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Abstract

We establish the existence and nonlinear stability of travelling pulse solutions for the discrete
FitzHugh-Nagumo equation with infinite-range interactions close to the continuum limit. For the
verification of the spectral properties, we need to study a functional differential equation of mixed
type (MFDE) with unbounded shifts. We avoid the use of exponential dichotomies and phase spaces,
by building on a technique developed by Bates, Chen and Chmaj for the discrete Nagumo equation.
This allows us to transfer several crucial Fredholm properties from the PDE setting to our discrete
setting.

1 Introduction

The FitzHugh-Nagumo partial differential equation (PDE) is given by

ut = uxx + g(u; r0)− w

wt = ρ(u− γw),
(1.1)

where g(·; r0) is the cubic bistable nonlinearity given by

g(u; r0) = u(1− u)(u− r0) (1.2)

and ρ, γ are positive constants. This PDE is commonly used as a simplification of the Hodgkin-
Huxley equations, which describe the propagation of signals through nerve fibres. The spatially
homogeneous version of this equation was first stated by FitzHugh in 1961 [14] in order to describe
the potential felt at a single point along a nerve axon as a signal travels by. A few years later [15],
the diffusion term in (1.1) was added to describe the dynamics of the full nerve axon instead of just
a single point. As early as 1968 [16], FitzHugh released a computer animation based on numerical
simulations of (1.1). This videoclip clearly shows that (1.1) admits isolated pulse solutions resem-
bling the spike signals that were measured by Hodgkin and Huxley in the nerve fibres of giant squids
[19].
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As a consequence of this rich behaviour and the relative simplicity of its structure, (1.1) has
served as a prototype for several similar systems. For example, memory devices have been designed
using a planar version of (1.1), which supports stable stationary radially symmetric spot patterns
[27]. In addition, gas discharges have been described using a three-component FitzHugh-Nagumo
system [33, 40], for which it is possible to find stable travelling spots [42].

Mathematically, it turned out to be a major challenge to control the interplay between the exci-
tation and recovery dynamics and rigorously construct the travelling pulses visualized by FitzHugh
in [16]. Such pulse solutions have the form

(u,w)(x, t) = (u0, w0)(x+ c0t), (1.3)

in which c0 is the wavespeed and the wave profile (u0, w0) satisfies the limits

lim
|ξ|→∞

(u0, w0)(ξ) = 0. (1.4)

Plugging this Ansatz into (1.1) and writing ξ = x + c0t, we see that the profiles are homoclinic
solutions to the travelling wave ordinary differential equation (ODE)

c0u
′
0(ξ) = u′′0(ξ) + g(u0(ξ); r0)− w0(ξ)

c0w
′
0(ξ) = ρ

[
u0(ξ)− γw0(ξ)

]
.

(1.5)

The analysis of this equation in the singular limit ρ ↓ 0 led to the birth of geometric singular pertur-
bation theory, see for example [25] for an interesting overview. Indeed, the early works [8, 18, 24, 26]
used geometric techniques such as the Conley index, exchange lemmas and differential forms to con-
struct pulses and analyse their stability. A more analytic approach was later developed in [30], where
Lin’s method was used in the r0 ≈ 1

2 regime to connect a branch of so-called slow-pulse solutions
to (1.5) to a branch of fast-pulse solutions. This equation is still under active investigation, see for
example [9, 10], where the birth of oscillating tails for the pulse solutions is described as the unstable
root r0 of the nonlinearity g moves towards the stable root at zero.

Many physical, chemical and biological systems have an inherent discrete structure that strongly
influences their dynamical behaviour. In such settings lattice differential equations (LDEs), i.e. dif-
ferential equations where the spacial variable can only take values on a lattice such as Zn, are the
natural replacements for PDEs, see for example [1, 20, 32]. Although mathematically it is a relatively
young field of interest, LDEs have already appeared frequently in the more applied literature. For
example, they have been used to describe phase transitions in Ising models [1], crystal growth in
materials [7] and phase mixing in martensitic structures [43].

To illustrate these points, let us return to the nerve axon described above and reconsider the
propagation of electrical signals through nerve fibres. It is well known that electrical signals can only
travel at adequate speeds if the nerve fibre is insulated by a myeline coating. This coating admits
regularly spaced gaps at the so-called nodes of Ranvier [35]. Through a process called saltatory
conduction, it turns out that excitations of nerves effectively jump from one node to the next [31].
Exploiting this fact, it is possible [29] to model this jumping process with the discrete FitzHugh-
Nagumo LDE

u̇j = 1
h2 (uj+1 + uj−1 − 2uj) + g(uj ; r0)− wj

ẇj = ρ[uj − γwj ].
(1.6)

The variable uj now represents the potential at the jth node, while the variable wj denotes a recov-
ery component. The nonlinearity g describes the ionic interactions. Note that this equation arises
directly from the FitzHugh-Nagumo PDE upon taking the nearest-neighbour discretisation of the
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Laplacian on a grid with spacing h > 0.

Inspired by the procedure for partial differential equations, one can substitute a travelling pulse
Ansatz (uj , wj)(t) = (uh, wh)(hj + cht) into (1.6). Instead of an ODE, we obtain the system

chu
′
h(ξ) = 1

h2 [uh(ξ + h) + uh(ξ − h)− 2uh(ξ)] + g(uh(ξ); r0)− wh(ξ)

chw
′
h(ξ) = ρ[uh(ξ)− γwh(ξ)]

(1.7)

in which ξ = hj + cht. Such equations are called functional differential equations of mixed type
(MFDEs).

In [20, 21], Hupkes and Sandstede studied (1.6) and showed that for small values of ρ and r0

sufficiently far from 1
2 , there exists a locally unique travelling pulse solution of this system and that

it is asymptotically stable with an asymptotic phase shift. No restrictions were required on the dis-
cretisation distance h, but the results relied heavily on the existence of exponential dichotomies for
MFDEs. As a consequence, the techniques developed in [20, 21] can only be used if the discretisation
involves finitely many neighbours. Such discretisation schemes are said to have finite range.

Recently, an active interest has arisen in non-local equations that feature infinite-range interac-
tions. For example, Ising models have been used to describe the infinite-range interactions between
magnetic spins arranged on a grid [1]. In addition, many physical systems, such as amorphous semi-
conductors [17] and liquid crystals [12], feature non-standard diffusion processes, which are generated
by fractional Laplacians. Such operators are intrinsically non-local and hence automatically require
infinite-range discretisation schemes [11].

Our primary interest here, however, comes from so-called neural field models, which aim to
describe the dynamics of large networks of neurons. These neurons interact with each other by ex-
changing signals across long distances through their interconnecting nerve axons [4–6, 34, 41]. It is of
course a major challenge to find effective equations to describe such complex interactions. One model
that has been proposed [4, Eq. (3.31)] features a FitzHugh-Nagumo type system with infinite-range
interactions.

Motivated by the above, we consider a class of infinite-range FitzHugh-Nagumo LDEs that
includes the prototype

u̇j = κ
h2

∑
k∈Z>0

e−k
2

[uj+k + uj−k − 2uj ] + g(uj ; r0)− wj

ẇj = ρ[uj − γwj ],
(1.8)

in which κ > 0 is a normalisation constant. In [39], Scheel and Faye studied equations such as (1.8) for
discretisations with infinite-range interactions featuring exponential decay in the coupling strength.
They circumvented the need to use a state space as in [21], which enabled them to construct pulses
to (1.8) for arbitrary discretisation distance h. Very recently [38], they developed a center manifold
approach that allows bifurcation results to be obtained for neural field equations.

In this paper, we also construct pulse solutions to equations such as (1.8), but under weaker
assumptions on the decay rate of the couplings. Moreover, we will establish the nonlinear stability
of these pulse solutions, provided the coupling strength decays exponentially. However, both results
do require the discretisation distance h to be very small.

In particular, we will be working in the continuum limit. The pulses we construct can be seen as
perturbations of the travelling pulse solution of the FitzHugh-Nagumo PDE. However, we will see
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that the travelling wave equations are highly singular perturbations of (1.5), which poses a signif-
icant mathematical challenge. On the other hand, we do not need to use exponential dichotomies
directly in our non-local setting as in [20]. Instead we are able to exploit the detailed knowledge that
has been obtained using these techniques for the pulses in the PDE setting.

Our approach to tackle the difficulties arising from this singular perturbation is strongly inspired
by the work of Bates, Chen and Chmaj. Indeed, in their excellent paper [1], they study a class of
systems that includes the infinite-range discrete Nagumo equation

u̇j = κ
h2

∑
k∈Z>0

e−k
2

[uj+k + uj−k − 2uj ] + g(uj ; r0), (1.9)

in which κ > 0 is a normalisation constant. This equation can be seen as a discretisation of the
Nagumo PDE

ut = uxx + g(u; r0). (1.10)

The authors show that, under some natural assumptions, these systems admit travelling pulse solu-
tions for h small enough.

In the remainder of this introduction we outline their approach and discuss our modifications,
which significantly broaden the application range of these methods. We discuss these modifications
for the prototype (1.8), but naturally they can be applied to a broad class of systems.

Transfer of Fredholm properties: scalar case.
An important role in [1] is reserved for the operator Lh;u0:sc;c0:sc given by

Lh;u0:sc;c0:scv(ξ) = c0:scv
′(ξ)− κ

h2

∑
k∈Z>0

e−k
2
[
v(ξ + hk) + v(ξ − hk)− 2v(ξ)

]
−gu(u0:sc(ξ); r0)v(ξ),

(1.11)

where u0:sc is the wave solution of the scalar Nagumo PDE (1.10) with wavespeed c0:sc. This operator
arises as the linearisation of the scalar Nagumo MFDE

c0:scu
′(ξ) = κ

h2

∑
k∈Z>0

e−k
2
[
v(ξ + hk) + v(ξ − hk)− 2v(ξ)

]
+ gu(u0:sc(ξ); r0)v(ξ), (1.12)

around the wave solution u0:sc of the scalar Nagumo PDE (1.10). This operator should be compared
to

L0;u0:sc;c0:scv(ξ) = c0:scv
′(ξ)− v′′(ξ)− gu(u0:sc(ξ); r0)v(ξ), (1.13)

the linearisation of the scalar Nagumo PDE around its wave solution.

The key contribution in [1] is that the authors fix a constant δ > 0 and use the invertibility of
L0;u0:sc;c0:sc + δ to show that also Lh;u0:sc;c0:sc + δ is invertible. In particular, they consider weakly-
converging sequences {vj} and {wj} with (Lh;u0:sc;c0:sc + δ)vj = wj and try to find a uniform (in δ
and h) upper bound for the L2-norm of v′j in terms of the L2-norm of wj . Such a bound is required
to rule out the limitless transfer of energy into oscillatory modes, a key complication when taking
weak limits. To obtain this bound, the authors exploit the bistable structure of the nonlinearity g to
control the behaviour at ±∞. This allows the local L2-norm of vj on a compact set to be uniformly
bounded away from zero. Since the operator Lh;u0:sc;c0:sc + δ is not self-adjoint, this procedure must
be repeated for the adjoint operator.

Transfer of Fredholm properties: system case.
Plugging the travelling pulse Ansatz

(u,w)j(t) = (uh, wh)(hj + cht) (1.14)
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into (1.8) and writing ξ = hj+ cht, we see that the profiles are homoclinic solutions to the equation

chu
′
h(ξ) = κ

h2

∑
k>0

e−k
2
[
uh(ξ + kh) + uh(ξ − kh)− 2uh(ξ)

]
+ g(uh(ξ); r0)− wh(ξ)

chw
′
h(ξ) = ρ

(
uh(ξ)− γwh(ξ)

)
.

(1.15)

We start by considering the linearised operator Kh;u0;c0 of the system (1.15) around the pulse solution
(u0, w0) of the FitzHugh-Nagumo PDE with wavespeed c0. This operator is given by

Kh;u0;c0

(
v
w

)
(ξ) =

(
Lh;u0;c0v(ξ) + w(ξ)
c0w

′(ξ)− ρv(ξ) + ργw(ξ)

)
, (1.16)

where Lh;u0;c0 is given by equation (1.11), but with u0:sc replaced by u0 and c0:sc by c0. We use
a Fredholm alternative as described above to show the invertibility of Kh;u0;c0 + δ for fixed δ > 0.
However, the transition from a scalar equation to a system is far from trivial. When transferring the
Fredholm properties there are multiple cross terms that need to be controlled. We are aided here by
the relative simplicity of the equation for w′h, which guarantees that the second component of the
linearisation (1.16) has constant coefficients. This will be the content of §3.

Construction of pulses.
Using these results for Kh;u0;c0 we develop a fixed point argument to show that the system (1.8)
has a locally unique travelling pulse solution (Uh(t))j = (uh, wh)(hj + cht) for h small enough,
which converges to a travelling pulse solution of the FitzHugh-Nagumo PDE as h ↓ 0. This is more
or less straightforward and is very similar to the arguments used in [1]. The details can be found in §4.

Spectral stability.
The natural next step is to study the linear operator Kh;uh;ch that arises after linearising the system
(1.8) around its new-found pulse solution. This operator is given by

Kh;uh;ch

(
v
w

)
(ξ) =

(
Lh;uh;chv(ξ) + w(ξ)
c0w

′(ξ)− ρv(ξ) + ργw(ξ)

)
, (1.17)

where Lh;uh is given by equation (1.11), but with u0:sc replaced by uh and c0:sc by ch. The procedure
above can be repeated to show that for fixed δ > 0, it also holds that Kh;uh;ch + δ is invertible for
h small enough. However, to understand the spectral stability of the pulse, we need to consider the
eigenvalue problem

Kh;uh;chv + λv = 0 (1.18)

for fixed values of h and λ ranging throughout a half-plane. Switching between these two points of
view turns out to be a delicate task.

We start in §5 by showing that Kh;uh;ch and its adjoint K∗h;uh;ch
are Fredholm operators with

one-dimensional kernels. This is achieved by explicitly constructing a kernel element for K∗h;uh;ch
that converges to a kernel element of the adjoint of the operator corresponding to the linearised
PDE. An abstract perturbation argument then yields the result.

In particular, we see that λ = 0 is a simple eigenvalue of Kh;uh;ch . In §6 we establish that in a
suitable half-plane, the spectrum of this operator consists precisely of the points {k2πich

1
h : k ∈ Z},

which are all simple eigenvalues. We do this by first showing that the spectrum is invariant under
the operation λ 7→ λ + 2πich

h , which allows us to restrict ourselves to values of λ with imaginary
part in between −πchh and πch

h . Note that the period of the spectrum is dependent on h and grows
to infinity as h ↓ 0. This is not too surprising, since the spectrum of the linearisation of the PDE
around its pulse solution is not periodic. However, this means that we cannot restrict ourselves to
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a fixed compact subset of the complex plane for all values of h at the same time. In fact, it takes
quite some effort to keep the part of the spectrum with large imaginary part under control.

It turns out to be convenient to partition our ’half-strip’ into four parts and to calculate the
spectrum in each part using different methods. Values close to 0 are analyzed using the Fredholm
properties of Kh;uh;ch exploiting many of the results from §5; values with a large real part are con-
sidered using standard norm estimates, but values with a large imaginary part are treated using a
Fourier transform. The final set to consider is a compact set that is independent of h and bounded
away from the origin. This allows us to apply a modified version of the procedure described above
that exploits the absence of spectrum in this region for the FitzHugh-Nagumo PDE.

Nonlinear stability.
The final step in our program is to leverage the spectral stability results to obtain a nonlinear sta-
bility result. To do so, we follow [20] and derive a formula that links the pointwise Green’s function
of our general problem (1.8) to resolvents of the operator Kh;uh;ch in §7. Since we have already
analyzed the latter operator in detail, we readily obtain a spectral decomposition of this Green’s
function into an explicit neutral part and a residual that decays exponentially in time and space.
Therefore we obtain detailed estimates on the decay rate of the Green’s function for the general
problem. These Green’s functions allow us in §8 to use multiple fixed point arguments to eventually
show the nonlinear stability of the family of travelling pulse solutions Uh. To be more precise, for
each initial condition close to Uh(0), we show that the solution with that initial condition converges
at an exponential rate to the solution Uh(· + θ̃) for a small (and unique) phase shift θ̃. The main
ideas behind these arguments can already be found in in [2, 20]. However, a lot of the ingredients
used there are not readily available, so we have to verify that certain constructions can be extended
to systems with infinite range.

Acknowledgements.
Both authors acknowledge support from the Netherlands Organization for Scientific Research (NWO)
(grant 639.032.612).
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2 Main results

We consider the following system of equations

u̇j = 1
h2

∑
k>0

αk[uj+k + uj−k − 2uj ] + g(uj)− wj

ẇj = ρ[uj − γwj ],
(2.1)

which we refer to as the (spatially) discrete FitzHugh-Nagumo equation with infinite-range interac-
tions. Often, for example in [20, 21], it is assumed that only finitely many of these coefficients αk
are non-zero. However, we will impose the following much weaker conditions here.

Assumption (Hα1). The coefficients {αk}k∈Z>0 satisfy the bound∑
k>0

|αk|k2 < ∞ (2.2)

as well as the identity ∑
k>0

αkk
2 = 1. (2.3)

Finally, the inequality

A(z) :=
∑
k>0

αk

(
1− cos(kz)

)
> 0 (2.4)

holds for all z ∈ (0, 2π).

We note that (2.4) is automatically satisfied if α1 > 0 and αk ≥ 0 for all k ∈ Z>1. The conditions
in (Hα1) ensure that for φ ∈ L∞(R) with φ′′ ∈ L2(R), we have the limit

lim
h↓0
‖ 1
h2

∑
k>0

αk

[
φ(·+ hk) + φ(· − hk)− 2φ(·)

]
− φ′′‖L2 = 0, (2.5)

see Lemma 3.5. In particular, we can see (2.1) as the discretisation of the FitzHugh-Nagumo PDE
(1.1) on a grid with distance h. Additional remarks concerning the assumption (Hα1) can be found
in [1, §1].

Throughout this paper, we impose the following standard assumptions on the remaining param-
eters in (2.1). The last condition on γ in (HS) ensures that the origin is the only j-independent
equilibrium of (2.1).

Assumption (HS). The nonlinearity g is given by g(u) = u(1− u)(u− r0), where 0 < r0 < 1. In
addition, we have 0 < ρ < 1 and 0 < γ < 4(1− r0)−2.

Without explicitly mentioning it, we will allow all constants in this work to depend on r0, ρ and
γ. Dependence on h will always be mentioned explicitly. We will mainly work on the Sobolev spaces

H1(R) = {f : R→ R|f, f ′ ∈ L2(R)},

H2(R) = {f : R→ R|f, f ′, f ′′ ∈ L2(R)}, (2.6)

with their standard norms

‖f‖H1(R) =
(
‖f‖2L2(R) + ‖f ′‖2L2(R)

) 1
2

,

‖f‖H2(R) =
(
‖f‖2L2(R) + ‖f ′‖2L2(R) + ‖f ′′‖2L2(R)

) 1
2

.
(2.7)
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Our goal is to construct pulse solutions of (2.1) as small perturbations to the travelling pulse
solutions of the FitzHugh-Nagumo PDE. These latter pulses satisfy the system

c0u
′
0 = u′′0 + g(u0)− w0

c0w
′
0 = ρ(u0 − γw0)

(2.8)

with the boundary conditions
lim
|ξ|→∞

(u0, w0)(ξ) = (0, 0). (2.9)

If (u0, w0) is a solution of (2.8) with wavespeed c0, then the linearisation of (2.8) around this solution
is characterized by the operator L0 : H2(R)×H1(R)→ L2(R)× L2(R), that acts as

L0

(
v
w

)
=

(
c0

d
dx −

d2

dx2 − gu(u0) 1
−ρ c0

d
dx + γρ

)(
v
w

)
. (2.10)

The existence of such pulse solutions for the case when ρ is close to 0 is established in [25, §5.3].
Here, we do not require ρ > 0 to be small, but we simply impose the following conditions.

Assumption (HP1). There exists a solution (u0, w0) of (2.8) that satisfies the conditions (2.9)
and has wavespeed c0 6= 0. Furthermore the operator L0 is Fredholm with index zero and it has a
simple eigenvalue in zero.

Recall that an eigenvalue λ of a Fredholm operator L is said to be simple if the kernel of L− λ
is spanned by one vector v and the equation (L − λ)w = v does not have a solution w. Note that
if L has a formal adjoint L∗, this is equivalent to the condition that 〈v, w〉 6= 0 for all non-trivial
w ∈ ker(L∗ − λ).

We note that the conditions on L0 formulated in (HP1) were established in [26] for small ρ > 0.
In addition, these conditions imply that u′0 and w′0 decay exponentially.

In order to find travelling pulse solutions of (2.1), we substitute the Ansatz

(u,w)j(t) = (uh, wh)(hj + cht), (2.11)

into (2.1) to obtain the system

chu
′
h(ξ) = 1

h2

∑
k>0

αk

[
uh(ξ + hk) + uh(ξ − hk)− 2uh(ξ)

]
+ g
(
uh(ξ)

)
− wh(ξ)

chw
′
h(ξ) = ρ[uh(ξ)− γwh(ξ)],

(2.12)

in which ξ = hj + cht. The boundary conditions are given by

lim
|ξ|→∞

(uh, wh)(ξ) = (0, 0). (2.13)

The existence of such solutions is established in our first main theorem.

Theorem 2.1 (see §4). Assume that (HP1), (HS) and (Hα1) are satisfied. There exists a positive
constant h∗ such that for all h ∈ (0, h∗), the problem (2.12) with boundary conditions (2.13) admits
at least one solution (ch, uh, wh), which is locally unique in R × H1(R) × H1(R) up to translation
and which has the property that

lim
h↓0

(ch − c0, uh − u0, wh − w0) = (0, 0, 0) in R×H1(R)×H1(R) (2.14)
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Note that this result is very similar to [39, Corollary 2.1]. However, Scheel and Faye impose
an extra assumption, similar to (Hα2) below, which we do not need in our proof. This is a direct
consequence of the strength of the method from [1] that we described in §1.

Building on the existence of the travelling pulse solution, the natural next step is to show that
our new-found pulse is asymptotically stable. However, we now do need to impose an extra condition
on the coefficients {αk}k>0.

Assumption (Hα2). The coefficients {αk}k>0 satisfy the bound∑
k>0

|αk|ekν < ∞ (2.15)

for some ν > 0.

Note that the prototype equation (1.8) indeed satisfies both assumptions (Hα1) and (Hα2). An
example of a system which satisfies (Hα1), but not (Hα2) is given by

u̇j = κ
h2

∑
k>0

1
k4 [uj+k + uj−k − 2uj ] + g(uj)− wj

ẇj = ρ[uj − γwj ],
(2.16)

in which κ = 6
π2 is the normalisation constant.

Moreover we need to impose an extra condition on the operator L0 given by (2.10). This spectral
stability condition is established in [13, Theorem 2] together with [44, Theorem 3.1] for the case
where ρ is close to 0.

Assumption (HP2). There exists a constant λ∗ > 0 such that for each λ ∈ C with Re λ ≥ −λ∗
and λ 6= 0, the operator

L0 + λ : H2(R)×H1(R)→ L2(R)× L2(R) (2.17)

is invertible.

To determine if the pulse solution described in Theorem 2.1 is nonlinearly stable, we must first
linearise (2.12) around this pulse and determine the spectral stability. The linearised operator now
takes the form

Lh

(
v
w

)
=

(
ch

d
dx −∆h − gu(uh) 1

−ρ ch
d
dx + γρ

)(
v
w

)
. (2.18)

Here the operator ∆h is given by

∆hφ(ξ) = 1
h2

∑
k>0

αk

[
φ(ξ + hk) + φ(ξ − hk)− 2φ(ξ)

]
. (2.19)

As usual, we define the spectrum, σ(L), of a bounded linear operator L : H1(R)×H1(R)→ L2(R)×
L2(R), as

σ(L) = {λ ∈ C : L− λ is not invertible}. (2.20)

Our second main theorem describes the spectrum of this operator Lh, or rather of −Lh, in a suitable
half-plane.

Theorem 2.2 (see §6). Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There
exist constants λ3 > 0 and h∗∗ > 0 such that for all h ∈ (0, h∗∗), the spectrum of the operator −Lh
in the half-plane {z ∈ C : Re z ≥ −λ3} consists precisely of the points k2πich

1
h for k ∈ Z, which

are all simple eigenvalues of Lh.
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We emphasize that λ3 does not depend on h. The translational invariance of (2.12) guarantees
that λ = 0 is an eigenvalue of −Lh. In Lemma 6.1 we show that the spectrum of the operator Lh is
periodic with period 2πich

1
h , which means that the eigenvalues k2πich

1
h for k ∈ Z all have the same

properties as the zero eigenvalue.

Our final result concerns the nonlinear stability of our pulse solution, which we represent with
the shorthand [

Uh(t)
]
j

= (uh, wh)(hj + cht). (2.21)

The perturbations are measured in the spaces `p, which are defined by

`p = {V ∈ (R2)Z : ‖V ‖`p :=
[ ∑
j∈Z
|Vj |p

] 1
p

<∞} (2.22)

for 1 ≤ p <∞ and
`∞ = {V ∈ (R2)Z : ||V ||`∞ := sup

j∈Z
|Vj | <∞}. (2.23)

Theorem 2.3 (see §8). Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Fix 0 <
h ≤ h∗∗ and 1 ≤ p ≤ ∞. Then there exist constants δ > 0, C > 0 and β > 0, which may depend on
h but not on p, such that for all initial conditions U0 ∈ `p with ‖U0 −Uh(0)‖`p < δ, there exists an

asymptotic phase shift θ̃ ∈ R such that the solution U = (u,w) of (2.1) with U(0) = U0 satisfies the
bound

‖U(t)− Uh(t+ θ̃)‖`p ≤ Ce−βt‖U0 − Uh(0)‖`p (2.24)

for all t > 0.
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3 The singular perturbation

The main difficulty in analysing the travelling wave MFDE (2.12) is that it is a singular perturbation
of the ODE (2.8). Indeed, the second derivative in (2.8) is replaced by the linear operator ∆h :
H1(R)→ L2(R) that acts as

∆hφ(ξ) = 1
h2

∑
k>0

αk

(
φ(ξ + hk) + φ(ξ − hk)− 2φ(ξ)

)
. (3.1)

We will see in Lemma 3.5 that for all φ ∈ L∞(R) with φ′′ ∈ L2(R), we have that lim
h↓0
‖∆hφ−φ′′‖L2 =

0. Hence the bounded operator ∆h converges pointwise on a dense subset of H1(R) to an unbounded
operator on that same dense subset. In particular, the norm of the operator ∆h grows to infinity as
h ↓ 0.

Since there are no second derivatives involved in (2.12), we have to view it as an equation posed
on the space H1(R)×H1(R), while the ODE (2.8) is posed on the space H2(R)×H1(R). From now
on we write

H1 := H1(R)×H1(R),

L2 := L2(R)× L2(R).
(3.2)

The main results in this section will be used in several different settings. In order to accommodate
this, we introduce the following conditions.

Assumption (hFam). For each h > 0 there is a pair (ũh, w̃h) ∈ H1 and a constant c̃h such that
(ũh, w̃h)− (u0, w0)→ 0 in H1 and c̃h → c0 as h ↓ 0.

Assumption (hM). The set M ⊂ C is compact with 0 /∈ M . In addition, recalling the constant
λ∗ appearing in (HP2), we have Re z ≥ −λ∗ for all z ∈M .

In §4 we choose (ũh, w̃h) and c̃0 to be (u0, w0) and c0 for all values of h. However, in §5 we let
(ũh, w̃h) be the travelling pulse (uh, wh) from Theorem 2.1 and we let c̃h be its wave speed ch.

If (hFam) is satisfied, then for δ > 0 and h > 0 we define the operators

L+

h,δ =

(
c̃h

d
dx −∆h − gu(ũh) + δ 1

−ρ c̃h
d
dx + γρ+ δ

)
(3.3)

and

L−h,δ =

(
−c̃h d

dx −∆h − gu(ũh) + δ −ρ
1 −c̃h d

dx + γρ+ δ

)
. (3.4)

These operators are bounded linear functions from H1 to L2. We see that L−h,δ is the adjoint operator

of L+

h,δ, in the sense that

〈(φ, ψ),L+

h,δ(θ, χ)〉 = 〈L−h,δ(φ, ψ), (θ, χ)〉 (3.5)

holds for all (φ, ψ), (θ, χ) ∈ L2. Here we have introduced the notation

〈(φ, ψ), (θ, χ)〉 = 〈φ, θ〉+ 〈ψ, χ〉

=
∞∫
−∞

(
φ(x)θ(x) + ψ(x)χ(x)

)
dx

(3.6)

for (φ, ψ), (θ, χ) ∈ L2.
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Since at some point we want to consider complex-valued functions, we also work in the spaces
H2

C(R), H1
C(R) and L2

C(R), which are given by

H2
C(R) = {f + gi|f, g ∈ H2(R)},

H1
C(R) = {f + gi|f, g ∈ H1(R)},

L2
C(R) = {f + gi|f, g ∈ L2(R)}.

(3.7)

These spaces are equipped with the inner product

〈φ, ψ〉 =
∫ (

f1(x) + ig1(x)
)(
f2(x)− ig2(x)

)
dx (3.8)

for φ = f1 + ig1, ψ = f2 + ig2. As before, we write

H1
C = H1

C(R)×H1
C(R)

L2
C = L2

C(R)× L2
C(R).

(3.9)

Each operator L from H1 to L2 can be extended to an operator from H1
C to L2

C by writing

L(f + ig) = Lf + iLg. (3.10)

It is well-known that this complexification preserves adjoints, invertibility, inverses, injectivity, sur-

jectivity and boundedness, see for example [36]. If λ ∈ C then the operators L±h,λ are defined
analogously to their real counterparts, but now we view them as operators from H1

C(R) × H1
C(R)

to L2
C(R) × L2

C(R). Whenever it is clear that we are working in the complex setting we drop the
subscript C from the spaces H1

C and L2
C and simply write H1 and L2.

We also introduce the operators L±0 : H2(R)×H1(R)→ L2(R)× L2(R), that act as

L+
0 =

(
c0

d
dx −

d2

dx2 − gu(u0) 1
−ρ c0

d
dx + γρ

)
(3.11)

and

L−0 =

(
−c0 d

dx −
d2

dx2 − gu(u0) −ρ
1 −c0 d

dx + γρ

)
. (3.12)

These operators can be viewed as the formal h ↓ 0 limits of the operators L±h,0. Upon introducing
the notation

(φ+
0 , ψ

+
0 ) =

(u′0,w
′
0)

‖(u′0,w′0)‖L2
, (3.13)

we see that L+
0 (φ+

0 , ψ
+
0 ) = 0 by differentiating (2.8).

To set the stage, we summarize several basic properties of L±0 . For completeness, we provide a
proof of these facts later on in this section.

Lemma 3.1. Assume that (HP1), (HS) and (Hα1) are satisfied. The following results hold.

1. We have that (φ+
0 , ψ

+
0 ) ∈ H2(R)×H1(R) and ker(L+

0 ) = span{(φ+
0 , ψ

+
0 )}.

2. There exist (φ−0 , ψ
−
0 ) ∈ H2(R) ×H1(R) with ‖(φ−0 , ψ

−
0 )‖L2 = 1, with 〈(u′0, w′0), (φ−0 , ψ

−
0 )〉 > 0

and ker(L−0 ) = span{(φ−0 , ψ
−
0 )}.

3. For every (θ, χ) ∈ L2 the problem L±0 (φ, ψ) = (θ, χ) with (φ, ψ) ∈ H2(R) × H1(R) and
〈(φ, ψ), (φ±0 , ψ

±
0 )〉 = 0 has a unique solution (φ, ψ) if and only if 〈(θ, χ), (φ∓0 , ψ

∓
0 )〉 = 0.

12



4. There exists a positive constant C1 such that

‖(φ, ψ)‖H2(R)×H1(R) ≤ C1‖L±0 (φ, ψ)‖L2 (3.14)

for all (φ, ψ) ∈ H2(R)×H1(R) with 〈(φ, ψ), (φ±0 , ψ
±
0 )〉 = 0.

5. There exists a positive constant C2 and a small constant δ0 > 0 such that for all 0 < δ < δ0
we have

‖(L±0 + δ)−1(θ, χ)‖H2(R)×H1(R) ≤ C2

[
‖(θ, χ)‖L2(R)×L2(R) + 1

δ |〈(θ, χ), (φ∓0 , ψ
∓
0 )〉|

]
(3.15)

for all (θ, χ) ∈ L2(R)× L2(R).

6. If (HP2) is also satisfied, then for each M ⊂ C that satisfies (hM), there exists a constant
C3 > 0 such that the uniform bound

‖(L±0 + λ)−1(θ, χ)‖H2
C(R)×H1

C(R) ≤ C3‖(θ, χ)‖L2
C(R)×L2

C(R) (3.16)

holds for all (θ, χ) ∈ L2
C(R)× L2

C(R) and all λ ∈M .

