed(Vj−1−Vj)

)
+ c, (1.34)

in which we are still free to pick the coefficient d. Indeed, this LDE reduces to the discrete heat
equation upon picking h(t) = ed(V−ct).

However, the discrete Laplacian spawns terms proportional to Φ′′(β2
V −1) if one simply substitutes

a direct discretization of the PDE super-solution (1.20) with (1.34) into (1.1). These terms decay as
O(t−1) and hence cannot be integrated and absorbed into the phaseshift q(t).

Similar difficulties were also encountered in [31]. The novelty here is that this troublesome be-
haviour occurs even for the horizontal direction θ = 0, which is completely aligned with the lattice.
Inspired by the normal form approach developed in [31], we therefore set out to construct sub- and
super-solutions of the form

u±i,j(t) = Φ
(
i− Vj(t)± q(t)

)
+ r
(
i− Vj(t)± q(t)

)
([βV ]2j − 1)± p(t), (1.35)

using the extra residual function r to neutralize the slowly decaying terms. Working through the
computations, it turns out the relevant condition on the pair (r, d) can be formulated as

Ltwr + dΦ′ = −Φ′′, (1.36)
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Fig. 3: Both panels illustrate front-like initial conditions that satisfy (1.4) and hence fall within the
framework of this paper. Panel a) provides an example of an initial perturbation that converges
uniformly to a traveling front. On the contrary, the initial perturbation in b) does not uniformly
converge to a traveling planar front, but the evolution of the interface is described asymptotically
by (1.33).

in which the Fredholm operator Ltw encodes the linearization of the wave MFDE (1.22) around Φ;
see §7. Using the Fredholm theory for MFDEs developed in [43, 44] together with the computations
in §8 and [33, §2], it turns out that d must be given by

d =
1

2
c+

1

2
[∂2
θcθ]θ=0 =

1

2

[
∂2
θD(θ)

]
θ=0

, (1.37)

in which the quantity
D(θ) =

cθ
cos θ

(1.38)

is referred to as the directional dispersion. This quantity measures the horizontal speed of waves
travelling in the direction θ, which also plays an important role in the construction of travelling
corner solutions to (1.1).

Let us emphasize that in the general case θ 6= 0 it is not readily apparent whether the approach
developed in this paper can be extended. The main source of the difficulties is the misalignment
of the discrete Laplacian, which causes an imbalance between the quadratic convective terms; see
e.g. (1.30). As a result the Cole-Hopf structure cannot be readily preserved, which is crucial for our
analysis here. We believe that this can be corrected by further variable transformations and a more
extensive super-solution Ansatz, but leave this subject to future work.

Stability results As a by-product of our analysis, we are able to extend the stability results
obtained previously in [30, 31]. For example, if the phase sequence κ appearing in the initial condition
(1.25) is periodic (see e.g. Fig. 3a), we show that there exists an asymptotic phase µ ∈ R for which
we have the convergence γ(t) → ct+ µ as t → ∞. In particular, the horizontal planar wave retains
its stability under such perturbations, provided we allow for a phase-shift.

In order to prove this result, we first analyze the behaviour of (1.1) and (1.34) when applied
to j-periodic sequences. We subsequently add a localized initial perturbation and show that the
effects remain localized in some sense. Since the heat-equation eventually eliminates such localized
perturbations, the desired asymptotic convergence persists. We remark that our stability result is
slightly less general than its continuous counterpart from [47], since it is not yet clear to us how
ergodicity properties can be transferred to our discrete setting.
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We emphasize that this stability result does not hold for arbitrary bounded κ in (1.25). For
example, if there exist κ− and κ+ for which we have the limits

lim
j→−∞

κj = κ−, lim
j→+∞

κj = κ+ (1.39)

(see e.g. Fig. 3b), then the results in §9 imply that for every t > 0 we have the convergence

ui,j(t)→ Φ(i− ct− κ±) as j → ±∞, (1.40)

uniformly in i. In particular, the interface γ(t) describes the phase transition between κ− and κ+,
which is asymptotically captured by (1.33).

Organization After formulating our assumptions and main results in §2, we transfer the standard
ω-limit point constructions for the PDE (1.6) to our discrete setting in §3. In §4 we (partially) gen-
eralize the results from [11] concerning trapped entire solutions to the setting of (1.1). In particular,
we prove that every entire solution of the Allen-Cahn LDE trapped between two traveling waves is
a traveling wave itself. In §5 we focus on the large-time behaviour of the solution u and establish the
discrete counterpart of (1.15). We move on in §6 to obtain decay estimates for discrete gradients of
solutions to the discrete heat equation. We exploit these in §7 to construct super- and sub-solutions,
which we use in §8 to approximate the phase γ with the solution of the discrete mean curvature
flow (1.33). Finally, in §9 we establish the stability results discussed above for the horizontal planar
travelling wave.

Acknowledgments Both authors acknowledge support from the Netherlands Organization for
Scientific Research (NWO) (grant 639.032.612).

2 Main results
Our principal interest in this paper is the discrete Allen-Cahn equation

u̇i,j = (∆+u)i,j + g(ui,j) (2.1)

posed on the planar lattice (i, j) ∈ Z2. The discrete Laplacian ∆+ : `∞(Z2)→ `∞(Z2) is defined as

(∆+u)i,j = ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4ui,j , (2.2)

while the nonlinearity is assumed to satisfy the following bistability condition.

(Hg) The nonlinear function g : R→ R is C2-smooth and there exists a ∈ (0, 1) for which we have

g(0) = g(a) = g(1) = 0, g′(0) < 0, g′(1) < 0. (2.3)

In addition, we have the inequalities

g > 0 on (−∞, 0) ∪ (a, 1), g < 0 on (0, a) ∪ (1,∞). (2.4)

Existence results for planar traveling wave solutions of (2.1) were established in [44]. More
precisely, if we pick an arbitrary angle θ ∈ [0, 2π), then (2.1) admits a solution of the form

uij(t) = Φθ(i cos θ + j sin θ − cθt), (2.5)

for some wave speed cθ ∈ R and wave profile Φθ : R→ R that satisfies the boundary conditions

lim
ξ→−∞

Φθ(ξ) = 0, lim
ξ→+∞

Φθ(ξ) = 1. (2.6)
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Substituting the Ansatz (2.5) into (2.1), we see that the the pair (Φθ, cθ) must satisfy the MFDE

− cθΦ′θ(ξ) = Φθ(ξ+ cos θ) + Φθ(ξ+ sin θ) + Φθ(ξ− cos θ) + Φθ(ξ− sin θ)− 4Φθ(ξ) + g
(
Φθ(ξ)

)
. (2.7)

The results in [44] state that cθ is unique. In addition, when cθ 6= 0, the wave profile Φθ is unique
up to translation and satisfies Φ′θ > 0. In this paper, we are interested in planar waves that travel
in the horizontal direction θ = 0. Since we rely on smoothness properties of the wave profile, we
demand that c0 6= 0.

(HΦ) There exists a non-zero speed c 6= 0 and a wave profile Φ ∈ C1(R,R) so that the pair (Φ, c)
satisfies the boundary conditions (2.6) and the MFDE (2.7) for the horizontal direction θ = 0.
In addition, we have the normalization Φ(0) = 1

2 .

Our main results concern the Cauchy problem for the Allen-Cahn LDE. In particular, we look
for functions

u ∈ C1
(
[0,∞); `∞(Z2)

)
(2.8)

that satisfy the LDE (2.1) for t > 0 together with the initial condition

ui,j(0) = u0
i,j (2.9)

for some u0 ∈ `∞(Z2). Observe that the comparison principle together with the bistable structure
of g imply that such solutions are unique and exist globally. We impose the following structural
condition on u0.

(H0) The initial condition u0 ∈ `∞(Z2) satisfies the inequalities

lim sup
i→−∞

sup
j∈Z

u0
i,j < a, lim inf

i→∞
inf
j∈Z

u0
i,j > a. (2.10)

Notice that we do not impose the usual assumption 0 ≤ u0 ≤ 1 or any kind of decay in the spatial
limits. As explained in detail in §1, this condition is less restrictive than its counterparts from [30, 31]
and includes the general class (1.25).

2.1 Interface formation
Our first goal is to find a link between the solution (2.8) of the general Cauchy problem for (2.1)
and the planar travelling wave (Φ, c). The result below provides a key tool for this purpose when
t � 1. In particular, it establishes that for each fixed j ∈ Z, the horizontal slice i 7→ uij(t) ‘crosses
through’ the value u = 1

2 in a monotonic fashion.

Proposition 2.1 (see §5). There exists a time T > 0 such that for every j ∈ Z and t ≥ T there
exists a unique i∗ = i∗(j, t) with the property

0 < ui∗,j(t) ≤
1

2
, ui∗+1,j(t) >

1

2
. (2.11)

These functions i(j, t) can be used to define a set of phases
(
γj(t)

)
j∈Z that measure in some sense

where the value u = 1
2 is ‘crossed’. More precisely, we define a function γ : [T,∞) → `∞(Z) that

acts as
γj(t) = i∗(j, t)− Φ−1

(
ui∗(j,t),j(t)

)
; (2.12)

see Fig. 1. The motivation behind the second term on the right is our desire to recover the traditional
phase when u is itself a travelling wave. Indeed, in the special case that

ui,j(t) = Φ(i− ct− µ) (2.13)

for some µ ∈ R, the phase condition Φ(0) = 1
2 implies that

i∗(j, t) = bct+ µc. (2.14)
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In particular, we obtain
γj(t) = ct+ µ, (2.15)

which allows us to write
ui,j(t) = Φ

(
i− γj(t)

)
. (2.16)

The drawback of this relatively straightforward construction is that the phases γj(t) will in general
admit discontinuities. However, the size of these jumps will tend to zero as t → ∞, which suffices
for our asymptotic purposes.

Our main result here is that this phase description (2.16) holds asymptotically for any initial
condition u0 that satisfies (H0). In particular, for large time, the dynamics of the full solution u can
be approximated by the behaviour of the phase coordinates γ(t).

Theorem 2.2 (see §5). Suppose that (Hg), (HΦ) and (H0) are satisfied and consider the solution
u of the discrete Allen-Cahn equation (2.1) with the initial condition (2.9). Then we have the limit

lim
t→∞

sup
(i,j)∈Z2

∣∣ui,j(t)− Φ
(
i− γj(t)

)∣∣ = 0. (2.17)

2.2 Interface evolution
Our second main goal is to uncover the long-term dynamics of the phase γ defined in (2.12). In
particular, we show that this evolution can be approximated by a discrete version of the mean
curvature flow with an appropriate drift term.

In order to formulate this equation, we pick a sequence Γ ∈ `∞(Z) and introduce the discrete
derivatives

[∂+Γ]j = Γj+1 − Γj ,

[∂−Γ]j = Γj − Γj−1,

[∂(2)Γ]j = Γj+1 − 2Γj + Γj−1,

(2.18)

together with the sequence

[βΓ]j =

√
1 +

1

2
(∂+Γ)2

j +
1

2
(∂−Γ)2

j . (2.19)

As explained in §1, the driving force in (2.21) below is not a constant as in the PDE case. Instead,
it features additional terms that arise due to the underlying anisotropy of the lattice.

Theorem 2.3 (see §8). Suppose that (Hg), (HΦ) and (H0) are all satisfied, consider the solution u
of the LDE (2.1) with the initial condition (2.9) and recall the phase γ defined in (2.12). Then for
every ε > 0, there exists τε ≥ T so that for any τ ≥ τε, the solution

Γ : [τ,∞)→ `∞(Z) (2.20)

to the initial value problem{
β−1

Γ Γ̇ = β−3
Γ ∂(2)Γ +

(
c+ [∂2

θcθ]θ=0

)
− β−1

Γ [∂2
θcθ]θ=0

Γ(τ) = γ(τ)
(2.21)

satisfies the estimate
sup
t≥τ
||Γ(t)− γ(t)||`∞ < ε. (2.22)

Our final result provides more detailed information on the asymptotics of γ in the special case
that the initial condition u0 is a localized perturbation from a front-like background state that
is periodic in j. Indeed, this provides sufficient control on (2.21) to show that the corresponding
solution converges to a planar travelling front. We emphasize that the case P = 1 encompasses the
stability results from [30, 31], albeit only for horizontal waves.
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Theorem 2.4 (see §9). Suppose that (Hg), (HΦ) and (H0) are satisfied and consider the solution u
of the discrete Allen-Cahn equation (2.1) with the initial condition (2.9). Suppose furthermore that
there exists a sequence u0;per ∈ `∞(Z2) so that the following two properties hold.

(a) We have the limit
u0
i,j − u

0;per
i,j → 0, as |i|+ |j| → ∞. (2.23)

(b) There exists an integer P ≥ 1 so that

u0;per
i,j+P = u0;per

i,j , for all (i, j) ∈ Z2. (2.24)

Then there exists a constant µ ∈ R for which we have the limit

lim
t→∞

sup
(i,j)∈Z2

|ui,j(t)− Φ(i− ct− µ)| = 0. (2.25)

3 Omega limit points
The techniques used in [47] relied heavily upon the ability to construct so-called omega limit points.
More specifically, consider a solution u : R2 × [0,∞) → R to the PDE (1.6) together with an
unbounded sequence 0 < t1 < t2 < . . . and a set of vertical shifts (yk) ⊂ R. One can then establish
[47] the existence of an entire solution ω to (1.6) for which the convergence

u(x+ ctk, y + yk, t+ tk)→ ω(x, y, t) in C2,1
loc (R2 × R) (3.1)

holds as k →∞, possibly after passing to a subsequence. This can be achieved efficiently by replacing
x with the travelling wave coordinate x− ct.

