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Abstract

We establish the existence and nonlinear stability of travelling pulse solutions for the discrete
FitzHugh-Nagumo equation with infinite-range interactions close to the continuum limit. For the
verification of the spectral properties, we need to study a functional differential equation of mixed
type (MFDE) with unbounded shifts. We avoid the use of exponential dichotomies and phase spaces,
by building on a technique developed by Bates, Chen and Chmaj for the discrete Nagumo equation.
This allows us to transfer several crucial Fredholm properties from the PDE setting to our discrete
setting.

1 Introduction
The FitzHugh-Nagumo partial differential equation (PDE) is given by

U = Uge +g(uirg) —w

(1.1)

wy = plu—w),
where g(+;79) is the cubic bistable nonlinearity given by
glu;re) = w(l—u)(u—rg) (1.2)

and p,y are positive constants. This PDE is commonly used as a simplification of the Hodgkin-
Huxley equations, which describe the propagation of signals through nerve fibres. The spatially
homogeneous version of this equation was first stated by FitzHugh in 1961 [14] in order to describe
the potential felt at a single point along a nerve axon as a signal travels by. A few years later [15],
the diffusion term in (1.1) was added to describe the dynamics of the full nerve axon instead of just
a single point. As early as 1968 [16], FitzHugh released a computer animation based on numerical
simulations of (1.1). This videoclip clearly shows that (1.1) admits isolated pulse solutions resem-
bling the spike signals that were measured by Hodgkin and Huxley in the nerve fibres of giant squids
[19].



As a consequence of this rich behaviour and the relative simplicity of its structure, (1.1) has
served as a prototype for several similar systems. For example, memory devices have been designed
using a planar version of (1.1), which supports stable stationary radially symmetric spot patterns
[27]. In addition, gas discharges have been described using a three-component FitzHugh-Nagumo
system [33, 40], for which it is possible to find stable travelling spots [42].

Mathematically, it turned out to be a major challenge to control the interplay between the exci-
tation and recovery dynamics and rigorously construct the travelling pulses visualized by FitzHugh
n [16]. Such pulse solutions have the form

(u,w)(z,t) = (Uo,Wo)(x + cot), (1.3)
in which ¢ is the wavespeed and the wave profile (up, W) satisfies the limits

lim (g, w = 0.
o TS (14)
Plugging this Ansatz into (1.1) and writing & = = + cot, we see that the profiles are homoclinic
solutions to the travelling wave ordinary differential equation (ODE)

cotig(§) = g (&) + g(@o(€);ro) — wo(€)
cowy(§) = pluo(&) —ywo(€)].

The analysis of this equation in the singular limit p | 0 led to the birth of geometric singular pertur-
bation theory, see for example [25] for an interesting overview. Indeed, the early works [8, 18, 24, 26]
used geometric techniques such as the Conley index, exchange lemmas and differential forms to con-
struct pulses and analyse their stability. A more analytic approach was later developed in [30], where
Lin’s method was used in the rg = % regime to connect a branch of so-called slow-pulse solutions
to (1.5) to a branch of fast-pulse solutions. This equation is still under active investigation, see for
example [9, 10], where the birth of oscillating tails for the pulse solutions is described as the unstable
root ry of the nonlinearity g moves towards the stable root at zero.

(1.5)

Many physical, chemical and biological systems have an inherent discrete structure that strongly
influences their dynamical behaviour. In such settings lattice differential equations (LDEs), i.e. dif-
ferential equations where the spacial variable can only take values on a lattice such as Z", are the
natural replacements for PDEs, see for example [1, 20, 32]. Although mathematically it is a relatively
young field of interest, LDEs have already appeared frequently in the more applied literature. For
example, they have been used to describe phase transitions in Ising models [1], crystal growth in
materials [7] and phase mixing in martensitic structures [43].

To illustrate these points, let us return to the nerve axon described above and reconsider the
propagation of electrical signals through nerve fibres. It is well known that electrical signals can only
travel at adequate speeds if the nerve fibre is insulated by a myeline coating. This coating admits
regularly spaced gaps at the so-called nodes of Ranvier [35]. Through a process called saltatory
conduction, it turns out that excitations of nerves effectively jump from one node to the next [31].
Exploiting this fact, it is possible [29] to model this jumping process with the discrete FitzHugh-
Nagumo LDE

i = gz(uje + -1 — 2u5) + g(uz5m0) — w; (1.6)
wj = plu; —yw;].

The variable u; now represents the potential at the j*! node, while the variable w; denotes a recov-
ery component. The nonlinearity g describes the ionic interactions. Note that this equation arises
directly from the FitzHugh-Nagumo PDE upon taking the nearest-neighbour discretisation of the



Laplacian on a grid with spacing h > 0.

Inspired by the procedure for partial differential equations, one can substitute a travelling pulse
Ansatz (uj, w;)(t) = (@n,@s)(hj + cxt) into (1.6). Instead of an ODE, we obtain the system

e (§) = qelan(€+h) +un(€ — h) — 2un(§)] + g(@n(€); ro) — wa(§)
cnw,(§) = plun(§) — ywn(§)]

in which & = hj 4 cpt. Such equations are called functional differential equations of mixed type
(MFDEs).

(1.7)

In [20, 21], Hupkes and Sandstede studied (1.6) and showed that for small values of p and rg
sufficiently far from %, there exists a locally unique travelling pulse solution of this system and that
it is asymptotically stable with an asymptotic phase shift. No restrictions were required on the dis-
cretisation distance h, but the results relied heavily on the existence of exponential dichotomies for
MFDEs. As a consequence, the techniques developed in [20, 21] can only be used if the discretisation

involves finitely many neighbours. Such discretisation schemes are said to have finite range.

Recently, an active interest has arisen in non-local equations that feature infinite-range interac-
tions. For example, Ising models have been used to describe the infinite-range interactions between
magnetic spins arranged on a grid [1]. In addition, many physical systems, such as amorphous semi-
conductors [17] and liquid crystals [12], feature non-standard diffusion processes, which are generated
by fractional Laplacians. Such operators are intrinsically non-local and hence automatically require
infinite-range discretisation schemes [11].

Our primary interest here, however, comes from so-called neural field models, which aim to
describe the dynamics of large networks of neurons. These neurons interact with each other by ex-
changing signals across long distances through their interconnecting nerve axons [4-6, 34, 41]. It is of
course a major challenge to find effective equations to describe such complex interactions. One model
that has been proposed [4, Eq. (3.31)] features a FitzHugh-Nagumo type system with infinite-range
interactions.

Motivated by the above, we consider a class of infinite-range FitzHugh-Nagumo LDEs that
includes the prototype
i = Y e ik 4wk — 2uy] + g(ugire) — w
k€Z~o (1.8)
wj = pluy —ywjl,

>

in which x > 0 is a normalisation constant. In [39], Scheel and Faye studied equations such as (1.8) for
discretisations with infinite-range interactions featuring exponential decay in the coupling strength.
They circumvented the need to use a state space as in [21], which enabled them to construct pulses
to (1.8) for arbitrary discretisation distance h. Very recently [38], they developed a center manifold
approach that allows bifurcation results to be obtained for neural field equations.

In this paper, we also construct pulse solutions to equations such as (1.8), but under weaker
assumptions on the decay rate of the couplings. Moreover, we will establish the nonlinear stability
of these pulse solutions, provided the coupling strength decays exponentially. However, both results
do require the discretisation distance h to be very small.

In particular, we will be working in the continuum limit. The pulses we construct can be seen as
perturbations of the travelling pulse solution of the FitzHugh-Nagumo PDE. However, we will see



that the travelling wave equations are highly singular perturbations of (1.5), which poses a signif-
icant mathematical challenge. On the other hand, we do not need to use exponential dichotomies
directly in our non-local setting as in [20]. Instead we are able to exploit the detailed knowledge that
has been obtained using these techniques for the pulses in the PDE setting.

Our approach to tackle the difficulties arising from this singular perturbation is strongly inspired
by the work of Bates, Chen and Chmaj. Indeed, in their excellent paper [1], they study a class of
systems that includes the infinite-range discrete Nagumo equation

. _ 1.2
k€Z~o

in which ¥ > 0 is a normalisation constant. This equation can be seen as a discretisation of the

Nagumo PDE

ug = Ugg + g(usro)- (1.10)

The authors show that, under some natural assumptions, these systems admit travelling pulse solu-
tions for A small enough.

In the remainder of this introduction we outline their approach and discuss our modifications,
which significantly broaden the application range of these methods. We discuss these modifications
for the prototype (1.8), but naturally they can be applied to a broad class of systems.

Transfer of Fredholm properties: scalar case.