The main goal of this section is to prove the following two propositions, which transfer parts (5)
and (6) of Lemma 3.1 to the discrete setting.

Proposition 3.2. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. There exists a positive
constant C ′0 and a positive function h′0(·) : R+ → R+, depending only on the choice of (ũh, w̃h) and

c̃h, such that for every 0 < δ < δ0 and every h ∈ (0, h′0(δ)), the operators L±h,δ are homeomorphisms

from H1 to L2 that satisfy the bounds

‖(L±h,δ)−1(θ, χ)‖H1 ≤ C ′0

[
‖(θ, χ)‖L2 + 1

δ |〈(θ, χ), (φ∓0 , ψ
∓
0 )〉|

]
(3.17)

for all (θ, χ) ∈ L2.

Proposition 3.3. Assume that (hFam), (HP1),(HP2), (HS) and (Hα1) are satisfied. Let M ⊂ C
satisfy (hM). Then there exists a constant hM > 0, depending only on M and the choice of (ũh, w̃h)

and c̃h, such that for all 0 < h ≤ hM and all λ ∈ M the operator L±h,λ is a homeomorphism from

H1 to L2.

Our techniques here are inspired strongly by the approach developed in [1, §2-4]. Indeed, Propo-
sition 3.2 and Proposition 3.4 are the equivalents of [1, Theorem 4] and [1, Lemma 6] respectively.
The difference between our results and those in [1] is that Bates, Chen and Chmaj study the dis-
crete Nagumo equation, which can be seen as the one-dimensional fast component of the FitzHugh-
Nagumo equation by setting ρ = 0 in (2.1). In addition, the results in [1] are restricted to λ ∈ R,
while we allow λ ∈ C in Proposition 3.3.

Recall the constant δ0 > 0 appearing in Lemma 3.1. For 0 < δ < δ0 and h > 0 we define the
quantities

Λ
±

(h, δ) = inf
‖(φ,ψ)‖H1=1

[
‖L±h,δ(φ, ψ)‖L2 + 1

δ

∣∣∣〈L±h,δ(φ, ψ), (φ∓0 , ψ
∓
0 )〉
∣∣∣] , (3.18)

together with

Λ
±

(δ) = lim inf
h↓0

Λ
±

(h, δ). (3.19)

Similarly for M ⊂ C that satisfies (hM) and h > 0 we define

Λ
±

(h,M) = inf
‖(φ,ψ)‖H1=1, λ∈M

[
‖L±h,λ(φ, ψ)‖L2

]
, (3.20)
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together with

Λ
±

(M) = lim inf
h↓0

Λ
±

(h,M). (3.21)

The key ingredients that we need to establish Propositions 3.2 and 3.3 are lower bounds on the

quantities Λ
±

(δ) and Λ
±

(M). These are provided in the result below, which we consider to be the
technical heart of this section.

Proposition 3.4. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. There exists a positive

constant C ′0, depending only on our choice of (ũh, w̃h) and c̃h, such that Λ
±

(δ) > 2
C′0

for all 0 < δ <

δ0. Similarly if M ⊂ C satisfies (hM), then there exists a positive constant C ′M , depending only on

M and our choice of (ũh, w̃h) and c̃h, such that Λ
±

(M) > 2
C′M

.

Proof of Lemma 3.1. Parts (1), (2) and (3) follow directly from (HP1). Indeed, this condition states
that L±0 is a Fredholm operator with Fredholm index 0 and that the identities

ker L±0 = span{(φ±0 , ψ
±
0 )},

Range L±0 = span{(φ∓0 , ψ
∓
0 )}c

:= {(φ, ψ) ∈ L2 : 〈(φ, ψ), (φ∓0 , ψ
∓
0 )〉 = 0}

(3.22)

hold. In particular, we see that

L±0 :
(

span{(φ±0 , ψ
±
0 )}c

)
∩
(
H2(R)×H1(R)

)
→ span{(φ∓0 , ψ

∓
0 )}c (3.23)

is a continuous bijection. By the Banach isomorphism theorem its inverse is then also continuous,
which implies (4).

The proof of part (5) follows the lines of [1, Lemma 5]. We pick 0 < δ < δ0, where δ0 will be
defined later. Let (φ, ψ) ∈ H2(R) × H1(R) be arbitrary and set (θ, χ) = L±0 (φ, ψ) + δ(φ, ψ). We
decompose

(φ, ψ) =
〈
(φ, ψ), (φ±0 , ψ

±
0 )
〉

(φ±0 , ψ
±
0 ) + (φ⊥, ψ⊥). (3.24)

Then 〈(φ⊥, ψ⊥), (φ±0 , ψ
±
0 )〉 = 0 and L±0 (φ⊥, ψ⊥) = (θ, χ)− δ(φ, ψ), so with part (4) we obtain that

‖(φ⊥, ψ⊥)‖H2(R)×H1(R) ≤ C1 [‖(θ, χ)‖L2 + δ‖(φ, ψ)‖L2 ] . (3.25)

From part (2) we also obtain that 〈(θ, χ)− δ(φ, ψ), (φ∓0 , ψ
∓
0 )〉 = 0. Hence we must have that

〈(θ, χ), (φ∓0 , ψ
∓
0 )〉 = δ〈(φ, ψ), (φ∓0 , ψ

∓
0 )〉

= δ〈(φ, ψ), (φ±0 , ψ
±
0 )〉〈(φ±0 , ψ

±
0 ), (φ∓0 , ψ

∓
0 )〉+ δ〈(φ⊥, ψ⊥), (φ∓0 , ψ

∓
0 )〉.

(3.26)

Denote σ = 〈(φ±0 , ψ
±
0 ), (φ∓0 , ψ

∓
0 )〉. Then by (2) we know that 0 < σ ≤ 1. Thus we obtain

σ|〈(φ, ψ), (φ±0 , ψ
±
0 )〉| ≤ ‖(φ⊥, ψ⊥)‖L2 + 1

δ |〈(θ, χ), (φ∓0 , ψ
∓
0 )〉|. (3.27)

Adding equation (3.25) twice gives

σ|〈(φ, ψ), (φ±0 , ψ
±
0 )〉|+ ‖(φ⊥, ψ⊥)‖H2(R)×H1(R) ≤ 1

δ |〈(θ, χ), (φ∓0 , ψ
∓
0 )〉|

+2C1[‖(θ, χ)‖L2 + δ‖(φ, ψ)‖L2 ]

≤ 1
δ |〈(θ, χ), (φ∓0 , ψ

∓
0 )〉|

+2C1[‖(θ, χ)‖L2 + δ‖(φ, ψ)‖H2(R)×H1(R)].

(3.28)
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Since σ ≤ 1 and

‖(φ, ψ)‖H2(R)×H1(R) ≤ ‖(φ⊥, ψ⊥)‖H2(R)×H1(R) + |〈(φ, ψ), (φ±0 , ψ
±
0 )〉| (3.29)

this gives

(σ − 2δC1)‖(φ, ψ)‖H2(R)×H1(R) ≤ σ|〈(φ, ψ), (φ±0 , ψ
±
0 )〉|+ ‖(φ⊥, ψ⊥)‖H2(R)×H1(R)

−2δC1‖(φ, ψ)‖H2(R)×H1(R)

≤ 1
δ |〈(θ, χ), (φ∓0 , ψ

∓
0 )〉|+ 2C1‖(θ, χ)‖L2 .

(3.30)

Hence if we take δ0 = σ
4C1

, we obtain the inequality

‖(φ, ψ)‖H2(R)×H1(R) ≤ 4C1

σ

[
‖(θ, χ)‖L2 + 1

δ |〈(θ, χ), (φ∓0 , ψ
∓
0 )〉|

]
(3.31)

for all δ ∈ (0, δ0), as desired.

Finally we prove part (6). Let M ⊂ C satisfy (hM). The invertibility of L±0 +λ for λ ∈M follows
directly from (HP2). Since M is compact and the map

λ 7→ ‖(L±0 + λ)−1‖ (3.32)

is continuous, we immediately see that there exists C3 > 0 such that

‖(L±0 + λ)−1(θ, χ)‖H2
C(R)×H1

C(R) ≤ C3‖(θ, χ)‖L2
C(R)×L2

C(R) (3.33)

for all (θ, χ) ∈ L2
C(R)× L2

C(R) and all λ ∈M .

We now establish some basic facts concerning the operator ∆h. In particular, we extend the real-
valued results from [1] to complex-valued functions. We emphasize that the inequalities in Lemma
3.6 in general do not hold for the imaginary parts of these inner products.

Lemma 3.5. (see [1, Lemma 3]) Assume that (Hα1) is satisfied. The following three properties
hold.

1. For all φ ∈ L∞(R) with φ′′ ∈ L2(R) we have lim
h↓0
‖∆hφ− φ′′‖L2 = 0.

2. For all φ ∈ H1(R) and h > 0 we have 〈∆hφ, φ
′〉 = 0.

3. For all φ, ψ ∈ L2(R) and h > 0 we have 〈∆hφ, ψ〉 = 〈φ,∆hψ〉 and 〈∆hφ, φ〉 ≤ 0.

Lemma 3.6. Assume that (Hα1) is satisfied and pick f ∈ H1
C(R). Then the following properties

hold.

1. For all h > 0 we have Re 〈−∆hf, f〉 ≥ 0.

2. For all h > 0 we have Re 〈∆hf, f
′〉 = 0.

3. We have Re 〈f, f ′〉 = 0.

4. For all λ ∈ C we have Re 〈λf, f ′〉 = 2 (Im λ)〈Re f, Im f ′〉.

Proof. Write f = φ+ iψ with φ, ψ ∈ H1(R). Lemma 3.5 implies that

Re 〈−∆hf, f〉 = Re
∫ (
−∆hφ− i∆hψ

)
(x)
(
φ− iψ

)
(x)dx

=
∫

(−∆hφ)(x)φ(x) + (−∆hψ)(x)ψ(x)dx

= 〈−∆hφ, φ〉+ 〈−∆hψ,ψ〉

≥ 0.

(3.34)
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Similarly we have
Re 〈∆hf, f

′〉 = 〈−∆hφ, φ
′〉+ 〈−∆hψ,ψ

′〉

= 0.
(3.35)

For λ ∈ C we may compute

Re 〈λf, f ′〉 = Re
∫ (

λφ(x) + λiψ(x)
)(
φ′(x)− iψ′(x)

)
dx

= (Re λ)〈φ, φ′〉+ (Im λ)〈φ, ψ′〉 − (Im λ)〈ψ, φ′〉+ (Re λ)〈ψ,ψ′〉

= 0 + 2 (Im λ)〈φ, ψ′〉+ 0

= 2 (Im λ)〈φ, ψ′〉.

(3.36)

Taking λ = 1 gives the third property.

We now set out to prove Proposition 3.4. In Lemmas 3.7 and 3.8 we construct weakly converging
sequences that realize the infima in (3.18)-(3.21). In Lemmas 3.9-3.11 we exploit the structure of our
operators (3.3) and (3.4) to recover bounds on the derivatives of these sequences that are typically
lost when taking weak limits. Recall the constant C2 > 0 defined in Lemma 3.1, which does not
depend on δ > 0.

Lemma 3.7. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider the setting of
Proposition 3.4 and fix 0 < δ < δ0. Then there exists a sequence {(hj , φj , ψj)}j≥0 in (0, 1)×H1 with
the following properties.

1. We have limj→∞ hj = 0 and ‖(φj , ψj)‖H1 = 1 for all j ≥ 0.

2. The sequence (θj , χj) = L+

hj ,δ(φj , ψj) satisfies

limj→∞

[
‖(θj , χj)‖L2 + 1

δ |〈(θj , χj), (φ
−
0 , ψ

−
0 )〉|

]
= Λ

+
(δ). (3.37)

3. There exist (φ, ψ) ∈ H1 and (θ, χ) ∈ L2 such that (φj , ψj) ⇀ (φ, ψ) weakly in H1 and such
that (θj , χj) ⇀ (θ, χ) weakly in L2 as j →∞.

4. We have (φj , ψj)→ (φ, ψ) in L2
loc(R)× L2

loc(R) as j →∞.

5. The pair (φ, ψ) is a weak solution to (L+

0 + δ)(φ, ψ) = (θ, χ).

6. We have the bound

‖(φ, ψ)‖H2(R)×H1(R) ≤ C2

[
‖(θ, χ)‖L2 + 1

δ |〈(θ, χ), (φ−0 , ψ
−
0 )〉|

]
≤ C2Λ

+
(δ).

(3.38)

The same statements hold upon replacing L+

h,δ, Λ
+

and L+

0 by L−h,δ, Λ
−

and L−0 .

Proof. Let 0 < δ < δ0 be fixed. By definition of Λ
+

(δ) there exists a sequence {(hj , φj , ψj)} in
(0, 1)×H1 such that (1) and (2) hold. Taking a subsequence if necessary, we may assume that there
exist (φ, ψ) ∈ H1 and (θ, χ) ∈ L2 such that (φj , ψj) → (φ, ψ) in L2

loc(R) × L2
loc(R) and weakly in

H1 as j →∞ and such that (θj , χj) ⇀ (θ, χ) weakly in L2. By the weak lower-semicontinuity of the
L2-norm we obtain

‖(θ, χ)‖L2 + 1
δ |〈(θ, χ), (φ−0 , ψ

−
0 )〉| ≤ Λ

+
(δ). (3.39)
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For any pair of test functions (ζ1, ζ2) ∈ C∞c (R)× C∞c (R) we have

〈(θj , χj), (ζ1, ζ2)〉 = 〈L+

hj ,δ(φj , ψj), (ζ1, ζ2)〉

= 〈(φj , ψj),L
−
hj ,δ(ζ1, ζ2)〉.

(3.40)

Since u0 is a bounded function, the limit ũh − u0 → 0 in H1 implies that also ũh → u0 in L∞.
In particular, we can choose h′ > 0 and M > 0 in such a way that |ũh| ≤ M and |u0| ≤ M for
all 0 < h ≤ h′. Since gu is Lipschitz continuous on [−M,M ], there is a constant K > 0 such that
|gu(x)− gu(y)| ≤ K|x− y| for all x, y ∈ [−M,M ]. We obtain

lim
h↓0
‖gu(ũh)− gu(u0)‖2L2 = lim

h↓0

∫
(gu(ũh)− gu(u0))2dx

≤ lim
h↓0

∫
K2(ũh − u0)2dx

≤ lim
h↓0

K2‖ũh − u0‖2L2

= 0,

(3.41)

together with

lim
h↓0
‖gu(ũh)ζ1 − gu(u0)ζ1‖L2 ≤ lim

h↓0
‖ζ1‖∞‖gu(ũh)− gu(u0)‖L2

= 0.
(3.42)

Furthermore we know that c̃h → c0 as h ↓ 0, which gives

lim
h↓0
‖c̃hζ ′1 − c0ζ ′1‖L2 = lim

h↓0
‖c̃hζ ′2 − c0ζ ′2‖L2

= 0.
(3.43)

Finally, Lemma 3.5 implies
lim
h↓0
‖∆hζ1 − ζ ′′1 ‖L2 = 0, (3.44)

which means that

‖L−hj ,δ(ζ1, ζ2)− (L−0 + δ)(ζ1, ζ2)‖L2 → 0 (3.45)

as j →∞. Sending j →∞ in (3.40), this yields

〈(θ, χ), (ζ1, ζ2)〉 = 〈(φ, ψ), (L−0 + δ)(ζ1, ζ2)〉. (3.46)

In particular, we see that (φ, ψ) is a weak solution to (L+

0 + δ)(φ, ψ) = (θ, χ). Since φ ∈ H1, ψ ∈ L2

and
φ′′ = c0φ

′ − gu(u0)φ+ δφ+ ψ, (3.47)

we get φ′′ ∈ L2 and hence φ ∈ H2. Since we already know that ψ ∈ H1, we may apply Lemma 3.1
and (3.39) to obtain

‖(φ, ψ)‖H2(R)×H1(R) ≤ C2[‖(θ, χ)‖L2 + 1
δ |〈(θ, χ), (φ−0 , ψ

−
0 )〉|]

≤ C2Λ
+

(δ).
(3.48)

Recall the constant C3 > 0 from Lemma 3.1, which only depends on the choice of the set M ⊂ C
that satisfies (hM).

Lemma 3.8. Assume that (HP1),(HP2), (HS) and (Hα1) are satisfied. Let M ⊂ C satisfy (hM).
There exists a sequence {(λj , hj , φj , ψj)} in M × (0, 1)×H1 with the following properties.
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1. We have lim
j→∞

hj = 0, lim
j→∞

λj = λ for some λ ∈M and ‖(φj , ψj)‖H1 = 1 for all j.

2. The pair (θj , χj) = L+

hj ,λ(φj , ψj) satisfies

lim
j→∞
‖(θj , χj)‖L2 = Λ

+
(M). (3.49)

3. There exist (φ, ψ) ∈ H1 and (θ, χ) ∈ L2 such that as j → ∞ (φj , ψj) → (φ, ψ) in L2
loc(R) ×

L2
loc(R) and weakly in H1 and such that (θj , χj) ⇀ (θ, χ) weakly in L2.

4. The pair (φ, ψ) is a weak solution to (L+

0 + λ)(φ, ψ) = (θ, χ).

5. We have the bound
‖(φ, ψ)‖H2(R)×H1(R) ≤ C3‖(θ, χ)‖L2

≤ C3Λ
+

(M),
(3.50)

where the constant C3 is defined in Lemma 3.1.

The same statements hold upon replacing L+

h,δ, Λ
+

(M) and L+

0 by L−h,δ, Λ
−

and L−0 .

The proof of this result is almost identical to the one of Lemma 3.7 and will be omitted. In our
arguments below, we often consider the sequences {(hj , φj , ψj)} and {(λj , hj , φj , ψj)} defined in Lem-
mas 3.7 and 3.8 in a similar fashion. To streamline our notation, we simply write {(λj , hj , φj , ψj)}
for all these sequences, with the understanding that λj = δ when referring to Lemma 3.7.

As argued in the proof of Lemma 3.7, it is possible to choose h > 0 in such a way that

c∗ := inf0≤h≤h |c̃h| > 0,

g∗ := sup0≤h≤h‖gu(ũh)‖∞ < ∞.
(3.51)

By taking a subsequence if necessary, we assume from now on that hj < h for all j. It remains to
find a positive lower bound for ‖(φ, ψ)‖L2 .

Lemma 3.9. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider the setting of
Proposition 3.4 and Lemma 3.7 or Lemma 3.8. Then there exists a constant B > 0, such that for
all j we have the bound

B‖(φj , ψj)‖2L2 ≥ c2∗‖(φ′j , ψ′j)‖
2
L2 − 4‖(θj , χj)‖2L2 . (3.52)

Proof. We first consider the sequence for Λ
+

. Using L+

hj ,λj (φj , ψj) = (θj , χj) and Re 〈∆hjφj , φ
′
j〉 =

0 = Re 〈φj , φ′j〉 = Re 〈ψj , ψ′j〉, which follow from Lemma 3.6, we obtain

Re 〈(θj , χj), (φ′j , ψ′j)〉 = Re 〈L+

hj ,λ(φj , ψj), (φ
′
j , ψ
′
j)〉

= Re 〈c̃hjφ′j −∆hjφj − gu(ũhj )φj + λjφj + ψj , φ
′
j〉

+ Re 〈−ρφj + c̃hjψ
′
j + γρψj + λjψj , ψ

′
j〉

= c̃hj‖φ′j‖
2
L2 − Re 〈gu(ũhj )φj , φ

′
j〉+ Re 〈ψj , φ′j〉+ Re 〈λjφj , φ′j〉

−ρRe 〈φj , ψ′j〉+ c̃hj‖ψ′j‖
2
L2 + Re 〈λjψj , ψ′j〉

= c̃hj‖(φ′j , ψ′j)‖
2
L2 − Re 〈gu(ũhj )φj , φ

′
j〉+ (1 + ρ)〈ψj , φ′j〉

+ Re 〈λj(φj , ψj), (φ′j , ψ′j)〉.

(3.53)
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We write λmax = δ0 in the setting of Lemma 3.7 or λmax = max{|z| : z ∈ M} in the setting of
Lemma 3.8. We write

G = λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + g∗‖φj‖L2‖(φ′j , ψ′j)‖L2 . (3.54)

Using the Cauchy-Schwartz inequality we now obtain

G ≥ λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + ‖gu(ũhj )‖L∞‖φj‖L2‖φ′j‖L2

≥ sign(c̃hj )
(
− Re 〈λj(φj , ψj), (φ′j , ψ′j)〉+ Re 〈gu(ũhj )φj , φ

′
j〉
)

= sign(c̃hj )
(
c̃hj‖(φ′j , ψ′j)‖

2
L2 + (1 + ρ) Re 〈ψj , φ′j〉 − Re 〈(θj , χj), (φ′j , ψ′j)〉

)
≥ |c̃hj |‖(φ′j , ψ′j)‖

2
L2 − (1 + ρ)‖ψj‖L2‖φ′j‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2

≥ c∗‖(φ′j , ψ′j)‖
2
L2 − (1 + ρ)‖ψj‖L2‖(φ′j , ψ′j)‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2 .

(3.55)

This implies

c∗‖(φ′j , ψ′j)‖L2 ≤ g∗‖φj‖L2 + (1 + ρ)‖ψj‖L2 + ‖(θj , χj)‖L2 + λmax‖(φj , ψj)‖L2 . (3.56)

Squaring this equation and using the standard inequality 2µω ≤ µ2 + ω2, this implies that

c2∗‖(φ′j , ψ′j)‖
2
L2 ≤ 4g2

∗‖φj‖
2
L2 + 4(1 + ρ)2‖ψj‖2L2

+4‖(θj , χj)‖2L2 + 4λ2
max‖(φj , ψj)‖

2
L2 .

(3.57)

In particular, we see

4
(

max{g2
∗, (1 + ρ)2}+ λ2

max

)
‖(φj , ψj)‖2L2 ≥ c2∗‖(φ′j , ψ′j)‖

2
L2 − 4‖(θj , χj)‖2L2 . (3.58)

We now look at the sequence for Λ
−

. Using L−hj ,λj (φj , ψj) = (θj , χj) and Re 〈∆hjφj , φ
′
j〉 = 0 =

Re 〈φj , φ′j〉 = Re 〈ψj , ψ′j〉, which follow from Lemma 3.6, we obtain

Re 〈(θj , χj), (φ′j , ψ′j)〉 = Re 〈L−hj ,λj (φj , ψj), (φ
′
j , ψ
′
j)〉

= Re 〈−c̃hjφ′j −∆hjφj − gu(ũh)φj + λjφj − ρψj , φ′j〉

+ Re 〈φj − c̃hψ′j + γρψj + λjψj , ψ
′
j〉

= −c̃hj‖φ′j‖
2
L2 − Re 〈gu(ũh)φj , φ

′
j〉 − ρRe 〈ψj , φ′j〉+ Re 〈λjφj , φ′j〉

+ Re 〈φj , ψ′j〉 − c̃hj‖ψ′j‖
2
L2 + Re 〈λjψj , ψ′j〉

= −c̃hj‖(φ′j , ψ′j)‖
2
L2 − Re 〈gu(ũh)φj , φ

′
j〉+ (1 + ρ)〈ψj , φ′j〉

+ Re 〈λj(φj , ψj), (φ′j , ψ′j)〉.
(3.59)

We write
G = λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + g∗‖φj‖L2‖(φ′j , ψ′j)‖L2 . (3.60)

Using the Cauchy-Schwartz inequality we now obtain

G ≥ λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + ‖gu(ũhj )‖L∞‖φj‖L2‖φ′j‖L2

≥ −sign(c̃hj )
(
− Re 〈λj(φj , ψj), (φ′j , ψ′j)〉+ Re 〈gu(ũhj )φj , φ

′
j〉
)

= −sign(c̃hj )
(
− c̃hj‖(φ′j , ψ′j)‖

2
L2 − (1 + ρ) Re 〈ψj , φ′j〉 − Re 〈(θj , χj), (φ′j , ψ′j)〉

)
≥ |c̃hj |‖(φ′j , ψ′j)‖

2
L2 − (1 + ρ)‖ψj‖L2‖φ′j‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2

≥ c∗‖(φ′j , ψ′j)‖
2
L2 − (1 + ρ)‖ψj‖L2‖(φ′j , ψ′j)‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2 .

(3.61)

19



This is the same equation that we derived for Λ
+

. Hence we again obtain

B‖(φj , ψj)‖2L2 ≥ c2∗‖(φ′j , ψ′j)‖
2
L2 − 4‖(θj , χj)‖2L2 , (3.62)

where
B = 4

(
max{g2

∗, (1 + ρ)2}+ λ2
max

)
. (3.63)

Lemma 3.10. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider the setting of
Proposition 3.4 and Lemma 3.7 or Lemma 3.8. There exist positive constants a and m, depending
only on our choice of (ũh, w̃h), such that we have the following inequality for all j

(a+ g∗)
∫
|x|≤m |φj(x)|2dx ≥

(
1
2 min{a, 1

2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− 1
2 min{a, 12ργ}

‖(θj , χj)‖2L2 − 1−ρ
ρ β‖χj‖2L2 .

(3.64)

Here we write λmin = 0 in the setting of Lemma 3.7 or λmin = min{Re λ : λ ∈M} in the setting of
Lemma 3.8, together with

β = 1−ρ
ρ

1
4( ρ

1−ρ
1
2γρ+γρ+λmin)

. (3.65)

Proof. Again we first look at the sequence for Λ
+

. We know that ũh − u0 → 0 in H1 as h ↓ 0.
Hence it follows that ũh − u0 → 0 in L∞ and therefore also gu(ũh) − gu(u0) → 0 in L∞ as h ↓ 0.
Thus we can choose m to be a positive constant such that for all h ∈ [0, h] (by making h smaller if
necessary)

min
|x|≥m

[−gu(ũh(x))] ≥ a :=
1

2
r0 > 0. (3.66)

Here r0 is the constant appearing in the choice of our function g in (HS). Then we obtain, using
Re 〈φ′j , φj〉 = Re 〈ψ′j , ψj〉 = 0 and Re 〈−∆hjφj , φj〉 ≥ 0, which we know from Lemma 3.6, that

Re 〈(θj , χj), (φj , ψj)〉 = Re 〈L+

hj ,λj (φj , ψj), (φj , ψj)〉

≥ Re 〈−gu(ũhj )φj , φj〉+ Re 〈ψj , φj〉

−ρRe 〈ψj , φj〉+ γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2

≥ min|x|≥m{−gu(ũhj (x))}
∫
|x|≥m |φj(x)|2dx

−‖gu(ũhj )‖L∞
∫
|x|≤m |φj(x)|2dx+ (1− ρ) Re 〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2

≥ a‖φj‖2L2 − (a+ g∗)
∫
|x|≤m |φj(x)|2dx+ (1− ρ) Re 〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2.

(3.67)

We assumed that 0 < ρ < 1 so we see that 1−ρ
−ρ < 0. We set

β+
j = 1

4( ρ
1−ρ

1
2γρ+γρ+Re λj)

. (3.68)

Now we obtain

Re 〈χj , ψj〉 ≤ ‖χj‖L2‖ψj‖L2

= 1√
2( ρ

1−ρ
1
2γρ+γρ+Re λj)

‖χj‖L2

√
2( ρ

1−ρ
1
2γρ+ γρ+ Re λj)‖ψj‖L2

≤ 1
4( ρ

1−ρ
1
2γρ+γρ+Re λj)

‖χj‖2L2 + ( ρ
1−ρ

1
2γρ+ γρ+ Re λj)‖ψj‖2L2

= β+
j ‖χj‖

2
L2 + ( ρ

1−ρ
1
2γρ+ γρ+ Re λj)‖ψj‖2L2 .

(3.69)
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Note that the denominator 4( ρ
1−ρ

1
2γρ + γρ + Re λj) is never zero since we can assume that λ∗ is

small enough to have Re λj ≥ −λ∗ > −γρ. Using the identity

χj = −ρφj + c̃hjψ
′
j + γρψj + λjψj (3.70)

and the fact that Re 〈ψ′j , ψj〉 = 0, we also have

Re 〈χj , ψj〉 = −ρRe 〈φj , ψj〉+ (γρ+ Re λj)‖ψj‖2L2 . (3.71)

Hence we must have that

(1− ρ) Re 〈φj , ψj〉 = 1−ρ
ρ

(
− Re 〈χj , ψj〉+ (γρ+ Re λj)‖ψj‖2L2

)
≥ 1−ρ

ρ

(
− β+

j ‖χj‖
2
L2 − ( ρ

1−ρ
1
2γρ+ γρ+ Re λj)‖ψj‖2L2

+(γρ+ Re λj)‖ψj‖2L2

)
= − 1−ρ

ρ β+
j ‖χj‖

2
L2 − 1

2γρ‖ψj‖
2
L2 .

(3.72)

We now look at the sequence for Λ
−

. Letm and a be as before. Then we obtain, using L−hj ,λj (φj , ψj) =
(θj , χj), Re 〈φ′j , φj〉 = Re 〈ψ′j , ψj〉 = 0 and Re 〈−∆hjφj , φj〉 ≥ 0 that

Re 〈(θj , χj), (φj , ψj)〉 = Re 〈L−hj ,δ(φj , ψj), (φj , ψj)〉

≥ Re 〈−gu(ũh)φj , φj〉 − ρRe 〈ψj , φj〉

+ Re 〈ψj , φj〉+ γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2

≥ min|x|≥m{−gu(ũh(x))}
∫
|x|≥m |φj |

2dx

−‖gu(ũh)‖L∞
∫
|x|≤m |φj |

2dx+ (1− ρ)〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2

≥ a‖φj‖2L2 − (a+ g∗)
∫
|x|≤m |φj |

2dx+ (1− ρ)〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2.

(3.73)

We set
β−j = 1

4( 1
1−ρ

1
2γρ+γρ+Re λj)

. (3.74)

Arguing as in (3.69) with slightly different constants, we obtain

Re 〈χj , ψj〉 ≥ −‖χj‖L2‖ψj‖L2

≥ − 1
4( 1

1−ρ
1
2γρ+γρ+Re λj)

‖χj‖2L2 − ( 1
1−ρ

1
2γρ+ γρ+ Re λj)‖ψj‖2L2

= −β−j ‖χj‖
2
L2 − ( 1

1−ρ
1
2γρ+ γρ+ Re λj)‖ψj‖2L2 .

(3.75)

Using the identity
χj = φj − c̃hjψ′j + γρψj + λjψj (3.76)

and the fact that Re 〈ψ′j , ψj〉 = 0, we also have

Re 〈χj , ψj〉 = Re 〈φj , ψj〉+ (γρ+ Re λj)‖ψj‖2L2 . (3.77)
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Hence we must have that

(1− ρ) Re 〈φj , ψj〉 = (1− ρ)
(

Re 〈χj , ψj〉 − (γρ+ Re λj)‖ψj‖2L2

)
≥ (1− ρ)

(
− β−j ‖χj‖

2
L2 + ( 1

1−ρ
1
2γρ+ γρ+ Re λj)‖ψj‖2L2

−(γρ+ Re λj)‖ψj‖2L2

)
= −(1− ρ)β−j ‖χj‖

2
L2 − 1

2γρ‖ψj‖
2
L2

≥ − (1−ρ)
ρ β−j ‖χj‖

2
L2 − 1

2γρ‖ψj‖
2
L2 .

(3.78)

Upon setting
β = 1

4( ρ
1−ρ

1
2γρ+γρ+λmin)

, (3.79)

we note that β+
j ≤ β and β−j ≤ β for all j since ρ < 1 and since β+

j is maximal for Re λ = λmin.
Therefore, in both cases, we obtain

(a+ g∗)
∫
|x|≤m |φj(x)|2dx ≥ a‖φj‖2L2 + ργ‖ψj‖2L2 − Re 〈(θj , χj), (φj , ψj)〉

+(1− ρ) Re 〈ψj , φj〉+ λmin‖(φj , ψj)‖2

≥ a‖φj‖2L2 + 1
2ργ‖ψj‖

2
L2 − 〈(θj , χj), (φj , ψj)〉

− 1−ρ
ρ β‖χj‖2L2 + λmin‖(φj , ψj)‖2

≥
(

min{a, 1
2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− 1√
min{a, 12ργ}

‖(θj , χj)‖L2

√
min{a, 1

2ργ}‖(φj , ψj)‖L2

− 1−ρ
ρ β‖χj‖2L2

(3.80)

and thus, again using the inequality 2µω ≤ µ2 + ω2 for µ, ω ∈ R,

(a+ g∗)
∫
|x|≤m |φj(x)|2dx ≥

(
min{a, 1

2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− 1
2

(
1

min{a, 12ργ}
‖(θj , χj)‖2L2 + min{a, 1

2ργ}‖(φj , ψj)‖
2
L2

)
−β‖χj‖2L2

=
(

1
2 min{a, 1

2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− 1
2 min{a, 12ργ}

‖(θj , χj)‖2L2 − 1−ρ
ρ β‖χj‖2L2 ,

(3.81)
as desired.