Any direct attempt to generalize this procedure to the LDE setting will fail on account of the
fact that i− ct is not necessarily an integer. Indeed, this prevents us from introducing a well-defined
co-moving frame. Our approach here to handle this is rather crude: we simply round the horizontal
shifts upward towards the nearest integer.

To illustrate this, let us consider the planar wave solution

uij(t) = Φ(i− ct) (3.2)

together with an unbounded sequence 0 < t1 < t2 < . . . and a set of vertical shifts (jk) ⊂ Z. Possibly
taking a subsequence, we obtain the convergence

[0, 1] 3 dctke − ctk → θω (3.3)

as k →∞, which means that

ui+dctke,j+jk(t+ tk) = Φ(i+ dctke − ct− ctk)→ Φ(i− ct+ θω) (3.4)

as k → ∞. In particular, we do still recover an entire solution, at the price of a small phase-shift
that would not occur in the continuous framework. As we will see throughout the following sections,
this phase-shift does not cause any qualitative difficulties.

Our main result confirms that our procedure indeed generates ω-limit points. In addition, it
states that such limits are trapped between two travelling waves, which turns out to be a crucial
point in our analysis. The consequences of this fact will be discussed in greater depth in §4.

Proposition 3.1. Suppose that (Hg), (HΦ) and (H0) are satisfied. Let u ∈ C1
(
[0,∞); `∞(Z2)

)
be a

solution of the LDE (2.1). Then for any sequence (jk, tk) in Z× [0,∞) with 0 < t1 < t2 < · · · → ∞,
there exists a subsequence (jnk , tnk) and a function ω ∈ C1

(
R; `∞(Z2)

)
with the following properties.

(i) We have the convergence

ui+dctnke,j+jnk (t+ tnk)→ ωi,j(t) in Cloc(Z2 × R) (3.5)

as k →∞.
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(ii) The limit ω satisfies the discrete Allen-Cahn equation (2.1) on Z2 × R.

(iii) There exists a constant θ ∈ R such that

Φ(i− ct− θ) ≤ ωi,j(t) ≤ Φ(i− ct+ θ), for all i ∈ Z and t ∈ R. (3.6)

We refer to such a function ω as an ω-limit point of the solution u. The proof of the bounds (3.6)
relies on the fact that the LDE (2.1) admits a comparison principle; see [31, Prop. 3.1]. In order to
exploit this, we introduce the residual

J [u] = u̇−∆+u− f(u) (3.7)

and recall that a function
u ∈ C1

(
[0,∞); `∞(Z2)

)
(3.8)

is referred to as a sub- or super-solution to the discrete Allen-Cahn equation (2.1) if J [u]i,j(t) ≤ 0
respectively J [u]i,j(t) ≥ 0 holds for all t ≥ 0 and (i, j) ∈ Z2. Our first result describes a standard
pair of such solutions, using the well-known principle that uniform perturbations to the travelling
wave Φ at t = 0 can be traded off for phase-shifts at t =∞.

Lemma 3.2. Assume that (Hg) and (HΦ) are satisfied. Then for any q0 ∈ (0, a) and q1 ∈ (0, 1−a),
there exist constants µ > 0 and C ≥ 1 so that the functions

u+
i,j(t) = Φ

(
i− ct+ Cq0(1− e−µt)

)
+ q0e

−µt, (3.9)

u−i,j(t) = Φ
(
i− ct− Cq1(1− e−µt)

)
− q1e

−µt (3.10)

are a super- respectively sub-solution of the discrete Allen-Cahn equation (2.1).

Proof. The arguments from Lemma 4.1 in [26] can be copied almost verbatim; see for example [16].

We now turn to the solution u of the LDE (2.1) with the initial condition (2.9). Using two a-
priori estimates we will show that u can eventually be controlled by time translates of u+ and u−.
By exploiting the divergence tk → ∞ of the time-shifts for the ω-limit point, we can subsequently
eliminate the uniform additive terms in (3.9)-(3.10) and recover the phase-shifts in (3.6).

Lemma 3.3. Assume that (Hg) and (H0) are satisfied. Pick q0 ∈ (0, a) in such a way that the initial
condition u0 satisfies

lim sup
i→−∞

sup
j∈Z

u0
i,j < q0.

Then for every t > 0 we have the bound

lim sup
i→−∞

sup
j∈Z

ui,j(t) < q0. (3.11)

Proof. First, we find a constant d ∈ (0, q0) for which

lim sup
i→−∞

sup
j∈Z

u0
i,j < d. (3.12)

Next, we pick a constant M in such a way that

u0
i,j ≤ d+Mei|c|, for every (i, j) ∈ Z2. (3.13)

Writing K > 0 for the maximum value of the function g on the interval [a, 1], we choose α > 0
sufficiently large to have

α|c| − c4

12
cosh |c| ≥ 2K

a− d
. (3.14)
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We now claim that the j-independent function

wi,j(t) = d+Me|c|(i+|c|t+αt) (3.15)

is a super-solution to (2.1). To see this, we compute

J [w]i,j(t) = Me|c|(i+|c|t+αt)
(
c2 + α|c| − e−|c| − e|c| + 2

)
− g
(
wi,j(t)

)
= Me|c|(i+|c|t+αt)

(
α|c| − c4

12
cosh c̃

)
− g
(
wi,j(t)

)
≥
(
wi,j(t)− d

) 2K

a− d
− g
(
wi,j(t)

)
,

where c̃ is a number between 0 and |c|. For wi,j(t) ∈ [0, a] ∪ [1,∞), we have g
(
wi,j(t)

)
≤ 0, which

immediately gives J [w]i,j(t) ≥ 0. On the other hand, for wi,j(t) ∈ [a, 1] our choice for K yields

J [w]i,j(t) ≥ (a− d)
2K

a− d
−K ≥ K > 0.

Applying the comparison principle we conclude

ui,j(t) ≤ wi,j(t) = d+Me|c|(i+|c|t+αt), (3.16)

for every t ≥ 0 and (i, j) ∈ Z2. Taking the supremum over j ∈ Z and sending i to −∞ we obtain
the desired inequality (3.11).

Lemma 3.4. Suppose that (Hg), (HΦ) and (H0) are satisfied. Let u be the solution of the discrete
Allen-Cahn equation (2.1) with the initial condition (2.9). Then for every q0 > 0 there exists T > 0
so that

ui,j(t) ≤ 1 +
q0

2
(3.17)

holds for every t ≥ T and (i, j) ∈ Z2.

Proof. Let ũ be the solution to the scalar initial value problem{
ũt = g(ũ), t > 0

ũ(0) =
∣∣∣∣u0

∣∣∣∣
`∞(Z2)

.
(3.18)

Since g(u) < 0 for all u > 1, there exists T > 0 such that ũ(t) ≤ 1 + q0
2 for all t ≥ T . Exploiting

the fact that ũ is also a spatially homogeneous solution to (2.1), the comparison principle yields
ui,j(t) ≤ ũ(t) for all t ≥ 0 and (i, j) ∈ Z2. Combining these observations leads directly to (3.17).

Lemma 3.5. Assume that (Hg), (HΦ) and (H0) are satisfied. Then there exists a time T > 0
together with constants

q0 ∈ (0, a), q1 ∈ (0, 1− a), θ0 ∈ R, θ1 ∈ R, µ > 0, C > 0 (3.19)

so that the solution u to (2.1) with the initial condition (2.9) satisfies the estimates

ui,j(t) ≤ Φ
(
i+ θ0 − c(t− T ) + Cq0

(
1− e−µ(t−T )

))
+ q0e

−µ(t−T ), ∀t ≥ T, (3.20)

ui,j(t) ≥ Φ
(
i− θ1 − c(t− T )− Cq1

(
1− e−µ(t−T )

))
− q1e

−µ(t−T ), ∀t ≥ T. (3.21)

Proof. We first choose q0 ∈ (0, a) in such a way that

lim sup
i→−∞

sup
j∈Z

u0
i,j < q0. (3.22)
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Using Lemma 3.4, we obtain T > 0 for which

ui,j(T ) ≤ 1 +
q0

2
for every (i, j) ∈ Z2. (3.23)

On the other hand, Lemma 3.3 allows us to find ϑa ∈ Z so that

ui,j(T ) ≤ q0, for i ≤ ϑa and j ∈ Z. (3.24)

Finally, in view of the limits (2.6) there exists ϑb ∈ Z for which

Φ(i) ≥ 1− q0

2
, for every i ≥ ϑb.

Combining these inequalities and recalling the definition (3.9), we obtain

ui,j(T ) ≤ Φ(i− ϑa + ϑb) + q0 = u+
i−ϑa+ϑb

(0) (3.25)

for all i ∈ Z. The desired upper bound (3.20) with θ0 = ϑb − ϑa now follows from Lemma 3.2 and
the comparison principle. The lower bound can be obtained in a similar fashion.

Proof of Proposition 3.1. Fix an integer L ∈ N and consider the functions

uk ∈ C
(
[−L,L];R(2L+1)×(2L+1)

)
that are defined by

uki,j(t) = ui+dctke,j+jk(t+ tk), (i, j, t) ∈ {−L, . . . , L}2 × [−L,L]

for all sufficiently large k. Lemma 3.4 implies that the solution u and hence the functions uk are
globally bounded. Since the derivative u̇ satisfies (2.1), it follows that u̇k is also a globally bounded
sequence. Hence, Ascoli-Arzela implies that the sequence uk is relatively compact. By using a stan-
dard diagonalization argument together with (2.1), we obtain a subsequence unk and a function
ω : R→ `∞(Z2) so that

sup
(i,j,t)∈K

|unki,j (t)− ωi,j(t)|+ |u̇
nk
i,j (t)− ω̇i,j(t)| → 0,

for every compact K ⊂ Z2 × R. This immediately implies (i) and (ii). The bounds (3.6) follow
directly from Lemma 3.5.

4 Trapped entire solutions
The main point of this section is to prove that every entire solution that is trapped between two
traveling waves is a traveling wave itself. This is a very useful result when combined with Proposition
3.1, since it implies that every ω-limit point of the solution u is a traveling wave. This will turn out
to be a crucial tool during our analysis of the large time behaviour of u.

Proposition 4.1. Assume that (Hg) and (HΦ) are satisfied and consider a function ω ∈ C1
(
R; `∞(Z2)

)
that satisfies the Allen-Cahn LDE (2.1) for all t ∈ R. Assume furthermore that there exists a constant
θ for which the bounds

Φ(i− ct− θ) ≤ ωi,j(t) ≤ Φ(i− ct+ θ) (4.1)

hold for all (i, j) ∈ Z2 and t ∈ R. Then there exists a constant θ0 ∈ [−θ, θ] so that

ωi,j(t) = Φ(i− ct− θ0), for all (i, j) ∈ Z2, t ∈ R.

15



This result is a generalization of [11, Thm. 3.1] to the current spatially discrete setting. The main
complication lies in the fact that the LDE (2.1) is a nonlocal equation, as opposed to the PDE (1.6).
For example, if a smooth function f : E ⊂ R2 → R attains a local minimum at some point x0, then
we automatically have ∆f(x0) ≥ 0. This is an important ingredient for the arguments in [11], but
fails to hold in our spatially discrete setting.

Indeed, if v ∈ `∞(Z2) attains a minimum in E ⊂ Z2 at some point (i, j) ∈ E, it does not
automatically follow that the discrete Laplacian satisfies (∆+v)i,j ≥ 0. This conclusion can only be
obtained if one can verify that the nearest neighbours of (i, j) are also contained in E. This is the
key purpose of our first technical result.

Lemma 4.2. Consider the setting of Proposition 4.1 and pick a sufficiently small δ > 0. Choose a
pair (I, J) ∈ Z2 together with a constant σ ∈ R. Suppose for some κ ∈ Z that the function

vσi,j(t) = ωi+I,j+J

(
t+

I

c
+
σ

c

)
(4.2)

satisfies the inequality
vσi,j(t) ≤ ωi,j(t) (4.3)

whenever i− ct ∈ [κ, κ+ 1]. Then the following claims holds true.

(i) If ωi,j(t) ≥ 1− δ whenever i− ct ≥ κ, then in fact (4.3) holds for all i− ct ≥ κ.

(ii) If vσi,j(t) ≤ δ whenever i− ct ≤ κ+ 1, then in fact (4.3) holds for all i− ct ≤ κ+ 1.

Proof. Starting with (i), we define the set

E :=
{

(i, j, t) ∈ Z2 × R : i− ct ≥ κ
}
.

Since both functions ω and vσ are globally bounded, the quantity

ε∗ = inf {ε > 0 : vσ ≤ ω + ε in E}

is finite. In addition, by continuity we have

vσ ≤ ω + ε∗ in E. (4.4)

To prove the claim, it suffices to show that ε∗ = 0. Assuming to the contrary that ε∗ > 0, we can
find sequences εn ↗ ε∗ and (in, jn, tn) in E with the property that

ωin,jn(tn) + εn < vσin,jn(tn) ≤ ωin,jn(tn) + ε∗ for each n ∈ N. (4.5)

Sending n→∞ we conclude that

lim
n→∞

ωin,jn(tn)− vσin,jn(tn) + ε∗ = 0. (4.6)

Now, notice that the assumption (4.1) and the inequality ε∗ > 0 imply that the sequence ln := in−ctn
is bounded. In addition, our assumption (4.3) implies that ln > κ+ 1. In particular, we can assume
that the bounded sequence in − dctne is equal to an integer L ≥ κ.