An important role in [1] is reserved for the operator L., ... given by

Co:sc

Lntpcienc?(€) = Cosct’(€) = F5 5 ™ [0(€+ hk) + 0(€ — hk) — 20(6)]

k€Z>o

7gu(ﬂ0:sc(€); TO)”(&)?

where T. is the wave solution of the scalar Nagumo PDE (1.10) with wavespeed cg.¢c. This operator
arises as the linearisation of the scalar Nagumo MFDE

st (€) = 5 X o€+ hk) + 0(6 1K) = 20(6)] + 9u o€, (112

(1.11)

around the wave solution Ug.s. of the scalar Nagumo PDE (1.10). This operator should be compared
to

EO;ED;SC;CO;SCU(g) = CO:SC’U/(S) - U//(f) — gu(ﬂo;sc(f); T())’U(E), (113)

the linearisation of the scalar Nagumo PDE around its wave solution.

The key contribution in [1] is that the authors fix a constant 6 > 0 and use the invertibility of
L0:%g.00ic0sc T 0 to show that also Lpm...ico..c + 6 is invertible. In particular, they consider weakly-
converging sequences {v;} and {w;} with (Lnmy..cic0m T 0)v; = w; and try to find a uniform (in 0
and h) upper bound for the L?-norm of U;' in terms of the L?-norm of w;. Such a bound is required
to rule out the limitless transfer of energy into oscillatory modes, a key complication when taking
weak limits. To obtain this bound, the authors exploit the bistable structure of the nonlinearity g to
control the behaviour at £co. This allows the local L*-norm of v; on a compact set to be uniformly
bounded away from zero. Since the operator L.z, :co... T 0 is not self-adjoint, this procedure must
be repeated for the adjoint operator.

Transfer of Fredholm properties: system case.
Plugging the travelling pulse Ansatz

(w,w);(t) = (Tn,wn)(hj+ cnt) (1.14)



into (1.8) and writing £ = hj + cit, we see that the profiles are homoclinic solutions to the equation

(6 = Y e ™ [Hh(f + kh) +un(§ — kh) — %h(f)] +g(@n(€);r0) — Wi ()
k=0 (1.15)
i€ = p(Tn(©) —7Tn(E)).

We start by considering the linearised operator Kpz,.:c, of the system (1.15) around the pulse solution
(to,wWp) of the FitzHugh-Nagumo PDE with wavespeed cg. This operator is given by

Cuaer (1 )10 = (o e st ) (10)

where Lp.5,:c, is given by equation (1.11), but with To.s. replaced by @y and co.sc by co. We use
a Fredholm alternative as described above to show the invertibility of KCp.z,,c, + ¢ for fixed 6 > 0.
However, the transition from a scalar equation to a system is far from trivial. When transferring the
Fredholm properties there are multiple cross terms that need to be controlled. We are aided here by
the relative simplicity of the equation for w},, which guarantees that the second component of the
linearisation (1.16) has constant coefficients. This will be the content of §3.

Construction of pulses.
Using these results for Kp.q,.c, we develop a fixed point argument to show that the system (1.8)
has a locally unique travelling pulse solution (U (t)); = (un,wp)(hj + cxt) for h small enough,
which converges to a travelling pulse solution of the FitzHugh-Nagumo PDE as h | 0. This is more
or less straightforward and is very similar to the arguments used in [1]. The details can be found in §4.

Spectral stability.
The natural next step is to study the linear operator K, .., that arises after linearising the system
(1.8) around its new-found pulse solution. This operator is given by

Ko (1 ) (O = (2t ©Ee® o). w17

where L.z, is given by equation (1.11), but with %o.s. replaced by Ty, and co.gc by ¢p. The procedure
above can be repeated to show that for fixed § > 0, it also holds that K, .., + ¢ is invertible for
h small enough. However, to understand the spectral stability of the pulse, we need to consider the
eigenvalue problem

Khape,v+ v = 0 (1.18)

for fixed values of h and A ranging throughout a half-plane. Switching between these two points of
view turns out to be a delicate task.

We start in 85 by showing that Kp.z,;c, and its adjoint K} - ..~ are Fredholm operators with
one-dimensional kernels. This is achieved by explicitly constructing a kernel element for Kb, cn
that converges to a kernel element of the adjoint of the operator corresponding to the linearised

PDE. An abstract perturbation argument then yields the result.

In particular, we see that A = 0 is a simple eigenvalue of Kj.z,:c,. In §6 we establish that in a
suitable half-plane, the spectrum of this operator consists precisely of the points {k‘?m’ch% ck e},
which are all simple eigenvalues. We do this by first showing that the spectrum is invariant under
the operation A — X\ + %, which allows us to restrict ourselves to values of A with imaginary
part in between —7*7 and “7*. Note that the period of the spectrum is dependent on h and grows
to infinity as h | 0. This is not too surprising, since the spectrum of the linearisation of the PDE

around its pulse solution is not periodic. However, this means that we cannot restrict ourselves to




a fixed compact subset of the complex plane for all values of h at the same time. In fact, it takes
quite some effort to keep the part of the spectrum with large imaginary part under control.

It turns out to be convenient to partition our ’half-strip’ into four parts and to calculate the
spectrum in each part using different methods. Values close to 0 are analyzed using the Fredholm
properties of Kp.z, ., exploiting many of the results from §5; values with a large real part are con-
sidered using standard norm estimates, but values with a large imaginary part are treated using a
Fourier transform. The final set to consider is a compact set that is independent of h and bounded
away from the origin. This allows us to apply a modified version of the procedure described above
that exploits the absence of spectrum in this region for the FitzHugh-Nagumo PDE.

Nonlinear stability.

The final step in our program is to leverage the spectral stability results to obtain a nonlinear sta-
bility result. To do so, we follow [20] and derive a formula that links the pointwise Green’s function
of our general problem (1.8) to resolvents of the operator Kpm, ., in §7. Since we have already
analyzed the latter operator in detail, we readily obtain a spectral decomposition of this Green’s
function into an explicit neutral part and a residual that decays exponentially in time and space.
Therefore we obtain detailed estimates on the decay rate of the Green’s function for the general
problem. These Green’s functions allow us in §8 to use multiple fixed point arguments to eventually
show the nonlinear stability of the family of travelling pulse solutions Uj. To be more precise, for
each initial condition close to U} (0), we show that the solution with that initial condition converges
at an exponential rate to the solution Uy, (- + é) for a small (and unique) phase shift 0. The main
ideas behind these arguments can already be found in in [2, 20]. However, a lot of the ingredients
used there are not readily available, so we have to verify that certain constructions can be extended
to systems with infinite range.

Acknowledgements.
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2 Main results

We consider the following system of equations

Uy = gz > arlujr + ik — 2us] + g(uy) — w;
. >0 (2.1)
wj = plu; —yw;],

which we refer to as the (spatially) discrete FitzHugh-Nagumo equation with infinite-range interac-
tions. Often, for example in [20, 21], it is assumed that only finitely many of these coefficients «y
are non-zero. However, we will impose the following much weaker conditions here.

Assumption (Hal). The coefficients {ay, }rez., satisfy the bound

2
kz>:0 ‘Oék|]€ < o0 (22)
as well as the identity
2 _
kz>:0 apk® = 1. (2.3)

Finally, the inequality

A(z) = > ag (1 - cos(kz)) > 0 (2.4)

k>0
holds for all z € (0, 27).

We note that (2.4) is automatically satisfied if o; > 0 and ay > 0 for all k € Z~ ;. The conditions
in (Hal) ensure that for ¢ € L>°(R) with ¢" € L?(R), we have the limit

lim [|7 5= ai [0 + hk) + (-~ hk) = 20()] — "2 =0, (25)

hl0 k>0

see Lemma 3.5. In particular, we can see (2.1) as the discretisation of the FitzHugh-Nagumo PDE
(1.1) on a grid with distance h. Additional remarks concerning the assumption (Hal) can be found
in [1, §1].

Throughout this paper, we impose the following standard assumptions on the remaining param-
eters in (2.1). The last condition on « in (HS) ensures that the origin is the only j-independent
equilibrium of (2.1).

Assumption (HS). The nonlinearity g is given by g(u) = u(1 — u)(u — ), where 0 < ro < 1. In
addition, we have 0 < p < 1 and 0 < v < 4(1 —rg) 2.