Lemma 3.11. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider the setting of
Proposition 3.4 and Lemma 3.7 or Lemma 3.8. There exist positive constants C4 and C5, depending
only on our choice of (ũh, w̃h), such that for all j we have

(a+ g∗)
∫
|x|≤m |φ

2
j (x)|dx ≥ C4 − C5‖(θj , χj)‖2L2 . (3.82)

Proof. Without loss of generality we assume that 1
2 min{a, 1

2ργ}+ λmin > 0. Write

µ =
1
2 min{a, 12ργ}+λmin

c2∗+B
. (3.83)
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Adding µ times equation (3.52) to equation (3.64) gives

(a+ g∗)
∫
|x|≤m |φj(x)|2dx+Bµ‖(φj , ψj)‖2L2 ≥ µc2∗‖(φ′j , ψ′j)‖

2
L2 − 3µ‖(θj , χj)‖2L2

+ 1
2 (min{a, 1

2ργ}+ λmin)‖(φj , ψj)‖2L2

− 1
2(min{a, 12ργ}+λmin)

‖(θj , χj)‖2L2

− 1−ρ
ρ β‖χj‖2L2

≥ µc2∗‖(φ′j , ψ′j)‖
2
L2 − 3µ‖(θj , χj)‖2L2

+ 1
2 (min{a, 1

2ργ}+ λmin)‖(φj , ψj)‖2L2

− 1
2(min{a, 12ργ}+λmin)

‖(θj , χj)‖2L2

− 1−ρ
ρ β‖(θj , χj)‖2L2 .

(3.84)
We hence obtain

(a+ g∗)
∫
|x|≤m |φj(x)|2dx ≥ −C5‖(θj , χj)‖2L2 + µc2∗‖(φ′j , ψ′j)‖

2
L2

+ 1
2 (min{a, 1

2ργ}+ λmin)‖(φj , ψ)‖2L2 −Bµ‖(φj , ψj)‖2L2 ,
(3.85)

where
C5 = 3µ+ 1

2(min{a, 12ργ}+λmin)
+ β

> 0.
(3.86)

This allows us to compute

(a+ g∗)
∫
|x|≤m |φj(x)|2dx ≥ −C5‖(θj , χj)‖2L2 + µc2∗‖(φ′j , ψ′j)‖

2
L2

+ 1
2 (min{a, 1

2ργ}+ λmin)‖(φj , ψj)‖2L2 −Bµ‖(φj , ψj)‖2L2

= −C5‖(θj , χj)‖2L2 + µc2∗‖(φ′j , ψ′j)‖L2

+(µ(c2∗ +B)−Bµ)‖(φj , ψj)‖2L2

= µc2∗‖(φj , ψj)‖
2
H1 − C5‖(θj , χj)‖2L2

= C4 − C5‖(θj , χj)‖2L2 ,
(3.87)

where C4 = µc2∗ > 0.

Proof of Proposition 3.4. We first choose 0 < δ < δ0 and consider the setting of Lemma 3.7. Sending
j →∞ in (3.82), Lemma 3.7 implies

C4 − C5Λ
±

(δ) ≤ C4 − C5 lim
j→∞
‖(θj , χj)‖2L2

≤ (a+ g∗)
∫
|x|≤m |φ|

2dx

≤ (a+ g∗)‖(φ, ψ)‖2H2(R)×H1(R)

≤ (a+ g∗)C
2
2Λ

+
(δ)2.

(3.88)

Solving this quadratic inequality, we obtain

Λ
±

(δ) ≥ −C5+
√
C2

5+4(a+g∗)C2
2C4

2(a+g∗)C2
2

:= 2
C′0
.

(3.89)
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The analogous computation in the setting of Lemma 3.8 yields

Λ
+

(M) ≥ −C5+
√
C2

5+4(a+g∗)C2
3C4

2(a+g∗)C2
3

:= 2
C′M

.
(3.90)

Proof of Proposition 3.2. Let δ > 0 be fixed. Since Λ
±

(δ) ≥ 2
C′0

, the definition (3.19) implies that

there exists h′0(δ) such that Λ(h, δ) ≥ 1
C′0

for all h ∈ (0, h′0(δ)]. Now pick h ∈ (0, h′0(δ)].

First of all, L±h,δ is a bounded operator from H1 to L2. Since Λ
±

(h, δ) is strictly positive, this implies

that L±h,δ is a homeomorphism from H1 to its image L±h,δ(H
1). Furthermore, the norm of the inverse

(L±h,δ)−1 from L±h,δ(H
1) ⊂ L2 is bounded by 1

Λ
±

(h,δ)
≤ C ′0. Since L±h,δ is bounded, it follows that

L±h,δ(H
1) is closed in L2.

For the remainder of this proof, we only consider the operators L+

h,δ, noting that their counter-

parts L−h,δ can be treated in an identical fashion.

Seeking a contradiction, let us assume that L+

h,δ(H
1) 6= L2, which implies that there exists a

non-zero (θ, χ) ∈ L2 orthogonal to L+

h,δ(H
1). For any φ ∈ C∞c (R), we hence obtain

0 = 〈(L+

h,δ(φ, 0), (θ, χ)〉

= 〈c̃hφ′ −∆hφ− gu(ũh)φ+ δφ, θ〉+ 〈−ρφ, χ〉

= c̃h〈φ′, θ〉+ 〈φ,−∆hθ − gu(ũh)θ + δθ − ρχ〉.

(3.91)

By definition this implies that θ has a weak derivative and that c̃hθ
′ = −∆hθ− gu(ũh)θ+ δθ− ρχ ∈

L2(R). In particular, we see that θ ∈ H1(R).

For any ψ ∈ C∞c (R) a similar computation yields

0 = 〈L+

h,δ(0, ψ), (θ, χ)〉

= 〈ψ, θ〉+ 〈c̃hψ′ + (γρ+ δ)ψ, χ〉

= c̃h〈ψ′, χ〉+ 〈ψ, θ + (γρ+ δ)χ〉.

(3.92)

Again, this means that χ has a weak derivative and in fact c̃hχ
′ = θ + (γρ + δ)χ. In particular it

follows that χ ∈ H1(R).

We therefore conclude that
0 = 〈L+

h,δ(φ, ψ), (θ, χ)〉

= 〈(φ, ψ), (L−h,δ(θ, χ)〉
(3.93)

holds for all (φ, ψ) ∈ H1. Since H1 is dense in L2 this implies that L−h,δ(θ, χ) = 0. Since we already

know that L−h,δ is injective, this means that (θ, χ) = 0, which gives a contradiction. Hence we must

have L+

h,δ(H
1) = L2, as desired.

Proof of Proposition 3.3. The result follows in the same fashion as outlined in the proof of Proposition
3.2 above.
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4 Existence of pulse solutions

In this section we prove our first main result, Theorem 2.1. In particular, we construct solutions to
(2.12) by writing

(uh, wh) = (u0, w0) + (φh, ψh) (4.1)

and exploiting the linear results of §3. Here (u0, w0) is the pulse solution of the PDE (1.1).

In particular, fix a small δ > 0 that will be determined later, and consider the linear operator

L+
h,δ : H1 → L2, (4.2)

defined by

L+
h,δ =

(
c0

d
dx −∆h − gu(u0) + δ 1

−ρ c0
d
dx + γρ+ δ

)
. (4.3)

This operator arises as the linearisation of (2.1) around the pulse solution (u0, w0) of (1.1). A short
computation shows that our travelling wave triplet (ch, φh, ψh) ∈ R×H1 must satisfy

L+
h,δ(φh, ψh) = R(ch, φh, ψh), (4.4)

where

R(c, φ, ψ) =
(

(c0 − c)(u′0 + φ′) + (∆h − d2

dx2 )u0 + δφ+N (u0, φ), (c0 − c)(w′0 + ψ′)
)
. (4.5)

Here we have introduced the nonlinearity

N (u0, φ) = g(u0 + φ)− g(u0)− gu(u0)φ. (4.6)

Corollary 4.1. There exists a positive constant C0 and a positive function
h0(·) : R+ → R+ such that for all δ > 0 and all h ∈ (0, h0(δ)), the operator L+

h,δ is a homeomorphism
for which we have the bound

‖(L+
h,δ)
−1(θ, χ)‖H1 ≤ C0‖(θ, χ)‖L2 (4.7)

for all (θ, χ) ∈ L2 that satisfy 〈(θ, χ), (φ−0 , ψ
−
0 )〉 = 0.

Proof. This is immediate by choosing (ũh, w̃h) = (u0, w0) and c̃h = c0 for all h in (hFam) and
applying Proposition 3.2.

Let η be a small positive constant to be determined later. We define

Xη = {(φ, ψ) ∈ H1 : ‖(φ, ψ)‖H1 ≤ η}. (4.8)

For every (φ, ψ) ∈ Xη, we define ch = ch(φ, ψ) to be the constant

ch(φ, ψ) = c0 +
〈∆hu0−u′′0 ,φ

−
0 〉+δ〈φ,φ

−
0 〉+〈N (u0,φ),φ−0 〉

〈u′0,φ
−
0 〉+〈φ′,φ

−
0 〉+〈w′0,ψ

−
0 〉+〈ψ′,ψ

−
0 〉

. (4.9)

When this expression is well-defined, this choice ensures that

〈R
(
ch(φ, ψ), φ, ψ

)
, (φ−0 , ψ

−
0 )〉 = 0. (4.10)

We define T : Xη ⊂ H1 → H1 by

T (φ, ψ) = (L+
h,δ)
−1R(ch(φ, ψ), φ, ψ). (4.11)
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Our goal is to show T maps Xη into itself and is a contraction, since then the fixed point (φh, ψh)
leads to a travelling pulse solution of (2.12) via (4.1) and (4.9).

Exploiting (4.10), Corollary 4.1 implies that there exists a constant C0 > 0 such that for all
Ψ = (φ, ψ) ∈ Xη we have the bound

‖T (Ψ)‖H1 ≤ C0‖R(ch(Ψ),Ψ)‖L2 , (4.12)

while for all Ψ1 = (φ1, ψ1),Ψ2 = (φ2, ψ2) ∈ Xη we have the bound

‖T (Ψ1)− T (Ψ2)‖H1 ≤ C0‖R(ch(Ψ1),Ψ1)−R(ch(Ψ2),Ψ2)‖L2 . (4.13)

In the remainder of this section we therefore set out to estimate the right-hand sides of (4.12)
and (4.13). We start by estimating the nonlinear term N (u0, ·).

Lemma 4.2. Assume that (HP1), (HS) and (Hα1) are satisfied. Then there exists a constant M > 0
such that for all 0 < η ≤ 1, (φ, ψ) ∈ Xη, (φ1, ψ1) ∈ Xη and (φ2, ψ2) ∈ Xη we have the pointwise
inequalities

|N (u0, φ)| ≤ Mη|φ|,

|N (u0, φ1)−N (u0, φ2)| ≤ ηM |φ1 − φ2|.
(4.14)

Proof. To estimate the nonlinear term N (u0, φ), we first recall the embedding ‖φ‖L∞ ≤ ‖φ‖H1 ≤
η ≤ 1 for every (φ, ψ) ∈ Xη. Setting M = max{6, sup|s|≤‖u0‖∞ |guu(s)|}, a Taylor expansion around
u0 allows us to obtain the pointwise inequalities

|N (u0, φ)| = | − g(u0 + φ) + g(u0) + gu(u0)|

= | − g(u0)− φgu(u0)− 1
2φ

2guu(ξ) + g(u0) + gu(u0)|

= | − 1
2φ

2guu(ξ)|

≤ 1
2Mη|φ|

≤ Mη|φ|,

(4.15)

where ξ is between u0 and u0 + φ. Note that guuu = 6 is constant. Furthermore, for (φ1, ψ1) ∈ Xη

and (φ2, ψ2) ∈ Xη, a Taylor expansion around u0 yields the pointwise inequalities

|N (u0, φ1)−N (u0, φ2)| =
∣∣∣− g(u0 + φ1) + g(u0) + gu(u0)φ1

+g(u0 + φ2)− g(u0)− gu(u0)φ2

∣∣∣
=

∣∣∣− 1
2guu(u0)φ2

1 + 1
2guu(u0)φ2

2 − 1
6guuu(ξ1)φ3

1 + 1
6guuu(ξ2)φ3

2

∣∣∣
≤ 1

2 |guu(u0)||φ2
1 − φ2

2|+ 1
66|φ3

1 − φ3
2|

≤ 1
2 |guu(u0)|

[
|φ1||φ1 − φ2|+ |φ2||φ1 − φ2|

]
+ |φ1||φ2

1 − φ2
2|+ |φ1 − φ2||φ2

2|

≤ 1
2

1
2M

[
2η|φ1 − φ2|

]
+ η
[
2η|φ1 − φ2|

]
+ η2|φ1 − φ2|

≤ ηM |φ1 − φ2|,
(4.16)

where ξ1 is between u0 and u0 + φ1 and ξ2 is between u0 and u0 + φ2.

Pick (φ, ψ) ∈ Xη. Recall that we chose (φ−0 , ψ
−
0 ) so that 〈(φ−0 , ψ

−
0 ), (u′0, w

′
0)〉 > 0. Let s be defined

as
s = 2 1

〈(φ−0 ,ψ
−
0 )〉,(u′0,w′0)

> 0. (4.17)
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For notational compactness, we write

σ(φ, ψ) = 〈u′0, φ−0 〉+ 〈φ′, φ−0 〉+ 〈w′0, ψ−0 〉+ 〈ψ′, ψ−0 〉 (4.18)

for (φ, ψ) ∈ Xη. We also write
η0 = min{1, s−1}. (4.19)

Lemma 4.3. Assume that (HP1), (HS) and (Hα1) are satisfied. Fix 0 < η ≤ η0. Then for all
Ψ = (φ, ψ) ∈ Xη,Ψ1 = (φ1, ψ1) ∈ Xη and Ψ2 = (φ2, ψ2) ∈ Xη we have the bounds

0 < [σ(Ψ)]−1 ≤ s, (4.20)

together with
|σ(Ψ1)− σ(Ψ2)| ≤ ‖Ψ′1 −Ψ′2‖L2 . (4.21)

Proof. Using Cauchy-Schwartz, we obtain that

σ(φ, ψ) = 〈u′0, φ−0 〉+ 〈φ′, φ−0 〉+ 〈w′0, ψ−0 〉+ 〈ψ′, ψ−0 〉

≥ 2s−1 + 〈(φ′, ψ′), (φ−0 , ψ
−
0 )〉

≥ 2s−1 − η

≥ s−1,

(4.22)

which yields (4.20). In particular we see that

1
σ(Ψ) ≤ s. (4.23)

The remaining inequality (4.21) follows immediately from Cauchy-Schwarz.

Lemma 4.4. Assume that (HP1), (HS) and (Hα1) are satisfied. Recall the constant M from Lemma
4.2 and the constant s from (4.17). Then for all 0 < η ≤ η0, Ψ ∈ Xη,Ψ1 ∈ Xη and Ψ2 ∈ Xη we
have the inequality

|ch(Ψ)− c0| ≤ s
(
‖∆hu0 − u′′0‖L2 + δη +Mη2

)
, (4.24)

together with

|ch(Ψ1)− ch(Ψ2)| ≤ s‖Ψ1 −Ψ2‖H1

(
s‖∆hu0 − u′′0‖L2 + 2(δ +Mη)

)
. (4.25)

Proof. By (4.20) we have that [σ(Ψ)]−1 ≤ s for all Ψ ∈ Xη. By definition of ch(Ψ) and Lemma
4.2, we obtain for all Ψ = (φ, ψ) ∈ Xη that

|ch(Ψ)− c0| =
∣∣∣ 〈∆hu0−u′′0 ,φ

−
0 〉+δ〈φ,φ

−
0 〉+〈N (u0,φ),φ−0 〉

σ(Ψ)

∣∣∣
≤ s|〈∆hu0 − u′′0 , φ−0 〉+ δ〈φ, φ−0 〉+ 〈N (u0, φ), φ−0 〉|

≤ s
(
‖∆hu0 − u′′0‖L2‖φ−0 ‖L2 + δ‖φ‖L2‖φ−0 ‖L2

)
+ sMη‖|φ|‖L2

≤ s
(
‖∆hu0 − u′′0‖L2‖(φ−0 , ψ

−
0 )‖L2 + δ‖φ‖L2‖(φ−0 , ψ

−
0 )‖L2

)
+ sMη‖φ‖L2

= s
(
‖∆hu0 − u′′0‖L2 + δ‖φ‖L2 +Mη‖φ‖L2

)
≤ s

(
‖∆hu0 − u′′0‖L2 + (δ +Mη)η

)
.

(4.26)

For notational compactness we write

d(Ψ) = 〈∆hu0 − u′′0 , φ−0 〉+ δ〈φ, φ−0 〉+ 〈N (u0, φ), φ−0 〉. (4.27)
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Then we obtain with (4.20) that for all Ψ1 = (φ1, ψ1) ∈ Xη and Ψ2 = (φ2, ψ2) ∈ Xη

|ch(Ψ1)− ch(Ψ2)| =
∣∣∣ d(Ψ1)
σ(Ψ1) −

d(Ψ2)
σ(Ψ2)

∣∣∣
=

∣∣∣d(Ψ1)σ(Ψ2)−d(Ψ2)σ(Ψ1)
σ(Ψ1)σ(Ψ2)

∣∣∣
≤

[
|d(Ψ2)||σ(Ψ2)−σ(Ψ1)|+|d(Ψ1)−d(Ψ2)||σ(Ψ2)|

]
|σ(Ψ1)||σ(Ψ2)|

≤ s2|d(Ψ2)||σ(Ψ2)− σ(Ψ1)|+ s|d(Ψ1)− d(Ψ2)|.

(4.28)

Observe using Lemma 4.2 that

|d(Ψ2)| ≤ ‖∆hu0 − u′′0‖L2 + δ‖φ2‖L2 + ‖N (u0, φ2)‖L2

≤ ‖∆hu0 − u′′0‖L2 + δη +Mη‖φ2‖L2

≤ ‖∆hu0 − u′′0‖L2 + δη +Mη2

(4.29)

and
|d(Ψ1)− d(Ψ2)| ≤ δ‖φ1 − φ2‖L2 + ‖N (u0, φ1)−N (u0, φ2)‖L2

≤ δ‖φ1 − φ2‖L2 + ηM‖φ1 − φ2‖L2

≤ (δ +Mη)‖φ1 − φ2‖L2 .

(4.30)

Using Lemma 4.3, we hence see that

|ch(Ψ1)− ch(Ψ2)| ≤ s2|d(Ψ2)||σ(Ψ2)− σ(Ψ1)|+ s|d(Ψ1)− d(Ψ2)|

≤ s2
(
‖∆hu0 − u′′0‖L2 + δη +Mη2

)
|σ(Ψ2)− σ(Ψ1)|

+s(δ +Mη)‖φ1 − φ2‖L2

≤ s2
(
‖∆hu0 − u′′0‖L2 + δη +Mη2

)
‖Ψ1 −Ψ2‖H1

+s(δ +Mη)‖φ1 − φ2‖L2

≤ s‖Ψ1 −Ψ2‖H1

(
s‖∆hu0 − u′′0‖L2 + (δ +Mη)(1 + sη)

)
≤ s‖Ψ1 −Ψ2‖H1

(
s‖∆hu0 − u′′0‖L2 + 2(δ +Mη)

)
.

(4.31)

Lemma 4.5. Assume that (HP1), (HS) and (Hα1) are satisfied. Recall the constant M from Lemma
4.2 and the constant s from (4.17). Then for all 0 < η ≤ η0,Ψ ∈ Xη,Ψ1 ∈ Xη and Ψ2 ∈ Xη we have
the inequality

‖R(ch(Ψ),Ψ)‖L2 ≤
[
1 + s

(
‖u′0‖L2 + ‖w′0‖L2 + η

)][
‖∆hu0 − u′′0‖L2 + δη +Mη2

]
, (4.32)

together with

‖R(ch(Ψ1),Ψ1)−R(ch(Ψ2),Ψ2)‖L2 ≤ ‖Ψ1 −Ψ2‖H1

(
2 + 2sη + s‖u′0‖L2 + s‖w′0‖L2

)
×
(
s‖∆hu0 − u′′0‖L2 + 2(δ +Mη)

)
.

(4.33)
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Proof. For any Ψ = (φ, ψ) ∈ Xη, Lemma 4.4 together with the definition of R(ch(Ψ),Ψ) allows
us to estimate

‖R(ch(Ψ),Ψ)‖L2 ≤ |c0 − ch(Ψ)|
(
‖u′0‖L2 + ‖φ′‖L2

)
+ ‖∆hu0 − u′′0‖L2 + δη +Mη2

+|c0 − ch(Ψ)|
(
‖w′0‖L2 + ‖ψ′‖L2

)
≤ s

(
‖∆hu0 − u′′0‖L2 + δη +Mη

)(
‖u′0‖L2 + ‖w′0‖L2 + η

)
+‖∆hu0 − u′′0‖L2 + δη +Mη2

=
[
1 + s

(
‖u′0‖L2 + ‖w′0‖L2 + η

)][
‖∆hu0 − u′′0‖L2 + δη +Mη2

]
.

(4.34)

For Ψ1 = (φ1, ψ1) ∈ Xη and Ψ2 = (φ2, ψ2) ∈ Xη we write

d(Ψ1,Ψ2) := ‖R(ch(Ψ1),Ψ1)−R(ch(Ψ2),Ψ2)‖L2 . (4.35)

Substituting (4.5), we compute

d(Ψ1,Ψ2) ≤
∣∣∣∣∣∣((c0 − ch(Ψ1))(φ′1 − φ′2) + (ch(Ψ1)− ch(Ψ2))(u′0 − φ′2)

+δ(φ1 − φ2) + (N (u0, φ2)−N (u0, φ1))
∣∣∣∣∣∣
L2

+
∣∣∣∣∣∣(c0 − ch(Ψ1))(ψ′1 − ψ′2) + (ch(Ψ1)− ch(Ψ2))(w′0 − ψ′2)

)∣∣∣∣∣∣
L2

≤
(
|ch(Ψ1)− c0|+ δ +Mη

)
‖φ1 − φ2‖H1 +

(
‖u′0‖L2 + η

)∣∣∣ch(Ψ1)− ch(Ψ2)
∣∣∣

+
∣∣∣ch(Ψ1)− c0

∣∣∣‖ψ1 − ψ2‖H1 +
(
‖w′0‖L2 + η

)∣∣∣ch(Ψ1)− ch(Ψ2)
∣∣∣.

(4.36)

Another application of Lemma 4.4 yields the desired bound

d(Ψ1,Ψ2) ≤
(
s
(
‖∆hu0 − u′′0‖L2 + (δ +M)η

)
+ δ +Mη

)
‖φ1 − φ2‖H1

+(‖u′0‖L2 + η)s||Ψ1 −Ψ2||H1

(
s‖∆hu0 − u′′0‖L2 + 2(δ +Mη)

)
+s
(
‖∆hu0 − u′′0‖L2 + (δ +Mη)η

)
‖ψ1 − ψ2‖H1

+(‖w′0‖L2 + η)s2‖Ψ1 −Ψ2‖H1

(
‖∆hu0 − u′′0‖L2 + 2σ̂(δ +Mη)

)
≤ ‖Ψ1 −Ψ2‖H1

(
2 + 2sη + s‖u′0‖L2 + s‖w′0‖L2

)(
s‖∆hu0 − u′′0‖L2 + 2(δ +Mη)

)
.

(4.37)

With these estimates in hand, we can choose our parameters δ and η to ensure that the map T
maps Xη into itself and is a contraction. This allows us to prove our first main theorem.

Proof of Theorem 2.1. We let

C6 = max
{
C0

(
1 + s‖u′0‖L2 + s‖w′0‖L2 + s

)
, C0

(
4 + s‖u′0‖L2 + s‖w′0‖L2

)}
, (4.38)

which is independent of δ, h and η ∈ (0, s−1]. Using Lemma 4.5 together with (4.12) and (4.13), we
see that for all 0 < η ≤ η0,Ψ = (φ, ψ) ∈ Xη,Ψ1 = (φ1, ψ1) ∈ Xη and Ψ2 = (φ2, ψ2) ∈ Xη we have

‖T (Ψ)‖H1 ≤ C6

(
‖∆hu0 − u′′0‖L2 + δη +Mη2

)
(4.39)

and
‖T (Ψ1)− T (Ψ2)‖H1 ≤ C6

(
s‖∆hu0 − u′′0‖+ 2(δ +Mη)

)
‖Ψ1 −Ψ2‖H1 . (4.40)
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We fix
δ = 1

8C6

η = min{η0,
1

8MC6
},

(4.41)

so that indeed η ≤ η0. Using the notation from Corollary 4.1, we pick 0 < h∗ ≤ h0(δ) in such a way
that

suph∈(0,h∗)‖∆hu0 − u′′0‖L2 ≤ η
8C6

. (4.42)

Then we see for h ∈ (0, h∗) that

‖T (Φ)‖H1 ≤ C6

(
‖∆hu0 − u′′0‖L2 + δη +Mη2

)
≤ C6

(
η

8C6
+ 1

8C6
η +M 1

8MC6
η
)

≤ η

(4.43)

and

‖T (Ψ1)− T (Ψ2)‖H1 ≤ C6

(
s‖∆hu0 − u′′0‖+ 2(δ +Mη)

)
‖Ψ1 −Ψ2‖H1

≤ C6

(
s η

8C6
+ 2( 1

8C6
+M 1

8MC6
)
)
‖Ψ1 −Ψ2‖H1

≤ 3
4‖Ψ1 −Ψ2‖H1 .

(4.44)

In particular, T maps Xη into itself and is a contraction. The local uniqueness of the family
(ch, uh, wh) follows directly from the uniqueness of solutions to fixed point problems. This com-
pletes the proof.
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5 The point and essential spectrum

In this section we discuss several properties of the operator that arises after linearising the travel-
ling pulse MFDE (2.12) around our wave solution (uh, wh). The main goals are to determine the
Fredholm properties of this operator. In particular we show that both the linearised operator and
its adjoint have Fredholm index 0 and that they both have a one-dimensional kernel. Moreover, we
construct a family of kernel elements of the adjoint operator that converges to (φ−0 , ψ

−
0 ), the kernel

element of the operator L−0 .

Pick 0 < h < min{h∗, h}, where h∗ is given in Theorem 2.1 and h is characterized by (3.51). We
recall the operator Lh : H1 → L2, introduced in §2, which acts as

Lh =

(
ch

d
dx −∆h − gu(uh) 1

−ρ ch
d
dx + γρ

)
. (5.1)

In addition, we write L∗h : H1 → L2 for the formal adjoint of Lh, which is given by

L∗h =

(
−ch d

dx −∆h − gu(uh) −ρ
1 −ch d

dx + γρ

)
. (5.2)

We emphasize that Lh and L∗h correspond to the operators L+

h,0 and L−h,0 defined in §3 respectively
upon writing

(ũh, w̃h) = (uh, wh),

c̃h = ch
(5.3)

for the family featuring in (hFam). Finally, we introduce the notation

Φ+
h = (φ+

h , ψ
+
h )

= 1
‖(u′h,w

′
h)‖L2

(u′h, w
′
h)

Φ+
0 = (φ+

0 , ψ
+
0 )

Φ−0 = (φ−0 , ψ
−
0 ).

(5.4)

The results of this section should be seen as a bridge between the singular perturbation theory
developed in §3 and the spectral analysis preformed in §6. Indeed, one might be tempted to think
that most of the work required for the spectral analysis of the operator Lh can already be found
in Proposition 3.2 and Proposition 3.3. However, the problem is that we have no control over the

δ-dependance of the interval (0, h′0(δ)), which contains all values of h for which Lh + δ = L+

h,δ is

invertible. In particular, for fixed h > 0 we cannot directly conclude that L+

h,δ is invertible for all δ
in a subset of the positive real axis.

Our main task in this section is therefore to remove the δ-dependence and study Lh and L∗h
directly. The main conclusions are summarized in the results below.

Proposition 5.1. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Then there exists a
constant λ̃ > 0 such that for all λ ∈ C with Re λ > −λ̃ and all 0 < h < min{h∗, h} the operator
Lh + λ is Fredholm with index 0.

Proposition 5.2. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Then there exists a
constant h∗∗ > 0, together with a family Φ−h = (φ−h , ψ

−
h ) ∈ H1, defined for 0 < h < h∗∗, such that

the following properties hold.
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1. For each 0 < h < h∗∗ we have the identities

ker(Lh) = span{Φ+
h }

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(L∗h)}
(5.5)

and
ker(L∗h) = span{Φ−h }

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(Lh)}.
(5.6)

2. The family Φ−h converges to Φ−0 in H1 as h ↓ 0.

3. The functions Φ+
h and Φ−h together with their derivatives decay exponentially for each 0 < h <

h∗∗.

4. Upon introducing the spaces

Xh = {Θ ∈ H1 : 〈Φ−h ,Θ〉 = 0} (5.7)

and
Yh = {Θ ∈ L2 : 〈Φ−h ,Θ〉 = 0}, (5.8)

the operator Lh : Xh → Yh is invertible and there exists a constant Cunif > 0 such that for
each 0 < h < h∗∗ we have the uniform bound

‖L−1
h ‖B(Yh,Xh) ≤ Cunif . (5.9)

A direct consequence of these results is that the zero eigenvalue of Lh is simple. In addition,
these results allow us to construct a quasi-inverse for Lh that we use heavily in §6 and §7.

Corollary 5.3. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Then for any 0 < h < h∗∗
the zero eigenvalue of Lh is simple.

Proof. We can assume that 〈Φ−h ,Φ
+
h 〉 6= 0 for all 0 < h < h∗∗, since by Proposition 5.2

〈Φ−h ,Φ
+
h 〉 → 〈Φ−0 ,Φ

+
0 〉 6= 0. Equation (5.6) now implies that Φ+

h /∈ Range(Lh), which together
with (5.5) completes the proof.

Corollary 5.4. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. There exist linear maps

γh : L2 → R

Lqinv
h : L2 → H1,

(5.10)

such that for all Θ ∈ L2 and each 0 < h < h∗∗ the pair

(γ,Ψ) = (γhΘ, Lqinv
h Θ) (5.11)

is the unique solution to the problem

LhΨ = Θ + γΦ+
h (5.12)

that satisfies the normalisation condition

〈Φ−h ,Ψ〉 = 0. (5.13)
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Proof. Fix 0 < h < h∗∗ and Θ ∈ L2. Upon defining

γh[Θ] = − 〈Φ
−
h ,Θ〉

〈Φ−h ,Φ
+
h 〉
, (5.14)

we see that Θ + γh[Θ]Φ+
h ∈ Yh. In particular, Proposition 5.2 implies that the problem

LhΨ = Θ + γh[Θ]Φ+
h (5.15)

has a unique solution Ψ ∈ Xh, which we refer to as Lqinv
h Θ.

The results in [3, 39] allow us to read off the Fredholm properties of Lh from the behaviour of
this operator in the limits ξ → ±∞. In particular, we let Lh,∞ be the operator defined by

Lh,∞ =

(
ch

d
dx −∆h − lim

ξ→∞
gu(uh(ξ)) 1

−ρ ch
d
dx + γρ

)

=

(
ch

d
dx −∆h − gu(0) 1

−ρ ch
d
dx + γρ

)
.

(5.16)

This system has constant coefficients. For λ ∈ C we introduce the notation

Lh,∞;λ = Lh,∞ + λ. (5.17)

We show that for λ in a suitable right half-plane the operator Lh,∞;λ is hyperbolic in the sense of
[3], i.e. we write

∆Lh,∞;λ
(z) =

[
Lh,∞;λe

zξ
]
(0)

=

 chz − 1
h2

[ ∑
k>0

αk

(
ekhz + e−khz − 2

)]
− gu(0) + λ 1

−ρ chz + γρ+ λ

 (5.18)

and show that det(∆Lh,∞;λ
(iy)) 6= 0 for all y ∈ R. In the terminology of [3, 39], this means that

Lh + λ is asymptotically hyperbolic. This allows us to compute the Fredholm index of Lh + λ.

Remark 5.5. From this section onward we assume that (Hα2) is satisfied. This is done for technical
reasons, allowing us to apply the results from [3]. In particular, this condition implies that the
function ∆Lh,∞;λ

(z) defined in (5.18) is well-defined in a vertical strip |Re (z)| < ν .

Lemma 5.6. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. There exists a constant
λ̃ > 0 such that for all 0 < h < min{h∗, h} and all λ ∈ C with Re λ > −λ̃ the operator Lh,∞;λ is
hyperbolic and thus the operator Lh + λ is asymptotically hyperbolic.