Applying Proposition 3.1 to the function ω and the sequence (jn, tn), we obtain a limiting function
ω∞ for which we have

lim
n→∞

ωi+dctne,j+jn(t+ tn) = ω∞i,j(t), (4.7)

for each (i, j, t) ∈ Z2 × R. By construction it also holds that

lim
n→∞

vσi+dctne,j+jn(t+ tn) = ω∞i+I,j+J(t+
I

c
+
σ

c
). (4.8)

Next we define the function z = zi,j(t) as

zi,j(t) = ω∞i,j(t)− ω∞i+I,j+J(t+
I

c
+
σ

c
) + ε∗. (4.9)
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For (i, j, t) ∈ E we have (i + dctne, j + jn, t + tn) ∈ E. Combining this with the fact that the
inequality (4.4) survives the limit (4.7), we have zi,j(t) ≥ 0 in E. By (4.6) we obtain zL,0(0) = 0.
Also, for i− ct = κ, we have (i+ dctne, j + jn, t+ tn) ∈ [κ, κ+ 1]. In particular, we find

zi,j(t) ≥ ε∗ > 0, for i− ct = κ. (4.10)

Therefore, it must hold that L ≥ κ+ 1.
We pick δ to be small enough so that g is non-increasing on [1− δ, 1]. Since ω∞ ∈ [1− δ, 1] and

g is locally Lipschitz continuous on E, there exists B > 0 so that

żi,j(t)− (∆+z)i,j(t) = g
(
ω∞i,j(t)

)
− g
(
ω∞i+I,j+J(t+

I

c
+
σ

c
)
)

≥ g(ω∞i,j(t) + ε∗)− g
(
ω∞i+I,j+J(t+

I

c
+
σ

c
)
)

≥ −Bzi,j(t)

(4.11)

for all (i, j, t) ∈ E. Since z attains its minimum at the point (L, 0, 0) ∈ E with L ≥ κ + 1, we have
żL,0(0) = 0. In addition, the inequality (∆+z)L,0(0) ≥ 0 holds since all the nearest neighbours of
(L, 0, 0) are contained in E. In particular, we compute

0 ≤ żL,0(0)− (∆+z)L,0(0) +BzL,0(0) = −(∆+z)L,0(0) ≤ 0. (4.12)

Therefore, (∆+z)(0)L,0 = 0 must hold, which implies that z0,L−1(0) = 0.
If L = κ + 1 then we are done, since z ≥ ε∗ > 0 for i − ct = κ which contradicts (4.10). On

the other hand, if L − 1 ≥ κ + 1 we can iteratively decrease L using this procedure until we reach
the desired contradiction. Statement (ii) can be obtained in a similar fashion using bctnc instead of
dctne.

Lemma 4.3. Consider the setting of Propostion 4.1, fix an arbitrary pair (I, J) ∈ Z2 and recall the
functions vσ defined in (4.2) Then the quantity

σ∗ := inf
{
σ ∈ R : vσ̃ ≤ ω in Z2 × R for all σ̃ ≥ σ

}
(4.13)

satisfies σ∗ ≤ 0.

Proof. First we show that σ∗ < ∞. Without loss of generality, we may assume that 0 < δ < 1/2
holds for the constant defined in Lemma 4.2. The inequalities (4.1) allow κ ∈ N such that

ωi,j(t) ≥ 1− δ, i− ct ≥ κ,

ωi,j(t) ≤ δ, i− ct ≤ −κ.
(4.14)

For σ ≥ 2κ+ 1 and i− ct ≤ κ+ 1 one has i− ct− σ ≤ −κ. It follows from (4.14) that vσ ≤ δ on
i− ct ≤ κ+ 1. Using δ ≤ 1− δ we have vσ ≤ ω on i− ct ∈ [κ, κ+ 1]. Hence, both items (i) and (ii)
of Lemma 4.2 are satisfied and the bound vσ ≤ ω on R follows immediately. Since σ ≥ 2κ + 1 was
arbitrary, we conclude that σ∗ ≤ 2κ+ 1.

Arguing by contradiction, let us assume that σ∗ > 0. Defining the set

S = {−κ− 1 ≤ i− ct ≤ κ+ 1} , (4.15)

we now claim that
inf
S

(ω − vσ∗) = 0. (4.16)

Assume to the contrary that infS(w− vσ∗) = K > 0. Then, using the global Lipschitz continuity of
ω, there exists a constant M > 0 such that

ωi,j(t)− vσ∗−µi,j (t) = ωi,j(t)− vσ∗i,j(t) + vσ∗i,j(t)− v
σ∗−µ
i,j (t) ≥ K −Mµ (4.17)
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holds for every µ ≥ 0 and (i, j, t) ∈ S. Hence, there exists µ0 ∈ (0, σ∗) such that vσ∗−µ ≤ ω on S, for
all µ ∈ [0, µ0]. Item (i) in Lemma 4.2 implies that vσ∗−µ ≤ ω for i − ct ≥ κ and for all µ ∈ [0, µ0].
Furthermore, since σ∗ − µ ≥ 0, we have vσ∗−µ ≤ δ for i − ct ≤ −κ. Since also vσ∗−µ ≤ ω for
−κ− 1 ≤ i− ct ≤ −κ, item (ii) of Lemma 4.2 implies that vσ∗−µ ≤ ω also holds on i− ct ≤ −κ. All
together, we have vσ∗−µ ≤ ω on Z2 × R, which contradicts the minimality of σ∗ and yields (4.16).

We can hence find a sequence (in, jn, tn) in S such that

ωin,jn(tn)− vσ∗in,jn(tn)→ 0 as n→∞. (4.18)

Since in− ctn is bounded, we can assume that in−dctne is equal to a constant, which we denote by
L. As before, we obtain the convergence

lim
n→∞

ωi+dctne,j+jn(t+ tn) = ω∞i,j(t), (4.19)

where ω∞ is also an entire solution of the LDE (2.1). Hence, the function z = zi,j(t) defined as

zi,j(t) := ω∞i,j(t)− ω∞i+I,j+J(t+
I

c
+
σ∗
c

) (4.20)

satisfies
zi,j ≥ 0 for all (i, j, t) ∈ Z2 × R (4.21)

and zL,0(0) = 0. Using an argument similar to the one in the proof of Lemma 4.2, it follows that
zi,j(0) = 0 for all (i, j) ∈ Z2. We then obtain z ≡ 0 by the uniqueness of bounded solutions for (2.1).

In particular, we have ω∞0,0(0) = ω∞kI,kJ(kI/c + kσ∗/c) for all k ∈ Z. However, we also have the
limits

lim
k→−∞

ω∞kI,kJ(kI/c+ kσ∗/c) = 1, lim
k→∞

ω∞kI,kJ(kI/c+ kσ∗/c) = 0, (4.22)

since ω∞ is trapped between two traveling waves as well. We have hence reached a contradiction
and conclude σ∗ ≤ 0.

Proof of Proposition 4.1. From Lemma 4.3, we know that

ωi,j(t) ≥ ωi+I,j+J(t+
I

c
) on Z2 × R, (4.23)

for arbitrary (I, J) ∈ Z2. Hence, the function ω depends only on the value of i− ct. More precisely,
there exists a function ψ such that ωi,j(t) = ψ(i − ct). The result now follows directly from the
fact that solutions to the travelling wave problem (2.6)-(2.7) for θ = 0 and c 6= 0 are unique up to
translation.

5 Large time behaviour of u
The main goal of this section is to study the qualitative large time behaviour of the solution u to our
main initial value problem. In particular, we connect this behaviour to the dynamics of the phase γ
defined in (2.12) and thereby establish Theorem 2.2. In addition, we provide an asymptotic flatness
result for this phase.

Our first main result concerns the large-time behaviour of the interfacial region

It =
{

(i, j) ∈ Z2 : Φ(−2) ≤ ui,j(t) ≤ Φ(2)
}

(5.1)

where u takes values close to 1/2. For fixed j and t, we establish that the horizontal coordinate
i can not jump in and out from the interface region, which is non-empty. In particular, once the
map i 7→ uij(t) enters the interval [Φ(−2),Φ(2)] from below, it cannot exit throughout the lower
boundary. In addition, it is strictly increasing in i and cannot reenter the interval once it has left
through the upper boundary.
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Proposition 5.1. Suppose that the assumptions (Hg), (HΦ) and (H0) are satisfied and let u be a
solution of the discrete Allen-Cahn equation (2.1) with the initial condition (2.9). Then there exists
a constant T > 0 so that the following statements are satisfied.

(i) For each t ≥ T and j ∈ Z there exists i ∈ Z for which

Φ(−2) < ui,j(t) ≤
1

2
. (5.2)

(ii) We have the inequality
inf

t≥T, (i,j)∈It
ui+1,j(t)− ui,j(t) > 0. (5.3)

(iii) Consider any t ≥ T and (i, j) ∈ Z2 for which ui,j(t) ≤ Φ(−2) holds. Then we also have
ui−1,j(t) ≤ Φ(−2).

(iv) Consider any t ≥ T and (i, j) ∈ Z2 for which ui,j(t) ≥ Φ(2) holds. Then we also have
ui+1,j(t) ≥ Φ(2).

Our second main result shows that the discrete derivative of the phase with respect to j tends
to zero. This will turn out to be crucial in order to keep the mean curvature flow under control. We
emphasize that this does not necessarily mean that the phase tends to a constant; see (1.40).

Proposition 5.2. Consider the setting of Proposition 5.1 and recall the phase γ : [T,∞)→ `∞(Z)
defined in (2.12). Then we have the limit

lim
t→∞

sup
j∈Z

∣∣γj+1(t)− γj(t)
∣∣ = 0.

Proof of Proposition 2.1. The statement follows directly from Proposition 5.1.

5.1 Proof of Proposition 5.1 and Theorem 2.2
The key towards establishing Proposition 5.1 is to obtain strict monotonicity properties in compact
regions that move with the wavespeed c. This is achieved in the following result, which leverages the
travelling wave identification obtained in Proposition 4.1.

Lemma 5.3. Consider the setting of Proposition 5.1 and pick a constant R > 0. Then there exists
a constant T > 0 such that

inf
j∈Z, |i−ct|≤R, t≥T

ui+1,j(t)− ui,j(t) > 0. (5.4)

Proof. Arguing by contradiction, let us assume that there exists a constant R > 0 so that

inf
j∈Z, |i−ct|≤R, t≥T

ui+1,j(t)− ui,j(t) ≤ 0

holds for every T > 0. We can then find a sequence (tn, in, jn) ∈ (0,∞) × Z2 with 0 < t1 < t2 <
· · · → ∞ for which we have the inequalities

|in − ctn| ≤ R, uin+1,jn(tn)− uin,jn(tn) ≤ 1/n. (5.5)

In particular, we may assume that the bounded sequence of integers in − dctne is identically equal
to some constant L ∈ Z. Applying Proposition 3.1 we obtain the convergence

ui+dctne,j+jn(t+ tn)→ ωij(t) (5.6)
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as n → ∞, in which ω is an ω-limit point of the function u. In view of Proposition 4.1 we have
ωi,j(t) = Φ(i− ct− θ0) for some θ0 ∈ R, which allow us to write

1/n ≥ uin+1,jn(tn)− uin,jn(tn)

= uL+dctne+1,jn(tn)− uL+dctne,jn(tn)

→ ωL+1,0(0)− ωL,0(0)

= Φ(L+ 1− θ0)− Φ(L− θ0)

for n→∞. This violates the strict monotonicity Φ′ > 0 and hence yields the desired contradiction.

Proof of Proposition 5.1. We first prove item (iii). Assuming that this statement fails, we can find
a sequence (tk, ik, jk) for which we have 0 < t1 < t2 < . . .→∞ together with the inequalities

uik,jk(tk) ≤ Φ(−2), uik−1,jk(tk) > Φ(−2). (5.7)

It follows from Lemma 3.5 that the sequence ik− ctk is bounded. Arguing as in the proof of Lemma
5.3, we can hence again assume that there exists L ∈ Z for which we have L = ik−dctke. In addition,
we obtain the limits

uik,jk(tk)→ ωL,0(0) ≤ Φ(−2), uik−1,jk(tk)→ ωL−1,0(0) ≥ Φ(−2). (5.8)

Here ω is an ω-limit point for u, which must be a travelling wave by Proposition 4.1. This again
violates the strict monotonicity of Φ. Item (iv) follows analogously.

Turning to (i), we assume that there exists a sequence (tk, ik, jk) with T ≤ t1 < t2 < ... → ∞
together with

uik,jk(tk) ≤ Φ(−2), uik+1,jk(tk) >
1

2
= Φ(0) (5.9)

and seek a contradiction. Arguing as above, we can find L ∈ Z together with an ω-limit point ω for
u with

ωL,0 ≤ Φ(−2), ωL+1,0(0) ≥ Φ(0), (5.10)

which violates Proposition 4.1.
It remains to establish (ii). Picking t ≥ T and (i, j) ∈ It, it follows from Lemma 3.5 that i − ct

is bounded by some constant R that depends only on T . Increasing T if necessary, we can apply
Lemma 5.3 to obtain the desired bound (5.3).