Without explicitly mentioning it, we will allow all constants in this work to depend on r¢, p and
~. Dependence on h will always be mentioned explicitly. We will mainly work on the Sobolev spaces

Hl(R) = {f R — R|f,f’ c L2(R)},
HR) = {f:R-RI|f.f [ € L*R)}, (2:6)
with their standard norms
1
o 2 2 2
lme = (15w + 1w 1 .
2 2 2 2
P (i e i Y Ty



Our goal is to construct pulse solutions of (2.1) as small perturbations to the travelling pulse
solutions of the FitzHugh-Nagumo PDE. These latter pulses satisfy the system

colty = g+ g(to) — Wo 28)
coWy = p(to —YWo) .
with the boundary conditions
lim (o, wo)(§) = (0,0). (2.9)
|€§]—o00

If (g, Wp) is a solution of (2.8) with wavespeed cg, then the linearisation of (2.8) around this solution
is characterized by the operator Lo : H2(R) x H'(R) — L?(R) x L?(R), that acts as

Eo(v) = <CO$_$2_9“<“0) L >(“ ) (2.10)
w —-p Cogz +p w

The existence of such pulse solutions for the case when p is close to 0 is established in [25, §5.3].
Here, we do not require p > 0 to be small, but we simply impose the following conditions.

Assumption (HP1). There exists a solution (ug,wy) of (2.8) that satisfies the conditions (2.9)
and has wavespeed ¢y # 0. Furthermore the operator Lj is Fredholm with index zero and it has a
simple eigenvalue in zero.

Recall that an eigenvalue A of a Fredholm operator L is said to be simple if the kernel of L — A
is spanned by one vector v and the equation (L — A\)w = v does not have a solution w. Note that
if L has a formal adjoint L*, this is equivalent to the condition that (v, w) # 0 for all non-trivial

w € ker(L* — ).

We note that the conditions on £y formulated in (HP1) were established in [26] for small p > 0.
In addition, these conditions imply that w; and w( decay exponentially.

In order to find travelling pulse solutions of (2.1), we substitute the Ansatz
(w,w);(t) = (Un, @p)(hj + ent), (2.11)

into (2.1) to obtain the system

THE) = X ar[Tn(€ + k) + (€ — hk) — 20,(6)] + g (@ (€)) — T (€)

k>0 (2.12)
cnwy(§) = plun(§) — Ywa(S)],
in which £ = hj + cpt. The boundary conditions are given by
lim (up,w = .
i (@, ) (€) (0,0) (2.13)

The existence of such solutions is established in our first main theorem.

Theorem 2.1 (see §4). Assume that (HP1), (HS) and (Hal) are satisfied. There exists a positive
constant hy such that for all h € (0, hy), the problem (2.12) with boundary conditions (2.13) admits
at least one solution (cp,Wn, W), which is locally unique in R x HY(R) x H*(R) up to translation
and which has the property that

lhi% (cn — co,up, — o, Wy, —Wwy) = (0,0,0) in R x HY(R) x HY(R) (2.14)



Note that this result is very similar to [39, Corollary 2.1]. However, Scheel and Faye impose
an extra assumption, similar to (Ha2) below, which we do not need in our proof. This is a direct
consequence of the strength of the method from [1] that we described in §1.

Building on the existence of the travelling pulse solution, the natural next step is to show that
our new-found pulse is asymptotically stable. However, we now do need to impose an extra condition
on the coefficients {ay }r>o0-

Assumption (Ha2). The coefficients {ay }r>o satisfy the bound

> Jagle™ < oo (2.15)
k>0

for some v > 0.

Note that the prototype equation (1.8) indeed satisfies both assumptions (Hal) and (Ha2). An
example of a system which satisfies (Hal), but not (Ha2) is given by

in which k = % is the normalisation constant.

Moreover we need to impose an extra condition on the operator £y given by (2.10). This spectral
stability condition is established in [13, Theorem 2] together with [44, Theorem 3.1] for the case
where p is close to 0.

Assumption (HP2). There exists a constant A, > 0 such that for each A € C with Re A > —\,
and A # 0, the operator

,CO+/\:H2(R) le(R)—>L2(R) xLQ(R) (2.17)
is invertible.

To determine if the pulse solution described in Theorem 2.1 is nonlinearly stable, we must first
linearise (2.12) around this pulse and determine the spectral stability. The linearised operator now

takes the form
I _ chgs = An = gu(@n) 1 vy, (2.18)
w —p cht +p w

Here the operator Ay, is given by

Argle) = = T e [6(& + Bk + 6(€ — k) = 26(6)] (2.19)
>0
As usual, we define the spectrum, o(L), of a bounded linear operator L : H(R) x H'(R) — L?(R) x
L?(R), as
o(L) = {AeC:L—\isnot invertible}. (2.20)

Our second main theorem describes the spectrum of this operator Ly, or rather of — Ly, in a suitable
half-plane.

Theorem 2.2 (see §6). Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. There
exist constants A3 > 0 and hy. > 0 such that for all h € (0, h.), the spectrum of the operator —Ly,
in the half-plane {z € C: Re z > —A3} consists precisely of the points k2m’ch% for k € Z, which
are all simple eigenvalues of Ly,.



We emphasize that A3 does not depend on h. The translational invariance of (2.12) guarantees
that A = 0 is an eigenvalue of —Lj. In Lemma 6.1 we show that the spectrum of the operator Ly, is
periodic with period 27rz'ch%, which means that the eigenvalues k27rich% for k € Z all have the same
properties as the zero eigenvalue.

Our final result concerns the nonlinear stability of our pulse solution, which we represent with
the shorthand

[Uh(t)] = (Up,wr)(hj + cpt). (2.21)

J
The perturbations are measured in the spaces ¢P, which are defined by

o= Ve®: V= | X V] <oc} (2.22)
JEZ
for 1 < p < oo and
0 = {Ve®):|[V]e= :=sup|Vj] < oo}. (2.23)
JEZ

Theorem 2.3 (see §8). Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. Fiz 0 <
h < he and 1 < p < 0o. Then there exist constants 6 >0, C >0 andﬁ > 0, which may depend on
h but not on p, such that for all initial conditions U® € €7 with |[U° — U (0)||,, < 6, there exists an

asymptotic phase shift § € R such that the solution U = (u,w) of (2.1) with U(0) = U° satisfies the
bound

U =Tn(t+0)ll,, < Ce MU = Tn(0)|l, (2.24)
for allt > 0.

10



3 The singular perturbation

The main difficulty in analysing the travelling wave MFDE (2.12) is that it is a singular perturbation
of the ODE (2.8). Indeed, the second derivative in (2.8) is replaced by the linear operator Ay :
HY(R) — L*(R) that acts as

M) = b T (1€ + k) + 6(& — hk) - 20(6) ). (3.1)

We will see in Lemma 3.5 that for all ¢ € L>°(R) with ¢ € L?(R), we have that l}gré |Anp—¢"||; 2 =

0. Hence the bounded operator A, converges pointwise on a dense subset of H!(R) to an unbounded
operator on that same dense subset. In particular, the norm of the operator A grows to infinity as
h 0.

Since there are no second derivatives involved in (2.12), we have to view it as an equation posed
on the space H(R) x H!(R), while the ODE (2.8) is posed on the space H(R) x H!(R). From now
on we write

H' = H'(R)x H'(R),
L?> = L3*R)x L*(R).

The main results in this section will be used in several different settings. In order to accommodate
this, we introduce the following conditions.

(3.2)

Assumption (hFam). For each h > 0 there is a pair (i, wy,) € H' and a constant &, such that
(fbmﬁ}h) - (ﬂo,@o) — 0 in H' and ¢p —coas h|O.

Assumption (hM). The set M C C is compact with 0 ¢ M. In addition, recalling the constant
A, appearing in (HP2), we have Re z > — A\, for all z € M.

In §4 we choose (U, w,) and & to be (W, wy) and ¢o for all values of h. However, in §5 we let
(tp, Wp) be the travelling pulse (uy,wy,) from Theorem 2.1 and we let ¢, be its wave speed c,.

If (hFam) is satisfied, then for § > 0 and h > 0 we define the operators

ZJr _ ( Ehd%cfAhfgu(ﬂh)Jr(; 1 > (3 3)
h,d —p Chit+yp+0 '
and
~ d ~
= —Chigy — Ap —gu(ln) +6 —p

These operators are bounded linear functions from H' to L?. We see that Z}; s is the adjoint operator
of Z; 5, in the sense that

(6,9), Lns(0,X) = (Lhs(6,0), (6,X)) (3.5)
holds for all (¢,), (A, x) € L. Here we have introduced the notation
((9,9),(0,x) = (6,0) + (¥, x)
= T (@)@) + v@)x(@))da

—00

for (¢,v), (6, x) € L2

11



Since at some point we want to consider complex-valued functions, we also work in the spaces
HZ(R), H(R) and LZ(R), which are given by

HEZR) = {f+gilf.g € H*R)},
HER) = {f+gilf,g€ H'(R)}, (3.7)
LE(R) = {f+gilf.g€ L*R)}.