Proof. Remembering that −gu(0) = r0 > 0 and picking y ∈ R, we compute

∆Lh,∞;λ
(iy) =

 chiy + 1
h2

[ ∑
k>0

αk

(
2− 2 cos(khy)

)]
+ r0 + λ 1

−ρ chiy + γρ


=

(
chiy + 1

h2A(hy) + r0 + λ 1
−ρ chiy + γρ+ λ

)
,

(5.19)

where A(hy) ≥ 0 is defined in (Hα1). We hence see

det(∆Lh,∞;λ
(iy)) =

(
chiy + 1

h2A(hy) + r0 + λ
)(
chiy + γρ+ λ

)
+ ρ. (5.20)
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Let λ̃ = 1
4 min{γρ, r0} and assume that Re λ > −λ̃. If y 6= − Im λ

ch
then we obtain

Im
(

det(∆Lh,∞;λ
(iy))

)
= (chy + Im λ)(γρ+ Re λ) + ( 1

h2A(hy) + r0 + Re λ)(chy + Im λ)

= (chy + Im λ)(γρ+ 1
h2A(hy) + r0 + 2 Re λ)

6= 0,
(5.21)

since γρ+ 1
h2A(hy) + r0 + Re λ > 0. For y = − Im λ

ch
we obtain

Re
(

det(∆Lh,∞;λ
(y))

)
=

(
1
h2A(hy) + r0 + Re λ

)(
γρ+ Re λ

)
+ ρ

> ρ

> 0.

(5.22)

In particular, we see that det(∆Lh,∞;λ
(iy)) 6= 0 for all y ∈ R, as desired.

Before we consider the Fredholm properties of Lh + λ, we establish a technical estimate for the
function ∆Lh,∞;λ

, which we need in §7 later on.

Lemma 5.7. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Fix 0 < h < min{h∗, h}
and S ⊂ C compact in such a way that Re λ > −λ̃ for all λ ∈ S. Then there exist constants κ > 0
and Γ > 0, possibly depending on h and S, such that for all z = x + iy ∈ C with |x| ≤ κ and all
λ ∈ S we have the bound

|det(∆Lh,∞;λ
(z))| ≥ 1

Γ . (5.23)

Proof. Using assumption (Hα2) we can pick κ1 > 0 and Γ1 > 0 in such a way that the bound

| 1
h2A(hz)| :=

∣∣∣ 1
h2

[ ∑
k>0

αk

(
2− ekhz − e−khz

)]∣∣∣
≤ 1

h2

∑
k>0

|αk|
(
ehk|x| + 3

)
≤ Γ1

(5.24)

holds for all z = x+ iy ∈ C with |x| ≤ κ1.

Observe that for z = x+ iy ∈ C and λ ∈ S we have

Re
(

det(∆Lh,∞;λ
(z))

)
=

(
chx+ 1

h2 Re A(hz) + r0 + Re λ
)(
chx+ γρ+ Re λ

)
−(chy + Im λ)2 − (chy + Im λ) 1

h2 (Im A(y)) + ρ.
(5.25)

Since S is compact we can find Y > 0 such that for all z = x + iy ∈ C with |y| ≥ Y and |x| ≤ k1

and all λ ∈ S we have ∣∣∣Re
(

det(∆Lh,∞;λ
(z))

)∣∣∣ ≥ 1
2c

2
hy

2

≥ 1
2c

2
hY

2.
(5.26)

Seeking a contradiction, let us assume that for each 0 < κ ≤ κ1 and each Γ > 0 there exist λ ∈ S
and z = x+ iy ∈ C with |x| ≤ κ and |y| ≤ Y for which

|det(∆Lh,∞;λ
(z))| < 1

Γ . (5.27)

Then we can construct a sequence {κn, zn, λn} with 0 < κn ≤ κ1 for each n, κn → 0, λn ∈ S for each
n and zn = xn + iyn ∈ C with |xn| ≤ κn and |yn| ≤ Y in such a way that |det(∆Lh,∞;λn

(zn))| < 1
n

for each n. By taking a subsequence if necessary we see that λn → λ for some λ ∈ S and zn → iy
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for some y ∈ R with |y| ≤ Y . Since det(∆Lh,∞;λ
(z)) is continuous as a function of λ and z it follows

that
det(∆Lh,∞;λ

(iy)) = lim
n→∞

det(∆Lh,∞;λn
(zn))

= 0,
(5.28)

which contradicts Lemma 5.6. Hence we can find κ > 0 and Γ > 0 as desired.

Proof of Proposition 5.1. We have already seen in Lemma 5.6 that Lh+λ is asymptotically hyperbolic
in the sense of [3]. Now according to [3, Theorem 1.4], which is a variation of [37, Theorem 2], we
obtain that Lh + λ is a Fredholm operator and that the following identities hold

dim
(

ker(Lh + λ)
)

= codim
(

Range(L∗h + λ)
)
,

codim
(

Range(Lh + λ)
)

= dim
(

ker(L∗h + λ)
)
,

ind(Lh + λ) = −ind(L∗h + λ),

(5.29)

where
ind(Lh + λ) = dim

(
ker(Lh + λ)

)
− codim

(
Range(Lh + λ)

)
(5.30)

is the Fredholm index of Lh + λ.

We follow the proof of [32, Theorem B]. For 0 ≤ ϑ ≤ 1, we let the operator Lϑ(h) be defined by

Lϑ(h) = (1− ϑ)(Lh + λ) + ϑ(Lh,∞ + λ). (5.31)

Note that the operator Lϑ(h) is asymptotically hyperbolic for each ϑ and thus [3, Theorem 1.4]
implies that these operators Lϑ(h) are Fredholm. Moreover, the family Lϑ(h) varies continuously
with ϑ in B(H1,L2), which means the Fredholm index is constant. In particular, we see that

ind(Lh + λ) = ind(Lh,∞ + λ)

= 0,
(5.32)

where the last equality follows from [3, Theorem 1.4].

We can now concentrate on the kernel of Lh. The goal is to develop a Liapunov-Schmidt argument
to exclude kernel elements other than Φ+

h . In order to accomplish this, we construct a quasi-inverse
for Lh by mimicking the approach of [23, Proposition 3.2]. As a preparation, we obtain the following
technical result.

Lemma 5.8. Assume that (HP1), (HS) and (Hα1) are satisfied. Recall the constant δ0 from Lemma
3.1. Let 0 < λ < min{ 1

2 , δ0} be given. Then there exists constant 0 < h∗1 ≤ min{h∗, h} and κ > 0
such that for all 0 < h ≤ h∗1 we have

〈Φ−0 , (Lh + λ)−1Φ+
0 〉 > 1

2λ
−1〈Φ−0 ,Φ

+
h 〉

> 1
2λ
−1κ

> 0.

(5.33)

Proof. We know from Lemma 3.1 that 〈Φ−0 ,Φ
+
0 〉 > 0. Since Φ+

h converges to Φ+
0 in L2, it follows

that 〈Φ−0 ,Φ
+
h 〉 converges to 〈Φ−0 ,Φ

+
0 〉 > 0. Fix h∗1 ≤ min{h∗, h, h′0(λ)} in such a way that

‖Φ+
0 − Φ+

h ‖L2 < 1
2

〈Φ−0 ,Φ
+
h 〉

2Cunif
(5.34)
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holds for all 0 ≤ h ≤ h∗1, where
Cunif = 4C ′0 (5.35)

and C ′0 is defined in Proposition 3.2. The factor 4 in the definition is for technical reasons in a later
proof. We assume from now on that 0 < h ≤ h∗1. Using LhΦ+

h = 0 we readily see

(Lh + λ)−1Φ+
h = λ−1Φ+

h . (5.36)

Recall that ‖Φ−0 ‖L2 = 1. Since 1 < λ−1, we may use Proposition 5.2 to obtain

‖(Lh + λ)−1Φ+
0 − λ−1Φ+

h ‖L2 = ‖(Lh + λ)−1[Φ+
0 − Φ+

h ]‖L2

≤ Cunif

[
‖Φ+

h − Φ+
0 ‖L2 + λ−1|〈Φ+

h − Φ+
0 ,Φ

−
0 〉|
]

< Cunifλ
−1‖Φ+

0 − Φ+
h ‖L2

(
1 + ‖Φ−0 ‖L2

)
= 2Cunifλ

−1‖Φ+
0 − Φ+

h ‖L2 .

(5.37)

Remembering 〈Φ−0 ,Φ
+
h 〉 > 0 and using Cauchy-Schwarz, we see that

|〈 Φ−0
〈Φ−0 ,Φ

+
h 〉
, (Lh + λ)−1Φ+

0 〉 − λ−1| = |〈 Φ−0
〈Φ−0 ,Φ

+
h 〉
, (Lh + λ)−1Φ+

0 − λ−1Φ+
h 〉|

<
‖Φ−0 ‖L2

〈Φ−0 ,Φ
+
h 〉

2Cunifλ
−1‖Φ+

0 − Φ+
h ‖L2

≤ 1
〈Φ−0 ,Φ

+
h 〉

2Cunifλ
−1 1

2

〈Φ−0 ,Φ
+
h 〉

2Cunif

= 1
2λ
−1.

(5.38)

Hence we must have
〈Φ−0 , (Lh + λ)−1Φ+

0 〉 > 1
2λ
−1〈Φ−0 ,Φ

+
h 〉 > 0. (5.39)

Lemma 5.9. Assume that (HP1), (HS) and (Hα1) are satisfied. There exists 0 < h∗∗ ≤ min{h∗, h}
together with linear maps

γ̃+
h : L2 → R

L̃qinv
h : L2 → H1,

(5.40)

defined for all 0 < h < h∗∗, such that for all Θ ∈ L2 the pair

(γ,Ψ) = (γ̃+
h Θ, L̃qinv

h Θ) (5.41)

is the unique solution to the problem

LhΨ = Θ + γΦ+
0 (5.42)

that satisfies the normalisation condition

〈Φ−0 ,Ψ〉 = 0. (5.43)

In addition, there exists C > 0 such that for all 0 < h < h∗∗ and all Θ ∈ L2 we have the bound

|γ̃+
h Θ|+ ‖L̃qinv

h Θ‖H1 ≤ C‖Θ‖L2 . (5.44)
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Proof. Fix 0 < λ < min{ 1
2 , δ0} and let 0 < h ≤ min{h∗, h, h′0(λ)} be given, where h′0(λ) is defined

in Proposition 3.2. We define the set

Z1 = {Ψ ∈ H1 : 〈Φ−0 ,Ψ〉 = 0}. (5.45)

Pick Θ ∈ L2. We look for a solution (γ,Ψ) ∈ R× Z1 of the problem

Ψ = (Lh + λ)−1[Θ + γΦ+
0 + λΨ]. (5.46)

By Lemma 5.8 we have 〈Φ−0 , (Lh + λ)−1Φ+
0 〉 6= 0. Hence for given Θ ∈ L2,Ψ ∈ Z1, h, λ, we may

write
γ(Ψ,Θ, h, λ) = − 〈Φ

−
0 ,(Lh+λ)−1(Θ+λΨ)〉
〈Φ−0 ,(Lh+λ)−1Φ+

0 〉
, (5.47)

which is the unique value for γ for which

(Lh + λ)−1[Θ + γΦ+
0 + λΨ] ∈ Z1. (5.48)

Recall the constant Cunif from (5.35). With Proposition 3.2 we obtain

|〈Φ−0 , (Lh + λ)−1(Θ + λΨ)〉| ≤ ‖Φ−0 ‖L2Cunif

[
‖Θ + λΨ‖L2 + 1

λ |〈Θ + λΨ,Φ−0 〉|
]

≤ ‖Φ−0 ‖L2Cunif

[
(1 + 1

λ )‖Θ‖L2 + λ‖Ψ‖L2

]
≤ C1

[
λ−1‖Θ‖L2 + λ‖Ψ‖L2

] (5.49)

for some C1 that is independent of h, λ. Here we used that λ < 1 and thus 1 + 1
λ <

2
λ . Exploiting

λ < 1
2 and applying Lemma 5.8, we see that

|γ(Ψ,Θ, h, λ)| = |〈Φ−0 , (Lh + λ)−1(Θ + λΨ)〉| 1
|〈Φ−0 ,(Lh+λ)−1Φ+

0 〉|

≤ C1

[
λ−1‖Θ‖L2 + λ‖Ψ‖L2

]
1

1
2λ
−1〈Φ−0 ,Φ

+
h 〉

≤ C1

[
‖Θ‖L2 + κλ2‖Ψ‖L2

]
≤ C2

[
‖Θ‖L2 + λ2‖Ψ‖L2

]
.

(5.50)

Here we used that 〈Φ−0 ,Φ
+
h 〉 converges to 〈Φ−0 ,Φ

+
0 〉 > 0, which means that 〈Φ−0 ,Φ

+
h 〉 can be bounded

away from zero. For Ψ ∈ Z1 we write

t(Ψ) = Θ + γ(Ψ,Θ, h, λ)Φ+
0 + λΨ (5.51)

and
T (Ψ) = (Lh + λ)−1t(Ψ). (5.52)

For Ψ ∈ Z1 Proposition 3.2 implies

‖T (Ψ)‖H1 ≤ Cunif

[
‖Θ + γ(Ψ,Θ, h, λ)Φ+

0 + λΨ‖L2

+ 1
λ |〈Θ + γ(Ψ,Θ, h, λ)Φ+

0 + λΨ,Φ−0 〉|
]

≤ C3

[
1
λ‖Θ‖L2 + λ‖Ψ‖L2

]
≤ C3

[
1
λ‖Θ‖L2 + λ‖Ψ‖H1

]
,

(5.53)
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since ‖Φ+
h ‖L2 can be uniformly bounded by a constant for 0 < h ≤ h∗. For Ψ1,Ψ2 ∈ Z1, a second

application of Proposition 3.2 yields

|γ(Ψ1,Θ, h, λ)− γ(Ψ2,Θ, h, λ)| =
∣∣∣ 〈Φ−0 ,(Lh+λ)−1(λΨ1−λΨ2)〉

〈Φ−0 ,(Lh+λ)−1Φ+
0 〉

∣∣∣
≤ 1

〈Φ−0 ,(Lh+λ)−1Φ+
0 〉
Cunif

[
λ‖Ψ1 −Ψ2‖L2 + 1

λ |〈λΨ1 − λΨ2,Φ
−
0 〉|
]

≤ C4λ
[
λ‖Ψ1 −Ψ2‖L2 + 0

]
≤ C4λ

2‖Ψ1 −Ψ2‖H1 .
(5.54)

Applying Proposition 3.2 for the final time, we see

‖T (Ψ1)− T (Ψ2)‖H1 ≤ Cunif

[
‖t(Ψ1)− t(Ψ2)‖L2 + 1

λ |〈t(Ψ1)− t(Ψ2),Φ−0 〉|
]

≤ Cunif

[
‖t(Ψ1)− t(Ψ2)‖L2

+ 1
λ 〈(γ(Ψ1,Θ, h, λ)− γ(Ψ2,Θ, h, λ)Φ+

0 + λ(Ψ1,Ψ2),Φ−0 〉
]

≤ Cunif

[
‖t(Ψ1)− t(Ψ2)‖L2 + 1

λ

(
C4λ

2‖Ψ1 −Ψ2‖H1 + 0
)]

≤ CunifC4λ
2‖Ψ1 −Ψ2‖H1 + Cunifλ‖Ψ1 −Ψ2‖H1 + C4λ‖Ψ1 −Ψ2‖H1

≤ C5λ‖Ψ1 −Ψ2‖H1 .
(5.55)

In view of these bounds, we pick λ to be small enough to have C3λ <
1
2 and C5λ <

1
2 . In addition,

we write h∗∗ = min{h∗1, h′0(λ)} and pick 0 < h < h∗∗. Then T : Z1 → Z1 is a contraction, so the

fixed point theorem implies that there is a unique L̃qinv
h (Θ) ∈ Z1 for which

L̃qinv
h (Θ) = (Lh + λ)−1

[
Θ + γ(L̃qinv

h (Θ),Θ, h, λ)Φ+
0 + λL̃qinv

h (Θ)
]
. (5.56)

Furthermore, we have

1
2‖L̃

qinv
h (Θ)‖H1 ≤ (1− λC3)‖L̃qinv

h (Θ)‖H1

≤ C3λ
−1‖Θ‖L2

≤ C4‖Θ‖L2 .

(5.57)

Writing γ̃+
h (Θ) = γ(L̃qinv

h (Θ),Θ, h, λ), we compute

|γ̃+
h (Θ)| ≤ C4[‖Θ‖L2 + λ2λ−1‖Θ‖L2 ]

≤ C5‖Θ‖L2 .
(5.58)

Finally we see that (5.46) is in fact equivalent to (5.42)-(5.43), so in fact L̃qinv
h (Θ) and γ̃+

h (Θ) do not
depend on λ.

With this quasi-inverse in hand we are able to characterize the kernel of Lh. Indeed, Lemma 5.9
allows us to generalize the Liapunov-Schmidt argument developed in [22] to our current singularly
perturbed setting.

Lemma 5.10. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Let 0 < h < h∗∗ be given.
Then we have the inclusion

span{Φ+
h } ⊂ ker(Lh)

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(L∗h)},
(5.59)

where L∗h is the formal adjoint of Lh.
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Proof. By differentiating the differential equation (2.12) we see that LhΦ+
h = 0. We know that

(uh, wh)− (u0, w0) → 0 ∈ H1. Since (u′0, w
′
0) decays exponentially, we get (u′0, w

′
0) ∈ L2. Hence we

can assume that h∗∗ is small enough such that Φ+
h ∈ L2 for all 0 < h < h∗∗. Since LhΦ+

h = 0 we
obtain from the differential equation that also (Φ+

h )′ ∈ L2. In particular, we see that Φ+
h ∈ H1 and

hence Φ+
h ∈ ker(Lh).

Lemma 5.11. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Let 0 < h < h∗∗ be given.
Then we have

ker(Lh) = span{Φ+
h }

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(L∗h)},
(5.60)

where L∗h is the formal adjoint of Lh.

Proof. We show that dim(ker(Lh)) = 1. We follow the steps on page 11 and Proposition 3.3 of
[22]. For notational consistency we write

L0 = L+
0

L∗0 = L−0 ,
(5.61)

where the operators L±0 were defined in §3. We introduce the shorhand

R = Range(L0), (5.62)

together with
K = ker(L0)

= span{Φ+
0 }.

(5.63)

Moreover we define
Kc = {Ψ ∈ H1 : 〈Ψ,Φ−0 〉 = 0} (5.64)

and
Rc = span{Φ+

0 }. (5.65)

From Lemma 3.1 it follows that we can decompose H1 and L2 as H1 = K ⊕ Kc and L2 = R⊕Rc
respectively.

Fix 0 < h < h∗∗. For B ∈ {K,Kc,R,Rc} let πB denote the projection from H1 or L2 onto B,
corresponding to the above decompositions. We first show that

πRLh : Kc → R (5.66)

is invertible.

Consider any Ψ ∈ Kc for which πRLhΨ = 0. This mean that LhΨ ∈ Rc and hence LhΨ = µΦ+
0

for some µ ∈ R. Since Ψ ∈ Kc we must have 〈Ψ,Φ−0 〉 = 0. Lemma 5.9 now implies

µ = γ+
h [0]

= 0,

Ψ = L̃qinv
h [0]

= 0,

(5.67)

by linearity of γ+
h and L̃qinv

h . In particular, we must have Ψ = 0, which means that πRLh is injective.
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Pick Θ ∈ R. Lemma 5.9 implies that we can choose Ψ ∈ Kc and γ ∈ R for which

LhΨ = Θ + γΦ+
0 . (5.68)

Since γΦ+
0 ∈ Rc we have πR(γΦ+

0 ) = 0. This allows us to compute

πR[LhΨ] = πR[LhΨ− γΦ+
0 ]

= πR[Θ]

= Θ,

(5.69)

since Θ ∈ R. Hence πRLh is also surjective and hence invertible as a map from Kc to R.

We now consider the map

µ(h) : K → Kc,

B 7→ −[πRLh]−1πRLhB.
(5.70)

We claim that looking for a solution Ψ of LhΨ = Θ is equivalent to finding a solution B ∈ K of the
problem

πRcLh(B + µ(h)B) = πRcΘ− πRcLh[πRLh]−1πRΘ. (5.71)

Indeed, let B ∈ K be a solution of (5.71) and write

Ψ = [πRLh]−1πRΘ +B + µ(h)B. (5.72)

By substitution it is clear that

πRcLhΨ = πRcLh[πRLh]−1πRΘ + πRcLh(B + µ(h)B)

= πRcΘ.
(5.73)

Furthermore we see that

πRLhΨ = πRLh[πRLh]−1πRΘ + πRLhB + πRLhµ(h)B

= πRΘ + πRLhB − πRLh[πRLh]−1πRLhB

= πRΘ

(5.74)

by our choice of µ(h), which gives LhΨ = Θ. Clearly each different choice of B gives a different
choice of Ψ.

Conversely, let Ψ be a solution of LhΨ = Θ. Writing B = πKΨ ∈ K, we compute

B + µ(h)B = πKΨ− [πRLh]−1πRLh[πKΨ]

= πKΨ− [πRLh]−1πRΘ + [πRLh]−1πRLh[πKcΨ]

= πKΨ− [πRLh]−1πRΘ + πKcΨ

= x− [πRLh]−1πRΘ,

(5.75)

which shows that B satisfies (5.71). Finally, upon defining

Ψ̃ = [πRLh]−1πRΘ +B + µ(h)B, (5.76)

we see that
Ψ̃ = [πRLh]−1πRΘ +B + µ(h)B

= [πRLh]−1πRΘ + Ψ− [πRLh]−1πRΘ

= Ψ.

(5.77)
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In particular, there is a bijection between the set of solutions Ψ of LhΨ = Θ and the solutions of
equation (5.71) and this bijection is linear if Θ = 0. From this we can derive

dim(ker(Lh)) = dim
(

ker
(
πRc [Lh](I + µ(h))

))
= dim(K)− dim

(
Range

(
πRc [Lh](I + µ(h))

))
≤ dim(K)

= 1.

(5.78)

Since we already know that Φ+
h ∈ ker(Lh), we must have dim

(
ker(Lh)

)
= 1, which completes the

proof.

The remaining major goal of this section is to find a family of elements Φ−h ∈ ker(L∗h) which
satisfies Φ−h → Φ−0 as h ↓ 0. To establish this, we repeat part of the process above for the adjoint
operator L∗h. The key difference is that we must construct the family Φ−h by hand. This requires a
significant refinement of the Liapunov-Schmidt argument used above to characterize ker(L∗h). First
we need a technical result, similar to Lemma 5.8.

Lemma 5.12. Assume that (HP1), (HS) and (Hα1) are satisfied. Fix 0 < λ < 1
2 and 0 ≤ h ≤

min{h∗∗, h′0(λ)}, where h′0(λ) is defined in Proposition 3.2. Then we have

〈Φ+
0 , (L

∗
h + λ)−1Φ−0 〉 >

〈Φ+
0 ,Φ

−
0 〉

2 λ−1. (5.79)

Proof. Lemma 3.1 implies that 〈Φ+
0 ,Φ

−
0 〉 > 0. Remembering that

L∗h − L∗0 =

(
(c0 + ch) d

dx + (∆h − d2

dx2 ) 0
0 (c0 − ch) d

dx

)
(5.80)

and that L∗0Φ−0 = 0, we obtain

(L∗h + λ)
[
(L∗h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0

]
= Φ−0 − Φ−0 + (L∗h − L∗0)(L∗0 + λ)−1Φ−0

= (L∗h − L∗0)λ−1Φ−0 .
(5.81)

Recall the constant Cunif from (5.35). Proposition 3.2 yields

‖(L∗h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0 ‖L2 ≤ Cunif

[
‖(L∗h − L∗0)λ−1Φ−0 ‖L2 + |〈(L∗h − L∗0)λ−1Φ−0 ,Φ

+
0 〉|
]

≤ Cunif(1 + λ−1)‖(L∗h − L∗0)λ−1Φ−0 ‖L2 .
(5.82)

Using Lemma 3.5 and the fact that ch converges to c0, it follows that

Cunif(1 + λ−1)‖(L∗h − L∗0)λ−1Φ−0 ‖L2 → 0 (5.83)

as h ↓ 0. Possibly after decreasing h∗∗ > 0, we hence see that

〈Φ+
0 , (L

∗
h + λ)−1Φ−0 〉 = 〈Φ+

0 , (L
∗
0 + λ)−1Φ−0 〉+ 〈Φ+

0 , (L
∗
h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0 〉

= λ−1〈Φ+
0 ,Φ

−
0 〉+ 〈Φ+

0 , (L
∗
h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0 〉

>
〈Φ+

0 ,Φ
−
0 〉

2 λ−1

(5.84)

holds for all 0 < h < h∗∗.
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Lemma 5.13. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Fix 0 < h < h∗∗. There
exist linear maps

γ̃−h : L2 → R,

L̃∗,qinv
h : L2 → H1

(5.85)

such that for all Θ ∈ L2 the pair

(γ,Ψ) = (γ̃−h Θ, L̃∗,qinv
h Θ) (5.86)

is the unique solution to the problem

L∗hΨ = Θ + γΦ−0 (5.87)

that satisfies the normalisation condition

〈Φ+
0 ,Ψ〉 = 0. (5.88)

Furthermore, there exists C∗ > 0, such that for all 0 < h < h∗∗ and all Θ ∈ L2 we have the bound

|γ̃−h Θ|+ ‖L̃∗,qinv
h Θ‖H1 ≤ C∗‖Θ‖L2 . (5.89)

Proof. We define the set

Z1 = {Ψ ∈ H1 : 〈Φ+
0 ,Ψ〉 = 0}. (5.90)

Pick Θ ∈ L2. We look for a solution (γ,Ψ) ∈ R× Z1 of the problem

Ψ = (L∗h + λ)−1[Θ + γΦ−0 + λΨ]. (5.91)

Lemma 5.12 implies that 〈Φ+
0 , (L

∗
h + λ)−1Φ−0 〉 6= 0. Hence for given Θ ∈ L2,Ψ ∈ Z1, h, λ, we may

write
γ(Ψ,Θ, h, λ) = − 〈Φ

+
0 ,(L

∗
h+λ)−1(Θ+λΨ)〉

〈Φ+
0 ,(L

∗
h+λ)−1Φ−0 〉

, (5.92)

which is the unique value for γ for which

(L∗h + λ)−1[Θ + γΦ−0 + λΨ] ∈ Z1. (5.93)

From now on the proof is identical to that of Lemma 5.9, so we omit it.

Lemma 5.14. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. For each 0 < h < h∗∗
there exists an element Φ−h ∈ ker(L∗h) such that the family Φ−h converges to Φ−0 in H1 as h ↓ 0.

Proof. We repeat some of the steps of the proof of Lemma 5.11, but now for L∗h.

Fix 0 < h < h∗∗. We let
R∗ = Range(L∗0) (5.94)

and we let
K∗ = ker(L∗0)

= span{Φ−0 }.
(5.95)

Moreover we define
K∗c = {Ψ ∈ H1 : 〈Ψ,Φ+

0 〉 = 0} (5.96)

and
R∗c = span{Φ−0 }. (5.97)

42



From Lemma 3.1 it follows that we can decompose H1 and L2 as H1 = K∗⊕K∗c and L2 = R∗⊕R∗c
respectively.

For S ∈ {K∗,K∗c ,R∗,R∗c} let πS denote the projection from H1 or L2 onto S, corresponding to
the above decompositions. Following the same steps as in the proof of Lemma 5.11 we obtain that

πR∗L
∗
h : K∗c → R∗ (5.98)

is invertible and that
[πR∗L

∗
h]−1 = L∗,qinv

h . (5.99)

We now write
µ∗(h) : K∗ → K∗c ,

B 7→ −[πR∗L
∗
h]−1πR∗L

∗
hB.

(5.100)

Lemma 5.11 together with (5.29) and (5.30) implies that

dim
(

ker(L∗h)
)

= 1. (5.101)

Arguing as before, we see that

1 = dim
(

ker(L∗h)
)

= dim
(

ker
(
πR∗c [L∗h](I + µ∗(h))

))
= dim

(
K∗
)
− dim

(
Range

(
πR∗c [L∗h](I + µ∗(h))

))
≤ dim

(
K∗
)

= 1.

(5.102)

In particular, πR∗c [L∗h](I + µ∗(h)) must be the zero map on K∗. Upon defining

Φ−h = Φ−0 + µ∗(h)Φ−0 , (5.103)

we hence see that Φ−h ∈ ker(L∗h). In addition, Lemma 5.11 implies that

||Φ−h − Φ−0 ||H1 = ‖µ∗(h)Φ−0 ‖H1

= ‖[πR∗L∗h]−1πR∗L
∗
hΦ−0 ‖H1

= ‖L∗qinv
h πR∗L

∗
hΦ−0 ‖H1

≤ C∗‖πR∗L∗hΦ−0 ‖L2 .

(5.104)

The final term goes to 0 as h ↓ 0, since we know that L∗hΨ → L∗0Ψ whenever Ψ ∈ H2(R)×H1(R).
So we obtain that Φ−h → Φ−0 strongly in H1 as h ↓ 0.

In the final part of this section we establish items (3) and (4) of Proposition 5.2. To this end, we
recall the spaces

Xh = {Θ ∈ H1 : 〈Φ−h ,Θ〉 = 0} (5.105)

and
Yh = {Θ ∈ L2 : 〈Φ−h ,Θ〉 = 0}, (5.106)

together with the constant Cunif from (5.35).
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Lemma 5.15. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. For each 0 < h < h∗∗ we
have that Lh : Xh → Yh is invertible and we have the uniform bound

‖L−1
h ‖ ≤ Cunif . (5.107)

Proof. Fix 0 < h < h∗∗. Clearly Lh : Xh → Yh is a bounded bijective linear map, so the Ba-
nach isomorphism theorem implies that L−1

h : Yh → Xh is bounded. Now let δ > 0 be a small
constant such that δCunif < 1. Without loss of generality we assume that 0 < h∗∗ ≤ h′0(δ) and that
‖Φ−h − Φ−0 ‖H1 ≤ δ for all 0 < h < h∗∗. This is possible by Lemma 5.14.

Pick any Ψ ∈ Xh. Remembering that 〈Ψ,Φ−h 〉 = 0 and 〈LhΨ,Φ−h 〉 = 0, we obtain the estimate

1
δ |〈(Lh + δ)Ψ,Φ−0 〉| = 1

δ |〈(Lh + δ)Ψ,Φ−0 − Φ−h 〉|

≤ 1
δ ‖(Lh + δ)Ψ‖L2δ

≤ ‖LhΨ‖L2 + δ‖Ψ‖H1 .

(5.108)

Applying Proposition 3.2, we hence see

‖Ψ‖H1 ≤ 1
4Cunif [‖(Lh + δ)Ψ‖L2 + 1

δ |〈(Lh + δ)Ψ,Φ−0 〉|]

≤ 1
4Cunif [2‖LhΨ‖L2 + 2δ‖Ψ‖H1 ]

≤ 1
2Cunif‖LhΨ‖L2 + 1

2‖Ψ‖H1 .

(5.109)

We therefore get the bound
‖Ψ‖H1 ≤ Cunif‖LhΨ‖L2 , (5.110)

which yields the desired estimate ‖L−1
h ‖ ≤ Cunif .

Lemma 5.16. Fix 0 < h < h∗∗. Then there exist constants K1 > 0,K2 > 0, β > 0 and β̃ > 0,
possibly depending on h, such that

|Φ+
h (ξ)| ≤ K1e

−β|ξ|‖Φ+
h ‖∞,

|Φ−h (ξ)| ≤ K2e
−β̃|ξ|‖Φ−h ‖∞

(5.111)

for all ξ ∈ R.

Proof. Recall from Lemma 5.6 that Lh is asymptotically hyperbolic. Hence we obtain from [3,
Lemma 4.3] that there are constants β > 0 and K1 > 0 for which

|Ψ(ξ)| ≤ K1e
−β|ξ|‖Ψ‖∞ +K1

∫∞
−∞ e−β|ξ−η||Θ(η)|dη (5.112)

holds for each Ψ ∈ H1, where Θ = LhΨ. Since LhΦ+
h = 0 we conclude that

|Φ+
h (ξ)| ≤ K1e

−β|ξ|‖Φ+
h ‖∞ (5.113)

for all ξ. As stated on [3, Page 33] the operator L∗h is also asymptotically hyperbolic. Hence there

are β̃ > 0 and K2 > 0 for which

|Ψ(ξ)| ≤ K2e
−β̃|ξ|‖Ψ‖∞ +K2

∫∞
−∞ e−β̃|ξ−η||Θ(η)|dη (5.114)

holds for each Ψ ∈ H1, where Θ = L∗hΨ. Since L∗hΦ−h = 0 we obtain that

|Φ−h (ξ)| ≤ K2e
−β̃|ξ|‖Φ−h ‖∞ (5.115)

for all ξ.
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Lemma 5.17. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then there exist
constants K3 > 0 and β > 0, possibly depending on h, such that

|(Φ±h )′(ξ)| ≤ K3e
−β|ξ| (5.116)

for all ξ ∈ R.