Lemma 5.4. Consider the setting of Proposition 5.1 and recall the phase γ : [T,∞) → `∞(Z)
defined in (2.12). Then there exists T∗ ≥ T and M > 0 such that for every t ≥ T∗ we have

||γ(t)− ct||`∞ ≤M. (5.11)

Proof. In view of the definition (2.12) it suffices to show that i∗ − ct is bounded. Combining
Lemma 3.5 and (2.11) and possibly increasing T > 0, we see that

Φ(0) ≤ ui∗(j,t)+1,j(t) ≤ Φ
(
i∗(j, t) + 1 + θ0 − ct+ cT + Cq0(1− e−µ(t−T ))

)
+ q0e

−µ(t−T ) (5.12)

for all t ≥ T . Choosing T∗ ≥ T in such a way that

Φ(0)− q0e
−µ(T∗−T ) ≥ Φ(−1),

we conclude that

i∗(j, t) + 1 + θ0 − ct+ cT + Cq0(1− e−µ(t−T )) > −1, t ≥ T∗. (5.13)

Hence, i∗ − ct is bounded from below. An upper bound can be obtained in a similar way.
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Proof of Theorem 2.2. Arguing by contradiction once more, let us assume that there exist δ > 0
together with sequences (ik, jk) ∈ Z2 and T ≤ t1 < t2 < · · · → ∞ for which

|∆k| := |uik,jk(tk)− Φ
(
ik − γjk(tk)

)
| ≥ δ. (5.14)

We first claim that the sequence ik− ctk is bounded. To see this, we first use Lemma 5.4 to conclude
that γjk(tk)− ctk is bounded. Using (3.21) we subsequently find

∆k ≥ Φ
(
ik − ctk + αk

)
− q1e

−µ(tk−T ) − Φ
(
ik − ctk + βk

)
,

in which
αk = cT − θ1 − Cq1(1− e−µ(tk−T )), βk = ctk − γjk(tk) (5.15)

are two bounded sequences. In particular, if ik− ctk is unbounded we can use the exponential decay
of Φ to achieve ∆k ≥ −δ for all large k. A similar argument using (3.20) yields ∆k ≤ δ, which
contradicts (5.14) and hence establishes our claim.

In particular, we can extract a constant subsequence ik − dctke =: L ∈ Z. Passing to a further
subsequence, we may also assume that i∗(jk, tk)−dctke =: L̃ ∈ Z. The definition (2.12) allows us to
write

Φ
(
ik − γjk(tk)

)
= Φ

(
ik − i∗(jk, tk) + Φ−1

(
ui∗(jk,tk),jk(tk)

) )
= Φ

(
ik − dctke − i∗(jk, tk) + dctke+ Φ−1

(
ui∗(jk,tk),jk(tk)

) )
= Φ

(
L− L̃+ Φ−1

(
uL̃+dctke,jk(tk)

))
.

Applying Proposition 3.1, we see that there exists an ω-limit point ω for u for which the limits

uik,jk(tk)→ ωL,0(0), uL̃+dctke,jk(tk)→ ωL̃,0(0) (5.16)

hold as k →∞. Writing ωi,j(t) = Φ(i− ct− x0) in view of Proposition 4.1, we hence find

∆k → Φ(L− x0)− Φ
(
L− L̃+ Φ−1

(
Φ(L̃− x0)

))
= 0 (5.17)

as k →∞, which clearly contradicts (5.14).

5.2 Phase asymptotics
In this subsection we shift our attention to vertical differences of the phase γ, in order to establish
Proposition 5.2. Our first result resembles Lemma 5.3 in the sense that we study the interfacial
region of the wave, but in this case we get a flatness result. This can subsequently be used to obtain
a bound on the vertical differences of the function i∗ defined in (2.11), which in view of (2.12) allows
us to analyze the phase γ.

Lemma 5.5. Consider the setting of Proposition 5.1 and pick a constant R > 0. Then we have the
limit

lim
t→∞

sup
j∈Z, |i−ct|≤R

|ui,j+1(t)− ui,j(t)| = 0.

Proof. Assume to the contrary that there exist constants R > 0 and δ > 0 together with sequences
(ik, jk) ∈ Z2 and 0 < t1 < t2 < ...→∞ that satisfy the inequalities

|ik − ctk| ≤ R, |uik,jk+1(tk)− uik,jk(tk)| ≥ δ. (5.18)

As in the proof of the Lemma 5.3, we may assume that ik − dctke = L ∈ Z and use Proposition 3.1
to conclude the convergence

uik,jk+1(t+ tk)− uik,jn(tk) = uL+dctke,jk+1(tk)− uL+dctke,jk(tk)

→ ωL,1(0)− ωL,0(0)

= 0,

(5.19)
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in which ω is an ω-limit point of the function u. The last identity follows from Proposition 4.1, which
states that ω is a planar wave travelling in the horizontal direction. This obviously contradicts (5.18)
and hence concludes the proof.

Lemma 5.6. Consider the setting of Proposition 5.1 and recall the function i∗ defined by (2.11).
Then there exists T̃ > T so that

|i∗(j + 1, t)− i∗(j, t)| ≤ 1 (5.20)

holds for all j ∈ Z and all t ≥ T̃ .

Proof. If the above claim does not hold, we can find sequences (ik, ĩk, jk) ∈ Z3 and T < t1 < t2 <
· · · → ∞ for which the inequality |ik − ĩk| > 1 holds, together with{

uik,jk(tk) ≤ 1/2,

uik+1,jk(tk) > 1/2,

{
uĩk,jk+1(tk) ≤ 1/2,

uĩk+1,jk+1(tk) > 1/2.
(5.21)

As before, we can assume that ik + dctke = L ∈ Z and ĩk + dctke = L̃ ∈ Z. In addition, we can
use Proposition 3.1 to construct an ω-limit point ω for u that satisfies the inequalities{

ωL,0(0) ≤ 1/2,

ωL+1,0(0) > 1/2,

{
ωL̃,1(0) ≤ 1/2,

ωL̃+1,1(0) > 1/2
(5.22)

on account of (5.21). Therefore, Proposition 4.1 shows that the bounds

L ≤ θ0 ≤ L+ 1, L̃ ≤ θ0 ≤ L̃+ 1

hold for some θ0 ∈ R. This allows us to conclude that |L − L̃| ≤ 1 and obtain the contradiction
|ik − ĩk| ≤ 1.

Proof of Proposition 5.2. Assume to the contrary that there exists δ > 0 together with subsequences
(jk) ∈ Z and T ≤ t1 < t2 < · · · → ∞ for which

|γjk+1(tk)− γjk(tk)| ≥ δ. (5.23)

We now claim that it is possible to pass to a subsequence that has i(jk + 1, tk) 6= i(jk, tk). Indeed, if
actually i(jk + 1, tk) = i(jk, tk) = ik holds for all large k, then we can use Lemma 5.5 to obtain the
contradiction

δ ≤ |γjk+1(tk)− γjk(tk)| = |Φ−1(uik,jk)− Φ−1(uik,jk+1)|
≤ C|uik,jk+1 − uik,jk | → 0 as k →∞.

In particular, Lemma 5.6 allows us to assume that i(jk+1, tk) = i(jk, tk)+1 without loss of generality.
Using the shorthand ik = i(jk, tk), we find

|γjk+1(t)− γjk(t)| = |1 + Φ−1(uik,jk)− Φ−1(uik+1,jk+1)|,

together with the inequalities{
uik,jk(tk) ≤ 1/2,

uik+1,jk(tk) > 1/2,

{
uik+1,jk+1(t) ≤ 1/2,

uik+2,jk+1(t) > 1/2.

We now proceed in a similar fashion as in the proof of Lemma 5.6. In particular, we may assume
that ik + dctke = L ∈ Z and use Proposition 3.1 to construct an ω-limit point ω for u that satisfies
the inequalities
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{
ωL,0(0) ≤ 1/2,

ωL+1,0(0) ≥ 1/2,

{
ωL+1,1(0) ≤ 1/2,

ωL+2,1(0) ≥ 1/2.

Again, Proposition 4.1 implies that ωi,j(t) = Φ(i−ct−x0), for some x0 ∈ R. The independence with
respect to j implies that ωL+1,0(0) = ωL+1,1(0) = 1

2 and consequently x0 = L+ 1. In particular, we
find

uik,jk(tk)→ ωL,0(0) = Φ(−1), uik+1,jk+1(tk)→ ωL+1,1(0) = Φ(0), (5.24)

and hence
|γjk+1(t)− γjk(t)| → |1 + Φ−1

(
Φ(−1)

)
− Φ−1

(
Φ(0)

)
| = 0

as k →∞, which leads to the desired contradiction with (5.23).

6 Discrete heat equation
In this section we obtain several preliminary estimates for the Cauchy problem{

ḣj(t) = hj+1(t) + hj−1(t)− 2hj(t), (6.1)
hj(0) = h0

j (6.2)

associated to the discrete heat equation. These estimates will underpin our analysis of the discrete
curvature flow, using a nonlinear Cole-Hopf transformation to pass to a suitable intermediate system.

To set the stage, we recall the well-known fact that the one-dimensional continuous heat equation{
Ht = Hyy, y ∈ R, t > 0,

H(y, 0) = H0(y), y ∈ R,
(6.3)

admits the explicit solution

H(y, t) =
1√
4πt

∫
R
e−

(y−x)2
4t H0(x)dx. (6.4)

Taking derivatives, one readily obtains the estimates

sup
y∈R
|Hy(y, t)| ≤ min{C ||H0||L∞ t

− 1
2 , ||H0,y||L∞}, (6.5)

sup
y∈R
|Hyy(y, t)| ≤ min{C ||H0||L∞ t

−1, ||H0,yy||L∞}. (6.6)

The main result of this section transfers these estimates to the discrete setting (6.1). This gener-
alization is actually surprisingly delicate, caused by the fact that supremum norms cannot be readily
transferred to Fourier space.

Proposition 6.1. There exists a constant K > 0 so that for any h0 ∈ `∞(Z), the solution h ∈
C1
(
[0,∞); `∞(Z)

)
to the initial value problem (6.1) satisfies the first-difference bound

∣∣∣∣∂+h(t)
∣∣∣∣
`∞
≤ min

{∣∣∣∣∂+h0
∣∣∣∣
`∞
,K
∣∣∣∣h0

∣∣∣∣
`∞

1√
t

}
, (6.7)

together with the second-difference estimate∣∣∣∣∣∣∂(2)h(t)
∣∣∣∣∣∣
`∞
≤ min

{∣∣∣∣∣∣∂(2)h0
∣∣∣∣∣∣
`∞
,K
∣∣∣∣h0

∣∣∣∣
`∞

1

t

}
(6.8)

for all t > 0.
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Using a suitable Cole-Hopf transformation the linear heat equation (6.1) can be transformed to
the nonlinear initial value problem V̇ =

1

d

(
ed∂

+V − 2 + e−d∂
−V
)

+ c, t > 0

V (0) = V 0,
(6.9)

which will serve as a useful proxy for the discrete curvature flow. In order to exploit the fact that
this equation is invariant under spatially homogeneous perturbations, we introduce the deviation
seminorm

[V ]dev := ||V − V0||`∞ (6.10)

for sequences V ∈ `∞(Z).

Corollary 6.2. Fix two constants c, d ∈ R with d 6= 0. Then there exist positive constants Mht and
κ so that for any V 0 ∈ `∞(Z2), the solution V : [0,∞)→ `∞(Z2) to the initial value problem (6.9)
satisfies the estimates ∣∣∣∣∂+V (t)

∣∣∣∣
∞ ≤Mhte

κ[V 0]dev min

{∣∣∣∣∂+V 0
∣∣∣∣
`∞
,

1√
t

}
, (6.11)∣∣∣∣∣∣∂(2)V (t)

∣∣∣∣∣∣
∞
≤Mhte

κ[V 0]dev min

{∣∣∣∣∂+V 0
∣∣∣∣
`∞
,

1

t

}
. (6.12)

6.1 Discrete heat kernel
The discrete heat kernel G : [0,∞) → `∞(Z) is the fundamental solution of the discrete heat
equation, in the sense that the function h = G satisfies (6.1)-(6.2) with the initial condition

h0
0 = 1 and h0

j = 0 for j 6= 0.

We now recall the characterization

Ik(t) =
1

π

∫ π

0

et cosω cos(kω)dω, k ∈ Z, (6.13)

for the family of modified Bessel functions of the first kind; see e.g. the classical work by Watson
[28]. By passing to the Fourier domain, one can readily confirm the well-known identity

Gj(t) = e−2tIj(2t). (6.14)

We may now formally write

hj(t) =
∑
k∈Z

Gk(t)h0
j−k = e−2t

∑
k∈Z

Ik(2t)h0
j−k (6.15)

for the solution to the general initial value problem (6.1)-(6.2). In order to see that this is well-defined
for h0 ∈ `∞(Z), one can use the generating function

e
t
2 (x+x−1) =

∞∑
k=−∞

Ik(t)xn (6.16)

together with the bound Ik(t) ≥ 0 to conclude that G(t) ∈ `1(Z). Further useful properties of the
functions Ik can be found in the result below.

Lemma 6.3. There exists a constant C > 0 so that for any integer k ≥ 0 we have the bound

Ik(t) ≤ C et√
t
, t > 0, (6.17)

together with

0 < Ik(t)− Ik+1(t) ≤ C e
t

t
t > 0. (6.18)
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Proof. The proof of (6.17) can be found in [28], while the lower bound in (6.18) is established in
[53]; see also [2, Eq. (16)]. Turning to the upper bound in (6.18), we remark that cosω is negative
for ω ∈ (π/2, π), which allows us to write

Ik(t)− Ik+1(t) =
2

π

∫ π

0

et cosω sin(
2k + 1

2
ω) sin(

ω

2
)dω

=
2

π

∫ π/2

0

et cosω sin(
2k + 1

2
ω) sin(

ω

2
)dω +O(1)

as t→∞. Substituting u = 2
√
t sin(ω/2) we find

Ik(t)− Ik+1(t) =
1

tπ
et
∫ √2t

0

e−u
2/2 sin

(
(2k + 1) sin−1

(
u

2
√
t

))
u√

1− u2

4t

du+O(1)

as t→∞. The desired bound now follows from the fact that the integral can be uniformly bounded
in t and k.