These spaces are equipped with the inner product

@0) = [ (h@)+in@)(f) - ig@)d (3:8)
for ¢ = f1 +1ig1,v% = fo + igs. As before, we write
He = HE(R)x HE(R) (39)
L = L4(R) x LA(R).
Each operator L from H' to L? can be extended to an operator from H(lc to L(% by writing
L(f+ig9)=Lf+1iLg. (3.10)

It is well-known that this complexification preserves adjoints, invertibility, inverses, injectivity, sur-
jectivity and boundedness, see for example [36]. If A € C then the operators Zh)\ are defined
analogously to their real counterparts, but now we view them as operators from H}:(R) x HL(R)
to LA(R) x LZ(R). Whenever it is clear that we are working in the complex setting we drop the
subscript C from the spaces H(lc and L% and simply write H' and L.

We also introduce the operators £ : H(R) x H'(R) — L?*(R) x L?(R), that act as

d d? —
»CSL — ( Cogy — a2z — gu(to) 1 J > (3.11)
—-p Cogy TP
and )
—ep A d” U _
La = ( €0z dx? gu(UO) _P n ) . (312)
1 Co dz + YP

. .. —+ . .
These operators can be viewed as the formal i | 0 limits of the operators £, ;. Upon introducing
the notation

+ ) — (W, @)
(d’o 37/}0 ) = H(g{)?@g;“w ) (3.13)
we see that L (¢, v¢¢) = 0 by differentiating (2.8).

To set the stage, we summarize several basic properties of E%. For completeness, we provide a
proof of these facts later on in this section.

Lemma 3.1. Assume that (HP1), (HS) and (Hal) are satisfied. The following results hold.
1. We have that (¢¢,v%d) € H*(R) x HY(R) and ker(L{) = span{(¢¢, 17 )}-

2. There exist (¢g,g ) € H*(R) x HY(R) with ||(¢g,¢g )2 = 1, with ((ug, wy), (¢g g )) > 0
and ker(Ly ) = span{(¢q , ¥y )}

3. For every (0,x) € L* the problem ﬁoi((?ﬂ/)) = (0,x) with (¢,v) € H?*(R) x
(¢, 1), (¢0i,w0i)> =0 has a unique solution (¢,) if and only if (6, x), (¢F, %))
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4. There exists a positive constant C7 such that

16 V) g2 myx iy < Crll L5 (69l (3.14)

for all (¢,4) € H*(R) x H'(R) with ((¢,%), (¢5,15)) = 0.

5. There exists a positive constant Co and a small constant §g > 0 such that for all 0 < § < §g
we have

23 + )00 lrs ey sy < o100 ey ey + 2100 6T 0] (315
for all (0,%) € L*(R) x L3(R).

6. If (HP2) is also satisfied, then for each M C C that satisfies (hM), there exists a constant
C3 > 0 such that the uniform bound

||(£0i + )\)—1(9’ X)HH@(R)xHé(]R) < CSH(HvX)”Lg(R)ng(R) (3-16)
holds for all (6,x) € LA(R) x LA(R) and all X € M.

The main goal of this section is to prove the following two propositions, which transfer parts (5)
and (6) of Lemma 3.1 to the discrete setting.

Proposition 3.2. Assume that (hFam), (HP1), (HS) and (Hal) are satisfied. There exists a positive
constant C{ and a positive function hjy(-) : RT — RT, depending only on the choice of (an,wy) and
Ch, such that for every 0 < § < 0y and every h € (0,h;(0)), the operators Zié are homeomorphisms
from H' to L? that satisfy the bounds

I ) 00 < ColI10, ) + 310, ), (6F )] (3.17)

for all (6, ) € L?.

Proposition 3.3. Assume that (hFam), (HP1),(HP2), (HS) and (Hal) are satisfied. Let M C C
satisfy (hM). Then there exists a constant hpy > 0, depending only on M and the choice of (U, W)

and ¢y, such that for all 0 < h < hp; and all X € M the operator Zi)\ is a homeomorphism from
H' to L.

Our techniques here are inspired strongly by the approach developed in [1, §2-4]. Indeed, Propo-
sition 3.2 and Proposition 3.4 are the equivalents of [1, Theorem 4] and [1, Lemma 6] respectively.
The difference between our results and those in [1] is that Bates, Chen and Chmaj study the dis-
crete Nagumo equation, which can be seen as the one-dimensional fast component of the FitzHugh-
Nagumo equation by setting p = 0 in (2.1). In addition, the results in [1] are restricted to A € R,
while we allow A € C in Proposition 3.3.

Recall the constant g > 0 appearing in Lemma 3.1. For 0 < § < §p and h > 0 we define the
quantities

—+ . —+ =t
Koy = b [IEs(0.0) ke + 5 [Crslo ). G050 (319)
together with .
—1 . . —_
A5 = hrilﬁ)nfl\ (h,d). (3.19)
Similarly for M C C that satisfies (hM) and h > 0 we define
—+ —*
Ao (h, M) = inf L5 (0,0)]ly2], .
(har) =k (6,0 e (3.20)
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together with

P -
A (M) = l1r}rLl$10an (h, M). (3.21)

The key ingredients that we need to establish Propositions 3.2 and 3.3 are lower bounds on the

quantities A (6) and Ki(M ). These are provided in the result below, which we consider to be the
technical heart of this section.

Proposition 3.4. Assume that (hFam), (HP1), (HS) and (Hal) are satisfied. There exists a positive
constant C{, depending only on our choice of (up,wp) and ¢y, such that Ki(é) > Clé forall0 < § <
do. Similarly if M C C satisfies (hM), then there exists a positive constant C},, depending only on
M and our choice of (n,wy) and ¢y, such that Ki(M) > %

Proof of Lemma 3.1. Parts (1), (2) and (3) follow directly from (HP1). Indeed, this condition states
that L3 is a Fredholm operator with Fredholm index 0 and that the identities

ker LT = span{(¢7.¥)}
Range £& = span{(¢F,vd)}e (3.22)
= {(¢,¥) e L?: ((,9), (&7, %7 ) = 0}

hold. In particular, we see that

£+ (span{(6F, vf)}e) 0 (H2R) x HY(R))  —  span{(éF, 47} (3.23)

is a continuous bijection. By the Banach isomorphism theorem its inverse is then also continuous,
which implies (4).

The proof of part (5) follows the lines of [1, Lemma 5]. We pick 0 < § < dp, where dg will be
defined later. Let (¢,v) € H*(R) x H'(R) be arbitrary and set (6,x) = L (¢, ) + 6(¢, ). We
decompose

(69) = ((6:9).(d5.95)) (65 ¥5) + (¢, v™). (3.24)
Then (¢, %), (6F,4F)) = 0 and LE (¢, v L) = (8, x) — 5(¢, 1), so with part (4) we obtain that
It v N r@wme < Crlll0 X)L + (8, ¥) 2] - (3.25)

From part (2) we also obtain that ((6, x) — §(¢,v), (¢, ¢d)) = 0. Hence we must have that

<(0’ X)7 (¢8:’¢3:)> = 5<(¢7¢)7 (d)(:;:’ %:F»
= 5((,9), (65 Vi N (d5 . ¥5), (63 ¥ ) + (¢, vb), (o . v))-

Denote o = (¢, %), (¢, )). Then by (2) we know that 0 < ¢ < 1. Thus we obtain

al{(®: ), (@5, vo N < (@ vb)llgz + 310, %), (68 ¢ )] (3.27)
Adding equation (3.25) twice gives

(3.26)

al((¢,9), (65, Yo NI+ 1@ ) ey < 510, X), (65, %3)]
+2C1 (16, ) [l + 01l(&, ¥)]Ir2]
< 5H0,%), (65, 0d))]

+2C1 16, X) 12 + 011D, V) g2y x 111 () -
(3.28)
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Since 0 < 1 and

||(¢7¢)HH2(]R)><H1(]R) § ||(¢J_a11/}l)HH2(]R)><H1(]R) + ‘<(¢7w)7 ((Zsf)taq/)(:)t)” (329)
this gives

(o —256C1)| (o, ¢)HH2(R)xH1(R)

IN

(@, 9), (65, ¥ N + 16 ) ey i
—25C1||(¢,T/J)||H2(R)XH1(R) (3'30)
< 510, (68 9N+ 2C 110 X) gz

Hence if we take dg = we obtain the inequality

ot
1. D r@yxrrey < 55 (10,0 lILe + 5148, %), (65 ¥)) (3.31)

for all § € (0,4p), as desired.