Proof. Lemma 5.16 implies that

|∆hφ
+
h (ξ)| ≤ 1

h2K1

∑
k>0

|αk|(e−β|ξ+hk| + e−β|ξ−hk| + 2e−β|ξ|)

≤ K1e
−β|ξ|( 1

h2

∑
k>0

|αk|(2eβhk + 2)),
(5.117)

where the last sum converges by (Hα2), possibly after decreasing β > 0. Using the fact that

(Φ+
h )′ = 1

ch

(
∆hφ

+
h + gu(uh)φ+

h − ψ
+
h

ρφ+
h − ργψ

+
h

)
(5.118)

we hence see that there exists a constant K3 > 0 such that

|(Φ+
h )′(ξ)| ≤ K3e

−β|ξ|. (5.119)

The proof for the bound on (Φ−h )′ is identical.

Proof of Proposition 5.2. This result follows directly from Lemmas 5.11, 5.14, 5.15, 5.16 and 5.17. .
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6 The resolvent set

In this section we prove Theorem 2.2 by explicitly determining the spectrum of the operator −Lh
defined in (2.18). Our approach hinges on the periodicity of this spectrum, which we describe in our
first result.

Lemma 6.1. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Fix 0 < h < h∗∗. Then the
spectrum of Lh is invariant under the operation λ 7→ λ+ 2πich

1
h .

In particular, we can restrict our attention to values with imaginary part in between −πchh and
πch
h . We divide our ’half-strip’ into four regions and in each region we calculate the spectrum. Values

close to 0 (region R1) will be treated in Proposition 6.2; values with a large real part (region R2) in
Proposition 6.3 and values with a large imaginary part (region R3) in Proposition 6.6. In Corollary
6.7 we discuss the remaining intermediate subset (region R4), which is compact and independent of
h. The regions are illustrated in Figure 1 below.

Figure 1: Illustration of the regions R1, R2, R3 and R4. Note that the regions R2 and R3 grow when
h decreases, while the regions R1 and R4 are independent of h.

From this section onward we need to assume that (HP2) is satisfied. Indeed, this allows us to lift
the invertibility of L0 + λ to Lh + λ simultaneously for all λ in appropriate compact sets.

Proof of Lemma 6.1. Fix k ∈ Z and write p = 2πik 1
h . We define the exponential shift operator eω

by
[eωV ](x) = eωxV (x). (6.1)
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For any λ ∈ C, Ψ = (φ, ψ) ∈ H1 and x ∈ R we obtain

(e−p∆hep)φ(x) = e−px∆h(epφ)(x)

= 1
h2

∑
l>0

αl(e
plhφ(x+ lh) + e−plhφ(x− lh)− 2φ(x))

= 1
h2

∑
l>0

αl(φ(x+ lh) + φ(x− lh)− 2φ(x))

= ∆hφ(x),

(6.2)

since plh ∈ 2πiZ for all l > 0. In particular, we can compute

[e−p(Lh − λ)epΨ](x) = e−px[(Lh − λ)epΨ](x)

= e−px
( ch

d
dx (epxφ(x))−∆h(epφ)(x)

−ρepx + ch
d
dx (epxψ(x))

)
+e−px

( −gu(uh)epxφ(x) + epxψ(x)− λepxφ(x)
+γρepxψ(x)− λepxψ(x)

)
=

(
pchφ(x) + chφ

′(x)− gu(uh)φ(x) + ψ(x)
−ρφ(x) + pchψ(x) + chψ

′(x) + γρψ(x)− λψ(x)

)
+

(
−∆hφ(x)− λφ(x)
0

)
= (Lh − λ+ pch)Ψ(x).

(6.3)

Since ep and e−p are invertible operators on H1 and L2 respectively, we know that the spectrum of
Lh equals that of e−pLhep and thus that of Lh + pch.

Region R1.

Since Lh has a simple eigenvalue at zero, it is relatively straightforward to construct a small
neighbourhood around the origin that contains no other part of the spectrum. Exploiting the results
from §5, it is possible to control the size of this neighbourhood as h ↓ 0.

Proposition 6.2. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exists a
constant λ0 > 0 such that for all 0 < h < h∗∗ the operator Lh + λ : H1 → L2 is invertible for all
λ ∈ C with 0 < |λ| < λ0.

Proof. Fix 0 < h < h∗∗ and Θ ∈ L2. We recall the notation (γh[Θ], Lqinv
h Θ) from Corollary 5.4

for the unique solution (γ,Ψ) of the equation

LhΨ = Θ + γΦ+
h (6.4)

in the space
Xh = {Θ ∈ H1 : 〈Φ−h ,Θ〉 = 0}. (6.5)

Also recall the space
Yh = {Θ ∈ L2 : 〈Φ−h ,Θ〉 = 0}. (6.6)

Now for λ ∈ C with |λ| small enough, but λ 6= 0, we want to solve the equation LhΨ = λΨ + Θ.
Upon writing

Ψ = Lqinv
h Θ + λ−1γh[Θ]Φ+

h + Ψ̃, (6.7)

with Ψ̃ ∈ Xh, we see that

(Lh − λ)Ψ = (Lh − λ)Lqinv
h Θ + λ−1(Lh − λ)γh[Θ]Φ+

h + (Lh − λ)Ψ̃

= Θ + γh[Θ]Φ+
h − λL

qinv
h Θ− γh[Θ]Φ+

h + (Lh − λ)Ψ̃.
(6.8)
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In particular, we must find a solution Ψ̃ ∈ Xh for the equation

LhΨ̃ = λΨ̃ + λLqinv
h Θ, (6.9)

which we can rewrite as
[I − λL−1

h ]Ψ̃ = λL−1
h Lqinv

h Θ. (6.10)

Note that L−1
h : Xh → Xh is also a bounded operator since Xh ⊂ Yh. Since

‖L−1
h Ψ‖H1 ≤ Cunif‖Ψ‖L2

≤ Cunif‖Ψ‖H1 ,
(6.11)

we obtain
‖L−1

h ‖B(Xh,Xh) ≤ Cunif . (6.12)

We choose λ0 in such a way that 0 < λ0Cunif < 1. Then it is well-known that I − λL−1
h is invertible

as an operator on Xh for 0 < |λ| < λ0. Since λL−1
h Lqinv

h Θ ∈ Xh, we see that (6.10) indeed has a

unique solution Ψ̃ ∈ Xh. Hence the equation (Lh−λ)Ψ = Θ always has a unique solution. Proposition
5.1 states that Lh−λ is Fredholm with index 0, which now implies that Lh−λ is indeed invertible.

Region R2.

We now show that in an appropriate right half-plane, which can be chosen independently of h,
the spectrum of −Lh is empty. The proof proceeds via a relatively direct estimate that is strongly
inspired by [1, Lemma 5].

Proposition 6.3. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exists a
constant λ1 > 0 such that for all λ ∈ C with Re λ ≥ λ1 and all 0 < h < h∗∗ the operator Lh + λ is
invertible.

Proof. Write
λ1 = 1 + g∗ + 1

2 (1− ρ), (6.13)

where g∗ is defined in Lemma 3.9. Pick any λ ∈ C with Re λ ≥ λ1 and any 0 < h < h∗∗. Let
Ψ = (φ, ψ) ∈ H1 be arbitrary and set Θ = LhΨ + λΨ. Then we see that

‖Ψ‖L2‖Θ‖L2 ≥ Re 〈LhΨ + λΨ,Ψ〉

≥ Re 〈−∆hφ, φ〉 − ‖gu(uh)‖L∞‖φ‖
2
L2

−(1− ρ)|Re 〈φ, ψ〉|+ γρ‖ψ‖2L2 + Re λ‖Ψ‖2L2

≥ −g∗‖φ‖2L2 − (1− ρ)|Re 〈φ, ψ〉|

+γρ‖ψ‖2L2 + Re λ‖Ψ‖2L2

≥ −g∗‖φ‖2L2 − (1− ρ)‖φ‖L2‖ψ‖L2

+γρ‖ψ‖2L2 + Re λ‖Ψ‖2L2

≥ −(g∗ + 1
2 (1− ρ))‖Ψ‖2L2 + Re λ‖Ψ‖2L2 .

(6.14)

Hence we obtain (
Re λ− (g∗ + 1

2 (1− ρ))
)
‖Ψ‖L2 ≤ ‖Θ‖L2 . (6.15)

Since Re λ ≥ 1 + g∗ + 1
2 (1− ρ), we obtain the bound ‖Ψ‖L2 ≤ ‖Θ‖L2 .
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In particular, if Θ = 0 then we necessarily have Ψ = 0, which implies that Lh + λ is injective.
Since also ind(Lh + λ) = 0 by Proposition 5.1, this means that Lh + λ is invertible.

Region R3.

We now use a Fourier transform argument to determine the spectrum of −Lh in the region R3

where the imaginary part of λ is large.

Pick λ ∈ C with λ0 < | Im λ| ≤ |ch|h π and write

λ = λr + iλim. (6.16)

Introducing the new variable τ = Im λξ, we can write the eigenvalue problem (Lh + λ)(v, w) = 0 in
the form

chvτ (τ) = 1
λimh2

∑
k>0

αk

[
v(τ + khλim) + v(τ − khλim)− 2v(τ)

]
+ 1
λim

gu

(
uh(τ)

)
v(τ)− iv(τ)− 1

λim
λrv(τ)− 1

λim
w(τ),

chwτ (τ) = 1
λim

(
ρv(τ)− ργw(τ) + λw(τ)

)
.

(6.17)

Our computations below show that the leading order terms in the appropriate |λim| → ∞ limit are
encoded by the ’homogeneous operator’ Hh,λ that acts as

Hh,λv(τ) = chvτ (τ) + iv(τ)− 1
λimh2

∑
k>0

αk

[
v(τ + khλ) + v(τ − khλ)− 2v(τ)

]
. (6.18)

Writing Hh,λ for the Fourier symbol associated to Hh,λ, we see that

Hh,λ(iω) = chiω + i− 1
λimh2

∑
k>0

αk

[
exp(ihkλimω) + exp(−ihkλimω)− 2

]
= chiω + i− 2

λimh2

∑
k>0

αk

[
cos(hkλimω)− 1

]
.

(6.19)

Lemma 6.4. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exist small
constants ε > 0, h∗ > 0 and ω0 > 0 so that for all λ ∈ C \ R, all 0 < h < h∗ and all ω ∈ R, the
inequality

| Im Hh,λ(iω)| < ε (6.20)

can only be satisfied if the inequalities

|chω| ≤ 3
2

|ω| ≥ ω0

(6.21)

both hold.

Proof. Note that
| Im Hh,λ(iω)| = |chω + 1|. (6.22)

In particular, upon choosing ε = 1
4 , we see that

| Im Hh,λ(iω)| < ε (6.23)

implies ∣∣|chω| − 1
∣∣ ≤ |chω + 1| < ε (6.24)

49



and hence
1
2 < 1− ε ≤ |chω| ≤ 1 + ε < 3

2 . (6.25)

Since ch → c0 6= 0 as h ↓ 0, the desired inequalities (6.21) follow.

Lemma 6.5. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then there exists
a constant C > 0 such that for all ω ∈ R and 0 < h < h∗∗ and all λ ∈ C with |λ| > λ0 and

| Imλ| ≤ |ch|h π, we have the inequality

|Hh,λ(iω)| ≥ 1
C . (6.26)

Proof. We show that Hh,λ(iω) is bounded away from 0, uniformly in h, λ and ω. To do so, we
show that the real part of Hh,λ(iω) can be bounded away from zero, whenever the imaginary part
is small, i.e. when (6.21) holds.

Recall the function A(y) =
∑
k>0

αk[1 − cos(ky)] defined in Assumption (Hα1), which satisfies

A(y) > 0 for y ∈ (0, 2π). A direct calculation shows that A′(0) = 0 and

A′′(0) =
∑
k>0

αkk
2

= 1.
(6.27)

Hence we can pick d0 > 0 in such a way that

1
y2A(y) > d0 (6.28)

holds for all 0 < |y| ≤ 3
2π.

Writing µ = hλimω, we see

Re Hh,λ(iω) = 2ω2λim

µ2

∑
k>0

αk

[
1− cos(kµ)

]
= 2ω2λim

µ2 A(µ).
(6.29)

Now fix ω, h, λ for which | Im Hh,λ(iω)| < ε. The conditions (6.21) now imply that |ω| ≥ ω0 and

|µ| ≤ h |ch|h π|ω| ≤ 3
2π. Using (6.27), we hence see that

|Re Hh,λ(iω)| = | 2ω
2λim

µ2 A(µ)|

≥ 2|λim|ω2d0

≥ 2λ0ω
2
0d0,

(6.30)

which shows that Hh,λ(iω) can indeed be uniformly bounded away from zero.

Proposition 6.6. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exist

constants λ2 > 0 and λ3 > 0 such that for all λ ∈ C with λ2 ≤ | Im λ| ≤ |ch|2h 2π and −λ3 ≤ |Re λ| ≤
λ1 and all 0 < h < h∗∗ the operator Lh + λ is invertible.

Proof. Since Proposition 5.1 implies that Lh + λ is Fredholm with index zero, it suffices to prove
that Lh + λ is injective.
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Let λ3 = min{ 1
2ργ, λ∗, λ̃}, where λ∗ is defined in (HP2) and λ̃ is defined in Proposition 5.1. Pick

λ ∈ C with λ0 ≤ | Im λ| ≤ |ch|2h 2π and −λ3 ≤ |Re λ| ≤ λ1. Write λ = λr + iλim as before. Suppose
Ψ = (v, w) satisfies (Lh + λ)Ψ = 0.

Write v̂ and ŵ for the Fourier transforms of v and w respectively. For f ∈ L2 with Fourier
transform f̂ , the identity

Hh,λv = f (6.31)

implies that
Hh,λ(iω)v̂(iω) = f̂(iω). (6.32)

In particular, we obtain
v̂(iω) = 1

Hh,λ(iω) f̂(iω), (6.33)

which using Lemma 6.5 implies that

‖v‖L2 ≤ C‖f‖L2 (6.34)

for some constant C > 0 that is independent of h, λ and ω.

Since Ψ is an eigenfunction, (6.17) hence yields

‖v‖L2 ≤ C 1
|λim| (g∗ + |λr|)‖v‖L2 + C 1

|λim|‖w‖L2 . (6.35)

Furthermore applying a Fourier Transform to the second line of (6.17), we find

λimchiωŵ(iω) = ρv̂(iω)− ργŵ(iω) + λŵ(iω). (6.36)

Our choice λ3 ≤ 1
2ργ implies that −ργ + λr is bounded away from 0. We may hence write

ŵ(iω) = 1
ργ−λr+i(ωλimch−λim)ρv̂(iω), (6.37)

which yields the bound
‖w‖L2 ≤ C ′‖v‖L2 (6.38)

for some constant C ′ > 0. Therefore we obtain that

‖v‖L2 ≤ C ′′ 1
|λim|‖v‖L2 (6.39)

for some constant C ′′, which is independent of λ, h and v. Clearly this is impossible for v 6= 0 if

|λim| ≥ λ2 := 2C ′′. (6.40)

Furthermore if v = 0, then clearly also w = 0. Therefore Ψ = 0, allowing us to conclude that Lh +λ
is invertible.

Region R4.

We conclude our spectral analysis by considering the remaining region R4. This region is compact
and bounded away from the origin, allowing us to directly apply the theory developed in §3.

Corollary 6.7. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For all λ ∈ C
with |λ| ≥ λ0, −λ3 ≤ |Re λ| ≤ λ1 and | Im λ| ≤ λ2 and all 0 < h < h∗∗ the operator Lh + λ is
invertible.

Proof. The statement follows by applying Proposition 3.3 with the choices (ũh, w̃h) = (uh, wh),
c̃h = ch and M = R4.

Proof of Theorem 2.2. The result follows directly from Lemma 6.1, Proposition 6.2, Proposition 6.3,
Proposition 6.6 and Corollary 6.7.
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7 Green’s functions

In order to establish the nonlinear stability of the pulse solution (uh, wh), we need to consider two
types of Green’s functions. In particular, we first study Gh,λ(ξ, ξ0), which can roughly be seen as a
solution of the equation [

(Lh + λ)Gh,λ(·, ξ0)
]
(ξ) = δ(ξ − ξ0), (7.1)

where δ is the Dirac delta-distribution. We then use these functions to build a Green’s function G
for the linearisation of the LDE (2.1) around the travelling pulse solution.

We will loosely follow §2 of [20]. We will also base quite a few results on [2]. However, we em-
phasize that both [20] and [2] only consider finite range interactions.

In order to proceed, let us consider the linearisation of the original LDE (2.1) around the travelling
pulse solution Uh(t) given by (2.21). In particular, we introduce the Hilbert space

L2 := {V ∈ (Mat2(R))Z :
∑
j∈Z
|V (j)|2 <∞}, (7.2)

in which Mat2(R) is the space of 2 × 2-matrices with real coefficients which we equip with the

maximum-norm | · |. For any V ∈ L2, we often write V =

(
V(1,1) V(1,2)

V(2,1) V(2,2)

)
, when we need to refer

to the component sequences V(i,j) ∈ `2(Z;R). For any t ∈ R we now introduce the linear operator
Ah(t) : L2 → L2 that acts as

Ah(t) · V = 1
ch

(
A(1,1)(t) A(1,2)(t)
A(2,1)(t) A(2,2)(t)

)(
V(1,1) V(1,2)

V(2,1) V(2,2)

)
, (7.3)

where

(A(1,1)(t)v)j = 1
h2

∑
k>0

αk[vj+k + vj−k − 2vj ] + gu

(
uh(hj + cht)

)
vj

(A(1,2)(t)w)j = −wj
(A(2,1)(t)v)j = ρvj

(A(2,2)(t)v)j = −ργwj

(7.4)

for v ∈ `2(Z;R) and w ∈ `2(Z;R). With all this notation in hand, we can write the desired lineari-
sation as the ODE

d
dtV(t) = Ah(t) · V(t) (7.5)

posed on L2.

Fix t0 ∈ R and j0 ∈ Z. Consider the function

R 3 t 7→ Gj0(t, t0, h) = {Gj0j (t, t0, h)}j∈Z ∈ L2 (7.6)

that is uniquely determined by the initial value problem{
d
dtG

j0(t, t0, h) = Ah(t) · Gj0(t, t0, h)

Gj0j (t0, t0, h) = δj0j I.
(7.7)

Here we have introduced

δj0j =

{
1 if j = j0

0 else,
(7.8)

52



where I ∈ Mat2(R) is the identity matrix. We remark that Gj0j (t, t0, h) is an element of Mat2(R) for
each j ∈ Z.

This function G is called the Green’s function for the linearisation around our travelling pulse.
Indeed, the general solution of the inhomogeneous equation{

dV
dt = Ah(t) · V (t) + F (t)

V (0) = V 0,
(7.9)

where now V (t) ∈ `2(Z;R2) ∼= `2(Z;R2×1) and F (t) ∈ `2(Z;R2) ∼= `2(Z;R2×1), is given by

Vj(t) =
∑
j0∈Z
Gj0j (t, 0, h)V 0

j0
+
∫ t

0

∑
j0∈Z
Gj0j (t, t0, h)Fj0(t0) dt0. (7.10)

Introducing the standard convolution operator ∗, this can be written in the abbreviated form

V = G(t, 0, h) ∗ V 0 +
∫ t

0
G(t, t0, h) ∗ F (t0) dt0. (7.11)

The main result of this section is the following proposition, which shows that we can decompose
the Green’s function G into a part that decays exponentially and a neutral part associated with
translation along the family of travelling pulses.

Proposition 7.1. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For any pair
t ≥ t0 and any j, j0 ∈ Z, we have the representation

Gj0j (t, t0, h) = Ej0j (t, t0, h) + G̃j0j (t, t0, h), (7.12)

in which

Ej0j (t, t0, h) = h
M

(
φ−h (hj0 + cht0)φ+

h (hj + cht) ψ−h (hj0 + cht0)φ+
h (hj + cht)

φ−h (hj0 + cht0)ψ+
h (hj + cht) ψ−h (hj0 + cht0)ψ+

h (hj + cht)

)
, (7.13)

while G̃ satisfies the found

|G̃j0j (t, t0, h)| ≤ Ke−β̃(t−t0)e−β̃|hj+cht−hj0−cht0| (7.14)

for some K > 0 and β̃ > 0 which may depend on h. The constant M > 0 is given by

M = 〈Φ−h ,Φ
+
h 〉. (7.15)

Furthermore for any t ≥ t0 we have the representation

Gj0j (t, t0, h) =
∑
i∈Z

[
E ij(t, t0, h)Ej0i (t0, t0, h) + G̃ij(t, t0, h)(δj0i I − E

j0
i (t0, t0, h))

]
, (7.16)

which can be abbreviated as

G(t, t0, h) = E(t, t0, h) ∗ E(t0, t0, h) + G̃(t, t0, h) ∗
(
I − E(t0, t0, h)

)
. (7.17)

Our first task is to define Gh,λ in a more rigorous fashion. Recall the operator Lh,∞;λ and
the function ∆Lh,∞;λ

from Lemma 5.6. We will show that Lh,∞;λ has a Green’s function which
takes values in the space Mat2(R) and that this function has some nice properties. Recall the

constant λ̃ from Lemma 5.6. For each λ ∈ C with Re λ ≥ − λ̃2 and each 0 < h < h∗∗ we define
Gh,∞;λ : R→ Mat2(R) by

Gh,∞;λ(ξ) = 1
2π

∫∞
−∞ eiηξ(∆Lh,∞;λ

(iη))−1 dη. (7.18)

We also introduce the notation
Gh,∞ = Gh,∞;0. (7.19)

Here (Hα2) is essential to ensure that that these Green’s functions decay exponentially.
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Lemma 7.2. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Fix λ ∈ C with

Re λ ≥ − λ̃2 and 0 < h < h∗∗. The function Gh,∞;λ is bounded and continuous on R \ {0} and
C1-smooth on R \ hZ. Furthermore (Lh,∞+λ)Gh,∞;λ(· − ξ0) is constantly zero except at ξ = ξ0 and
satisfies the identity ∫∞

−∞

[
(Lh,∞ + λ)Gh,∞;λ(· − ξ0)

]
(ξ)f(ξ) dξ = f(ξ0) (7.20)

for all ξ ∈ R and all f ∈ H1.

Finally for each χ > 0 there exist constants K∗ > 0 and β∗ > 0, which may depend on χ and h,

such that for each λ ∈ C with − λ̃2 ≤ Re λ ≤ χ and | Im λ| ≤ π|ch|
h we have the bound

|Gh,∞;λ(ξ − ξ0)| ≤ K∗e−β∗|ξ−ξ0| (7.21)

for all ξ, ξ0 ∈ R.

Pick λ ∈ C \ σ(−Lh) with Re λ ≥ − λ̃2 . Observe that

Lh − Lh,∞ =

(
−gu(uh) + r0 0
0 0

)
. (7.22)

We know that Gh,∞;λ(· − ξ0) ∈ L2(R,Mat2(R)) since it decays exponentially. Therefore also

[Lh − Lh,∞]Gh,∞;λ(· − ξ0) ∈ L2(R,Mat2(C)). (7.23)

Hence it is possible to define the function Gh,λ by

Gh,λ(ξ, ξ0) = Gh,∞;λ(ξ − ξ0)−
[
(λ+ Lh)−1[Lh − Lh,∞]Gh,∞;λ(· − ξ0)

]
(ξ). (7.24)

The next result shows that Gh,λ can be interpreted as the Green’s function of Lh + λ. It is based
on [20, Lemma 2.6].

Lemma 7.3. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For λ ∈ C\σ(−Lh)

with Re λ ≥ − λ̃2 we have that Gh,λ(·, y) is continuous on R \ {y} and C1-smooth on R \ {y + kh :
k ∈ Z}. Furthermore it satisfies∫∞

−∞

[
(λ+ Lh)Gh,λ(·, ξ0)

]
(ξ)f(ξ) dξ = f(ξ0) (7.25)

for all ξ ∈ R and all f ∈ H1.

The link between our two types of Green’s functions is provided by the following key result. It
is based on [2, Theorem 4.2], where it was used to study one-sided spatial discretisation schemes for
systems with conservation laws.

Proposition 7.4. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Let χ > λunif

be given, where λunif is as in Lemma 7.5. For all t ≥ t0 the Green’s function Gj0j (t, t0, h) of (7.7) is
given by

Gj0j (t, t0, h) = − h
2πi

χ+
iπch
h∫

χ− iπchh

eλ(t−t0)Gh,λ(hj + cht, hj0 + cht0)dλ (7.26)

where Gh,λ is the Green’s function of λ+ Lh as defined in (7.24).
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In the first half of this section we establish several basic facts concerning Gh,λ that can be used to
verify the integral representation (7.26). We then establish a meromorphic expansion for Gh,λ that
allows us to shift the integration path in (7.26) to the left of the imaginary axis. The decomposition
(7.12) for the Green’s function G can subsequently be read off from this expression.

Proof of Lemma 7.2. Lemma 5.6 implies that Lh+λ is asymptotically hyperbolic. Hence these results
except the smoothness properties and the bound (7.21) follow from [3, Theorem 3.7].

We show that ∆hGh,∞;λ(· − ξ0) is continuous outside of {ξ0 + kh : k ∈ Z}. For convenience we
set ξ0 = 0 and λ = 0. Pick ξ ∈ R with ξ /∈ {kh : k ∈ Z}. Then Gh,∞(·) is continuous in each point

ξ + kh for k ∈ Z. Choose ε > 0. Since Gh,∞(·) is bounded and
∞∑
j=1

|αj | < ∞, we can pick K > 0 in

such a way that

2‖Gh,∞‖∞
1
h2

∞∑
j=K

|αj | < ε
2 . (7.27)

For j ∈ {1, ...,K − 1} we can pick δj > 0 in such a way that

1
h2 |αj |

∣∣∣Gh,∞(ξ + y + hj)−Gh,∞(ξ + hj)
∣∣∣ < ε

2K+1 (7.28)

for all y ∈ R with |y| < δj . Let δ = min{δj : 1 ≤ j < K} > 0. Then for y ∈ R with |y| < δ we obtain

|∆hGh,∞(ξ + y)−∆hGh,∞(ξ)| ≤ 1
h2

∞∑
j=K

|αj |
(
|Gh,∞(ξ + y + jh)|+ |Gh,∞(ξ + jh)|

)
+ 1
h2

K−1∑
j=1

|αj |
∣∣∣Gh,∞(ξ + y + jh)−Gh,∞(ξ + jh)

∣∣∣
≤ 2

h2

∞∑
j=K

|αj |‖Gh,∞‖∞ +
K−1∑
j=1

ε
2K+1

< ε
2 + ε

2

= ε.
(7.29)

So ∆hGh,∞(·) is continuous outside of {kh : k ∈ Z}. Hence by definition of Lh,∞, we obtain that
Gh,∞(·) is C1-smooth outside of {kh : k ∈ Z}.

Pick χ > 0 and set

R = {λ ∈ C : − λ̃2 ≤ Re λ ≤ χ and | Im λ| ≤ π|ch|
h }. (7.30)

From [3, Proposition 3.7] it follows that for each λ ∈ R there exist constants Kλ > 0 and βλ > 0 for
which

|Gh,∞;λ(ξ − ξ0)| ≤ Kλe
−βλ|ξ−ξ0| (7.31)

for all ξ, ξ0 ∈ R. Lemma 5.7 implies that we can choose β∗ > 0 and K∗ > 0 in such a way that

‖∆Lh,∞;λ
(z)−1‖ ≤ K∗

1+| Im z| (7.32)

for all λ ∈ R and all z ∈ C with |Re z| ≤ 2β∗. Shifting the integration path in (7.24) in the standard
fashion described in [3], we obtain the bound

|Gh,∞;λ(ξ − ξ0)| ≤ K∗e−β∗|ξ−ξ0| (7.33)

for all ξ, ξ0 ∈ R and λ ∈ R.
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Proof of Lemma 7.3. Pick λ ∈ C \ σ(−Lh) and compute

(λ+ Lh)Gh,λ(·, ξ0) = (λ+ Lh)Gh,∞;λ(· − ξ0)− [Lh − Lh,∞]Gh,∞;λ(· − ξ0)

= (λ+ Lh,∞)Gh,∞;λ(· − ξ0).
(7.34)

The last statement follows immediately from this identity.

Write
Ĝh,∞;λ(· − ξ0) = [Lh − Lh,∞]Gh,∞;λ(· − ξ0). (7.35)

We have already seen that Ĝh,∞;λ(· − ξ0) ∈ L2(R,Mat2(C)). Hence it follows that

(λ+ Lh)−1Ĝh,∞;λ(· − ξ0) ∈ H1(R,Mat2(C)). (7.36)

In particular this function is continuous. Together with Lemma 7.2 we obtain that Gh,λ(·, ξ0) is
continuous on R \ {ξ0}.

Set H = (λ + Lh)−1Ĝh,∞;λ and write H =

(
H(1,1) H(1,2)

H(2,1) H(2,2)

)
. Using the definition of Lh we

see that
ch

d
dxH = −λH − Ĝh,∞ − H̃, (7.37)

where

H̃ = −
(
−∆hH

(1,1) − gu(uh)H(1,1) +H(2,1) ∆hH
(1,2) − gu(uh)H(1,2) +H(2,2)

−ρH(1,1) + γρH(2,1) −ρH(1,2) + γρH(2,2)

)
. (7.38)

Since u′h ∈ H1 and hence continuous, we must have that uh is continuous. As argued before
∆hH

(1,1) and ∆hH
(1,2) are also continuous. Hence we see that ch

d
dxH is continuous on R \ {ξ0}

and thus that d
dxH is continuous on R \ {ξ0}. Therefore we obtain that Gh,λ(·, ξ0) is C1-smooth on

R \ {ξ0 + kh : k ∈ Z}.

Now we show that for λ with sufficiently large real part, Gh,λ(·, ξ0) is bounded uniformly by a
constant. This result is based on [2, Lemma 4.1].

Lemma 7.5. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then there exist
constants K and λunif , which may both depend on h, so that the Green’s function Gh,λ enjoys the
uniform estimate

|Gh,λ(ξ, ξ0)| ≤ K, (7.39)

for all ξ, ξ0 ∈ R, whenever Re λ > λunif .

Proof. We write Lh = ch
d
dx +B with

B =

(
−∆h − gu(uh) 1
−ρ γρ

)
. (7.40)

We introduce G0
h,λ as the Green’s function of (λ+ ch

d
dx ) viewed as a map from H1 to L2. Luckily,

it is well-known that this Green’s function admits the estimate

|G0
h,λ(ξ, ξ0)| ≤ 1

|ch|e
−Re λ|ξ−ξ0|/|ch|. (7.41)

We can look for the Green’s function Gh,λ as the solution of the fixed point problem

Gh,λ(ξ, ξ0) = G0
h,λ(ξ, ξ0) +

∫
RGh,λ(ξ, z)(BG0

h,λ)(z, ξ0)dz. (7.42)
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Since λ+Lh is invertible by Theorem 2.2,Gh,λ must necessarily satisfy the fixed point problem (7.42).

For a matrix A ∈ Mat2(C) we write A =

(
A(1,1) A(1,2)

A(2,1) A(2,2)

)
. We make the decomposition

B = B0 +B1, (7.43)

where

B0 =

(
−∆h 0
0 0

)
,

B1 =

(
−gu(uh) 1
−ρ γρ

)
.

(7.44)

We estimate

|(B0G
0
h,λ)(ξ, ξ0)| = |∆hG

0
h,λ(ξ, ξ0)(1,1)|

≤
∞∑
j=1

[
1
h2 |αj |

(
|G0

h,λ(ξ + hj, ξ0)(1,1)|+ |G0
h,λ(ξ − hj, ξ0)(1,1)|+ 2|G0

h,λ(ξ, ξ0)(1,1)|
)]

≤ 1
|ch|

∞∑
j=1

[
1
h2 |αj |

(
e−Re λ|ξ+hj−ξ0|/|ch| + e−Re λ|ξ−hj−ξ0|/|ch| + 2e−Re λ|ξ−ξ0|/|ch|

)]
(7.45)

and observe that

∫
R |(B0G

0
h,λ)(ξ, ξ0)| dξ ≤ 1

|ch|

(
∞∑
j=1

4
[

1
h2 |αj | 1

Re λ/|ch|

])
= 4

h2 Re λ

∞∑
j=1

|αj |.
(7.46)

We now fix G ∈ L∞(R2,Mat2(C)) and consider the expressions

I0 =
∫
R

[
G(ξ, z)(B0G

0
h,λ)(z, ξ0)

](1,1)

dz,

I1 =
∫
R

[
G(ξ, z)(B1G

0
h,λ)(z, ξ0)

](1,1)

dz.