In order to obtain the bounds in Proposition 6.1, the convolution (6.15) indicates that we need
to control the `1-norm of the first and second differences of G. The following two results provide the
crucial ingredients to achieve this, exploiting telescoping sums. To our surprise, we were unable to
find these bounds directly in the literature.

Lemma 6.4. There exists a constant C > 0 so that the bound∑
k∈Z
|Ik+1(t)− Ik(t)| ≤ C et√

t
(6.19)

holds for all t > 0.

Proof. We first note that the characterization (6.13) implies Ik(z) = I−k(z) for all k ∈ Z. Using
(6.18), we can hence use a telescoping series to compute∑

k∈Z
|Ik+1(t)− Ik(t)| = 2

∑
k≥0

Ik(t)− Ik+1(t)

= 2I0(t)− 2 lim
N→∞

IN (t).
(6.20)

The result now follows from (6.17) together with the limit IN (t)→ 0 as N →∞.

Lemma 6.5. There exists a constant C > 0 so that the bound∑
k∈Z
|Ik+1(t)− 2Ik(t) + Ik−1(t)| ≤ C e

t

t
(6.21)

holds for all t > 0.

Proof. We claim that for every t > 0 the function

Z≥0 3 k 7→ ν
(2)
k (t) := Ik+1(t)− 2Ik(t) + Ik−1(t) (6.22)

changes sign exactly once. Note that this allows us to obtain the desired bound (6.21) from (6.18)
by applying a telescoping argument similar to the one used in the proof of Lemma 6.4.

Turning to the claim, we recall the notation

ak(t) =
tI ′k(t)

Ik(t)
= k + t

Ik+1(t)

Ik(t)
(6.23)

25



from [49] and use the identity Ik+1(t) + Ik−1(t) = 2I ′k(t) to compute

ν
(2)
k (t) = 2I ′k(t)− 2Ik(t) =

2Ik(t)

t
(ak(t)− t) .

The inequality (15) in [48] directly implies that ak(t) < ak+1(t), for every t > 0 and k ≥ 0. In
addition, the lower bound in (6.18) implies that

a0(t)− t = t
(I1(t)

I0(t)
− 1
)
< 0, (6.24)

while for k > t we easily conclude ak(t) − t ≥ k − t > 0. In particular, k 7→ ak(t) − t changes sign
precisely once. The claim now follows from the strict positivity Ik(t) > 0 for t > 0 and k ≥ 0.

6.2 Gradient bounds
Using the representation (6.15) and the bounds for the discrete heat kernel obtained above, we are
now ready to establish Proposition 6.1 and Corollary 6.2.

Proof of Proposition 6.1. In order to establish (6.7), we apply a discrete derivative to (6.15), which
yields

(∂+h)j(t) = e−2t
∑
k∈Z

(
Ik+1(2t)− Ik(2t)

)
h0
j−k.

Applying (6.19), we hence find∣∣(∂+h)j(t)
∣∣ ≤ e−2t

∣∣∣∣h0
∣∣∣∣
`∞

∑
k∈Z
|Ik+1(2t)− Ik(2t)| ≤ C

∣∣∣∣h0
∣∣∣∣
`∞

1√
t
. (6.25)

On the other hand, the inequality ||∂+h(t)||`∞ ≤
∣∣∣∣∂+h0

∣∣∣∣
`∞

follows directly from the comparison
principle, since ∂+h satisfies the discrete heat equation with initial value ∂+h0. The second-order
bound (6.8) can be obtained in a similar fashion by exploiting the estimate (6.21).

Proof of Corollary 6.2. Since the function Ṽ = V − V 0
0 also satisfies the first line of (6.9), we may

assume without loss of generality that V 0
0 = 0 and hence [V 0]dev =

∣∣∣∣V 0
∣∣∣∣
`∞

. Upon writing

hj(t) = ed(Vj(t)−ct), (6.26)

straightforward calculations show that h satisfies (6.1) with the initial condition

hj(0) = edV
0
j , (6.27)

which using the comparison principle implies that

hj(t) ≥ e−|d|||V
0||∞ , t ≥ 0. (6.28)

For any j ∈ Z, the intermediate value theorem allows us to find h∗1, h∗2 ∈ [hj , hj+1] and h∗3 ∈ [hj−1, hj ]
for which we have

∂+Vj =
1

d

∂+hj
h∗1

, ∂(2)Vj =
1

d

(
∂(2)hj
hj

− (∂+hj)
2

2(h∗2)2
− (∂−hj)

2

2(h∗3)2

)
. (6.29)

In particular, (6.28) yields the bounds∣∣∣∣∂+V
∣∣∣∣
`∞
≤ 1

|d|
e|d|||V

0||
`∞
∣∣∣∣∂+h

∣∣∣∣
`∞
, (6.30)∣∣∣∣∣∣∂(2)V

∣∣∣∣∣∣
`∞
≤ 1

|d|

(
e|d|||V

0||
`∞

∣∣∣∣∣∣∂(2)h
∣∣∣∣∣∣
`∞

+ e2|d|||V 0||
`∞
∣∣∣∣∂+h

∣∣∣∣2
`∞

)
. (6.31)

In a similar fashion, we obtain∣∣∣∣∂+h0
∣∣∣∣
`∞
≤ |d|e|d|||V

0||
`∞
∣∣∣∣∂+V 0

∣∣∣∣
`∞
. (6.32)

Using
∣∣∣∣∂(2)h0

∣∣∣∣
`∞
≤ 2

∣∣∣∣∂+h0
∣∣∣∣
`∞

, the desired estimates (6.11)-(6.12) can now be established by
applying Proposition 6.1.
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7 Construction of super- and sub-solutions
In this section we construct refined sub- and super-solutions of (2.1) that use the solution V of
the nonlinear system (6.9) as a type of phase. In particular, we add a transverse j-dependence to
the planar sub- and super-solutions (3.9)-(3.10), which requires some substantial modifications to
account for the slowly-decaying resonances that arise in the residuals.

As a preparation, we introduce the linear operator Ltw : H1 → L2 associated to the linearization
of the travelling wave MFDE (2.7), which acts as

(Ltwv) (ξ) = cv′(ξ) + v(ξ + 1)− 2v(ξ) + v(ξ − 1) + g′
(
Φ(ξ)

)
v(ξ). (7.1)

In addition, we introduce the formal adjoint Ladj
tw : H1 → L2 that acts as(

Ladj
tw w

)
(ξ) = −cw′(ξ) + w(ξ + 1)− 2w(ξ) + w(ξ − 1) + g′

(
Φ(ξ)

)
w(ξ). (7.2)

In view of the requirement c 6= 0 in (HΦ), the results in [44] show that there exists a strictly positive
function ψ ∈ C1(R,R) for which we have

KerLadj
tw = span{ψ}, RangeLtw = {f ∈ L2 : 〈ψ, f〉 = 0}, (7.3)

together with the normalization 〈ψ,Φ′∗〉 = 1.
We now fix the parameter d in the LDE (6.9) by writing

d = −〈Φ′′, ψ〉. (7.4)

The characterization (7.3) implies that we can find a solution r ∈ H1 to the MFDE

Ltwr + dΦ′ = −Φ′′ (7.5)

that becomes unique upon imposing the normalization 〈ψ, r〉 = 0. Multiplying this residual function
by the square gradients

[αV ]j = [βV ]2j − 1 =
(Vj+1 − Vj)2

2
+

(Vj−1 − Vj)2

2
(7.6)

gives us the correction terms we need to control the resonances discussed above. In order to account
for the possibility that d = 0, the actual LDE that we use here is given by

V̇ =


1

d

(
ed∂

+V − 2 + e−d∂
−V
)

+ c d 6= 0,

∂(2)V + c, d = 0.

(7.7)

Proposition 7.1. Fix R > 0 and suppose that the assumptions (Hg) and (HΦ) both hold. Then for
any ε > 0, there exist constants δ > 0, ν > 0 and C1-smooth functions

p : [0,∞)→ R, q : [0,∞)→ R (7.8)

so that for any V 0 ∈ `∞(Z) with

[V 0]dev < R,
∣∣∣∣∂+V 0

∣∣∣∣
`∞

< δ (7.9)

the following holds true.

(i) Writing V : [0,∞)→ `∞(Z) for the solution to (7.7) with the initial condition V (0) = V 0, the
functions u+ and u− defined by

u+
i,j(t) := Φ

(
i− Vj(t) + q(t)

)
+ r
(
i− Vj(t) + q(t)

)
[αV ]j + p(t),

u−i,j(t) := Φ
(
i− Vj(t)− q(t)

)
+ r
(
i− Vj(t)− q(t)

)
[αV ]j − p(t)

(7.10)

are a super- respectively sub-solution of (2.1).
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(ii) We have q(0) = 0 together with the bound 0 ≤ q(t) ≤ ε for all t ≥ 0.

(iii) We have the bound 0 ≤ p(t) ≤ ε for all t ≥ 0, together with the initial inequality

p(0)− ||r||L∞ δ
2 > ν > 0. (7.11)

(iv) The asymptotic behaviour p(t) = O(t−
3
2 ) holds for t→∞.

In addition, the constants ν = ν(ε) satisfy limε↓0 ν(ε) = 0.

In the remainder of this section we set out to establish this result for u+, which requires us to
understand the residual J [u+] introduced in (3.7). Upon introducing the notation

ξi,j(t) = i− Vj(t), (7.12)

a short computation allows us to obtain the splitting

J [u+] = Jglb + JΦ + Jr, (7.13)

in which the two expressions

[JΦ]i,j = −Φ′ (ξi,j + q) V̇j − Φ(ξi,j+1 + q)− Φ(ξi+1,j + q)

−Φ(ξi+1,j + q)− Φ(ξi−1,j + q) + 4Φ(ξi,j + q)− g
(
Φ(ξi,j + q)

)
,

[Jr]i,j = −r′ (ξi,j + q) V̇j [αV ]j

−r (ξi,j+1 + q) [αV ]j+1 − r (ξi,j−1 + q) [αV ]j−1

−r (ξi+1,j + q) [αV ]j − r (ξi−1,j + q) [αV ]j + 4r (ξi,j + q) [αV ]j

+r (ξi,j + q)
(
∂+Vj∂

+V̇j + ∂−Vj∂
−V̇j

)
(7.14)

are naturally related to the defining equations for Φ, r and V , while

Jglb = q̇
(
Φ′(ξ + q) + r′(ξ + q)αV

)
− g(u+) + g

(
Φ(ξ + q)

)
+ ṗ (7.15)

reflects the contributions associated to the dynamics of p and q.
In order to control the quantities (7.14), we introduce the two simplified expressions

JΦ;apx = −
(
dΦ′(ξ + q) + Φ′′(ξ + q)

)
αV ,

Jr;apx =
(
dΦ′(ξ + q) + Φ′′(ξ + q) + g′

(
Φ(ξ + q)

)
r(ξ + q)

)
αV

(7.16)

which will turn out to be useful approximations. Indeed, the two results below provide bounds for
the associated remainder terms

JΦ = JΦ;apx +RΦ, Jr = Jr;apx +Rr. (7.17)

Lemma 7.2. Fix R > 0 and suppose that (Hg) and (HΦ) are satisfied. Then there exists a constant
M > 0 so that for any V ∈ C1([0,∞); `∞) that satisfies the LDE (7.7) with [V (0)]dev < R and any
pair of functions p, q ∈ C([0,∞);R), we have the estimate

||RΦ(t)||`∞ ≤M min
{∣∣∣∣∂+V (0)

∣∣∣∣
`∞
, t−

3
2

}
, t > 0. (7.18)

Proof. Expanding Φ(ξi,j±1 + q) to third order around ξi,j + q and evaluating the travelling wave
MFDE (2.7) at this point, we find

[JΦ]i,j = Φ′ (ξi,j + q)
(
−V̇j + ∂(2)Vj + c

)
− Φ′′(ξi,j + q)[αV ]j

− 1

2

∫ ξi,j+1+q

ξi,j+q

Φ′′′(s)(ξi,j+1 + q − s)2ds− 1

2

∫ ξi,j−1+q

ξi,j+q

Φ′′′(s)(ξi,j−1 + q − s)2ds.
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Substituting the LDE (7.7) and expanding ed∂
+V and e−d∂

−V to third order, we compute

[JΦ]i,j = −dΦ′ (ξi,j + q) [αV ]j − Φ′′(ξi,j + q)[αV ]j

− 1

2

∫ ξi,j+1−q

ξi,j−q
Φ′′′(s)(ξi,j+1 + q − s)2ds− 1

2

∫ ξi,j−1+q

ξi,j+q

Φ′′′(s)(ξi,j−1 + q − s)2ds

− 1

2d

∫ d∂+V

0

es
(
d∂+V − s

)2
ds+

1

2d

∫ 0

−d∂−V
es
(
d∂−V + s

)2
ds.

Since the first line of this expression corresponds with JΦ;apx, the desired estimate follows from
Corollary 6.2.