Finally we prove part (6). Let M C C satisfy (hM). The invertibility of £ 4+ X for A € M follows
directly from (HP2). Since M is compact and the map

A = ||(£gE + )7 (3.32)
is continuous, we immediately see that there exists C's > 0 such that
+ _
1(£5 +X) (0, Ol azm)y <@ < Csl0001 L2 @) x 2w (3.33)
for all (0,x) € LA(R) x LA(R) and all A € M. m

We now establish some basic facts concerning the operator Aj. In particular, we extend the real-
valued results from [1] to complex-valued functions. We emphasize that the inequalities in Lemma
3.6 in general do not hold for the imaginary parts of these inner products.

Lemma 3.5. (see [1, Lemma 3]) Assume that (Hal) is satisfied. The following three properties
hold.

1. For all ¢ € L*(R) with ¢"" € L*(R) we have lﬁﬂ} |And — ¢"|| . = 0.

2. For all € HY(R) and h > 0 we have (A, ¢') = 0.
3. For all ¢,v € L*(R) and h > 0 we have (And, ) = (¢, Apb) and (Apo, @) < 0.

Lemma 3.6. Assume that (Hal) is satisfied and pick f € HL(R). Then the following properties
hold.

1. For all h > 0 we have Re (—Af, f) > 0.

2. For all h > 0 we have Re (A f, f'y = 0.

3. We have Re (f, f') = 0.

4. For all X € C we have Re (Af, f} =2 (Im A)(Re f,Im f’).

Proof. Write f = ¢ + i) with ¢,9 € H'(R). Lemma 3.5 implies that

Re(~Anf,f) = Re [ (= 2np—idn)(@) (0 - iv)(@)ds
J(=819)(@)6(2) + (~ M) (@) (2)de
(=20, 6) + (~Au, )

0.

(3.34)

Y
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Similarly we have

Re(Anf, f') = (=And,¢) + (=An,¢)

_ (3.35)
For A € C we may compute
Re(Af,f) = Re [ (A(@)+Aiv(@)) (¢/(@) — iv'(x) ) da
= (Re N(0,0) + (m V(. 0) — (m N 6) + Re () o
= 042 (Im N{p,¢') +0
= 2 (Im A)(¢, 7).
Taking A = 1 gives the third property. [

We now set out to prove Proposition 3.4. In Lemmas 3.7 and 3.8 we construct weakly converging
sequences that realize the infima in (3.18)-(3.21). In Lemmas 3.9-3.11 we exploit the structure of our
operators (3.3) and (3.4) to recover bounds on the derivatives of these sequences that are typically
lost when taking weak limits. Recall the constant Co > 0 defined in Lemma 3.1, which does not
depend on § > 0.

Lemma 3.7. Assume that (hFam), (HP1), (HS) and (Hal) are satisfied. Consider the setting of
Proposition 3.4 and fix 0 < § < g. Then there exists a sequence {(hj, ¢;,¥;)}j>0 in (0,1) x H' with
the following properties.

1. We have limj_,o h; =0 and |[(¢j,%;)||gn =1 for all j > 0.
2. The sequence (6;,x;) = sz75(¢j, ;) satisfies
. - = -~
lim;j e |:||(0]'7Xj)||L2 + 5105, x5): (bg o NI| = A (9). (3.37)
3. There exist (¢,1)) € H' and (0,x) € L such that (¢;,1;) — (¢,9) weakly in H' and such
that (05, x;) — (8, x) weakly in L? as j — .
4. We have (6,1;) — (6,) in L (R) x L2, (R) as j — .
5. The pair (¢,) is a weak solution to (Zg +98)(p,¥) = (6, x).
6. We have the bound

H(Qba QzZ])HHQ(R)le(]R) S CQ H(6‘7X)HL2 + %K(Q,X)a (¢5,¢6)>|

3.38
< Coh ' (6). (3:35)

The same statements hold upon replacing Z,t(;, A and Z; by Ly s, A and L, .

Proof. Let 0 < 6 < g be fixed. By definition of K+(5) there exists a sequence {(h;, ¢;,%;)} in
(0,1) x H' such that (1) and (2) hold. Taking a subsequence if necessary, we may assume that there
exist (¢,v) € H" and (0, x) € L? such that (¢;,1;) = (¢,%) in L2 (R) x L? _(R) and weakly in

H' as j — oo and such that (6;,x;) — (6, x) weakly in L. By the weak lower-semicontinuity of the
L2-norm we obtain

10,02 + 2100, %), (5,95 < K (6). (3.39)
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For any pair of test functions ({1, {2) € C(R) x C°(R) we have

(0, X)), (C1.G2)) = (L, 5(ds,105), (C1, G2))
= ((¢5,%5), Ln, (1, C2))-

Since Ty is a bounded function, the limit @, — Wy — 0 in H! implies that also @, — o in L>.
In particular, we can choose h' > 0 and M > 0 in such a way that |4, < M and [ug| < M for
all 0 < h < K. Since g, is Lipschitz continuous on [—M, M], there is a constant K > 0 such that
|gu(z) — gu(y)| < K|z — y| for all z,y € [-M, M]. We obtain

(3.40)

lﬁ% ”gu(ﬂh) *gu(EO)”i? = lﬁ?& f(gu(ﬂ'h) *gu(ﬂo))QdI

lim [ K?(a), —uo)%dx

nlo f2 ~( B 2) (3.41)
iy KZ[|n — ol

0,

IAN - IA

together with

li ~ _ U < I u (U — Gu Uy
i lgu ()¢ = gu(@)Clle < m (16l lgu(@n) = gu (@)l (3.42)
= 0.

Furthermore we know that ¢;, — ¢g as h | 0, which gives

lim [nG; = codill 2 = lim 1245 — cac )
= 0.
Finally, Lemma 3.5 implies
i ARG = ¢l = 0, (3.44)
which means that B B
1£n;,6(C1,C2) = (Lo +0)(CG2)llz = O (3.45)
as j — oo. Sending j — oo in (3.40), this yields

In particular, we see that (¢,) is a weak solution to (Z:{ +8)(¢,9) = (6,%). Since ¢ € H', ¢ € L?
and

" = ¢ — gu(to)d + ¢+, (3.47)

we get ¢" € L? and hence ¢ € H?. Since we already know that ¢ € H', we may apply Lemma 3.1
and (3.39) to obtain

IN

Co[ll(0, )2 + 518, X): (65, o D]
CoR T (6).

100 V)| 2y 11 () (3.48)

N

Recall the constant C's > 0 from Lemma 3.1, which only depends on the choice of the set M C C
that satisfies (hM).

Lemma 3.8. Assume that (HP1),(HP2), (HS) and (Hal) are satisfied. Let M C C satisfy (hM).
There exists a sequence {(\;, h;, ¢j,¢;)} in M x (0,1) x H' with the following properties.
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1. We have lim h; =0, lim X\; = X for some A\ € M and ||(¢j,¢;)| gn =1 for all j.
J]—00 J—00

2. The pair (0;,x;) = ZZJ_’A(@,%) satisfies

+

T (105, )l = A(M). (3.49)
3. There exist (¢,v) € H' and (0,x) € L* such that as j — oo (¢, 05) — (9,9) in LE _(R) x
L} (R) and weakly in H' and such that (6;,x;) — (0, x) weakly in L*.
4. The pair (¢,1) is a weak solution to (ZS_ +A) (o, ) = (6, x).
5. We have the bound
1@ O 2 @ywmr @y < Csll(@ )12 (3.50)
< Gy (M), '

where the constant Cs is defined in Lemma 3.1.
The same statements hold upon replacing Z;(;, X+(M) and Z(—; by Z}:’é', A and L, .

The proof of this result is almost identical to the one of Lemma 3.7 and will be omitted. In our
arguments below, we often consider the sequences {(h;, ¢;,1;)} and {(\;, h;, #;,%,)} defined in Lem-
mas 3.7 and 3.8 in a similar fashion. To streamline our notation, we simply write {(A\;, h;, ¢;,%;)}
for all these sequences, with the understanding that A\; = J when referring to Lemma 3.7.

As argued in the proof of Lemma 3.7, it is possible to choose h > 0 in such a way that

ce = inf 7 |¢n| > 0
' oshsh o ’ (3.51)
9= = SuPoghgﬁngu(uh)”oo <

By taking a subsequence if necessary, we assume from now on that h; < h for all j. It remains to
find a positive lower bound for ||(¢, 1)]|1z.