(7.47)

Using Fubini’s theorem for positive functions to switch the integral and the sum, we obtain the
estimates

|I0| ≤ ‖G‖L∞
∫
R |(B0G

0
h,λ)(z, ξ0)| dz

≤ ‖G‖L∞
4

h2 Re λ

∞∑
j=1

|αj |
(7.48)

and

|I1| ≤ ‖G‖L∞
∫
R

(
|gu(uh(z))||G0

h,λ(z, ξ0)(1,1)|+ ρ|G0
h,λ(z, ξ0)(1,1)|+ (1 + γρ)|G0

h,λ(z, ξ0)(2,1)|
)
dz

≤ ‖G‖L∞
1
|ch|
∫
R

((
|gu(uh(z))|+ ρ+ 1 + γρ

)
e−Re λ|z−ξ0|/|ch|

)
dz

≤ ‖G‖L∞
1
|ch|

(
‖gu(uh)‖L∞ + ρ+ 1 + γρ

)(
1

Re λ/|ch|

)
≤ ‖G‖L∞

(
g∗ + ρ+ 1 + γρ

) (
1

Re λ

)
.

(7.49)
Similar estimates hold for the other components of

∫
RG(ξ, z)(BG0

h,λ)(z, ξ0)dz. Therefore, the map-

ping G 7→
∫
RG(ξ, z)(BG0

h,λ)(z, ξ0)dz is a contraction in L∞(R2,Mat2(C)) for Re λ > λunif for λunif

large enough, with λunif possibly dependent of h ∈ (0, h∗∗). Hence we get a unique bounded solution
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of (7.42), which must be Gh,λ. The desired bound on Gh,λ is now immediate.

Proof of Proposition 7.4. Fix j0 ∈ Z and t0 ∈ R. Since (7.7) is merely a linear ODE in the Banach
space L2, it follows from the Cauchy-Lipschitz theorem that (7.7) indeed has a unique solution
V : [t0,∞)→ L2. For any Z ∈ C∞c (R;L2), an integration by parts yields∫∞

t0

∑
j∈Z

[
− dZj

dt (t)Vj(t)− (Ah(t) · V)j(t)Zj(t)
]
dt =

∫∞
t0

∑
j∈Z

[(
dVj
dt (t)− (Ah(t) · V(t))j

)
Zj(t)

]
dt

−
∑
j∈Z Vj(t0)Zj(t0)

= −Zj0(t0).
(7.50)

We want to show that the function Vj(t) := Gj0j (t, t0, h) defined by (7.26) coincides with V on
[t0,∞). To accomplish this, we define

I =
∫∞
t0

∑
j∈Z

[
− dZj

dt (t)Vj(t)− (Ah(t) · V (t))jZj(t)
]
dt (7.51)

and show that V is a weak solution to (7.7) in the sense that

I = −Zj0(t0) (7.52)

holds for all Z ∈ C∞c (R;L2). Indeed, the unicity of weak solutions then implies that V = V.

Note first that V (t) = 0 for t < t0, which can be seen by using (7.39) and taking χ → ∞ in
(7.26). We write y = hj0 + cht0, χ− = χ− iπch

h and χ+ = χ+ iπch
h . We see that

I =
∞∫
−∞

∑
j∈Z

[
− dZj

dt (t)Vj(t)− (Ah(t) · V (t))jZj(t)
]
dt, (7.53)

since V (t) = 0 for t < t0. Moreover we write

Gj(t) = Gh,λ(hj + cht, y). (7.54)

Using our definition of V (t), we have

I = − h
2πi

χ+∫
χ−

∑
j∈Z

[ ∞∫
−∞
Ij(t, λ)dt

]
dλ, (7.55)

where
Ij(t, λ) = eλ(t−t0)

[
−Gj(t)dZjdt (t)− (Ah(t) ·G(t))jZj(t)

]
. (7.56)

The permutation of the summations and integrations is allowed by Legesgue’s theorem because Z
and dZ

dt are compactly supported and Gh,λ is uniformly bounded by (7.39). Fix χ− ≤ λ ≤ χ+ and
j ∈ Z. Using the change of variable x = hj + cht we obtain

∞∫
−∞
Ij(t, λ)dt = 1

ch

x=∞∫
x=−∞

[
− chGj

(
x−hj
ch

)
dZj
dx + λGj

(
x−hj
ch

)
Zj(x, λ)

−
(
Ah
(
x−hj
ch

)
·G
(
x−hj
ch

))
j
Zj(x, λ)

]
dx,

(7.57)

where
Zj(x, λ) = eλ((x−hj)/ch−t0)Zj

(
x−hj
ch

)
. (7.58)

Exploiting the fact that Zj and therefore Zj is compactly supported, (7.25) yields

∞∫
−∞
Ij(t, λ)dt = 1

ch

∫∞
−∞[(Lh + λ)Gh,λ(x, y)Zj(x, λ)]dx

= 1
ch
Zj(y).

(7.59)
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Now since Zj is compactly supported, we can exchange sums and integrals in equation (7.55). This
allows us to compute

I = − h
2πi

1
ch

χ+∫
χ−

∑
j∈Z

∞∫
−∞
Ij(t, λ)dtdλ

= − h
2πi

1
ch

χ+∫
χ−

∑
j∈Z
Zj(y, λ)dλ

= − h
2πich

χ+∫
χ−

∑
j∈Z

e
λ

(hj0−hj)
ch Zj

(
(hj0−hj)

ch
+ t0

)
dλ

= − h
2πich

∑
j∈Z

χ+∫
χ−

e
λ

(hj0−hj)
ch Zj

(
(hj0−hj)

ch
+ t0

)
dλ

= − h
2πich

∑
j∈Z

2πichh δj0j Zj

(
(hj0−hj)

ch
+ t0

)
= −Zj0(t0),

(7.60)

as desired.

We recall the spaces
Xh = {Θ ∈ H1 : 〈Φ−h ,Θ〉 = 0}

Yh = {Θ ∈ L2 : 〈Φ−h ,Θ〉 = 0},
(7.61)

together with the operators L−1
h in the spaces B(Xh, Xh) and in B(Yh, Xh) that were defined in

Proposition 5.2. We also recall the notation Lqinv
h Θ that was introduced in Corollary 5.4 for the

unique solution Ψ of the equation

LhΨ = Θ− 〈Φ−h ,Θ〉
〈Φ−h ,Φ

+
h 〉

Φ+
h (7.62)

in the space Xh, which is given explicitly by

Lqinv
h Θ = L−1

h

[
Θ− 〈Φ−h ,Θ〉

〈Φ−h ,Φ
+
h 〉

Φ+
h

]
(7.63)

We now exploit these operators to decompose the Green’s function of λ + Lh into a meromorphic
and an analytic part. This result is based on [20, Lemma 2.7].

Lemma 7.6. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For all 0 < h < h∗∗
there exists a constant 0 < λh ≤ λ0 such that for all 0 < |λ| < λh we have the representation

Gh,λ(ξ, ξ0) = Eh,λ(ξ, ξ0) + G̃h,λ(ξ, ξ0) (7.64)

Here the meromorphic (in λ) term can be written as

Eh,λ(ξ, ξ0) = − 1
λM

(
φ−h (ξ0)φ+

h (ξ) ψ−h (ξ0)φ+
h (ξ)

φ−h (ξ0)ψ+
h (ξ) ψ−h (ξ0)ψ+

h (ξ)

)
(7.65)

and the analytic (in λ) term G̃h,λ is given by

G̃h,λ(ξ, ξ0) = Gh,∞;λ(ξ − ξ0)−
[
[I + λL−1

h ]−1Lqinv
h (Lh − Lh;∞)Gh,∞,λ(· − ξ0)

]
(ξ)

− 1
M 〈Φ

−
h , Gh,∞(· − ξ0)〉Φ+

h (ξ).
(7.66)

Here we recall the notation
M = 〈Φ−h ,Φ

+
h 〉. (7.67)
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Proof. Pick λ ∈ C with 0 < |λ| < λ0 and 0 < h < h∗∗. By the proof of Proposition 6.2 we see
that

(Lh + λ)−1Θ = λ−1 〈Φ
−
h ,Θ〉
M Φ+

h + Lqinv
h Θ− [I + λL−1

h ]−1λL−1
h Lqinv

h Θ. (7.68)

We now compute

〈Φ−h , (Lh − Lh,∞)Gh,∞;λ(· − ξ0)〉 = 〈Φ−h ,−Lh,∞Gh,∞;λ(· − ξ0)〉

= −Φ−h (ξ0) + λ〈Φ−h , Gh,∞;λ(· − ξ0)〉.
(7.69)

In particular, writing
L̂h = Lh − Lh,∞, (7.70)

we obtain

(Lh + λ)−1L̂hGh,∞(· − ξ0) = 1
λM

(
φ−h (ξ0)φ+

h ψ−h (ξ0)φ+
h

φ−h (ξ0)ψ+
h ψ−h (ξ0)ψ+

h

)
+
〈Φ−h ,Gh,∞;λ(·−ξ0)〉

M Φ+
h + Lqinv

h L̂hGh,∞;λ(· − ξ0)

−[I + λL−1
h ]−1λL−1

h Lqinv
h L̂hGh,∞;λ(· − ξ0).

(7.71)

We may hence write
Gh,λ(ξ, ξ0) = Eh,λ(ξ, ξ0) + G̃h,λ(ξ, ξ0) (7.72)

with

Eh,λ(ξ, ξ0) = − 1
λM

(
φ−h (ξ0)φ+

h (ξ) ψ−h (ξ0)φ+
h (ξ)

φ−h (ξ0)ψ+
h (ξ) ψ−h (ξ0)ψ+

h (ξ)

)
(7.73)

and
G̃h,λ(·, ξ0) = Gh,∞;λ(· − ξ0)− Lqinv

h L̂hGh,∞λ(· − ξ0)

+[I + λL−1
h ]−1λL−1

h Lqinv
h L̂hGh,∞;λ(· − ξ0)

− 1
M 〈Φ

−
h , Gh,∞;λ(· − ξ0)〉Φ+

h

= Gh,∞;λ(· − ξ0)− [I + λL−1
h ]−1Lqinv

h L̂hGh,∞;λ(· − ξ0)

− 1
M 〈Φ

−
h , Gh,∞(· − ξ0)〉Φ+

h .

(7.74)

Clearly Eh,λ is meromorphic in λ, while G̃h,λ is analytic in λ in the region |λ| < λ0.

We fix χ > λunif , where λunif was defined in Lemma 7.3, and set

R = {λ ∈ C : − λ̃2 ≤ Re λ ≤ χ and | Im λ| ≤ π|ch|
h }. (7.75)

We now set out to obtain an estimate on the function G̃h,λ from Lemma 7.6 by exploiting the
asymptotic hyperbolicity of Lh. We treat each of the terms in (7.66) separately in the results below.

Lemma 7.7. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exist constants
K4 > 0 and χ̃ > 0, which may depend on h, such that for all λ ∈ R∣∣〈Φ−h , (Lh − Lh,∞)Gh,∞;λ(· − ξ0)〉

∣∣ ≤ K4e
−χ̃|ξ0|. (7.76)

Proof. We reuse the notation L̂h = Lh − Lh,∞ from the previous proof. Lemma 7.2 implies that
we can pick constants β∗ > 0 and K∗ > 0 in such a way that

|Gh,∞;λ(ξ − ξ0)| ≤ K∗e
−β∗|ξ−ξ0| (7.77)
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for all values of ξ, ξ0. Recall the constants K2, α̃ from Lemma 5.16 and set K3 = K2‖Φ−h ‖∞. Then
we obtain

|〈Φ−h , L̂hGh,∞;λ(· − ξ0)〉| ≤
∫∞
−∞K3e

−α̃|ξ|g∗K∗e
−β∗|ξ−ξ0| dξ

= K3g∗K∗

(
1

α̃+β∗
(e−α̃|ξ0| + e−β∗|ξ0|) + 1

β∗−α̃ (e−α̃|ξ0| − e−β∗|ξ0|)
)

≤ K3g∗K∗

(
1

α̃+β∗
2e−min{α̃,β∗}|ξ0| + 1

|β∗−α̃|2e
−min{α̃,β̂}|ξ0|

)
= K4e

−χ̃|ξ0|

(7.78)
for some K4 > 0 and χ̃ > 0.

Lemma 7.8. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exist constants
K10 > 0 and γ̃ > 0, which may depend on h, such that for all λ ∈ R∣∣∣[Lqinv

h (Lh − Lh,∞)Gh,∞;λ(· − ξ0)
]
(ξ)
∣∣∣ ≤ K10e

−γ̃|ξ|e−γ̃|ξ0|

≤ K10e
−γ̃|ξ−ξ0|.

(7.79)

Proof. We reuse the notation L̂h = Lh − Lh,∞ from the previous proof. Recall the constants
K1, α from Lemma 5.16. Writing

Hξ0(ξ) =
[
Lqinv
h L̂hGh,∞;λ(· − ξ0)

]
(ξ), (7.80)

we may use [3, Lemma 4.3] to estimate

|Hξ0(ξ)| ≤ K1e
−α|ξ|‖Hξ0‖∞ +K1

∫∞
−∞ e−α|ξ−η||LhHξ0(η)|dη. (7.81)

Recalling (7.61)-(7.63), we obtain

‖Hξ0‖∞ ≤ ‖Hξ0‖H1

≤ Cunif ||L̂hGh,∞;λ(· − ξ0)− 〈Φ
−
h ,L̂hGh,∞;λ(·−ξ0)〉

M Φ+
h ||L2

≤ Cunif

(
1 +

‖Φ−h ‖L2

|M | ‖Φ
+
h ‖L2

)
‖L̂hGh,∞;λ(· − ξ0)‖L2

≤ K5‖L̂hGh,∞;λ(· − ξ0)‖L2

(7.82)

for some constant K5 > 0.

Using Lemma 5.16 we see that there exists a constant K6 > 0 for which

|uh(ξ)| = |
∫ ξ
∞ u′h(ξ′) dξ′|

≤
∫∞
ξ
K1‖(u′h, w′h)‖L2e−α|ξ

′| dξ′

= K6e
−α|ξ|

(7.83)

holds for all ξ ∈ R. Recall that

L̂h =

(
−gu(uh) + r0 0
0 0

)
. (7.84)

Observe that −gu(0) + r0 = 0. Then we obtain that

| − gu(uh(ξ)) + r0| ≤ K7e
−α|ξ| (7.85)
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for all ξ ∈ R and for some constant K7 > 0. Lemma 7.2 implies that

|Gh,∞;λ(ξ − ξ0)| ≤ K∗e
−β∗|ξ−ξ0| (7.86)

for all ξ ∈ R. Therefore we must have

‖L̂hGh,∞;λ(· − ξ0)‖2L2 ≤
∫
RK

2
7K

2
∗e
−2α|ξ|e−2β∗|ξ−ξ0| dξ

≤ K8e
−2γ̃|ξ0|

(7.87)

for some constants K8 > 0, γ̃ > 0 with γ̃ ≤ β∗, γ̃ ≤ 1
2α and γ̃ ≤ 1

2 χ̃. In particular we obtain the
estimate

‖Hξ0‖∞ ≤ K5

√
K8e

−γ̃|ξ0|. (7.88)

In a similar fashion, using Lemma 7.7, we see that

|LhHξ0(ξ)| ≤
∣∣∣[L̂hGh,∞;λ(· − ξ0)

]
(ξ)− 〈Φ

−
h ,L̂hGh,∞;λ(·−ξ0)〉

M Φ+
h (ξ)

∣∣∣
≤ K7K∗e

−α|ξ|e−β∗|ξ−ξ0| + 1
|M |K4e

−χ̃|ξ0|K1e
−α|ξ|

≤ K9

[
e−2γ̃|ξ|e−γ̃|ξ−ξ0| + e−γ̃|ξ0|e−γ̃|ξ|

] (7.89)

for all ξ ∈ R and some constant K9 > 0. Combining (7.81) with (7.82) and (7.87), we hence obtain

|Hξ0(ξ)| ≤ K1e
−α|ξ|‖Hξ0‖∞ +K1

∫∞
−∞ e−α|ξ−η||LhHξ0(η)|dη

≤ K1e
−α|ξ|K5

√
K8e

−γ̃|ξ0| +K1

∫∞
−∞ e−α|ξ−η|K9

[
e−2γ̃|η|e−γ̃|η−ξ0| + e−γ̃|ξ0|e−γ̃|η|

]
dη

≤ K1e
−α|ξ|K5

√
K8e

−γ̃|ξ0| +K1

∫∞
−∞ e−α|ξ−η|2K9e

−γ̃|η|e−γ̃|ξ0|dη

≤ K10e
−γ̃|ξ|e−γ̃|ξ0|

≤ K10e
−γ̃|ξ−ξ0|

(7.90)
for some constant K10 > 0.

Lemma 7.9. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exist constants
K13 > 0 and ω > 0, which may depend on h, such that the function G̃h,λ from Lemma 7.6 satisfies
the bound

|G̃h,λ(ξ, ξ0)| ≤ K13e
−ω|ξ−ξ0| (7.91)

for all ξ, ξ0 and all 0 < |λ| < λh.

Proof. As before, we write

Hξ0(ξ) = Lqinv
h L̂hGh,∞;λ(· − ξ0)(ξ). (7.92)

Using [3, Lemma 4.3], Lemma 7.8 and (7.88) and recalling (7.61)-(7.63), we obtain the estimate

|L−1
h Hξ0(ξ)| ≤ K1e

−α|ξ|‖L−1
h Hξ0‖∞ +K1

∫∞
−∞ e−α|ξ−η||Hξ0(η)|dη

≤ K1e
−α|ξ|Cunif‖Hξ0‖L2 +K1

∫∞
−∞ e−α|ξ−η|K10e

−γ̃|η−ξ0|dη

≤ K1e
−α|ξ|CunifK5

√
K8e

−γ̃|ξ0| +K1

∫∞
−∞ e−α|ξ−η|K10e

−γ̃|η−ξ0|dη

≤ K10K11e
−γ̃|ξ−ξ0|

(7.93)
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for some constant K11 > 0. Using Proposition 5.2 and (7.88) we obtain that

‖(L−1
h )nHξ0‖H1 ≤ K5

√
K8(Cunif)

ne−γ̃|ξ0| (7.94)

for all n ∈ Z>0. Continuing in this fashion, we see that

|(L−1
h )nHξ0(ξ)| ≤ K10K

n
11e
−γ̃|ξ−ξ0| (7.95)

for all n ∈ Z>0. If we set

λh = min{ λ̃2 , λ0, χ,
1

CunifK5

√
K8
, 1
K11
}, (7.96)

then for each n ∈ Z>0 and each 0 < |λ| < λh we have

‖(−λ)n(L−1
h )nHξ0‖H1 ≤ 1

2 . (7.97)

In particular, it follows that

∞∑
n=0

(−λ)n(L−1
h )nHξ0 → [I + λL−1

h ]−1Hξ0 (7.98)

in H1. Since H1-convergence implies point-wise convergence, we conclude that∣∣[I + λL−1
h ]−1Hξ0(ξ)

∣∣ =
∣∣∣ ∞∑
n=0

(−λ)n(L−1
h )nHξ0(ξ)

∣∣∣
≤

∞∑
n=0

λnhK11K
n
12e
−γ̃|ξ−ξ0|

≤ K11

1−λhK11
e−γ̃|ξ−ξ0|

:= K12e
−γ̃|ξ−ξ0|

(7.99)

for all ξ ∈ R and for some constant K12 > 0.

Combining this estimate with Lemma 5.16 and Lemma 7.8 yields the desired bound

|G̃h,λ(ξ, ξ0)| =
∣∣Gh,∞;λ(ξ − ξ0)−

[
[I + λL−1

h ]−1Lqinv
h L̂hGh,∞;λ(· − ξ0)

]
(ξ)

− 1
M 〈Φ

−
h , Gh,∞(· − ξ0)〉Φ+

h (ξ)
∣∣

≤ K∗e
−β∗|ξ−ξ0| +K12e

−γ̃|ξ−ξ0| +K4
1
M e−χ̃|ξ0|K1e

−α|ξ|‖Φ+
h ‖∞

≤ K13e
−ω|ξ−ξ0|

(7.100)

for some constants K13 > 0 and ω > 0.

We write

S = {−λh + iω : ω ∈ [−π|ch|h , π|ch|h ]}, (7.101)

where λh is defined in the proof of Lemma 7.9.

Lemma 7.10. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then there exist
constants K > 0 and β̃ > 0, which may depend on h, such that for all λ ∈ S we have the bound

|Gh,λ(ξ, ξ0)| ≤ Ke−β̃|ξ−ξ0| (7.102)

for all ξ, ξ0.
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Proof. Fix λ0 ∈ S. For λ ∈ S sufficiently close to λ we have[
Lh + λ

]−1

=
[
Lh + λ0 + λ− λ0

]−1

=
[(
Lh + λ0

)(
I + (Lh + λ0)−1(λ− λ0)

)]−1

=
[
I + (Lh + λ0)−1(λ− λ0)

]−1[
Lh + λ0

]−1

.

(7.103)

In particular, upon writing

Hξ0(ξ) =
[
[Lh + λ0]−1L̂hGh,λ;∞(· − ξ0)

]
(ξ), (7.104)

we see that

Gh,λ(ξ, ξ0)−Gh,∞;λ(ξ − ξ0) =
[
[I + (Lh + λ0)−1(λ− λ0)]−1Hξ0

]
(ξ). (7.105)

Lemma 5.6 implies that Lh + λ0 is asymptotically hyperbolic. Using [3, Lemma 4.3] we can pick
constants kλ0 > 0 and αλ0 > 0 in such a way that

|Hξ0(ξ)| ≤ kλ0
e−αλ0 |ξ|‖Hξ0‖∞ + kλ0

∫∞
−∞ e−αλ0 |ξ−η||(Lh + λ0)Hξ0(η)|dη. (7.106)

Recall the constant CS appearing in Proposition 3.3. This allows us to estimate

‖Hξ0‖∞ ≤ ‖Hξ0‖H1

≤ CS‖L̂hGh,λ0(ξ, ξ0)‖L2

≤ CS
√
K8e

−γ̃|ξ0|.

(7.107)

This yields the bound

|Hξ0(ξ)| ≤ kλ0
e−αλ0 |ξ|CS

√
K8e

−γ̃|ξ0| + kλ0

∫∞
−∞ e−αλ0 |ξ−η||L̂hGh,λ;∞(η, ξ0)|dη

≤ kλ0e
−αλ0 |ξ|CS

√
K8e

−γ̃|ξ0| + kλ0

∫∞
−∞ e−αλ0 |ξ−η|K7K∗e

−α|η|e−2β∗|η−ξ0|dη

≤ kλ0;2e
−αλ0;2|ξ−ξ0|

(7.108)

for some constants kλ0;2, αλ0;2, which may depend on λ0, but not on λ. Arguing as in (7.93), we
obtain∣∣[Lh + λ0]−1Hξ0(ξ)

∣∣ ≤ kλ0
e−αλ0 |ξ|‖[Lh + λ0]−1Hξ0‖∞ + kλ0

∫∞
−∞ e−αλ0 |ξ−η||Hξ0(η)|dη

≤ kλ0;2kλ0;3e
−αλ0;2|ξ−ξ0|

(7.109)
for some constant kλ0;3 > 0, which may depend on λ0, but not on λ. Following the same steps as
the proof of Lemma 7.9 and setting

ελ0 = min{ 1
kλ0CS

√
K8
, 1
kλ0;3
}, (7.110)

we conclude that

|Gh,λ(ξ, ξ0)−Gh,∞;λ(ξ − ξ0)| =
∣∣[[I + [Lh + λ0]−1(λ− λ0)]−1Hξ0

]
(ξ)
∣∣

≤ kλ0;4e
−αλ0;2|ξ−ξ0|

(7.111)

holds for each λ ∈ S with |λ− λ0| < ελ0 , for some constant kλ0;4 > 0, which may depend on λ0. In
particular, we obtain that

|Gh,λ(ξ, ξ0)| ≤ kλ0;4e
−αλ0;2|ξ−ξ0| +K∗e

−β∗|ξ−ξ0|

≤ kλ0;5e
−αλ0;2|ξ−ξ0|

(7.112)

64



holds for each λ ∈ S with |λ− λ0| < ελ0
, for some constant kλ0;5 > 0, which may depend on λ0.

Since S is compact we can find λ1, ..., λn ∈ S in such a way that

S ⊂
n⋃
i=1

{λ ∈ C : |λ− λi| < ελi}. (7.113)

Setting
K = max{kλi;5 : i ∈ {1, ...n}},

β̃ = min{αλi;2 : i ∈ {1, ..., n}},
(7.114)

we conclude that

|Gh,λ(ξ, ξ0)| ≤ Ke−β̃|ξ−ξ0| (7.115)

holds for all λ ∈ S and all ξ, ξ0 ∈ R.

We now use the spectral properties of −Lh to also decompose the Green’s function G(t, t0, h)
into two parts. We obtain the following result, which is based on [20, Corollary 2.8].

Lemma 7.11. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For any pair t ≥ t0
and any j, j0 ∈ Z, we have the representation

Gj0j (t, t0, h) = Ej0j (t, t0, h) + G̃j0j (t, t0, h) (7.116)

in which

Ej0j (t, t0, h) = h
M

(
φ−h (hj0 + cht0)φ+

h (hj + cht) ψ−h (hj0 + cht0)φ+
h (hj + cht)

φ−h (hj0 + cht0)ψ+
h (hj + cht) ψ−h (hj0 + cht0)ψ+

h (hj + cht)

)
, (7.117)

while G̃ satisfies the found

|G̃j0j (t, t0, h)| ≤ Ke−β̃(t−t0)e−β̃|hj+cht−hj0−cht0| (7.118)

for some K > 0 and β̃ > 0 which may depend on h.

Proof. Recall the representation of Gj0j from Proposition 7.4. Note that Gh,λ(ξ, ξ0) is meromorphic
for λ in the strip {λ ∈ C : Re λ ≥ −λ3, | Im λ| ≤ chπ

h } with a simple pole at λ = 0 by Lemma 7.6,
Lemma 7.3 and Theorem 2.2. Lemma 7.6 also implies that the residue of Gh,λ(ξ, ξ0) in λ = 0 is
given by

Res(Gh,λ(ξ, ξ0), 0) = − 1
M

(
φ−h (ξ0)φ+

h (ξ) ψ−h (ξ0)φ+
h (ξ)

φ−h (ξ0)ψ+
h (ξ) ψ−h (ξ0)ψ+

h (ξ)

)
. (7.119)

We write
H(·, ξ0) = e2πi 1hkξ0(Lh + λ+ 2πik chh )e−2πi 1hk

Gh,λ(·, ξ0). (7.120)

In a similar fashion as in the proof of Lemma 6.1 we see that for k ∈ Z we have

(Lh + λ+ 2πik chh )e−2πi 1hk
= e−2πi 1hk

(Lh + λ). (7.121)

Therefore it follows that

H(·, ξ0) = e2πi 1hkξ0(Lh + λ+ 2πik chh )e−2πi 1hk
Gh,λ(·, ξ0)

= e2πi 1hkξ0e−2πi 1hk
(Lh + λ)Gh,λ(·, ξ0).

(7.122)
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For any f ∈ H1 we may hence compute∫
H(ξ, ξ0)f(ξ0) dξ0 =

∫
e2πi 1hkξ0e−2πi 1hkξ(Lh + λ)Gh,λ(·, ξ0)(ξ)f(ξ0) dξ0

= e−2πi 1hkξ[e2πi 1hkξf(ξ)]

= f(ξ).

(7.123)

Therefore by the invertibility of Lh + λ+ 2πik chh , we must have

Gh,λ+2πik
ch
h

(ξ, ξ0) = e2πik 1
h (ξ0−ξ)Gh,λ(ξ, ξ0). (7.124)

Now recall the constants χ, χ+, χ− from (the proof of) Proposition 7.4 and define

λ−h = −λh2 − i
πch
h

λ+
h = −λh2 + iπchh .

(7.125)

Writing x = hj + cht, y = hj0 + cht0, we see that∫ χ−
λ−h

eλ(t−t0)Gh,λ(x, y) dλ =
∫ χ+

λ+
h

e(λ+2πi
ch
h )(t−t0)e−2πi 1h (y−x)Gh,λ(x, y) dλ

=
∫ χ+

λ+
h

eλ(t−t0)Gh,λ(x, y) dλ.
(7.126)

Hence if we integrate the function eλ(t−t0)Gh,λ(hj + cht, hj0 + cht0) along the rectangle with edges
−λh2 −i

πch
h ,−λh2 +iπchh , χ−iπchh and χ+iπchh that the integrals from χ−iπchh to −λh2 −i

πch
h and from

−λh2 +iπchh to χ+iπchh cancel each other out. In particular, again writing x = hj+cht, y = hj0+cht0,
the residue theorem implies

Gj0j (t, t0, h) = −h
2πi

∫ χ+i
πch
h

χ−iπchh
eλ(t−t0)Gh,λ(x, y) dλ

= h
2πi

∫ −λh2 +i
πch
h

−λh2 −i
πch
h

eλ(t−t0)Gh,λ(x, y) dλ+ h
M

(
φ−h (y)φ+

h (x) ψ−h (y)φ+
h (x)

φ−h (y)ψ+
h (x) ψ−h (y)ψ+

h (x)

)
.

(7.127)
Using Lemma 7.10 we also get the estimate

| h2πi
∫ −λh2 +i

πch
h

−λh2 −i
πch
h

eλ(t−t0)Gh,λ(x, y) dλ| ≤ h
2π

2chπ
h e−λh(t−t0)Ke−β̃|x−y|, (7.128)

which yields the desired bound (7.118).

For any t ∈ R, we introduce the suggestive notation

Πc
h(t) = E(t, t, h) (7.129)

together with
Πs
h(t) = I −Πc

h(t). (7.130)

Recalling the notation introduced in (7.11), we set out to show that Πc
h(t) ∗ Πc

h(t) = Πc
h(t) and

Πs
h(t) ∗Πs

h(t) = Πs
h(t). Later on, we will view these operators as projections that correspond to the

center and stable parts of the flow induced by G respectively.

To establish the identity Πc
h(t) ∗Πc

h(t) = Πc
h(t), it suffices to show that

M
h

(
φ−h (y)φ+

h (x) ψ−h (y)φ+
h (x)

φ−h (y)ψ+
h (x) ψ−h (y)ψ+

h (x)

)
=

∑
i∈Z

(
φ−h (hi+ cht)φ

+
h (x) ψ−h (hi+ cht)φ

+
h (x)

φ−h (hi+ cht)ψ
+
h (x) ψ−h (hi+ cht)ψ

+
h (x)

)
×
(
φ−h (y)φ+

h (hi+ cht) ψ−h (y)φ+
h (hi+ cht)

φ−h (y)ψ+
h (hi+ cht) ψ−h (y)ψ+

h (hi+ cht)

)
,

(7.131)
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in which x = hj + cht and y = hj0 + cht. We now write our linear operator in the form

LhΨ(ξ) = ch
d
dξΨ(ξ) +

∞∑
j=−∞

Aj(ξ)Ψ(ξ + jh), (7.132)

where

Aj(ξ) =



(
1
h2α|j| 0

0 0

)
if j 6= 0 −2 1

h2

∑
k>0

αk + gu(uh(ξ)) 1

−ρ ργ

 if j = 0.

(7.133)

Before we continue, we first prove a small lemma that will help us to relate discrete inner products
with their continuous counterparts.

Lemma 7.12. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For all ξ ∈ R we
have the identity

ch

(
φ−h (ξ)φ+

h (ξ)
ψ−h (ξ)ψ+

h (ξ)

)
=

∞∑
j=−∞

∫ hj
0
B(ξ + θ − hj)Aj(ξ + θ − hj)Φ+

h (ξ + θ)dθ, (7.134)

where

B(ξ) =

(
φ−h (ξ) 0
0 ψ−h (ξ)

)
. (7.135)

Proof. Our strategy is to differentiate both sides of (7.134) and to show their derivatives are
equal. Starting with the first component, we pick N ∈ Z>0 ∪ {∞} and write

D(N) := d
dξ

N∑
j=−N

∫ hj
0
φ−h (ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+

h (ξ + θ)
](1)

dθ. (7.136)

For finite N , we may compute

D(N) = d
dξ

N∑
j=−N

∫ ξ
ξ−hj φ

−
h (θ)

[
Aj(θ)Φ

+
h (θ + hj)

](1)

dθ

=
N∑

j=−N
φ−h (ξ)

[
Aj(ξ)Φ

+
h (ξ + hj)

](1)

−
N∑

j=−N
φ−h (ξ − hj)

[
Aj(ξ − hj)Φ+

h (ξ)
](1)

.