Lemma 7.3. Fix R > 0 and suppose that (Hg) and (HΦ) are satisfied. Then there exists a constant
M > 0 so that for any V ∈ C1([0,∞); `∞) that satisfies the LDE (7.7) with [V (0)]dev < R and any
pair of functions p, q ∈ C([0,∞);R), we have the estimate

||Rr(t)||`∞ ≤M min
{∣∣∣∣∂+V (0)

∣∣∣∣
`∞
, t−

3
2

}
, t > 0. (7.19)

Proof. Expanding r(ξi,j+1 + q) and r(ξi,j−1 + q) around ξi,j + q and evaluating (7.5) at this point,
we find

[Jr]i,j = r′ (ξi,j + q)
(
− V̇j + c

)
[αV ]j − [αV ]j+1

∫ ξi,j+1+q

ξi,j+q
r′(s)ds− [αV ]j−1

∫ ξi,j−1+q

ξi,j+q
r′(s)ds

−r (ξi,j + q)
(

[αV ]j+1 + [αV ]j−1 − 2[αV ]j

)
+r (ξi,j + q)

(
∂+Vj∂

+V̇j + ∂−Vj∂
−V̇j

)
+
(
dΦ′(ξi,j + q) + Φ′′(ξi,j + q) + g′

(
Φ(ξi,j + q)

)
r(ξi,j + q)

)
[αV ]j .

(7.20)
In order to estimate the terms in the second line above, we compute

[αV ]j+1 − [αV ]j =
1

2
(Vj+2 − Vj+1 + Vj − Vj−1) (Vj+2 − Vj+1 − Vj + Vj−1)

=
1

2
(Vj+2 − Vj+1 + Vj − Vj−1)

(
∂(2)Vj+1 + ∂(2)Vj

)
,

(7.21)

which can be thought of as a discrete analogue of the identity ∂y(∂2
y) = 2∂y∂yy. Substituting (7.7)

and expanding ed∂
+V and e−d∂

−V up to second order, we can again apply Corollary 6.2 to obtain
the desired estimate.

We are now ready to introduce our final approximation

J = Japx +R (7.22)

by writing

Japx = q̇
(
Φ′(ξ + q) + r′(ξ + q)αV

)
+ ṗ

−p
∫ 1

0
g′
(

Φ(ξ + q) + τ
(
p+ r(ξ + q)αV

))
dτ

−pr(ξ + q)αV
∫ 1

0

∫ τ
0
g′′
(

Φ(ξ + q) + s
(
p+ r(ξ + q)αV

))
ds dτ.

(7.23)

We show below that the residual R satisfies the same bound as RΦ and Rr. This will allow us to
construct appropriate functions p and q and establish Proposition 7.1.

Lemma 7.4. Fix R > 0 and suppose that (Hg) and (HΦ) are satisfied. Then there exists a constant
M > 0 so that for any V ∈ C1([0,∞); `∞) that satisfies the LDE (7.7) with [V (0)]dev < R and any
pair of functions p, q ∈ C([0,∞);R), we have the estimate

||R(t)||`∞ ≤M min
{∣∣∣∣∂+V (0)

∣∣∣∣
`∞
, t−

3
2

}
, t > 0. (7.24)
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Proof. Writing
Japx;I = Jglb + JΦ;apx + Jr;apx, (7.25)

together with
Ig = g

(
Φ(ξ + q)

)
− g(u+) + g′

(
Φ(ξ + q)

)
r(ξ + q)αV , (7.26)

we have
Japx;I = q̇

(
Φ′(ξ + q) + r′(ξ + q)αV

)
+ ṗ+ Ig. (7.27)

Upon rewriting Ig in the form

Ig = −
(
p+ r(ξ + q)αV

) ∫ 1

0
g′
(

Φ(ξ + q) + τ
(
p+ r(ξ + q)αV

))
dτ

+g′
(
Φ(ξ + q)

)
r(ξ + q)αV

= −p
∫ 1

0
g′
(

Φ(ξ + q) + τ
(
p+ r(ξ + q)αV

))
dτ

−αV r(ξ + q)
(
p+ r(ξ + q)αV

) ∫ 1

0

∫ τ
0
g′′
(

Φ + s
(
p+ r(ξ + q)αV

))
ds dτ,

(7.28)

we obtain the splitting (7.22) with the residual

R = RΦ +Rr − r(ξ + q)2α2
V

∫ 1

0

∫ τ
0
g′′
(

Φ + s
(
p+ r(ξ + q)αV

))
ds dτ. (7.29)

As before, the desired bound now follows from Corollary 6.2.

Proof of Proposition 7.1. Without loss of generality, we assume that the constantM from Lemma 7.4
satisfies

M ≥ max{1, ||r||L∞ , ||r
′||L∞ , sup

−1≤s≤2
|g′(s)|, sup

−1≤s≤2
|g′′(s)|,Mhte

κR}. (7.30)

We first pick a constant m ∈ (0, 1] in such a way that

−g′(s) ≥ 2m > 0, for s ∈ [−ε, 3ε] ∪ [1− 2ε, 1 + 2ε],

reducing ε if needed. Next, we define the positive constants

Cε := max{1, 2m+M

minΦ∈[ε,1−ε] Φ′
}, δε :=

ε3m3

63M3C3
ε

, νε :=
ε3m2

2 · 63M2C3
ε

=
Mδε
2m

together with the positive function

Kε : [0,∞)→ R, t 7→M min
{
δε, t

− 3
2

}
. (7.31)

We now choose functions p, q ∈ C∞ [0,∞) that satisfy

Kε(t) ≤ mp(t) ≤ 2Kε(t), m|ṗ(t)| ≤ 2K̃ε(t), q(t) = Cε

∫ t

0

p(s)ds,

where K̃ε is defined by

K̃ε(t) =

{
0, t ≤ δ−

2
3

ε

3
2Mt−

5
2 , t > δ

− 2
3

ε ,
(7.32)

which we recognize as the absolute value of weak derivative of the function Kε. The functions p and
q are clearly nonnegative, with

p(0)− ||r||L∞ δ
2
ε ≥

Mδε
m
−Mδ2

ε =
Mδε
m

(1− δεm) ≥ Mδε
m

(
1− 1

63

)
> νε.
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Furthermore, we have p(t) ≤ 2Mδε
m

≤ ε, together with

q(t) ≤ 2Cε
m

∫ ∞
0

Kε(s)ds ≤
6Cε
m

Mδ
1
3
ε = ε.

In particular, items (ii)-(iv) are satisfied. In addition, using |αV | ≤ M2δ2
ε we obtain the a-priori

bound
|p(t) + r

(
ξij(t) + q(t)

)
[αV ]j(t)| ≤

2Mδε
m

+M3δ2
ε ≤ ε (7.33)

for all t ≥ 0 and (i, j) ∈ Z2.
Turning to (i), Lemma 7.4 implies that it suffices to show that the approximate residual (7.23)

satisfies Japx ≥ Kε(t). Introducing the notation

IA =
q̇

p
Φ′(ξ + q), IB =

q̇

p
r′(ξ + q)αV , IC =

ṗ

p
, (7.34)

together with the integral expressions

ID = −
∫ 1

0
g′
(

Φ(ξ + q) + τ
(
p+ r(ξ + q)αV

))
dτ

IE = −r(ξ + q)αV
∫ 1

0

∫ τ
0
g′′
(

Φ(ξ + q) + s
(
p+ r(ξ + q)αV

))
ds dτ,

(7.35)

we see that
Japx = p

(
IA + IB + IC + ID + IE

)
. (7.36)

Using the observation
|ṗ(t)|
p(t)

≤

{
0, t ≤ δ−

2
3

ε

3t−1, t > δ
− 2

3
ε ,

(7.37)

we obtain the global bounds
|IB | ≤ CεM

3δ2
ε ≤ m

3
,

|IC | ≤ 3δ
2
3
ε ≤ m

3
,∣∣IE∣∣ ≤ M2δ2

ε ≤ m

3
.

(7.38)

When Φ(ξ + q) ∈ (0, ε] ∪ [1− ε, 1), we may use (7.33) to obtain the lower bound

ID ≥ 2m. (7.39)

Together with IA ≥ 0, this allows us to conclude

Japx ≥ mp(t) ≥ Kε(t). (7.40)

On the other hand, when Φ(ξ + q) ∈ [ε, 1− ε], we have

|IA| ≥ Cε
2m+M

Cε
≥ 2m+M, |ID| ≤M, (7.41)

which again yields (7.40).

8 Phase approximation
In this section we discuss the relation between the interface γ defined in (2.12), solutions of the
discrete mean curvature flow

Γ̇ =
∂(2)Γ

β2
Γ

+ 2dβΓ + c− 2d, (8.1)
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and solutions of the (nonlinear) heat LDE (7.7), both with d = −〈Φ′′, ψ〉. In particular, we establish
Theorem 2.3 in two main steps.

The first step is to show that γ can be well-approximated by V after allowing sufficient time for
the interface to ’flatten’. This is achieved using the sub- and super-solutions constructed in §7.

Proposition 8.1. Assume that (Hg), (HΦ) and (H0) all hold and let u be a solution of (2.1) with
the initial condition (2.9). Then for every ε > 0, there exists a constant τε > 0 so that for any τ ≥ τε,
the solution V of the LDE (7.7) with the initial value V (0) = γ(τ) satisfies

||γ(t)− V (t− τ)||`∞ ≤ ε, t ≥ τ. (8.2)

The second step compares the dynamics of (8.1) and (7.7) and shows that the solutions V and
Γ closely track each other. This is achieved by developing a local comparison principle for (8.1) that
is valid as long as Γ is sufficiently flat.

Proposition 8.2. Fix R > 0. Then for any ε > 0 there exists δ > 0 so that any pair Γ, V ∈
C1
(
[0,∞), `∞(Z,R)

)
that satisfies the assumptions

(a) Γ satisfies the mean curvature LDE (8.1) on (0,∞)× Z;

(b) V satisfies the heat LDE (7.7) on (0,∞)× Z;

(c) Γ(0) = V (0), with ||∂+V (0)||`∞ ≤ δ and [V (0)]dev ≤ R,

must in fact have
||Γ(t)− V (t)||`∞ ≤ ε, for all t ≥ 0. (8.3)

8.1 Approximating γ by V

The main idea for our proof of Proposition 8.1 is to compare the information on γ resulting from
the asymptotic description (2.17) with the phase information that can be derived from (7.10). In
particular, we capture the solution u between the sub- and super-solutions constructed in §7 and
exploit the monotonicity properties of Φ.

Lemma 8.3. Assume that (Hg), (HΦ) and (H0) all hold and let u be a solution of (2.1) with the
initial condition (2.9). Then for every ε > 0, there exists a constant τε > 0 so that for any τ ≥ τε
the solution V of the LDE (7.7) with the initial value V (0) = γ(τ) satisfies

Φ
(
i− γj(t)

)
≤ Φ

(
i− Vj(t− τ)

)
+ ε (8.4)

for all (i, j) ∈ Z2 and t ≥ τ .

Proof. Without loss of generality, we assume that 0 < ε < 1. Recalling the constant νε from Propo-
sition 7.1, Theorem 2.2 and Lemma 5.4 allow us to find τε > 0 and R > 0 for which the bounds∣∣ui,j(t)− Φ

(
i− γj(t)

)∣∣ ≤ 1

2
νε, [γ(t)]dev ≤ R (8.5)

hold for all (i, j) ∈ Z2 and t ≥ τε. We now recall the constant δ > 0 and the functions p and q that
arise by applying Proposition 7.1 with our pair (ε, R). Decreasing δ if necessary, we may assume that
ε > δ. After possibly increasing τε, we may use Proposition 5.2 to obtain∣∣∣∣∂+γ(τ)

∣∣∣∣
`∞
≤ δ. (8.6)

We now recall the super-solution u+ defined in (7.10). Our choice for V together with the bounds
(7.11) and (8.5) imply that

ui,j(τ) ≤ Φ
(
i− γj(τ)

)
+ r
(
i− γj(τ)

)
[αγ ]j(τ) + p(0) = u+

i,j(0). (8.7)

32



In particular, the comparison principle for LDE (2.1) together with the bound (8.5) implies that

Φ
(
i− γj(t)

)
≤ ui,j(t) +

1

2
ν(ε) ≤ u+

i,j(t− τ) +
1

2
νε, t ≥ τ. (8.8)

Corollary 6.2 allows us to obtain the uniform bound ||αV ||`∞ ≤ C1δ
2 ≤ C1ε

2 for some C1 > 0.
Recalling items (ii) and (iii) of Proposition 7.1, we obtain the bound

u+
i,j(t)− Φ

(
i− Vj(t)

)
≤ C2ε, t ≥ 0 (8.9)

for some C2 > 0. In particular, we see that

Φ
(
i− γj(t)

)
≤ Φ

(
i− Vj(t− τ)

)
+

1

2
νε + C2ε, t ≥ τ, (8.10)

from which the statement can readily be obtained.

Proof of Proposition 8.1. For convenience, we write

σ = min
ξ∈[0,3]

Φ′(ξ) > 0. (8.11)

Recalling the constant τε > 0 defined in Lemma 8.3 and picking τ ≥ τε, we set out to show that

Vj(t− τ)− γj(t) ≤ σ−1ε, t ≥ τ. (8.12)

Arguing by contradiction, we plug i = dVj(t− τ)e into (8.4) and obtain

Φ
(
dVj(t− τ)e − γj(t)

)
≤ Φ

(
dVj(t− τ)e − Vj(t− τ)

)
+ ε ≤ Φ(1) + ε ≤ Φ(2), (8.13)

possibly after restricting the size of ε > 0. This implies σ−1ε < Vj(t − τ) − γj(t) ≤ 2. The first
inequality in (8.13) now yields the contradiction

ε < σ
(
Vj(t− τ)− γj(t)

)
≤ Φ

(
dVj(t− τ)e − γj(t)

)
− Φ

(
dVj(t− τ)e − Vj(t− τ)

)
≤ ε,

(8.14)

since both arguments of Φ are contained in the interval [0, 3]. An O(ε) lower bound for Vj(t−τ)−γj(t)
can be obtained in a similar fashion, which allows the proof to be completed.