Lemma 3.9. Assume that (hFam), (HP1), (HS) and (Hal) are satisfied. Consider the setting of
Proposition 3.4 and Lemma 3.7 or Lemma 3.8. Then there exists a constant B > 0, such that for
all j we have the bound

Bll(¢5, )72 = ell(@ )72 — 4165, x)N 72 (3.52)

Proof. We first consider the sequence for A Using sz))\j (¢5,%5) = (05, x;) and Re (Ap, ¢5, ¢) =
0 = Re(¢;, ¢}) = Re (1;,¢}), which follow from Lemma 3.6, we obtain
Re (0, X,): (6. 4)) = Re (L, 2(65.). (¢).4)))
= Re(Cn; @) — An; b5 — gultin,)dj + Ajdj + s, &)
+Re (=poj + cn, W +vptbi + Ny, ¥5)
=, 195172 — Re (gu(@n,) ;. &) + Re (), ¢)) + Re (A, 6})  (3.53)
—pRe (85, 07) + &, 45172 + Re (Ajut5, )
=, (&), ¥5) 2 — Re (gu(n, )65, #5) + (1+ p) {5, 65)
+Re (A (05, 95), (¢, ¥5))-
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We write Apax = dp in the setting of Lemma 3.7 or A\pax = max{|z| : z € M} in the setting of
Lemma 3.8. We write

G = Amaxll(@5, V)2 105, 5)lILe + gxlldsll L2 15, )l Le- (3.54)

Using the Cauchy-Schwartz inequality we now obtain

G = Al (659l 1665 9l + 9w Gin, ) e 5121165 .2
> sign(en,) (= Re (4 (05 ), (65, %))) + Re (gu(iin, )5, 7))
— sign(n,) (en, (65, ¥IT2 + (1 + p) Re (5, 6)) — Re{(8,x:), (&), 0)))  (3:59)
> e 165 UhIEs = (0 + D)y 2l e = 165, e (D) 05) e
> (6 IR = (U o) I3l 2165 9l — 10X el () g

This implies

cll(@5, V)l < gall@illee + (M +p)lljll L2 + 1165, X5) e + Amaxl[ (65, 95 [l 2 (3.56)

Squaring this equation and using the standard inequality 2uw < p? + w?, this implies that

2 2 2
AU ie < 492105052 + 41+ p)2[[yl3- (357
+4]1(05, x5) 152 + 4220 [l (D5, )15

In particular, we see
2 2 2
4((max{g?, (1+ )2} + A @5, 0)IEe - = 165w 172 — 411065, x5 7 (3.58)

We now look at the sequence for A~ . Using L, (67,%;) = (6;,x;) and Re (Ay, ¢, ;) = 0 =
Re(¢;, ¢}) = Re (¢;,9), which follow from Lemma 3, 6, we obtain
Re ((0;,x;), (#),47)) = Re(Ly, 5, (05,%5), (65,95))

= Re(—Cn; ¢} — An; b5 — gu(Un)j + X5 — pij, )
+Re (pj — et +vpj + Njaby, )

= =&, ll6}172 — Re (gu(iin);, 8;) — pRe (1), @) + Re (A5, )
+Re (¢, 45) — én, 451172 + Re (\japy, )

= —én, 1@, )T — Re{guliin) ey, &) + (14 p) (5, })

(3.59)
We write

G = Amaxll(95: 05) L2195 ) lLe + gelldsll L2 (65, 5) [ e (3.60)

Using the Cauchy-Schwartz inequality we now obtain

G = Nmasll @50 L2105 ¥l + g, o 1651115 .
> —sign(en,)( — Re (\(05 15, (65, 9))) + Re (gu (i, )5, 64 )
= —sign(én,) (= on, (65, )12 = (1+ p) Re (05, 6)) — Re ((8;,x:), (&), 0)))  (3:61)
> e, (@) ) IEe — (1 +p>||wj||Lz||¢;-||Lz—||<ej,xj>||L2||< A
> cll(@ )T = (0 p) sl () )le = 185X gl (@) ) e
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This is the same equation that we derived for A" Hence we again obtain

Bll(¢,9) 52 = 1@ )52 — 4105, %) 32 (3.62)

where
B = 4(max{g?, (1+9)?} + o) (3.63)
[ |

Lemma 3.10. Assume that (hFam), (HP1), (HS) and (Hal) are satisfied. Consider the setting of
Proposition 3.4 and Lemma 3.7 or Lemma 3.8. There exist positive constants a and m, depending
only on our choice of (tp, W), such that we have the following inequality for all j

(@+9) fem [95@NPdz > (minfa, £p7}+ dmin ) 185532

B (3.64)
(05, x) 172 — 2BIx;117-

1
" 2min{a,Lpv} I

Here we write Apin = 0 in the setting of Lemma 3.7 or Apmin = min{Re X\ : A € M} in the setting of
Lemma 3.8, together with

_ 1-p 1
/3 o P 4(% %’Yp"l"}’p"!‘)\min) : (3'65)

Proof. Again we first look at the sequence for A", We know that G — g — 0in H' as h | 0.
Hence it follows that @, — Ty — 0 in L and therefore also g, (uy) — gu (o) — 0 in L™ as h | 0.
Thus we can choose m to be a positive constant such that for all h € [0, k] (by making h smaller if

necessary)

min (g, (i (2))] 2 @ = 570 >0, (3.66)

Here rg is the constant appearing in the choice of our function g in (HS). Then we obtain, using
Re (¢}, ¢j) = Re (¢}, 9;) = 0 and Re (—Ap,; ¢;, ;) > 0, which we know from Lemma 3.6, that

Re <( 37X]) (¢]7¢J)> = Re<zzj,)\j(¢jawj)a(¢jawj)>
> Re(—gultn,)¢j, ¢;) + Re (Y, d;)
—pRe (5, 85) +7pll5]1 72 + Aminl| (@5, 95) 1

> min>m{—gu(ln, ()} [ 5, 165 (2)*dz (3.67)
g Mg o 165 () 2 + (1= p) Re (15,6,)
ol 172 + Aminll (85,811
> alljlize = (@t 6) [y 105 (@) Pdz + (1= p) Re (¢, ¢5)
+plls 172 + Aminll (@5, 05) 1
We assumed that 0 < p < 1 so we see that 1_;” < 0. We set
B = =T (3.68)
Now we obtain
Re (x;, ¢5) < ||Xj||L2||¢jHL2
= = MWHRM 22725 310 + 70 + Re A9 500

= Tty X6l + (725370 + 0 + Re Ag) 14117
= 6f||xjHLz + (25370 + 70 + Re X)) |95 72
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Note that the denominator 4(—77,0 + vp + Re )j) is never zero since we can assume that A, is
small enough to have Re \; > /< > —vp. Using the identity

Xi = Py s + N (3.70)

and the fact that Re (¢}, ;) = 0, we also have

Re (xj,¥;) = —pRe(d;,¥5) + (vp + Re A\)||v; 32 (3.71)
Hence we must have that
(L=p)Re(dyuy) = S2(=Re(x;,uy) + (i +Re 3)llY53:)

> 22(= B IxlEe — (225370 + 70+ Re M) sl
+(vp+ Re X413 )

_ 2 2
= —52BIxllze = 3vellvslize-

(3.72)

We now look at the sequence for A . Let m and a be as before. Then we obtain, using Z;j A (pj,%;) =
(0j7Xj>7 Re <¢;,¢]> = Re( ;—,’L/)j> =0 and Re <_Ahj¢j7¢j> > 0 that

Re (( J»XJ) ((15]’@/’]» = Re<zi:j,5(¢j7wj)a(¢j7¢j>>

> Re(—gu(@n)d;, ¢;) — pRe (¥, ;)
+Re (15, 65) +10llv51172 + Aminll (6,8
> ity {=9u (@ (@)} [y5,, 1651°de (3.73)
N gu (@)l e fuj<m 18512dz + (1 = p) (W5, 65)
+10l%5 172 + Aminll (5, 95) |
2
> allgjlze = (a+9:) flp 1< 85172 + (1= p) (15, 65)
2
+10l%511 72 + Aminll (5, 05) |
We set B .
B = 4(15; Fvp+yptRe Aj) (3.74)
Arguing as in (3.69) with slightly different constants, we obtain
Re (x;,1;) > —||XjHL2||1/)jHL2
2
> bl - (b Re vl 67)
= =B lxslZ: — (25370 + 70 + Re M)l 72
Using the identity
Xi = @5 = Cn i+ pdy + Aty (3.76)
and the fact that Re (¢}, ;) = 0, we also have
Re(xjuy) = Regyuy) + (vp+Re X)l[osl 7 (3.77)
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Hence we must have that

(L= p)Re(d; 050 = (1= p)(Re s ) — (o + Re Mgl )

> (1= p)( =B} Iz + (25390 + 70 + Re A7

~(vp -+ Re X)) 172 (378)
= —(1-p)B; IxslI7> — Svellwsliz.
> 228717 = Sl |7

Upon setting

— 1
p = 4725 37p+7P+HAmin) ’ (3.79)

we note that ﬂ;f < fand §; < ffor all j since p < 1 and since ﬂ;‘ is maximal for Re A = Apin.
Therefore, in both cases, we obtain