(7.137)

Now for j > 0 we have |Aj(ξ)Φ+
h (ξ + hj)| ≤ 1

h2 |αj |, so the partial sums converge uniformly. Hence
it follows that

D(∞) =
∞∑

j=−∞
φ−h (ξ)

[
Aj(ξ)Φ

+
h (ξ + hj)

](1)

−
∞∑

j=−∞
φ−h (ξ − hj)

[
Aj(ξ − hj)Φ+

h (ξ)
](1)

= φ−h (ξ)ch(φ+
h )′(ξ) + ch(φ−h )′(ξ)φ+

h (ξ)

= ch(φ−h u
′
h)′(ξ),

(7.138)

since Φ+
h ∈ ker(Lh) and Φ−h ∈ ker(L∗h).

We now set out to show that both sides of (7.134) converge to zero as ξ → ∞. Pick ε > 0 and
let N ∈ Z>0 be large enough to ensure that∑

j≥N

1
h2 j|αj | ≤ ε

4(1+‖φ−h ‖∞)‖Φ+
h ‖∞

. (7.139)
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In addition, let Ξ be large enough to have

|φ−h (ξ)| ≤ ε

4(1+
N∑

j=−N
|jα|j||)‖Φ+

h ‖∞ (7.140)

for all ξ ≥ Ξ−N . This Ξ exists since φ−h ∈ H1. For such ξ we may estimate

|
∞∑

j=−∞

∫ hj
0
φ−h (ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+

h (ξ + θ)
](1)

dθ| < ε, (7.141)

which allows us to compute

lim
ξ→∞

∞∑
j=−∞

∫ hj
0
φ−h (ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+

h (ξ + θ)
](1)

dθ = 0

= lim
ξ→∞

chφ
−
h (ξ)φ+

h (ξ).
(7.142)

With that we have proved our claim. Furthermore we can repeat the arguments above to obtain

chψ
−
h (ξ)ψ+

h (ξ) =
∞∑

j=−∞

∫ hj
0
ψ−h (ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+

h (ξ + θ)
](2)

dθ. (7.143)

We are now ready to show that Πc
h(t) ∗ Πc

h(t) = Πc
h(t) and Πs

h(t) ∗ Πs
h(t) = Πs

h(t). This result is
based on the first part of [20, Lemma 2.9].

Lemma 7.13. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then Πc
h(t) ∗

Πc
h(t) = Πc

h(t) and Πs
h(t) ∗Πs

h(t) = Πs
h(t) for all t ∈ R.

Proof. Using the results from Lemma 7.12 we may compute

ch
∞∑

k=−∞
φ−h (hk + cht)φ

+
h (hk + cht) =

∞∑
k=−∞

∞∑
j=−∞

∫ hj
0
φ−h (hk + cht+ θ − hj)

×
[
Aj(hk + cht+ θ − hj)Φ+

h (hk + cht+ θ)
](1)

dθ

=
∞∑

k=−∞

∞∑
j=−∞

∫ hk+cht

hk+cht−hj φ
−
h (θ)

[
Aj(θ)Φ

+
h (θ + hj)

](1)

dθ

=
∞∑

j=−∞

∫∞
−∞ jφ−h (θ)

[
Aj(θ)Φ

+
h (θ + hj)

](1)

dθ,

(7.144)
where we were allowed to interchange the two infinite sums because

|
N∑

k=−N

∫ hk+cht

hk+cht−hj φ
−
h (θ)

[
Aj(θ)Φ

+
h (θ + hj)

](1)

dθ| ≤ |
∫∞
−∞ jφ−h (θ)

[
Aj(θ)Φ

+
h (θ + hj)

](1)

dθ|

≤ ‖φ−h ‖1
1
h2 |jα|j||‖φ+

h ‖∞
(7.145)

holds for all N ∈ Z>0 and j ∈ Z. This expression is summable over j, allowing us to apply Lebesgue’s
theorem. On the other hand, we have

ch
∫∞
−∞ φ−h (ξ)φ+

h (ξ) dξ =
∫∞
−∞

∞∑
j=−∞

∫ hj
0
φ−h (ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+

h (ξ + θ)
](1)

dθ dξ

=
∞∑

j=−∞

∫ hj
0

∫∞
−∞ φ−h (ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+

h (ξ + θ)
](1)

dξdθ

=
∞∑

j=−∞

∫ hj
0

∫∞
−∞ φ−h (ξ − hj)

[
Aj(ξ − hj)Φ+

h (ξ)
](1)

dξdθ

=
∞∑

j=−∞
hj
∫∞
−∞ φ−h (ξ − hj)

[
Aj(ξ − hj)Φ+

h (ξ)
](1)

dξ.

(7.146)
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Interchanging the integral with the sum was allowed since φ−h and φ+
h decay exponentially, say

|φ−h (x)| ≤ κe−α|x| and |φ+
h (x)| ≤ κe−α|x|, and thus for each N ∈ Z>0 and each ξ ∈ R we have

|
N∑

j=−N

∫ hj
0
φ−h (ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+

h (ξ + θ)
](1)

dθ| ≤
∞∑

j=−∞
hκ2e−α|ξ||jα|j||‖Φ+

h ‖∞,

(7.147)
which is integrable in ξ. Furthermore the interchanging of the two integrals was allowed, since by
the exponential decay of φ−h we also see that for each j ∈ Z, ξ ∈ R and θ ∈ (0, hj) we have

|φ−h (ξ + θ − hj)
[
Aj(ξ + θ − hj)Φ+

h (ξ)
](1)

| ≤ κe−α|ξ+θ−hj||α|j||‖Φ+
h ‖∞. (7.148)

This is an integrable function for (ξ, θ) ∈ R× (0, hj), allowing us to apply Fubini’s theorem.

In particular, we see that∫∞
−∞ φ−h (ξ)φ+

h (ξ) dξ = h
∞∑

k=−∞
φ−h (hk + cht)φ

+
h (hk + cht). (7.149)

In the same way we obtain∫∞
−∞ ψ−h (ξ)ψ+

h (ξ) dξ = h
∞∑

k=−∞
ψ−h (hk + cht)ψ

+
h (hk + cht). (7.150)

By writing out the sums it now follows that indeed (7.131) holds.

Proof of Proposition 7.1. The calculations above imply that E(t, t0, h) = E(t, t0, h) ∗ Πc
h(t0), which

means that we must also have E(t, t0, h) ∗Πs
h(t0) = 0.

Observe that for any t0 ∈ R, the function Vj(t) :=

(
φ+
h (hj + cht)
ψ+
h (hj + cht)

)
is the unique solution to

(7.5) with Vj(t0) =

(
φ+
h (hj + cht0)
ψ+
h (hj + cht0)

)
. Hence by the definition of the Green’s function G(t, t0, h)

we see that
V (t) = G(t, t0, h) ∗ V (t0) (7.151)

for all t ∈ R. Furthermore we recall that

Ej0j (t0, t0, h) = Vj(t0)Φ−h (hj0 + cht0). (7.152)

For j, j0 ∈ Z we may hence compute[
G(t, t0, h) ∗Πc

h(t0)
]j0
j

=
∑
i∈Z
Gij(t, t0, h) ∗ Ej0i (t, t0, h)

= h
M

∑
i∈Z
Gij(t, t0, h)i ∗ Vi(t0)Φ−h (hj0 + cht0)

= h
M Vj(t)Φ

−
h (hj0 + cht0)

= Ej0j (t, t0, h).

(7.153)

In particular, we obtain G(t, t0, h) ∗Πc
h(t0) = E(t, t0, h) and thus

G̃(t, t0, h) ∗Πc
h(t0) = G(t, t0, h) ∗Πc

h(t0)− E(t, t0, h) ∗Πc
h(t0)

= E(t, t0, h)− E(t, t0, h)

= 0.

(7.154)
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Therefore we must have

G(t, t0, h) = E(t, t0, h) + G̃(t, t0, h)

= E(t, t0, h) ∗
(

Πc
h(t0) + Πs

h(t0)
)

+ G̃(t, t0, h) ∗
(

Πc
h(t0) + Πs

h(t0)
)

= E(t, t0, h) ∗Πc
h(t0) + G̃(t, t0, h) ∗Πs

h(t0),

(7.155)

which completes the proof.
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8 Nonlinear stability

In this section we will finally prove Theorem 2.3, along the lines of the approach described in [20].
Recall from §2 that the space `p is defined by

`p = {V ∈ (R2)Z : ‖V ‖`p :=
∑
j∈Z
|Vj |p <∞} (8.1)

for 1 ≤ p <∞ and
`∞ = {V ∈ (R2)Z : ‖V ‖`∞ := sup

j∈Z
|Vj | <∞}. (8.2)

In addition, we recall the notation (Uh)j(t) =
(
uh(hj + cht), wh(hj + cht)

)
and we let β̃ > 0 be the

constant appearing in Proposition 7.1.

Exploiting Proposition 5.2 we see that

‖Ej0j (t, t0, h)‖ ≤ C1e
−β̃|hj+cht−hj0−cht0| (8.3)

for some constant C1 > 0. Lemma 7.13 hence allows us to define Πc
h(t) ∈ B(`p; `p) and Πs

h(t) ∈
B(`p, `p) by writing

Πc
h(t)V = E(t, t, h) ∗ V,

Πs
h(t)V =

[
I −Πc

h(t)
]
V.

(8.4)

The proof of our nonlinear stability result proceeds in two main steps. In particular, we first
construct the stable manifolds of the solutions (uh, wh)(· − θ̃) for each θ̃ ∈ R. This result is based
on the first half of the proof of [20, Proposition 2.1].

Proposition 8.1. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exists a
constant η > 0, independent of p, but possibly depending on h, such that for each θ̃ ∈ R and each

Ws ∈ Range(Πs
h(θ̃)) with ‖Ws‖`p < η there is a unique function U θ̃∗ (Ws) : [0,∞)→ `p such that

1. U(t) = Uh(t+ θ̃) + U θ̃∗ (Ws)(t) is a solution of (2.1) for all t ≥ 0,

2. U θ̃∗ (Ws)(t) decays exponentially to 0 as t→∞,

3. Πs
h(θ̃)U θ̃∗ (Ws)(0) = Ws.

In addition, there exist constants C6 > 0 and C13 > 0, independent of p, but possibly depending on
h, such that the estimate

‖Πc
h(θ̃)U θ̃∗ (Ws)(0)‖`p ≤ C6‖Ws‖2`p (8.5)

holds for all θ̃ ∈ R and each Ws ∈ Range(Πs
h(θ̃)) with ‖Ws‖`p < η, while the estimate

‖Πc
h(θ̃1)U θ̃1∗ (W 1

s )(0)−Πc
h(θ̃2)U θ̃2∗ (W 2

s )(0)‖`p ≤ C13

[
‖W 1

s ‖`p + ‖W 2
s ‖`p

]
×
[
‖W 1

s −W 2
s ‖`p + |θ1 − θ2|

] (8.6)

holds for all W 1
s ∈ Range(Πs

h(θ̃1)), all W 2
s ∈ Range(Πs

h(θ̃2)) and all θ̃1 ∈ R and θ̃2 ∈ R with

‖W 1
s ‖`p < η, ‖W 2

s ‖`p < η and |θ̃2 − θ̃1| < η.

It then suffices to show that the space around the family of travelling pulse solutions can be
completely covered by these stable manifolds. We remark that θ̃ in the result below will correspond
with the asymptotic phase shift.
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Proposition 8.2. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then there
exists a constant δ > 0, which may depend on h but not on p, such that for all initial conditions
U0 ∈ `p with ‖U0 − Uh(0)‖`p < δ there exists θ̃ ∈ R and Ws ∈ Range(Πs

h(θ̃)) such that

U0 = Uh(θ̃) + U θ̃∗ (Ws) (8.7)

We write the LDE (2.1) as
d
dtV (t) = Fh

(
V (t)

)
, (8.8)

where

Fh
(
V (t)

)
j

= 1
ch

 1
h2

∑
k>0

αk

[
V

(1)
j+k(t) + V

(1)
j−k(t)− 2V

(1)
j (t)

]
+ g(V

(1)
j (t))− V (2)

j (t)

ρ[V
(1)
j (t)− γV (2)

j (t)]

 . (8.9)

Then we see that Ah(t) = DFh
(
Uh(t)

)
, where Ah(t) is defined in (7.5). We now write

Nh;θ

(
t, V (t)

)
= Fh

(
V (t) + Uh(t+ θ)

)
−Fh(U(t+ θ))−DFh

(
Uh(t+ θ)

)
V (t) (8.10)

and set out to solve the differential equation

d
dtV (t) = DFh

(
Uh(t+ θ)

)
V (t) +Nh;θ

(
t, V (t)

)
. (8.11)

Indeed, if V satisfies (8.11), then we see that

d
dt

(
U(t+ θ) + V (t)

)
= Fh

(
U(t+ θ)

)
+DFh

(
Uh(t+ θ)

)
V (t) +Nh;θ

(
t, V (t)

)
= Fh

(
Uh(t+ θ) + V (t)

)
,

(8.12)

which means that Uh(·+ θ) + V is indeed a solution of (2.1).

Our goal is to construct decaying solutions to (8.11) for multiple values of θ using a single Green’s
function. To this end, we write

Mθ̃
h

(
θ, t, V

)
= Nh;θ

(
t, V (t)

)
+DFh

(
Uh(t+ θ)

)
V (t)−DFh

(
Uh(t+ θ̃)

)
V (t). (8.13)

This allow us to rewrite (8.11) as

d
dtV (t) = DFh

(
Uh(t+ θ̃)

)
V (t) +Mθ̃

h

(
θ, t, V

)
. (8.14)

Lemma 8.3. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then Mθ̃
h(θ, t, ·)

maps `p into itself and there exists a constant C2 > 0, independent of p and θ̃ but possibly depending
on h, so that we have the estimate

‖Mθ̃
h(θ, t, V )‖`p ≤ C2‖V ‖2`p + C2|θ̃ − θ|‖V ‖`p , (8.15)

for V ∈ `p with ‖V ‖`p ≤ 1 and θ ∈ R with |θ − θ̃| ≤ 1, together with

‖Mθ̃
h(θ1, t, V1)−Mθ̃

h(θ2, t, V2)‖`p ≤ C2

[
‖V1‖`p + ‖V2‖`p + |θ̃ − θ1|+ |θ2 − θ̃|

]
‖V1 − V2‖`p

+C2|θ̃1 − θ̃2|
[
‖V1‖`p + ‖V2‖`p

]
(8.16)

for V1 ∈ `p, V2 ∈ `p, θ1 ∈ R and θ2 ∈ R with ‖V1‖`p ≤ 1, ‖V2‖`p ≤ 1, |θ1 − θ̃| ≤ 1 and |θ2 − θ̃| ≤ 1.
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Proof. A Taylor expansion around U
(1)

h (t+ θ̃) yields the pointwise identity

Mθ̃
h(θ, t, V ) = 1

ch

(
g
(
V (1) + U

(1)

h (t+ θ)
)
− gu

(
U

(1)

h (t+ θ̃)
)
V (1) − g

(
U

(1)

h (t+ θ)
)

0

)

= 1
ch

(
1
2guu(ξ1)(V (1))2 +

[
gu

(
U

(1)

h (t+ θ)
)
− gu

(
U

(1)

h (t+ θ̃)
)]
V (1)

0

)

= 1
ch

(
1
2guu(ξ1)(V (1))2 + 1

2guu(ξ2)
[
U

(1)

h (t+ θ)− U (1)

h (t+ θ̃)
]
V (1)

0

)

= 1
ch

(
1
2guu(ξ1)(V (1))2 + 1

2guu(ξ2)
[
d
dtU

(1)

h (ξ3)
]
|θ − θ̃|V (1)

0

)
,

(8.17)

where ξ1 is between U
(1)

h (t+ θ̃) and U
(1)

h (t+ θ̃) + V , ξ2 is between U
(1)

h (t+ θ̃) and U
(1)

h (t) and ξ3 is
between t+ θ and t+ θ̃. For a bounded function f , we have the pointwise bound

|guu(f)| = |6f + 2r0 + 2|

≤ 6‖f‖∞ + 2r0 + 2.
(8.18)

Therefore we get the pointwise bound

|Mθ̃
h(θ, t, V )| ≤

∣∣∣∣∣ 1
ch

1
2

( (
6‖uh‖∞ + 2r0 + 2

)
‖u′h‖∞|θ − θ̃|V (1)

0

)∣∣∣∣∣
+

∣∣∣∣∣ 1
ch

1
2

( (
6‖V (1)‖`∞ + 6‖uh‖∞ + 2r0 + 2

)
(V (1))2

0

)∣∣∣∣∣
≤ 1

|ch|
1
2

(
6‖uh‖∞ + 2r0 + 2

)
‖u′h‖∞|θ − θ̃||V |

+ 1
|ch|

1
2 (6‖V ‖`∞ + 6‖uh‖∞ + 2r0 + 2)|(V (1))|2.

(8.19)

Furthermore, for 1 ≤ p <∞ we see

‖
(
|(V (1))|2
0

)
‖`p =

(∑
j∈Z
|V (1)
j |2p

) 1
p

≤

((∑
j∈Z
|V (1)
j |p

)(
supj∈Z |V

(1)
j |p

)) 1
p

≤ ‖V ‖2`p ,

(8.20)

which clearly also holds for p = ∞ upon skipping the intermediate two steps. We hence obtain the
bound

‖Mθ̃
h(θ, t, V )‖`p ≤ 1

|ch|
1
2

(
6‖uh‖∞ + 2r0 + 2

)
‖u′h‖∞|θ − θ̃|‖V ‖`p

+ 1
|ch|

1
2 (6‖uh‖∞ + 2r0 + 8)‖V ‖2`p

≤ C2‖V ‖2`p + C2|θ − θ̃|‖V ‖`p ,

(8.21)

for some constant C2 > 0, which is independent of p and θ̃.
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We now write

dM = Mθ̃
h

(
θ1, t, V1

)
−Mθ̃

h

(
θ2, t, V2

)
= 1

ch

(
g
(
V

(1)
1 + U

(1)

h (t+ θ1)
)
− gu

(
U

(1)

h (t+ θ̃)
)
V

(1)
1 − g

(
U

(1)

h (t+ θ1)
)

0

)

+ 1
ch

(
−g
(
V

(1)
2 + U

(1)

h (t+ θ2)
)

+ gu

(
U

(1)
(t+ θ̃)

)
V

(1)
2 + g

(
U

(1)
(t+ θ2)

)
0

)
.

(8.22)

Using Taylor expansions around U
(1)

h (t+ θ1) and U
(1)

h (t+ θ2), we obtain the pointwise identities

g
(
V

(1)
1 + U

(1)

h (t+ θ1)
)
− g
(
U

(1)

h (t+ θ1)
)

= 1
6guuu(ξ1)(V

(1)
1 )3 + 1

2guu(U
(1)

h (t+ θ1))(V
(1)
1 )2

+gu

(
U

(1)

h (t+ θ1)
)
,

g
(
V

(1)
2 + U

(1)

h (t+ θ2)
)
− g
(
U

(1)

h (t+ θ2)
)

= 1
6guuu(ξ2)(V

(1)
2 )3 + 1

2guu(U
(1)

h (t+ θ2))(V
(1)
2 )2

+gu

(
U

(1)

h (t+ θ2)
)
,

(8.23)

where ξ1 is in between U
(1)

h (t + θ1) and V
(1)
1 + U

(1)

h (t + θ1) and ξ2 is in between U
(1)

h (t + θ2) and

U
(1)

h (t+ θ2) + V2. This allows us to collect all terms of the same order together and write

dM = dM1 + dM2 + dM3, (8.24)

where

dM1 = 1
ch

(
1
6guuu(ξ1)(V

(1)
1 )3 − 1

6guuu(ξ2)(V
(1)
2 )3

0

)
,

dM2 = 1
ch

(
1
2guu

(
U

(1)

h (t+ θ1)
)

(V
(1)
1 )2 − 1

2guu

(
U

(1)

h (t+ θ2)
)

(V
(1)
2 )2

0

)
,

dM3 = 1
ch

( [
gu

(
U

(1)

h (t+ θ1)
)
− gu

(
U

(1)

h (t+ θ̃)
)]
V

(1)
1

0

)

+ 1
ch

(
−
[
gu

(
U

(1)

h (t+ θ2)
)
− gu

(
U

(1)

h (t+ θ̃)
)]
V

(1)
2

0

)
.

(8.25)

Note that guuu = 6 is constant. A Taylor expansion around U
(1)

h (t + θ1) yields the pointwise
identity

dM2 = 1
ch

(
1
2

(
guu(U

(1)

h (t+ θ1))− guu(U
(1)

h (t+ θ2))
)

(V
(1)
1 )2

0

)

+ 1
ch

(
− 1

2guu(U
(1)

h (t+ θ2))
(

(V
(1)
2 )2 − (V

(1)
1 )2

)
0

)

= 1
ch

(
3
(
U

(1)

h (t+ θ1)− U (1)

h (t+ θ2)
)

(V
(1)
1 )2 − 1

2guu(U
(1)

h (t+ θ2))
(

(V
(1)
2 )2 − (V

(1)
1 )2

)
0

)

= 1
ch

(
3(U

(1)

h )′(ξ3)(θ1 − θ2)(V
(1)
1 )2 − 1

2guu(U
(1)

h (t+ θ2))
(

(V
(1)
2 )2 − (V

(1)
1 )2

)
0

)
,

(8.26)
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where ξ3 is in between t+θ1 and t+θ2. Using Taylor expansions around U
(1)

h (t+θ2) and U
(1)

h (t+ θ̃),
we obtain the pointwise identity

dM3 = 1
ch

( [
gu

(
U

(1)

h (t+ θ1)
)
− gu

(
U

(1)

h (t+ θ̃)
)]
V

(1)
1

0

)

+ 1
ch

(
−
[
gu

(
U

(1)

h (t+ θ2)
)
− gu

(
U

(1)

h (t+ θ̃)
)]
V

(1)
2

0

)

= 1
ch

( [
guu(ξ4)(θ1 − θ2)

]
V

(1)
1 −

[
guu(ξ5)(θ2 − θ̃)

]
V

(1)
2

0

)
,

(8.27)

where ξ4 is in between U
(1)

h (t + θ1) and U
(1)

h (t + θ2) and ξ5 is in between U
(1)

h (t) and U
(1)

h (t + θ2).
We estimate

‖dM1‖`p ≤ 1
|ch|‖V

3
1 − V 3

2 ‖`p

≤ 1
|ch|

[
‖V1‖`∞‖V 2

1 − V 2
2 ‖`p + ‖V1 − V2‖`∞‖V 2

2 ‖`p
]

≤ 1
|ch|

[
‖V1‖`p

[
‖V1‖`p + ‖V2‖`p

]
‖V1 − V2‖`p + ‖V1 − V2‖`p‖V2‖2`p

]
,

(8.28)

together with

‖dM2‖`p ≤ 1
|ch|

[
3‖(U (1)

h )′(ξ3)(θ1 − θ2)‖∞‖V1‖2`p

+
(

6‖uh‖∞ + 2r0 + 2
)[
‖V1‖`∞‖V1 − V2‖`p + ‖V1 − V2‖`∞‖V2‖`p

]]
≤ 1

|ch|

[
3‖u′h‖∞|θ1 − θ2|‖V1‖2`p +

(
6‖uh‖∞ + 2r0 + 2

)[
‖V1‖`p + ‖V2‖`p

]
‖V1 − V2‖`p

]
(8.29)

and

‖dM3‖`p ≤ 1
|ch|

[
‖guu(ξ4)(θ1 − θ2)‖∞‖V1‖`p + ‖guu(ξ5)(θ2 − θ̃)‖∞‖V1 − V2‖`p

]
≤ 1

|ch|

[(
6‖uh‖∞ + 2r0 + 2

)
|θ1 − θ2|‖V1‖`p +

(
6‖uh‖∞ + 2r0 + 2

)
|θ2 − θ̃|‖V1 − V2‖`p

]
.

(8.30)
Combining these estimates yields

‖dM‖`p ≤ C2

[
‖V1‖`p + ‖V2‖`p + |θ̃ − θ1|+ |θ2 − θ̃|

]
‖V1 − V2‖`p

+C2|θ̃1 − θ̃2|
[
‖V1‖`p + ‖V2‖`p

]
.

(8.31)

Lemma 8.4. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then there exists
a constant C3 > 0, independent of p but possibly depending on h, such that for V ∈ `p we have the
bound

‖G̃(t, t0, h)V ‖`p ≤ C3e
−β̃(t−t0)‖V ‖`p , (8.32)

for all t, t0 ∈ R.

Proof. We let f(t, t0, h)j = e−β̃|cht−cht0+hj| and write Ṽj = |Vj | for V ∈ `p. Using Lemma 7.11
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and Young’s inequality we obtain

‖G̃(t, t0, h)V ‖`p ≤ 8Ce−β̃(t−t0)‖f(t, t0, h) ∗ Ṽ ‖`p(Z,R)

≤ 8Ce−β̃(t−t0)‖f(t, t0, h)‖`1(Z,R)‖Ṽ ‖`p(Z,R)

= 8Ce−β̃(t−t0)‖f(t, t0, h)‖`1(Z,R)‖V ‖`p

≤ C3e
−β̃(t−t0)‖V ‖`p ,

(8.33)

where
C3 = 8C supx∈[0,h]

∑
j∈Z

e−β̃|hj+x| <∞. (8.34)

Note that C3 is independent of p.

From the defining system (7.7), it is clear that for each θ̃ ∈ R the Green’s function of the lineari-
sation of (2.1) around the wave Uh(·+ θ̃) is given by G(t+ θ̃, t0 + θ̃, h).

Fix Ws ∈ Range
(

Πs
h(θ̃)

)
and consider the fixed point problem

V (t) = G̃(t+ θ̃, θ̃, h)Ws +
∫ t

0
G̃(t+ θ̃, t0 + θ̃, h)Πs

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)
dt0

+
∫ t
∞ E(t+ θ̃, t0 + θ̃, h)Πc

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)
dt0.

(8.35)

We aim to construct decaying solutions to (8.14) by solving this fixed point problem in the space

BC−β̃/2([0,∞), `p) := {V ∈ C([0,∞), `p) : ‖V ‖−β̃/2 <∞}, (8.36)

where

‖V ‖−β̃/2 = supξ∈[0,∞) e
β̃
2 ξ‖V (ξ)‖`p (8.37)

Here the integrals are taking component-wise, but we see that for each 1 ≤ p ≤ ∞ this component-
wise integral corresponds to the Bochner integral.

Lemma 8.5. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. If the function
V ∈ BC−β̃/2([0,∞), `p) satisfies the fixed point problem (8.35), then V satisfies (8.14) and hence

V (t) + U(t+ θ) is a solution of (2.1).

Proof. If V (t) satisfies this fixed point problem then we see that

d
dt

(
G̃(t+ θ̃, θ̃, h)Ws

)
= DFh

(
Uh(t+ θ̃)

)
G̃(t+ θ̃, θ̃, h)Ws

+DFh
(
Uh(t+ θ̃)

)
E(t+ θ̃, θ̃, h)Πc

h(θ̃)Ws

− d
dt

(
E(t+ θ̃, θ̃, h)Πc

h(θ̃)Ws

)
= DFh

(
Uh(t+ θ̃)

)
G̃(t+ θ̃, θ, h)Ws + 0− 0

= DFh
(
Uh(t+ θ̃)

)
G̃(t+ θ̃, θ̃, h)Ws.

(8.38)

Writing

D(t) = d
dtV (t)− d

dt

(
G̃(t+ θ̃, θ̃, h)Ws

)
, (8.39)
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we can compute

D(t) =
∫ t

0
d
dt

[
G̃(t+ θ̃, t0 + θ̃, h)Πs

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)]
dt0

+
∫ t
∞

d
dt

[
E(t+ θ̃, t0 + θ̃, h)Πc

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)]
dt0

+G̃(t+ θ̃, t+ θ̃, h)Πs
h(t+ θ̃)Mθ̃

h

(
θ̃, t, V (t)

)
+E(t+ θ̃, t+ θ̃, h)Πc

h(t+ θ̃)Mθ̃
h

(
θ, t, V (t)

)
=

∫ t
0
d
dt

[
G(t+ θ̃, t0 + θ̃, h)Πs

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)]
dt0

+
∫ t
∞

d
dt

[
G(t+ θ̃, t0 + θ̃, h)Πc

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)]
dt0

+G(t+ θ̃, t+ θ̃, h)Mθ̃
h

(
θ, t, V (t)

)
.

(8.40)

Exploiting G(t+ θ̃, t+ θ̃, h) = I, this yields

D(t) =
∫ t

0
DFh

(
Uh(t+ θ̃)

)
G(t+ θ̃, t0 + θ̃, h)Πs

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)
dt0

+
∫ t
∞DFh

(
Uh(t+ θ̃)

)
G(t+ θ̃, t0 + θ̃, h)Πc

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)
dt0

+Mθ̃
h

(
θ, t, V (t)

)
= DFh

(
Uh(t+ θ̃)

) ∫ t
0
G̃(t+ θ̃, t0 + θ̃, h)Πs

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)
dt0

+DFh
(
Uh(t+ θ̃)

) ∫ t
∞ E(t+ θ̃, t0 + θ̃, h)Πc

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)
dt0

+Mθ̃
h

(
θ, t, V (t)

)
(8.41)

and thus
d
dtV (t) = DFh

(
Uh(t+ θ̃)

)
V (t) +Mθ̃

h

(
θ, t, V (t)

)
= DFh

(
Uh(t+ θ)

)
V (t) +Nh;θ

(
t, V (t)

)
.

(8.42)

Lemma 8.6. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There exists η > 0,

independent of p and θ̃, so that for all Ws ∈ Range
(

Πs
h(θ̃)

)
that have ‖Ws‖`p ≤ η and all |θ− θ̃| ≤ η,

the fixed point problem (8.35) has a unique solution W θ̃
∗;θ(Ws) in the space BC−β̃/2([0,∞), `p).

Proof. We first rewrite (8.35) as

V = T (Ws, V ), (8.43)

where

T (Ws, V ) = G̃(t+ θ̃, θ̃, h)Ws +
∫ t

0
G̃(t+ θ̃, t0 + θ̃, h)Πs

h(t0 + θ̃)Mθ̃
h

(
θ̃, t0, V (t0)

)
dt0

+
∫ t
∞ E(t+ θ̃, t0 + θ̃, h)Πc

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)
dt0.

(8.44)

Pick V ∈ BC−β̃/2([0,∞), `p) with ‖V ‖−β̃/2 ≤ 1. Writing

I =
∫ t

0
G̃(t+ θ̃, t0 + θ̃, h)Πs

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)
dt0, (8.45)
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Lemma 8.3 and Lemma 8.4 imply

‖I‖`p ≤
∫ t

0
‖G̃(t+ θ̃, t0 + θ̃, h)Mθ̃

h

(
θ, t0, V (t0)

)
‖`p dt0

≤
∫ t

0
C3e

−β̃(t−t0)‖Mθ̃
h

(
θ, t0, V (t0)

)
‖`p dt0

≤
∫ t

0
C3e

−β̃(t−t0)C2‖V (t0)‖`p
[
‖V (t0)‖`p + |θ − θ̃|

]
dt0

≤
∫ t

0
C3e

−β̃(t−t0)C2‖V ‖−β̃/2e−β̃t0/2
[
e−β̃t0/2‖V ‖−β̃/2 + |θ − θ̃|

]
dt0

≤ C3C2‖V ‖−β̃/2
[
te−β̃t‖V ‖−β̃/2 + 2

β̃
e−β̃t/2|θ − θ̃|

]
.

(8.46)

Observe that if we multiply this final function with eβ̃t/2 we still have a bounded function. Since
this holds for all p we see that

‖I‖−β̃/2 ≤ C4‖V ‖−β̃/2
[
‖V ‖−β̃/2 + |θ − θ̃|

]
(8.47)

for some constant C4, which is independent of p.

We write

J (t) =
∫∞
t
E(t+ θ̃, t0 + θ̃, h)Πc

h(t0 + θ̃)Mθ̃
h

(
θ, t0, V (t0)

)
dt0. (8.48)

Mimicking the computation above and using the explicit expression (8.3), we see that

‖J (t)‖`p ≤
∫ t
∞ C1C2‖V ‖−β̃/2e−β̃t0/2

[
e−β̃t0/2‖V ‖−β̃/2 + |θ − θ̃|

]
dt0

= C1C2‖V ‖−β̃/2
[

1
β̃
e−β̃t‖V ‖−β̃/2 + 2

β̃
e−β̃t/2|θ − θ̃|

]
.

(8.49)

Observe that if we multiply this final function with e
β̃
2 t we still have a bounded function. Since this

holds for all p we see that

‖J ‖−β̃/2 ≤ C5‖V ‖−β̃/2
[
‖V ‖−β̃/2 + |θ − θ̃|

]
(8.50)

for some constant C5, which is independent of p.