8.2 Tracking V with Γ

In this subsection we set out to establish Proposition 8.2. The main idea to establish this approxi-
mation result is to apply a local comparison principle to the discrete curvature LDE (8.1). To this
end, we define the residual

Jdc[Γ] = Γ̇− ∂(2)Γ

β2
Γ

− 2dβΓ − c+ 2d (8.15)

for any Γ ∈ C1
(
[0,∞); `∞(Z)

)
. As usual, we say that Γ is a super- or sub-solution for (8.1) if the

inequality Jdc[Γ]j(t) ≥ 0 respectively Jdc[Γ]j(t) ≤ 0 holds for all j ∈ Z and t ≥ 0.

Lemma 8.4 (Comparison principle). Pick a sufficiently small δ > 0 and consider a pair of functions
Γ−, Γ+ ∈ C1

(
[0,∞), `∞(Z,R)

)
that satisfy the following assumptions:

(a) Γ− is a subsolution of the LDE (8.1);

(b) Γ+ is a supersolution of the LDE (8.1);

(c) The inequalities ||∂+Γ−(t)||`∞ ≤ δ, and ||∂+Γ+(t)||`∞ ≤ δ hold for every t ≥ 0;
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(d) Γ−j (0) ≤ Γ+
j (0) holds for every j ∈ Z.

Then for every j ∈ Z and t ≥ 0 we have the bound

Γ−j (t) ≤ Γ+
j (t).

Proof. Define the function W : [0,∞) → `∞(Z) by W (t) = Γ+(t) − Γ−(t). Then W satisfies the
differential inequality

Ẇj ≥ (Wj+1 −Wj)F (Γ+,Γ−)j + (Wj−1 −Wj)G(Γ+,Γ−)j ,

in which the functions F and G are defined by

F (Γ−,Γ+) =
1

β2
Γ+

+
(
∂+Γ− + ∂+Γ+

)( d

βΓ− + βΓ+

− ∂(2)Γ−

2β2
Γ−β

2
Γ+

)
,

G(Γ−,Γ+) =
1

β2
Γ+

−
(
∂−Γ− + ∂−Γ+

)( d

βΓ− + βΓ+

− ∂(2)Γ−

2β2
Γ−β

2
Γ+

)
.

Pick δ > 0 in such a way that
1

1 + δ2
> δ (|d|+ 2δ) + 1

2 . Notice that this choice and assumption (c)

imply that both βΓ− and βΓ+ are bounded by
√

1 + δ2, which in turn implies

F (Γ−,Γ+) >
1

2
, G(Γ−,Γ+) >

1

2
. (8.16)

In order to prove that W ≥ 0, we assume to the contrary that there exist j∗ ∈ Z and t∗ such
that Wj∗(t∗) = −ϑ < 0. Picking ε > 0 and K > 0 in such a way that ϑ = εe2Kt∗ , we can define

T := sup
{
t ≥ 0 : Wj(t) > −εe2Kt for all j ∈ Z

}
. (8.17)

Since W ∈ C1
(

[0,∞) ; `∞(Z)
)
we must have T ≤ t∗ and

inf
j∈Z

Wj(T ) = −εe2KT . (8.18)

Without loss of generality, we may assume that W0(T ) < − 7
8εe

2KT .
We now choose a sequence z ∈ `∞(Z,R) with the properties

z0 = 1, lim
|j|→∞

zj = 3, 1 ≤ zj ≤ 3 and
∣∣∣∣∂+z

∣∣∣∣
`∞
≤ 1. (8.19)

This allows us to define the function

W−j (t;α) = −ε(3

4
+ αzj)e

2Kt, (8.20)

in which α > 0 is a parameter. We denote by α∗ ∈ ( 1
8 ,

1
4 ] the minimal value of α for which Wj(t) ≥

W−j (t;α) for all (j, t) ∈ Z× [0, T ]. In view of the limiting behaviour

lim
|j|→∞

W−j (t;α∗) = −ε[ 3
4

+ 3α∗]e2Kt < −9

8
εe2Kt, (8.21)

the minimality of α∗ allows us to conclude that there exist j0 ∈ Z and 0 < t0 ≤ T such that
Wj0(t0) = W−j0 (t0;α∗). As a consequence, we must have

Ẇj0(t0) ≤ Ẇ−j0 (t0;α∗). (8.22)

In addition, the definitions of W− and α∗ directly yield the inequalities

Wj0+1(t0)−Wj0(t0) ≥W−j0+1(t0;α∗)−W−j0 (t0;α∗), (8.23)

Wj0−1(t0)−Wj0(t0) ≥W−j0−1(t0;α∗)−W−j0 (t0;α∗). (8.24)
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Together with the bounds

Ẇ−j0 (t0;α∗) ≤ −7

4
εKe2Kt0 ,

∣∣∣∣∂±W−(t0;α∗)
∣∣∣∣
`∞
≤ εe2Kt0 , (8.25)

this allows us to compute

−7

4
εKe2Kt0 ≥ (∂+W )j0(t0)F (U, V )j0 − (∂−W )j0(t0)G(U, V )j0

≥ 1

2
(∂+W−)j0(t0;α∗)− 1

2
(∂−W−)j0(t0;α∗)

≥ −εe2Kt0 .

(8.26)

This leads to the desired contradiction upon choosing K > 1 to be sufficiently large.

In order to use the comparison principle above to compare V and Γ, we need to obtain uniform
bounds on the discrete derivatives ∂+V and ∂+Γ. Corollary 6.2 provides such bounds for ∂+V , but
the corresponding estimates for ∂+Γ require some additional technical work.

We pursue this in the results below, establishing a second comparison principle directly for the
function Υ := ∂+Γ. Indeed, upon introducing the shorthand

Π[Υ]j =
√

1 +
(
Υ2
j+1 + Υ2

j

)
/2

and differentiating (8.1), a short computation shows that Υ satisfies the LDE

Υ̇j =
∂+Υj

Π[Υ]2j
− ∂−Υj

Π[Υ]2j−1

+ 2d
(
Π[Υ]j −Π[Υ]j−1

)
. (8.27)

Lemma 8.5. Pick a sufficiently small δ > 0 and consider a pair of functions Υ−, Υ+ ∈ C1
(
[0,∞), `∞(Z)

)
that satisfy the following assumptions:

(a) Υ− is a subsolution of the LDE (8.27);

(b) Υ+ is a supersolution of the LDE (8.27);

(c) The inequalities ||Υ−(t)||`∞ ≤ δ and ||Υ+(t)||`∞ ≤ δ hold for every t ≥ 0;

(d) Υ−j (0) ≤ Υ+
j (0) holds for every j ∈ Z.

Then for every j ∈ Z and t ≥ 0 we have the inequality

Υ−j (t) ≤ Υ+
j (t). (8.28)

Proof. Defining Zj(t) = Υ+
j (t)−Υ−j (t), we see that Zj(0) ≥ 0 for every j ∈ Z. Moreover, Z satisfies

the differential inequality

Żj ≥ F (Υ−,Υ+)j(Zj+1 − Zj) +G(Υ−,Υ+)j−1(Zj−1 − Zj) +H(Υ−,Υ+)jZj , (8.29)

in which the functions F , G and H are defined by

F (Υ−,Υ+)j =
1

Π[Υ+]2j
+

(
d

Π[Υ+]j + Π[Υ−]j
−

∂+Υ−j
2Π[Υ+]2jΠ[Υ−]2j

)(
Υ+
j+1 + Υ−j+1

)
,

G(Υ−,Υ+)j =
1

Π[Υ+]2j−1

+

(
∂−Υ−j

2Π[Υ+]2j−1Π[Υ−]2j−1

− d

Π[Υ+]j−1 + Π[Υ−]j−1

)(
Υ+
j−1 + Υ−j−1

)
,

H(Υ−,Υ+)j =

(
d

Π[Υ+]j + Π[Υ−]j
−

∂+Υ−j
2Π[Υ+]2jΠ[Υ−]2j

)(
Υ+
j+1 + Υ−j+1 + Υ+

j + Υ−j
)
−

+

(
∂−Υ−j

2Π[Υ+]2j−1Π[Υ−]2j−1

− d

Π[Υ+]j−1 + Π[Υ−]j−1

)(
Υ+
j + Υ−j + Υ+

j−1 + Υ−j−1

)
.
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We again pick δ > 0 in such a way that
1

1 + δ2
> δ (|d|+ 2δ) + 1

2 . Notice that this choice and

assumption (c) imply that both Π[Υ−] and Π[Υ+] are bounded by
√

1 + δ2. This in turn yields the
bounds

F (Υ−,Υ+) > 1/2, G(Υ−,Υ+) > 1/2, |H(Υ−,Υ+)| ≤ 4δ(2δ + |d|). (8.30)

Applying a similar procedure as in the proof of Lemma 8.4 allows us to conclude that Zj(t) ≥ 0
for every j ∈ Z.

Lemma 8.6. Fix T > 0 and pick a sufficiently small δ0 > 0. Then for any Γ0 ∈ `∞(Z) with∣∣∣∣∂+Γ0
∣∣∣∣
`∞
≤ δ0, the solution Γ ∈ C1

(
[0, T ], `∞(Z)

)
to the mean curvature LDE (8.1) with Γ(0) = Γ0

satisfies ∣∣∣∣∂+Γ(t)
∣∣∣∣
`∞
≤ δ0, for all t ∈ [0, T ]. (8.31)

Proof. Writing Υ = ∂+Γ, we can apply Grönwall’s inequality to (8.27) to find

||Υ(t)||`∞ ≤ K ||Υ(0)||`∞ e
bt, (8.32)

for some constants K ≥ 1 and b > 0 that are independent of T . Recalling the constant δ > 0 from
Lemma 8.5, we now choose δ0 > 0 in such a way that δ0KebT ≤ δ. Applying the comparison principle
from Lemma 8.5, we conclude that ||Υ(t)||`∞ ≤ ||Υ(0)||`∞ holds for t ∈ [0, T ]. Indeed, the constant
function ||Υ(0)||`∞ also satisfies LDE (8.27).

Corollary 8.7. Pick Γ0 ∈ `∞(Z). Then there exists an unique solution Γ ∈ C1
(
[0,∞), `∞(Z)

)
of the

mean curvature LDE (8.1). Moreover, there exists δ > 0 such that the initial bound
∣∣∣∣∂+Γ0

∣∣∣∣
`∞
≤ δ,

implies that also ∣∣∣∣∂+Γ(t)
∣∣∣∣
`∞
≤ δ, for all t ≥ 0. (8.33)

Proof. Existence and uniqueness follows from standard arguments. Applying an iterative argument
involving Lemma 8.6 leads to the uniform bound (8.33).

Proof of Proposition 8.2. Using the fact that V satisfies the LDE (7.7), we compute

Jdc[V ] = V̇ − ∂2V

β2
V

− 2dβV − c+ 2d (8.34)

= ∂(2)V
(
1− 1

β2
V

)
+ 2d

(
1 +

1

2
αV − βV

)
(8.35)

+
1

2d

∫ d∂+V

0

es(d∂+V − s)2ds+
1

2d

∫ −d∂−V
0

es(d∂−V + s)2ds. (8.36)

Expanding βV around 0 and using Corollary 6.2, we find a constant M > 0 for which

||Jdc[V ]||`∞ ≤M min
{∣∣∣∣∂+V (0)

∣∣∣∣
`∞
, t−

3
2

}
. (8.37)

We define the constant δ > 0 and the function K : [0,∞)→ R by

δ =
ε3

M363
, K(t) = M min

{
δ, t−

3
2

}
. (8.38)

Possibly reducing ε > 0, we many assume that δ > 0 is sufficiently small to satisfy the requirements
of Lemma 8.4 and Corollary 8.7.

Next, we pick a smooth function q : [0,∞) that satisfies

K(t) ≤ q(t) ≤ 2K(t) (8.39)

and introduce the integral p(t) =
∫ t

0
q(s)ds. It is straightforward to check that 0 ≤ p(t) ≤ ε for every

t ≥ 0. By spatial homogeneity, we have Jdc[V + p] = Jdc[V ] + ṗ and hence

||Jdc[V + p]||`∞ ≥ 0. (8.40)
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In particular, the function V + p is a supersolution of the LDE (7.7). Lemma 8.4 hence implies

Γ(t) ≤ V (t) + p(t) ≤ V (t) + ε. (8.41)

The inequality V (t)− ε ≤ Γ(t) follows similarly by constructing an appropriate sub-solution for the
LDE (8.1).

8.3 Proof of Theorem 2.3
As a final step, we need to link the parameter d = −〈Ψ′′, ψ〉 used here and in §7 to the expressions
in (2.21) that involve the wavespeed c and its angular derivatives. To this end, we recall the identity

(∂2
θcθ)|θ=0

= 〈Φ′(·+ 1)− Φ′(· − 1)− 2Φ′′, ψ〉 (8.42)

that was obtained in [33]. As expected, this expression vanishes in the continuum limit since

lim
h→0

Φ′(·+ h)− Φ′(· − h)

h
− 2Φ′′ = 0.