(04 92) fiajem |65@)Pdz > alldsl3e + prlel7e — Re (05, x7), (65,%))
+(1 = p) Re (105, 65) + Awminl| (85, 95)1?
> allglle + 3ovI05115e — (65, x5): (65, 5)
—L28)1x; 172 + Aminll (65, %) (3.80)
> (minfa, o7} + Amin ) 165,611

S 0 ] 2 i 1 ] ] 2
W”( i X3) |z /min{a, 507}I(¢5,95) L
e g)x;12

and thus, again using the inequality 2uw < p? 4+ w? for p,w € R,

@+ 02) fjem [05@)Pdz > (minfa, Ly} + Awin ) (65, 5) 175
1 (g 1065 ) e + minfa, $o0}1(65.95) 7 )
—Blx;ll
= (minfa, 1pv} + A ) 165, 0) 1

2 - 2
_2min{}1,%p7} ||(0j7Xj)||L2 - LppBHXjHLZa ( |
3.81
as desired. -

Lemma 3.11. Assume that (hFam), (HP1), (HS) and (Hal) are satisfied. Consider the setting of
Proposition 3.4 and Lemma 3.7 or Lemma 3.8. There exist positive constants Cy and C5, depending
only on our choice of (tp,wy), such that for all j we have

(@4 62) [igjem [02(@)lde > Cy = Cs]|(60;,x;)172- (3.82)

Proof. Without loss of generality we assume that % 5 min{a, 2pv} + Amin > 0. Write

uo= 1 min{acééf;}Jr)\min ) (383)
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Adding p times equation (3.52) to equation (3.64) gives

(@4 92) Jjoj<m 165 (@)Pde + Bpll(é5, 6|72 > nell(@, )7z — 3ul 05, %)z
+3 (min{a, 1p7v} + Anin) (85, 95152

2
o 2(min{a,%1p’y}+)\min) H(GJ’ X]) HL2
— 2
—lTpﬁHXjHL?
2 VAP 2
> e l[(@5 ¥i)line = 3ull (05, x5) L.
. 2

+3 (min{a, 307} + Amin) 105, ¥5)[I1.2

V

1 2
~ 2(min{a, 397} +Xmin) 1665, x5z

—L22]1(6;, %)
(3.84)
We hence obtain

(@4 94) fpyem 165 (@)Pde > =C5[1(6;,35) 152 + ne2 (¢}, ¥z
+3(min{a, Loy} + Ain) (65, )52 — Bull (65,95 2,
(3.85)
where .
Cs = 3u+t 2(min{a,3p7}+Amin) +h (3.86)
> 0.
This allows us to compute
(@ + ) floyam 165 (@)Pd = =C51(0;,x7) 112 + ne2 (¢}, ¥))IIE
+1(min{a, 2pv} + Amin) 105, ¥) |52 — Buall (67,95 |lz.2
= —C5[|(0;, x;)1E2 + 12 (& ) I.»
+(u(c2 + B) — Bu)||(6;, ;)32
= uc2( b5, )5 — Csll(05, %)) Iz
= Cy— Cs)|(05,x7) Iz,
(3.87)
where C; = uc? > 0. [

Proof of Proposition 3.4. We first choose 0 < § < dy and consider the setting of Lemma 3.7. Sending
j — o0 in (3.82), Lemma 3.7 implies

Ci= CR7(8) < Ca=Cs lim |0,z
< (04 94) [ioigm 10°de (3.88)
< (at gl O Femym @)
< (a+g)C3R ()
Solving this quadratic inequality, we obtain

_ _ P p

K6 > 205+ e S (3.89)
= &
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The analogous computation in the setting of Lemma 3.8 yields

S —Cs5++/C24+4(a+g.)C3Cy4
A (M) > 2(a+g.)C2 (3.90)
_ 2
Cu’
n

Proof of Proposition 3.2. Let § > 0 be fixed. Since Ki(é) > C%,J, the definition (3.19) implies that
there exists h{(d) such that A(h, ) > C%,] for all h € (0, h((5)]. Now pick h € (0, h(0)].
First of all, Zié is a bounded operator from H' to L2. Since Ki(h, §) is strictly positive, this implies

-+ . . ol —=* .
that £}, 5 is a homeomorphism from H' to its image Ly, s(H'). Furthermore, the norm of the inverse

(i)™ from Ly 5(H') € L? is bounded by — L < G- Since L, 5 is bounded, it follows that

Zitg(Hl) is closed in L2

For the remainder of this proof, we only consider the operators Z;(g, noting that their counter-

parts Z,:’ s can be treated in an identical fashion.

Seeking a contradiction, let us assume that ZZ,(;(HI) # L2, which implies that there exists a
non-zero (6, x) € L? orthogonal to Z:’(g(Hl). For any ¢ € C°(R), we hence obtain

(Lo 5(,0), (6, X))
Ed' — And — gu(@n)d + 60, 0) + (—pd, x) (3.91)
= (¢, 0) + (¢, —Anb — gu(r)0 + 56 — px).

By definition this implies that 6 has a weak derivative and that ¢80’ = —Ay0 — g, (@ )0 + 660 — px €
L?(R). In particular, we see that § € H'(R).

0 =

For any ¢ € C°(R) a similar computation yields

0 = (Cns(0,9),(6,%)
(W, 0) + (e + (vp +0), x) (3.92)
en(y', x) + (0,04 (vp + ) x)-

Again, this means that y has a weak derivative and in fact ¢, x’ = 6 + (vp + §)x. In particular it
follows that x € H'(R).

We therefore conclude that .
0 = <£h,§(¢a¢)7 (07X)>
= ((&,9), (Ly5(0,2))
holds for all (¢,v) € H'. Since H' is dense in L? this implies that L}, 5(0,x) = 0. Since we already

know that £, s is injective, this means that (6, x) = 0, which gives a contradiction. Hence we must
have Z:;(;(Hl) = L2, as desired. ]

(3.93)

Proof of Proposition 3.3. The result follows in the same fashion as outlined in the proof of Proposition
3.2 above. [

24



4 Existence of pulse solutions

In this section we prove our first main result, Theorem 2.1. In particular, we construct solutions to
(2.12) by writing
(Wn,wn) = (Uo,Wo) + (Pn,Yn) (4.1)

and exploiting the linear results of §3. Here (U, W) is the pulse solution of the PDE (1.1).
In particular, fix a small § > 0 that will be determined later, and consider the linear operator
L, H'Y = 12 (4.2)

defined by

d _ —
‘C;l'ﬁ — < i)dz Ah gu(UO) +4d 1 N 5 > . (43)
p cof +p+

This operator arises as the linearisation of (2.1) around the pulse solution (@, @) of (1.1). A short
computation shows that our travelling wave triplet (cp, ¢n,¥n) € R X H' must satisfy

Ly 5(ontn) = Rlcn, dn,¥n), (4.4)
where
Ric,6,) = ((co— ) +6) + (A = )0 + 6 + N (7o, 8), (co — )@ + 1)) (45)
Here we have introduced the nonlinearity
No,¢) = 9@+ ) — g(Uo) — gu(To)¢- (4.6)

Corollary 4.1. There exists a positive constant Cy and a positive function
ho(-) : RT — R such that for all 6 > 0 and all h € (0, ho(5)), the operator EZ,& is a homeomorphism
for which we have the bound

I£R )00 < Coll(9,X)I (4.7)

for all (8,x) € L? that satisfy ((0,x), (65,15 )) = 0.

Proof. This is immediate by choosing (ap, wy) = (T, Wo) and &, = ¢y for all h in (hFam) and
applying Proposition 3.2. ]

Let n be a small positive constant to be determined later. We define

Xy = {(0v) e H [(6,9) g <0} (4.8)

For every (¢,1) € X,), we define ¢, = ¢, (¢,1) to be the constant

_ (AnTo—Ty ,¢g ) +8(¢.¢g )+ (N (To,),q )
(W) = ot T e Y+ s 1+ (0 ) (4.9)

When this expression is well-defined, this choice ensures that

(R(en(6,0),6,0), (65.05)) = 0. (4.10)
We define T': X, C H' — H' by

T(¢,¥) = (Lis) "Rlcn(9:9), 6, 9). (4.11)
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Our goal is to show 7" maps X, into itself and is a contraction, since then the fixed point (¢n,¥n)
leads to a travelling pulse solution of (2.12) via (4.1) and (4.9).