Finally, Lemma 8.4 yields the bound

‖G̃(t+ θ̃, θ̃, h)Ws‖`p ≤ C3e
−β̃t‖Ws‖`p , (8.51)

which means
‖G̃(t+ θ̃, θ̃, h)Ws‖−β̃/2 ≤ C3‖Ws‖`p . (8.52)

This yields the bound

‖T (Ws, V )‖−β̃/2 ≤ C3‖Ws‖`p + (C4 + C5)‖V ‖−β̃/2
[
‖V ‖−β̃/2 + |θ − θ̃|

]
. (8.53)

Let V1 ∈ BC−β̃/2([0,∞), `p) and V2 ∈ BC−β̃/2([0,∞), `p) with ‖V1‖−β̃/2 ≤ 1 and ‖V2‖−β̃/2 ≤ 1.
Again, we write

dM = Mθ̃
h

(
θ, t, V1(t)

)
−Mθ̃

h

(
θ, t, V2(t)

)
. (8.54)

Using Lemma 8.3 it follows that

‖dM‖`p ≤ C2

[
‖V1‖`p + ‖V2‖`p + |θ − θ̃|

]
‖V1 − V2‖`p . (8.55)
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Mimicking the above computations, this yields

‖T (Ws, V1)− T (Ws, V2)‖−β̃/2 ≤ (C4 + C5)
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2 + |θ − θ̃|

]
‖V1 − V2‖−β̃/2.

(8.56)
We now fix

δ = min{1, 1
4(C4+C5)} (8.57)

and
η = min{ 1

4(C4+C5) ,
δ

4C3
}. (8.58)

For each V ∈ BC−β̃/2([0,∞), `p), V1 ∈ BC−β̃/2([0,∞), `p) and V2 ∈ BC−β̃/2([0,∞), `p) with

‖V ‖−β̃/2 ≤ δ, ‖V1‖−β̃/2 ≤ δ and ‖V2‖−β̃/2 ≤ δ, each θ ∈ R with |θ − θ̃| < η and each Ws ∈ `p

with ‖Ws‖`p < η, we now obtain

‖T (Ws, V )‖−β̃/2 ≤ δ
4 + δ

[
1
4 + 1

4

]
≤ δ

(8.59)

and
‖T (Ws, V1)− T (Ws, V2)‖−β̃/2 ≤

[
1
4 + 1

4 + 1
4

]
‖V1 − V2‖−β̃/2. (8.60)

Hence we see that the equation (8.35) has a unique solution W θ̃
∗;θ(Ws).

Lemma 8.7. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For each Ws ∈
Range

(
Πs
h(θ̃)

)
with ‖Ws‖`p ≤ η and each |θ − θ̃| ≤ η we have Πs

h(θ̃)W θ̃
∗;θ(Ws)(0) = Ws and

‖Πc
h(θ̃)W θ̃

∗;θ(Ws)(0)‖`p ≤ C6‖Ws‖2`p for some constant C6 > 0, which is independent of p and θ̃,
but may depend on h.

Proof. It is clear that

Πs
h(θ̃)G̃(θ̃, t0 + θ̃, h) = G̃(θ̃, θ̃ + t0, h),

Πc
h(θ̃)E(θ̃, θ̃ + t0, h) = E(θ̃, t0 + θ̃, h).

(8.61)

This allows us to compute

Πs
h(θ̃)W θ̃

∗;θ(Ws)(0) = Πs
h(θ̃)G̃(θ̃, θ̃, h)Ws

+Πs
h(θ̃)

∫ 0

0
G̃(θ̃, t0 + θ̃, h)Πs

h(t0 + θ̃)Mθ̃
h

(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0

+Πs
h(θ̃)

∫ 0

∞ E(θ̃, t0 + θ̃, h)Πc
h(t0 + θ̃)Mθ̃

h

(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0

= Πs
h(θ̃)Ws +

∫ 0

∞Πs
h(θ̃)E(θ̃, t0 + θ̃, h)Πc

h(t0 + θ̃)Mθ̃
h

(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0

= Ws + 0

= Ws,
(8.62)
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together with

Πc
h(θ̃)W θ̃

∗;θ(Ws)(0) = Πc
h(θ̃)G̃(θ̃, θ̃, h)Ws

+Πc
h(θ̃)

∫ 0

0
G̃(θ̃, t0 + θ̃, h)Πs

h(t0 + θ̃)Mθ̃
h

(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0

+Πc
h(θ̃)

∫ 0

∞ E(θ̃, t0 + θ̃, h)Πc
h(t0 + θ̃)Mθ̃

h

(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0

= 0 + 0 +
∫ 0

∞Πc
h(θ̃)E(θ̃, t0 + θ̃, h)Πc

h(t0 + θ̃)Mθ̃
h

(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0

=
∫ 0

∞ E(θ̃, t0 + θ̃, h)Πc
h(t0 + θ̃)Mθ̃

h

(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0.

(8.63)
We assume without loss of generality that η is small enough to ensure

(C4 + C5)‖W θ̃
∗;θ(Ws)‖−β̃/2

[
‖W θ̃
∗;θ(Ws)‖−β̃/2 + |θ − θ̃|

]
≤ 1

2‖W
θ̃
∗;θ(Ws)‖−β̃/2. (8.64)

Using (8.53), we obtain

‖
∫ 0

∞ E(θ̃, t0 + θ̃, h)Πc
h(t0 + θ̃)Mθ̃

h

(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0‖`p ≤ C5

[
‖W θ̃
∗;θ(Ws)‖−β̃/2 + |θ − θ̃|

]
≤ 4C5C

2
3‖Ws‖2`p

:= C6‖Ws‖2`p .
(8.65)

This yields the desired estimate

‖Πc
h(θ̃)W θ̃

∗;θ(Ws)‖`p ≤ C6‖Ws‖2`p . (8.66)

Exploiting Proposition 5.2, we pick C7 > 0 in such a way that

|Φ±h (ξ)|+ |(Φ±h )′(ξ)| ≤ C7e
−β̃|ξ| (8.67)

holds for all ξ ∈ R, decreasing β̃ if necessary. We have

(Πc
h(θ)V )j = 1

M

∑
j0∈Z
〈Φ−h (hj0 + chθ), Vj0〉Φ+

h (hj + chθ̃). (8.68)

For notational compactness we write

Πc
h(θ)V = λch(θ)(V )Φ+

h (h ·+chθ). (8.69)

Lemma 8.8. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then there exists a
constant C9 > 0, independent of p, but possibly depending on h, such that for each θ ∈ R we have
the bound

‖Φ+
h (h ·+θ)‖`p ≤ C9. (8.70)

In addition, for each θ ∈ R and each sequence {ξ(j)} with ‖ξj‖∞ ≤ 1, we have the bound

‖(Φ−h )′(h ·+ξ(·))‖`1 ≤ C9. (8.71)

Proof. Note that for each k ∈ Z we have

‖Φ+
h (h ·+θ1)‖p`p =

∑
j∈Z |Φ

+
h (hj + θ1)|p

=
∑
j∈Z |Φ

+
h

(
hj + hk + (θ1 − hk)

)
|p

=
∑
j∈Z |Φ

+
h

(
hj + (θ1 − hk)

)
|p

= ‖Φ+
h

(
h ·+(θ1 − hk)

)
‖p`p .

(8.72)
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Hence we assume without loss of generality that |θ1| ≤ 1. We see with (8.67) that there is a constant
C8 > 0 such that

‖Φ+
h (h ·+chθ1)‖`p ≤ C8‖e−β̃|h·+θ1||‖`p(Z,R)

≤ C8‖e−β̃|h·|eβ̃|θ1|‖`p(Z,R)

≤ C8e
β̃|θ1|‖e−β̃p|h·|‖

1
p

`1(Z,R)

≤ 2C8 max{1, ‖e−β̃|h·|‖`1(Z,R)}

:= C9,

(8.73)

if we assume that β̃ is small enough such that eβ̃|θ1| ≤ eβ̃ ≤ 2. A similar calculation yields

‖(Φ−h )′(h ·+ξ(·))‖`1 ≤ C8‖e−β̃|h·+ξ(·)|‖`1(Z,R)

≤ C8‖e−β̃|h·|eβ̃‖`1(Z,R)

≤ C8e
β̃‖e−β̃|h·|‖`1(Z,R)

≤ 2C8 max{1, ‖e−β̃|h·|‖`1(Z,R)}

= C9.

(8.74)

Lemma 8.9. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For V ∈ `p and
θ1, θ2 ∈ R with |θ2 − θ1| ≤ 1 we have the bounds

‖V ‖`p ≤ C10|θ1 − θ2|‖V ‖`p (8.75)

and
‖Πs

h(θ1)Πc
h(θ2)V ‖`p ≤ C10|θ1 − θ2|‖V ‖`p (8.76)

for some constant C10 > 0 which does not depend on p, but may depend on h.

Proof. Writing

P = λch(θ1)
(

Πs
h(θ2)V

)
, (8.77)

we obtain

‖P‖`p = | 1
M

∑
j0∈Z
〈Φ−h (hj0 + chθ1), (Πs

h(θ2)V )j0〉|

= M−1

∣∣∣∣∣ ∑j0∈Z〈Φ−h (hj0 + chθ1)− Φ−h (hj0 + chθ2), (Πs
h(θ2)V )j0〉

∣∣∣∣∣
≤ M−1

∑
j0∈Z
|Φ−h (hj0 + chθ1)− Φ−h (hj0 + chθ2)||(Πs

h(θ2)V )j0 |

≤ M−1‖Φ−h (h ·+chθ1)− Φ−h (h ·+chθ2)‖`1‖Πs
h(θ2)V ‖`∞

≤ M−1|θ1 − θ2|‖ch(Φ−h )′(h ·+ξ(·))‖`1‖Πs
h(θ2)V ‖`p ,

(8.78)

where each ξ(j) is in between chθ1 and chθ2. Thus we obtain with Lemma 8.4 and Lemma 8.8

‖Πc
h(θ1)Πs

h(θ2)V ‖`p ≤ 1
|M |C9|ch||θ1 − θ2|‖(Πs

h(θ2)V )‖`pC9

≤ 1
|M |C9|ch||θ1 − θ2|C3‖V ‖`pC9

≤ 1
2C10|θ1 − θ2|‖V ‖`p

(8.79)
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for some constant C10 > 0 which is independent of p.

Furthermore we can compute

Πs
h(θ1)Πc

h(θ2)V =
[
I −Πc

h(θ1)
][
I −Πs

h(θ2)
]
V

= V −Πc
h(θ1)V −Πs

h(θ2)V + Πc
h(θ1)Πs

h(θ2)V

= −Πc
h(θ1)V + Πc

h(θ2)V + Πc
h(θ1)Πs

h(θ2)V.

(8.80)

This allows us to estimate

‖−Πc
h(θ1)V + Πc

h(θ2)V ‖`p ≤ |λch(θ1)(V )− λch(θ2)(V )|‖Φ+
h (θ1)‖`p + |λ(θ2)|‖Φ+

h (θ1)− Φ+
h (θ2)‖`p

≤ C9|θ1 − θ2|C9‖V ‖`p + C9|θ2||θ1 − θ2|‖(Φ−h )′(h ·+η(·))‖`1‖V ‖`p
≤ C9|θ1 − θ2|C9‖V ‖`p + C9|θ2||θ1 − θ2|C9‖V ‖`p
≤ 1

2C10|θ1 − θ2|‖V ‖`p ,
(8.81)

where each η(j) is between chθ1 and chθ2. We thus obtain

‖Πs
h(θ1)Πc

h(θ2)V ‖`p ≤ C10|θ1 − θ2|‖V ‖`p . (8.82)

Proof of Proposition 8.1. We set

U θ̃∗ (Ws) = W θ̃
∗;θ̃(Ws) (8.83)

for all θ̃ ∈ R.

Fix θ̃ ∈ R and pick θ ∈ R with |θ − θ̃| ≤ η and pick Ws ∈ Range(Πs
h(θ)) with ‖Ws‖`p ≤ η. By

unicity of the solution to (8.35) it follows that

Uθ∗ (Ws) = W θ̃
∗;θ(W

0
s ) (8.84)

for some W 0
s ∈ Range

(
Πs
h(θ̃)

)
. Since Πs

h(θ̃)W θ̃
∗;θ(·)(0) is the identity map on Range

(
Πs
h(θ̃)

)
, it

follows that
W 0
s = Πs

h(θ̃)Uθ∗ (Ws)(0). (8.85)

We now see
W 0
s −Ws = Πs

h(θ̃)Uθ∗ (Ws)(0)−Ws

= Πs
h(θ̃)

[
Uθ∗ (Ws)(0)−Ws

]
+ Πs

h(θ̃)Ws −Ws

= Πs
h(θ̃)Πc

h(θ)Uθ∗ (Ws)(0) +Ws −Πc
h(θ̃)Ws −Ws

= Πs
h(θ̃)Πc

h(θ)Uθ∗ (Ws)(0)−Πc
h(θ̃)Πs

h(θ)Ws.

(8.86)

Lemma 8.9 hence implies

‖W 0
s −Ws‖`p ≤ C10|θ̃ − θ|‖Uθ∗ (Ws)(0)‖`p + C10|θ̃ − θ|‖Ws‖`p

≤ C10|θ̃ − θ|
[
‖Ws‖`p + C6‖Ws‖2`p

]
+ C10|θ̃ − θ|‖Ws‖`p

≤ C11|θ̃ − θ|‖Ws‖`p .

(8.87)
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Now fix W θ̃
s ∈ Range

(
Πs
h(θ̃)

)
with ‖W θ̃

s ‖`p ≤ η. Then we can compute

Πc
h(θ)Uθ∗ (Ws)(0)−Πc

h(θ̃)U θ̃∗ (W θ̃
s )(0) = Uθ∗ (Ws)(0)−Ws −Πc

h(θ̃)W θ̃
∗;θ̃(W

θ̃
s )

= W θ̃
∗;θ(W

0
s )(0)−Ws −W θ̃

∗;θ̃(W
θ̃
s )(0) +W θ̃

s

= W 0
s −Ws +W θ̃

∗;θ(W
0
s )(0)−W 0

s −W θ̃
∗;θ̃(W

θ̃
s )(0) +W θ̃

s .

(8.88)
Writing

V1 = W θ̃
∗;θ(W

0
s ),

V2 = W θ̃
∗;θ̃(W

θ̃
s ),

(8.89)

we can mimic the steps in (8.56) to obtain the estimate

‖V1(0)−W 0
s − V2(0) +W θ̃

s ‖`p ≤ C12

[
‖V1‖−β̃/2 + ‖V2‖−β̃/2 + |θ̃ − θ|

]
‖V1 − V2‖−β̃/2

+C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

] (8.90)

for some constant C12 > 0, which is independent of p and θ̃. Without loss of generality we can
assume that η is small enough to ensure

C12

[
‖V1‖−β̃/2 + ‖V2‖−β̃/2 + |θ̃ − θ|

]
≤ 1

2 . (8.91)

An estimate similar to (8.56) therefore yields

‖V1 − V2‖−β̃/2 ≤ C3‖W 0
s −W θ̃

s ‖`p + C12

[
‖V1‖−β̃/2 + ‖V2‖−β̃/2 + |θ̃ − θ|

]
‖V1 − V2‖−β̃/2

+C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

]
≤ C3‖Ws −W θ̃

s ‖`p + C3‖Ws −W 0
s ‖`p + 1

2‖V1 − V2‖−β̃/2

+C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

]
≤ C3‖Ws −W θ̃

s ‖`p + C3C11|θ̃ − θ|‖Ws‖`p + 1
2‖V1 − V2‖−β̃/2

+C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

]
,

(8.92)
and thus

‖V1 − V2‖−β̃/2 ≤ 2C3‖Ws −W θ̃
s ‖`p + 2C3C11|θ̃ − θ|‖Ws‖`p

+2C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

]
.

(8.93)

Exploiting (8.65), this yields

‖Πc
h(θ)Uθ∗ (Ws)(0)−Πc

h(θ̃)U θ̃∗ (W θ̃
s )(0)‖`p ≤ C11|θ̃ − θ|‖Ws‖`p+

C12

[
‖V1‖−β̃/2 + ‖V2‖−β̃/2 + |θ̃ − θ|

]
‖V1 − V2‖−β̃/2

+C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

]
≤ C13

[
‖Ws‖`p + ‖W θ̃

s ‖`p + |θ̃ − θ|
]
‖Ws −W θ̃

s ‖`p

+C13|θ̃ − θ|
[
‖Ws‖`p + ‖W θ̃

s ‖`p
]

(8.94)
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for some constant C13, which is independent of p and θ̃.

We now expand upon the ideas developed in the second half of [20, Proposition 2.1] to foliate the
state space surrounding the travelling pulses Uh(· + θ̃) by the stable manifolds constructed above.
We proceed by showing that these stable manifolds depend continuously on θ̃. This allows us to set
up an appropriate fixed point problem to establish Proposition 8.2.

We write

Uh(θ̃) = Uh(0)− θ̃U ′h(0) +N θ̃
1 . (8.95)

Lemma 8.10. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then we have the
bounds

‖N θ̃
1 ‖`p ≤ C14θ̃

2 (8.96)

and

‖N θ̃2
1 −N

θ̃1
1 ‖`p ≤ C15(|θ̃1|+ |θ̃2|)|θ̃1 − θ̃2|, (8.97)

for θ̃, θ̃1, θ̃2 ∈ [−η, η] and for some constants C14 > 0 and C15 > 0, which do not depend on p, but
may depend on h.

Proof. Using Proposition 5.2 we see that there exists a sequence {ξj} with |ξj | ≤ |θ̃| such that

‖N θ̃
1 ‖`p = 1

2‖{θ̃
2U
′′
h(ξj)}‖`p

≤ 1
2C7θ̃

2‖{e−β̃|hj+chξj |}‖p
≤ 1

2C7θ̃
2eβ̃|chθ̃|‖{e−β̃|hj|}‖p

≤ C7θ̃
2‖{e−β̃|hj|}‖p

:= C14θ̃
2,

(8.98)

where C14 does not depend on p as before. We can hence write

Uh(θ̃) = Uh(0)− θ̃U ′h(0) +N θ̃
1 (8.99)

with

‖N θ̃
1 ‖`p ≤ C14θ̃

2. (8.100)

Furthermore, using Proposition 5.2, we see that we can find sequences {ξj} and {ηj} with ξj
between hj + chθ̃1 and hj + chθ̃2 and ηj between hj and hj + chθ̃1 so that

‖N θ̃2
1 −N

θ̃1
1 ‖`p = ‖Uh(θ̃1) + θ̃1U

′
h(0)− Uh(θ̃2)− θ̃2U

′
h(0)‖`p

≤ |θ̃1 − θ̃2|2‖{U
′′
h(ξj)}‖`p + |θ̃1 − θ̃2|‖U

′
h(0)− U ′h(θ̃1)‖`p

≤ |θ̃1 − θ̃2|2‖{U
′′
h(ξj)}‖`p + |θ̃1 − θ̃2||θ̃1|‖{U

′′
h(ηj)}‖`p

≤ C15(|θ̃1|+ |θ̃2|)|θ̃1 − θ̃2|,

(8.101)

similarly to the calculations from Lemma 8.3, where |ξj | ≤ |θ̃2 − θ̃1| and |ηj | ≤ |θ̃1|.

We write

N θ̃
2 (W ) = U θ̃∗ (Πs

h(θ̃)W )(0)−Πs
h(θ̃)W (8.102)

for W ∈ Range(Πs
h(0)) with ‖Πs

h(θ̃)W‖`p < η. We note that Lemma 8.4 implies that this inequality
holds if ‖W‖`p <

η
C3

.
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Lemma 8.11. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Recall the constants
C6 and C13 appearing in Proposition 8.1 and Lemma 8.4. Then for any θ̃ ∈ [−η, η] and W ∈
Range

(
Πs
h(0)

)
with ‖W‖`p <

η
C3

we have the bound

‖N θ̃
2 (W )‖`p ≤ C6‖V ‖2`p . (8.103)

In addition, for any θ̃1, θ̃2 ∈ [−η, η] and W1,W2 ∈ Range
(

Πs
h(0)

)
with ‖W1‖`p <

η
C3

and ‖W2‖`p <
η
C3

, we have

‖N θ̃2
2 (W2)−N θ̃1

2 (W1)‖`p ≤ C13

[
‖W1‖`p + ‖W2‖`p + |θ1 − θ2|

]
‖W1 −W2‖`p

+C13|θ1 − θ2|
[
‖W1‖`p + ‖W2‖`p

]
.

(8.104)

Proof. Note that

Πs
h(θ̃)N θ̃

2 (W ) = 0, (8.105)

so that
N θ̃

2 (W ) = Πc
h(θ̃)U θ̃∗ (W )(0)−Πc

h(θ̃)Πs
h(θ̃)W

= Πc
h(θ̃)U θ̃∗ (W )(0).

(8.106)

Therefore both bounds follow from Proposition 8.1.

Let δ > 0 be a small constant, which we will determine later. Pick U0 in such a way that
‖U0 − Uh(0)‖`p < δ. We write U0 = Uh(0) + V0.

Our goal is to find a small W ∈ Range
(

Πs
h(0)

)
and a small θ̃ in such a way that

V 0 + Uh(0) = Uh(θ̃) + U θ̃∗ (Πs
h(θ̃)W )(0). (8.107)

Using our notation from above we see that

Uh(θ̃) + U θ̃∗ (Πs
h(θ̃)W )(0) = Uh(θ̃) + Πs

h(θ̃)W +N θ̃
2 (W )

= Uh(0) + θ̃U
′
h(0) +N θ̃

1 + Πs
h(θ̃)W +N θ̃

2 (W )

= Uh(0) + θ̃U
′
h(0) +N θ̃

1 +W −Πc
h(θ̃)W +N θ̃

2 (W ),

(8.108)

which means that (8.107) can be written as

V 0 = θ̃U
′
h(0) +N θ̃

1 +W −Πc
h(θ̃)W +N θ̃

2 (W ) (8.109)

We write λch : Range(Πc
h(0)) → R for the map µU

′
h 7→ µ. This allow us to rephrase (8.109) as

the fixed point problemΠs
h(0)V 0 = Πs

h(0)N θ̃
1 +W −Πs

h(0)Πc
h(θ̃)(W ) + Πs

h(0)
(
N θ̃

2 (W )
)

λch

[
Πc
h(0)V 0

]
= θ̃ + λch

[
Πc
h(0)N θ̃

1

]
− λch

[
Πc
h(0)Πc

h(θ̃)(W )
]

+ λch

[
Πc
h(0)

(
N θ̃

2 (W )
)]
.

(8.110)

We show that equation (8.110) has a solution in the space

Xκ,εθ := {V ∈ Range(Πs
h(0)) : ‖V ‖`p ≤ κ} × [−εθ, εθ] (8.111)

for some κ, εθ which we will determine later. Without loss of generality we assume that κ, εθ are
small enough such that all previous inequalities hold.
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Lemma 8.12. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. There are small
constants δ > 0 κ > 0 and εθ > 0, independent of p, but not necessarily of h, such that for each
V 0 ∈ `p with ‖V 0‖`p < δ (8.110) has a unique solution (W, θ̃) ∈ Xκ,εθ . Moreover there is a constant
C19 > 0 such that we have the bound

‖W‖`p ≤ C19‖V 0‖`p . (8.112)

Proof. We show that the map

T : (W, θ) 7→

(
Πs
h(0)V 0 −Πs

h(0)N θ̃
1 + Πs

h(0)Πc
h(θ̃)(W )−Πs

h(0)(N θ̃
2 (W ))

λch

[
Πc
h(0)V 0

]
− λch

[
Πc
h(0)N θ̃

1

]
+ λch

[
Πc
h(0)Πc

h(θ̃)(W )
]
− λch

[
Πc
h(0)(N θ̃

2 (W )
] )

(8.113)
maps Xκ,εθ into Xκ,εθ and is a contraction. Recall the constant C1 from (8.3). Note that

Πc
h(0)Πc

h(θ̃)(W ) = Πc
h(0)(W )−Πc

h(0)Πs
h(θ̃)(W )

= −Πc
h(0)Πs

h(θ̃)(W )
(8.114)

We see, using Lemma 8.9, Lemma 8.10 and Lemma 8.11, and setting

C16 = C1

∑
j∈Z

e−β̃|hj| (8.115)

that

‖T (W, θ̃)(1)‖`p ≤ (1 + C16)‖V 0 −N θ̃
1 −N θ̃

2 (W )‖`p + C10|θ̃|‖W‖`p

≤ (1 + C16)
(
‖V 0‖`p + C14θ̃

2 + C6‖W‖2`p
)

+ C10|θ̃|‖W‖`p

≤ C17

[
‖V 0‖`p + θ̃2 + ‖W‖2`p + |θ̃|‖W‖`p

] (8.116)

and

|T (W, θ̃)(2)| ≤ C16(‖V 0‖`p+C14θ̃
2+C6‖W‖2`p )+(1+C16)C10|θ̃|‖W‖`p

|M |

≤ C17

[
‖V 0‖`p + θ̃2 + ‖W‖2`p + |θ̃|‖W‖`p

] (8.117)

for some constant C17 > 0, which is independent of p. Note that

Πc
h(θ̃2)(W2)−Πc

h(θ̃1)(W1) = Πc
h(θ̃2)W2 −Πc

h(θ̃1)W2 + Πc
h(θ̃1)(W1 −W2)

= Πc
h(θ̃2)W2 −Πc

h(θ̃1)W2 + Πc
h(θ̃1)(W1 −W2)−Πc

h(0)(W1 −W2).
(8.118)

Using Lemma 8.9, (8.81), Lemma 8.10 and Lemma 8.11 we obtain

‖T (W1, θ̃1)(1) − T (W2, θ̃2)(1)‖`p ≤ (1 + C16)
(
‖N θ̃2

1 −N
θ̃1
1 ‖`p + ‖Πc

h(θ̃2)(W2)−Πc
h(θ̃1)(W1)‖`p

+‖N θ̃2
2 (W2)−N θ̃1

2 (W1)‖`p
)

≤ (1 + C16)
(
C15(|θ̃1|+ |θ̃2|)|θ̃2 − θ̃1|

+C10|θ̃1 − θ̃2|‖W2‖+ C10|θ̃1|‖W1 −W2‖

+C13

[
‖W1‖`p + ‖W2‖`p + |θ̃1 − θ̃2|

]
‖W1 −W2‖`p

+C13|θ̃2 − θ̃1|
[
‖W1‖`p + ‖W2‖`p

])
≤ C18

[
|θ̃1|+ |θ̃2|+ ‖W1‖`p + ‖W2‖`p

][
|θ̃1 − θ̃2|+ ‖W1 −W2‖`p

]
,

(8.119)
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together with

|T (W1, θ̃1)(2) − T (W2, θ̃2)(2)| ≤ C16‖N
θ̃2
1 −N

θ̃1
1 +Πch(θ̃2)(W2)−Πch(θ̃1)(W1)+N θ̃22 (W2)−N θ̃12 (W1)‖`p

|M |

≤ C18

[
|θ̃1|+ |θ̃2|+ ‖W1‖`p + ‖W2‖`p

][
|θ̃1 − θ̃2|+ ‖W1 −W2‖`p

]
(8.120)

for some constant C18 > 0, which is independent of p. First we let 0 < κmax < 1 and 0 < θmax < 1
be constants such that all inequalities above hold for all |κ| ≤ κmax and all |θ| ≤ θmax. In particular,
we demand that κmax < η, κmax <

η
C3

and θmax < η. Finally we write

δ = κ = εθ = 1
20 min{κmax, θmax,

1
C17

, 1
C18
} > 0. (8.121)

With these choices we obtain the estimate

‖T (W, θ̃)(1)‖`p ≤ C17

[
‖V 0‖`p + θ̃2 + ‖W‖2`p + |θ̃|‖W‖`p

]
≤ 1

20κ+ 1
20κ+ 1

20κ+ 1
20κ

≤ 1
2κ.

(8.122)

Furthermore we see that
|T (W, θ̃)(2)| ≤ 1

2εθ. (8.123)

Hence we see that the map T indeed maps Xκ,εθ into Xκ,εθ .

In addition, (8.119) implies

‖T (W1, θ̃1)(1) − T (W2, θ̃2)(1)‖`p ≤ C18

[
|θ̃1|+ |θ̃2|+ ‖W1‖`p + ‖W2‖`p

][
|θ̃1 − θ̃2|+ ‖W1 −W2‖`p

]
≤ 4

20 |θ̃1 − θ̃2|+ 4
20‖W1 −W2‖`p ,

(8.124)
while (8.120) yields

|T (W1, θ̃1)(2) − T (W2, θ̃2)(2)| ≤ 4
20 |θ̃1 − θ̃2|+ 4

20‖W1 −W2‖`p . (8.125)

Therefore the map T is a contraction and thus the fixed point problem (8.110) has a unique solution
(W, θ̃). Moreover we see that

‖(W, θ̃)‖`p×R ≤ ‖T (W, θ̃)− T (0, 0)‖`p×R + ‖T (0, 0)‖`p×R
≤ 1

2‖(W, θ̃)‖`p×R + 2C17‖V 0‖`p ,
(8.126)

which yields
‖(W, θ̃)‖`p×R ≤ 4C17‖V 0‖`p

= C19‖V 0‖`p
(8.127)

as desired.

Proof of Proposition 8.2. If (W, θ̃) satisfies (8.110) then we see from (8.108) that

U0 = Uh(0) + V 0

= Uh(θ̃) + U θ̃∗ (W )(0),
(8.128)

as desired.
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Proof of Theorem 2.3. Let U be the solution of (2.1) with an initial condition U(0) = U0 for which
‖U0 − Uh(0)‖`p < δ. By Proposition 8.2 and by uniqueness of the solution we see that

U = Uh(θ̃) + U θ̃∗ (W ) (8.129)

for some small θ̃ ∈ R and W ∈ `p with

‖W‖`p ≤ C19‖U0 − Uh(0)‖`p . (8.130)

Hence we obtain

‖U(t)− Uh(t+ θ̃)‖`p ≤ e−
β̃
2 t‖U θ̃∗

(
Πc
h(θ̃)(W )

)
‖−β̃/2

≤ 2C3e
− β̃2 t‖Πc

h(θ̃)(W )‖`p

≤ 2C3e
− β̃2 tC16‖W‖`p

≤ 2C3C16C19‖U0 − Uh(0)‖`pe−
β̃
2 t,

(8.131)

as desired.
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9 Discussion

In this paper, we considered the discrete FitzHugh-Nagumo equation

u̇j = 1
h2

∑
k>0

αk[uj+k + uj−k − 2uj ] + g(uj)− w

ẇj = ρ[uj − γwj ]
(9.1)

posed on the one-dimensional lattice with j ∈ Z and where the cubic nonlinearity g is given by
g(u) = u(1 − u)(u − r0) and where we allowed infinitely many of the coefficients {αk}k>0 to be
non-zero. We were interested in finding travelling pulse solutions of the form Uj(t) = V (hj + ct) for
certain wavespeed c which satisfy the conditions that lim

|ξ|→∞
V (ξ) = 0 for the variable ξ = hj + ct.

In §4 we showed the existence of these travelling pulse solutions. In §6 we analyzed the spectrum of
the linearisation of our problem around the travelling pulse solution and proved that in a suitable
halfplane it consisted solely of the points k2πi chh for k ∈ Z, which are all simple eigenvalues. Finally,
in §8 we used Green’s functions to establish the nonlinear stability of our travelling pulse solutions.

When lifting the method from [1] to the system case in §3, it turned out that when controlling
the various cross terms, we were aided by the relative simplicity of the equation for ẇ, since it has
constant coefficients. When generalizing this method to an even larger class of systems where this is
not the case, it might turn out that additional techniques will be required to control these cross terms.

Although most of our results in §6 and earlier are uniform in h, this is not the case for our main
nonlinear stability result. Indeed, the constants appearing in the statement of Theorem 2.3 could
in principle blow up or shrink to zero as h ↓ 0. We do not believe that this is the case, but chose
to not fully pursue the matter in this paper. We are confident that Lemma 5.7 can be stated in
an h-independent fashion, but this requires delicate and involved estimates. In principle, this would
allow the exponents appearing in §7 to be chosen independently of h. However, the constants in [3,
Prop. 3.3] and [3, Lemma 4.3], results we apply multiple times, cannot be chosen independently of h.
In particular, using the notation from [3, Prop. 3.3], there is no constant K for which |L̃(s)+ lI| ≤ K
holds for all small h > 0. This is caused by the factor 1

h2 appearing in our differential equation. In
addition, the integration path in (7.26) becomes unbounded as h ↓ 0.

The methods used to prove our results circumvent the need to use a statespace as in [20], where
C(I;R2) was used with I = [−1, 1]. In the infinite-range case considered here, one would be forced
to take I = R, which leads to many technical difficulties. For example, the Arzelà-Ascoli theorem
no longer holds. Nevertheless, it would be convenient to have exponential dichotomies and tools like
Lin’s method for the general setting in this paper.
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