Lemma 8.8. Suppose that (Hg) and (HΦ) both hold. Then the parameter d defined in (7.4) satisfies
the identity

d =
c

2
+

(∂2
θcθ)|θ=0

2
. (8.43)

Proof. Comparing (8.43) with (7.4) and recalling the characterization (7.3) together with the nor-
malization 〈Φ′, ψ〉 = 1, it suffices to show that the function

h(ξ) = Φ′(ξ + 1)− Φ′(ξ − 1) + cΦ′(ξ) (8.44)

satisfies h ∈ Range
(
Ltw

)
. To achieve this, we write ϕ(ξ) = ξΦ′(ξ) and recall the travelling wave

MFDE (2.7) to compute

Ltwϕ(ξ) = cϕ′(ξ) + ϕ(ξ + 1) + ϕ(ξ − 1)− 2ϕ(ξ) + g′
(
Φ(ξ)

)
ϕ(ξ)

= cΦ′(ξ) + cξΦ′′(ξ) + ξΦ′(ξ + 1) + Φ′(ξ + 1) + ξΦ′(ξ − 1)− Φ′(ξ − 1)− 2ξΦ′(ξ)

+ξg′
(
Φ(ξ)

)
Φ′(ξ)

= h(ξ) + ξ
d

dξ

(
cΦ′(ξ) + Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ) + g

(
Φ(ξ)

))
= h(ξ),

(8.45)
as desired.

Proof of Theorem 2.3. The statements follow directly from Propositions 8.1-8.2 and Lemma 8.8.

9 Stability results
Our goal here is to establish Theorem 2.4, our final main result. In particular, we consider the two
solutions

u : [0,∞)→ `∞(Z2), uper : [0,∞)→ `∞(Z2) (9.1)

to the Allen-Cahn LDE (2.1) with the respective initial conditions

u(0) = u0, uper(0) = u0;per, (9.2)

together with their associated phases

γ : [T,∞)→ `∞(Z), γper : [T,∞)→ `∞(Z) (9.3)
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that are defined by (2.12) for some sufficiently large T � 1. Since the LDE (2.1) is autonomous, the
uniqueness of solutions imply that uper and hence the phase γper inherit the j-periodicity

uper
i,j+P (t) = uper

i,j (t), γper
j+P (t) = γper

ij (t) (9.4)

for t ≥ 0 respectively t ≥ T .
It is natural to expect that u·,j(t) converges to uper

·,j (t) as |j| → ∞, which we confirm below in
§9.1. However, one cannot expect the corresponding result to hold for the phases (9.3), on account
of the discontinuities that occur. In fact, we obtain the following asymptotic ’almost-convergence’
result.

Proposition 9.1. Consider the setting of Theorem 2.4 and recall the two phase functions (9.3).
Then for every ε > 0 there exists a constant Tε together with a function

Jε : [Tε,∞)→ Z≥0 (9.5)

so that we have the bound
|γj(t)− γper

j (t)| ≤ ε (9.6)

for every t ≥ Tε and |j| ≥ Jε(t).

In order to explore the consequences of the approximation result Proposition 8.1, we hence need
to understand the evolution of asymptotically almost-periodic initial conditions under (7.7). This is
achieved in our second main result here. We emphasize that in the special case P = 1, the asymptotic
phase µ is equal to the value taken by the constant sequence V 0;per.

Proposition 9.2. Suppose that the assumptions (Hg) and (HΦ) both hold, fix two constants R > 0
and P ∈ Z>0 and pick a sufficiently large K > 0. Then for any ε > 0 and J ∈ Z≥0, there exists a
time Tε,J > 0 so that the following holds true.

Consider any pair (V 0, V 0;per) ∈ `∞(Z)2 that satisfies the conditions

(a) For all |j| ≥ J we have |V 0
j − V

0;per
j | ≤ ε.

(b) The periodicity V 0;per
j+P = V 0;per

j holds for all j ∈ Z.

(c) We have the deviation bounds

[V 0;per]dev ≤ R, [V 0]dev ≤ R. (9.7)

Then there exists an asymptotic phase µ ∈ R so that the solution V : [0,∞) → `∞(Z) to the LDE
(7.7) with the initial condition V (0) = V 0 satisfies the bound

||V (t)− ct− µ||`∞(Z) ≤ Kε, t ≥ Tε,J . (9.8)

Proof of Theorem 2.4. Pick ε > 0. Recalling the terminology of of Propositions 8.1 and 9.1, we
introduce the constants τ ε = max{τε, Tε} and Jε = Jε(τ ε) and write V (ε) for the solution to the LDE
(7.7) with the initial condition V (ε)(0) = γ(τ ε). Writing µε for the phase defined in Proposition 9.2,
we combine (8.2) with (9.8) to obtain

||γ(t+ τ ε)− ct− µε||`∞ ≤
∣∣∣∣γ(t+ τ ε)− V (ε)(t)

∣∣∣∣
`∞

+
∣∣∣∣V (ε)(t)− ct− µε)

∣∣∣∣
`∞

≤ (K + 1)ε,
(9.9)

for all t ≥ Tε,Jε .
We now claim that there exists µ ∈ R for which we have the limit

lim
ε↓0

(
µε − cτ ε

)
= µ. (9.10)

Indeed, the uniform bound on γ(t) − ct obtained in Lemma 5.4 allows us to find a convergent
subsequence, which using (9.9) can be transferred to the full set. Sending ε ↓ 0 we hence obtain

lim
t→∞

||γ(t)− ct− µ||`∞(Z) = 0, (9.11)

which leads to the desired convergence in view of Theorem 2.2.
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9.1 Spatial asymptotics
In this subsection we establish Proposition 9.1. As a preparation, we compare the j-asymptotic
behaviour of the two solutions (9.1). We remark that the arguments in Lemma 9.4 below remain
valid upon replacing the limits in (2.23) and (9.14) by their two counterparts |i|± j →∞, which are
one-sided in j. This validates the comments in §1 concerning the limit (1.40).

Lemma 9.3. Assume that (Hg) is satisfied and consider any u0
A ∈ `∞(Z2). Then for any ε > 0 and

time T > 0, there exists δ > 0 so that for any u0
B ∈ `∞(Z2) that satisfies∣∣∣∣u0

A − u0
B

∣∣∣∣
`∞(Z2)

≤ δ, (9.12)

the solutions uA and uB of the Allen-Cahn LDE (2.1) with the initial conditions uA(0) = u0
A and

uB(0) = u0
B satisfy

||uA(t)− uB(t)||`∞(Z2) ≤ ε, t ∈ [0, T ]. (9.13)

Proof. This is a standard consequence of the well-posedness of (2.1) in `∞(Z2).

Lemma 9.4. Consider the setting of Theorem 2.4 and recall the two solutions (9.1). Then for every
τ > 0 we have the spatial limit

ui,j(τ)− uper
i,j (τ)→ 0, as |i|+ |j| → ∞. (9.14)

Proof. In view of symmetry considerations, it suffices to establish the claim for the limit i+j → −∞.
To this end, we fix an arbitrary ε > 0. We write ũper for the solution to the LDE (7.7) with the
initial condition ũper(0) = u0;per + δ, using Lemma 9.3 to pick δ > 0 in such a way that

ũper(τ) ≤ uper(τ) +
ε

2
. (9.15)

We subsequently pick M > 0 in such a way that

u0
i,j ≤ ũ

0;per
i,j (0) + δ +Me|c|(i+j) = ũper

i,j (0) +Me|c|(i+j) (9.16)

holds for every (i, j) ∈ Z2.
On account of (H0) and the comparison principle, we can pick A ≥ 1 in such a way that

−A ≤ ũper(t) ≤ A (9.17)

holds for all t ∈ [0, τ ]. We now write

K = max{g′(s) : −A ≤ s ≤ A} > 0 (9.18)

and observe that (Hg) implies that

g(s+ β) ≤ g(s) +Kβ (9.19)

for any −A ≤ s ≤ A and β ≥ 0.
We now pick α > 0 in such a way that

α|c| − c4

6
cosh |c| > K (9.20)

and claim that the function

wi,j(t) = ũper
i,j (t) +Me|c|(i+j+2|c|t+αt) (9.21)

is a super-solution to (2.1). Indeed, recalling the residual (3.7), a short computation yields

J [w]i,j(t) = g
(
ũper
i,j (t)

)
− g
(
wi,j(t)

)
+Me|c|(i+j+2|c|t+αt) (2c2 + α|c| − 2e|c| − 2e−|c| + 4

)
= g

(
ũper
i,j (t)

)
− g
(
wi,j(t)

)
+
(
wi,j(t)− ũper

i,j (t)
)(
α|c| − c4

6
cosh c̃

)
(9.22)
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for some c̃ ∈ [0, |c|], which using (9.19) and (9.20) implies

J [w]i,j ≥ (wi,j − ũper
i,j )
(
α|c| − c4

6
cosh c̃−K

)
≥ 0.

(9.23)

In particular, the comparison principles allows us to conclude that

ui,j(τ) ≤ uper
i,j (τ) +

ε

2
+Me|c|(i+j+2|c|τ+ατ), (9.24)

which implies that there exists Lε � 1 so that

ui,j(τ) ≤ uper
i,j (τ) + ε (9.25)

for i + j ≤ −Lε. An analogous lower bound can be obtained by exploiting similar sub-solutions,
which completes the proof.

Proof of Proposition 9.1. For any sufficiently large t ≥ 1 and (i, j) ∈ Z2 we may estimate

Φ
(
i− γper

j (t)
)
− Φ

(
i− γj(t)

)
≤ |Φ

(
i− γper

j (t)
)
− uper

i,j (t)|+ |ui,j(t)− Φ
(
i− γj(t)

)
|

+|uper
i,j (t)− ui,j(t)|.

(9.26)

Applying Theorem 2.2 and Lemma 9.4, we find a constant Tε > 0 and a function Jε : [Tε,∞)→ Z≥0

for which we have
Φ
(
i− γper

j (t)
)
− Φ

(
i− γj(t)

)
≤ 3ε (9.27)

for all t ≥ Tε and |j| ≥ Jε(t). Recalling the constant M > 0 from Lemma 5.1 and writing

ν = min{Φ′(ξ) : |ξ| ≤M + 1} > 0, (9.28)

we may substitute i = dcte into (9.27) to obtain

ν|γper
j (t)− γj(t)| ≤ Φ

(
dcte − γper

j (t)
)
− Φ

(
dcte − γj(t)

)
≤ 3ε (9.29)

for all t ≥ Tε and |j| ≥ Jε(t). This yields the desired result after some minor relabelling.

9.2 Phase asymptotics
It remains to establish Proposition 9.2. We accomplish this by using the Cole-Hopf transformation
discussed in §6 to transform (7.7) into the linear heat LDE (6.1). The bounds in §6 readily allow us
to analyze solutions with initial conditions that are asymptotically ‘almost-periodic’.

Lemma 9.5. Pick an integer P ≥ 1 and let h ∈ C1
(
[0,∞); `∞(Z)

)
be a solution to the discrete heat

equation (6.1) with an initial condition h0 ∈ `∞(Z) that satisfies h0
j+P = h0

j for all j ∈ Z. Then
upon introducing the average

h =
1

P

P−1∑
j=0

h0
j , (9.30)

we have the limit
lim
t→∞

∣∣∣∣h(t)− h
∣∣∣∣
`∞

= 0. (9.31)

Proof. Since h inherits the periodicity of h0, the function

Hj(t) =
1

P

P−1∑
k=0

hj+k(t) (9.32)

is constant with respect to j. Since it also satisfies (6.1), we must have Hj(t) = h. The result now
follows from the fact that ||∂+h(t)||`∞ → 0 as t→∞; see (6.7).
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Proof of Proposition 9.2. We first treat the case d 6= 0 and write V per for the solution to the non-
linear LDE (7.7) with initial condition V per(0) = V 0;per. Without loss of generality, we may assume
that V 0;per

0 = 0. Inspired by the proof of Corollary 6.2, we introduce the functions

hper(t) = ed(V per(t)−ct), h = ed(V (t)−ct), q(t) = edV (t)−dV per(t) − 1 (9.33)

and note that hper and h both satisfy the linear heat LDE (6.1). By construction, we have

h(0) = hper(0) + hper(0)q(0), (9.34)

which allows us to write

hj(t)− hper
j (t) =

∑
k∈Z

Gk(t)hper
j−k(0)qj−k(0). (9.35)

Assuming 0 < ε < 1 and R ≥ 1, we see that

|V 0
0 | ≤ R+ |VJ | ≤ R+ ε+ V 0

J ≤ 2R+ 1 ≤ 3R (9.36)

and hence
∣∣∣∣V 0

∣∣∣∣
`∞
≤ 4R. This allows us to obtain the global bounds

||hper(0)||`∞ ≤ e
|d|R, ||q(0)||`∞ ≤ e

5|d|R + 1, (9.37)

together with the tail bound

|qj(0)| ≤ e|d|ε − 1, j ≥ |J |. (9.38)

Using (9.35), these bounds allow us to obtain the estimate

||h(t)− hper(t)||`∞ ≤
∑
|j−k|≥J |Gk(t)|(e|d|ε − 1) +

∑
|j−k|<J |Gk(t)|e|d|R(e5|d|R + 1)

≤ (e|d|ε − 1) ||G(t)||`1 + (2J − 1)e|d|R(e5|d|R + 1) ||G(t)||`∞ .
(9.39)

Since ||G(t)||`1 = 1 on account of (6.16) and ||G(t)||`∞ ≤ Ct−1/2 on account of (6.17), we can find
a time T = T (ε, J, d,R) so that

||h(t)− hper(t)||`∞ ≤ 2(e|d|ε − 1) (9.40)

for all t ≥ T .
After possibly increasing T , we can use Lemma 9.5 to conclude∣∣∣∣h(t)− h

∣∣∣∣
`∞
≤ 4(e|d|ε − 1), t ≥ T, (9.41)

for some h ∈ [0, e|d|R]. Inverting the transformation (9.33) hence leads to the desired bound on V
with µ = lnh

d . The remaining case d = 0 can be treated in the same fashion as above, but now one
does not need to use the nonlinear coordinate transformation.
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