Exploiting (4.10), Corollary 4.1 implies that there exists a constant Cy > 0 such that for all
U = (¢,v) € X,, we have the bound

IT(V)lg: < CollR(ca(¥), ¥)|lyz, (4.12)
while for all ¥y = (¢1,91), Y2 = (¢2,12) € X,, we have the bound
[T(¥1) = T(¥2)[lgr < ColR(en(¥1), ¥1) — Rlcn(¥2), Vo)l (4.13)

In the remainder of this section we therefore set out to estimate the right-hand sides of (4.12)
and (4.13). We start by estimating the nonlinear term N (%, -).

Lemma 4.2. Assume that (HP1), (HS) and (Ha1) are satisfied. Then there exists a constant M > 0
such that for all 0 < n < 1, (¢,¢) € X, (¢1,¢1) € X, and (¢2,12) € X,, we have the pointwise
inequalities

IN (T, 1) — N (o, p2)] < nM|p1 — ¢al.

Proof. To estimate the nonlinear term N (T, ¢), we first recall the embedding [|¢]| ;o < [|@]l 1 <
n <1 for every (¢,1) € X, Setting M = max{6, sup ;< |z, _ |9uu(s)[}, a Taylor expansion around
7o allows us to obtain the pointwise inequalities

(4.14)

W (@, ¢)] = |- gt + ¢)+ g(to) + gu(to)]
= | —g(t) — ¢gu(to) — 30°guu(§) + 9(To) + gu(To)|
= [ = 56%9uu(€)] (4.15)
< 5Mnlgl
< Mnldl,

where ¢ is between 7y and g + ¢. Note that gy, = 6 is constant. Furthermore, for (¢1,91) € X,
and (¢2,%2) € X,,, a Taylor expansion around %y yields the pointwise inequalities

N (@0, 61) = N (@0, 62)| = | = 9(T0 + 61) + g(Ti0) + gu ()61

(0 + 62) — 9(0) — 9u (7o)

< 39w (@)167 — ¢3] + 56[6F — 63
< 519w (T@o)] {|¢1||¢1 — ¢a| + [@2|p1 — ¢2|} + |o1lloF — @3] + |1 — d2l|03]
< %%M[indn - ¢2|} +77{277|¢1 - ¢2|} +1°|p1 — ¢
< nMlp1 — ¢,
(4.16)
where & is between uy and Uy + ¢1 and & is between uy and Uy + ¢o. [

Pick (¢, ) € X,). Recall that we chose (¢ , %, ) so that (¢, , ¢ ), (@), @g)) > 0. Let s be defined
as

s = 2 L > 0. (4.17)

(Do 10 )+ (UWg:Wp)
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For notational compactness, we write

o(¢, ) = (U, dg) + (¢ ¢g) + (W, ¥g ) + (Vs ¢g) (4.18)

for (¢,¢) € X,,. We also write
no = min{l,s"}. (4.19)

Lemma 4.3. Assume that (HP1), (HS) and (Hal) are satisfied. Fix 0 < n < ng. Then for all
U = (¢,9) € X, U1 = (¢1,¢1) € X, and Wy = (¢2,92) € X, we have the bounds

0 < [oc()]! < s, (4.20)

together with
o(W1) —o(W2)] < [[W) — W[ (4.21)

Proof. Using Cauchy-Schwartz, we obtain that
o(d,h) = (o, dg) + (¢, ) + (Wo, g ) + (¥, ¢ )

> 2571+ ((¢,9). (69, %)) (4.22)
> 2s 1 — n
> s
which yields (4.20). In particular we see that
st S s (4.23)
The remaining inequality (4.21) follows immediately from Cauchy-Schwarz. [

Lemma 4.4. Assume that (HP1), (HS) and (Hal) are satisfied. Recall the constant M from Lemma
4.2 and the constant s from (4.17). Then for all0 < n <mny, ¥ € X,,¥; € X,, and ¥y € X, we
have the inequality

en(®) —col < s(llAnTo — Tl = + bn+ Mn?). (4.24)
together with
en(01) = en(2)| < s W1 = ol g (sl|Anio — Tl +2(6 + M)). (4.25)

Proof. By (4.20) we have that [o(¥)]™! < s for all ¥ € X,,. By definition of ¢, (¥) and Lemma
4.2, we obtain for all ¥ = (¢, ¢) € X, that

ApUg—Tg ¢4 )+0(P, 05 )+ (N (Wo,9),6q
len (W) — ¢o| = ’( nTo 0¢0>+0<-?‘I:1;0>+< (0¢)¢o>’

S| (At — T, 65) + 6(6,65) + (N (3o, 6), 65)

(1w = @512 155 [l 2 + Ol ll 2l b =) + sMmllllll 2

s (180 = T 21 @ %)l + 011l L2l (65, 95 ) le) + sl e
s(l1anTo = TGl 2 + 8116l + Ml )

s(I1 A0 = g | 2 + (6 + Ma)n).

IN

IN

’ (4.26)

I IA

IN

For notational compactness we write

d(¥) = (Anto — g, ¢g ) +0(p,¢g ) + (N (T, 9), b5 )- (4.27)
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Then we obtain with (4.20) that for all ¥y = (¢1,¢1) € X,, and Uy = (¢2,12) € X,

d(\pl) _ d(ql2)

o(¥1)  o(¥2)

‘ d(¥1)o(¥2)—d(¥2)o(¥1)
o(V1)o(¥2)

len(U1) —en(P2)| =

(4.28)

—

|d<wz>\\a(%)—o(\h>|+\d<w1>—d<w2>||o(w2)|}
< o (@ o ()]
$2|d(W2)||o(¥2) — o (W1)] + s|d(P1) — d(¥s)].

IA

Observe using Lemma 4.2 that

d(P2)] < [[AnTo —Tgl g2 + 0l P2l 2 + [N (To, $2)]l 2
< Ao — gl g2 + 00+ Mnll2| 12 (4.29)
< |Apuo —ug |2 + 0n + Mn?
and
d(¥1) — d(V2)| < 6lld1 — dall e + [N (To, ¢1) — N(Wo, d2)][ 12
< o1 — dallpe +nM|ld1 — 2l 2 (4.30)

< (6+ Mn)llgr — b2l o

Using Lemma 4.3, we hence see that

len(W1) = cn(V2)]

IN

$2|d(¥2)||o(V2) — o(W1)] + s[d(P1) — d(P2)]

< sl Anio — Tl s + 6+ Mo ) o(W2) = o(W1)
+5(5+ Mn)|jé1 — 2]l 2

< (I AnT0 = Tl + 51+ M) [ 91 = s (4.31)
+s(6 + Mn)|ld1 — 2|2

< sl — Gsllggs (sAuT — T2 + (6 + M) (1+5m))

< 80— Wollggs (sl Atio — W + 25 + M)).

Lemma 4.5. Assume that (HP1), (HS) and (Ha1) are satisfied. Recall the constant M from Lemma
4.2 and the constant s from (4.17). Then for all0 <n <no,¥ € X,,,¥; € X,, and ¥y € X,, we have
the inequality

IR (), ®)lge < [L (1Tl = + Ill = + )| [ 80T0 — Tl e +0m+ Mn?], (4.32)
together with

IR(ch(¥1),¥1) — R(ch(¥2),¥2) |z < W1 — Vol (2 + 2sn + s||agl| 12 + 8H@6||L2)

(4.33)
x (sl Ao — Tl 2 +2(6 + M) ).
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Proof. For any ¥ = (¢,v) € X,, Lemma 4.4 together with the definition of R(c,(¥), V) allows
us to estimate

IRen(0). )z < o = en ()| ([Tll 2 + 116112 ) + | AnTo — TGl = + I -+ Mo?
o = en(@)|(ITbl1 g2 + 1¥/] 2

s (170 = Tl + 6+ M) (gl o + 175 2 + ) (4:34)
1 Ano — T 2 + 6 + Mo

IN

= [t (Il e + Il +n) | (14670 Tl 2 + o+ M?).
For Wy = (¢1,91) € X, and Wy = (¢2,12) € X,, we write
d(W1,W3) = [R(en(1), 1) = R(en(V2), W)z (4.35)

Substituting (4.5), we compute

a1, W) < || (e = en (W) (1 = 6h) + (en(Wr) = en(W2)) (@ — 05)
+0(61 = b2) + (N (0, 62) = N(To,00))||
+|co = en(w2) (W5 = 8) + (en(W1) = en(W2)) @y =) || | (4.36)
< (Ilen(®1) = col + 8+ Mn)lir = dall s + ([T 2 +n) |en (1) = en (W)

+

i = ol + (162 + 1) [en (1) = en(a)|

Ch(\l’l) — Co

Another application of Lemma 4.4 yields the desired bound

d(w1,92) < (s(lanTo e + (5 + M)n) + 6+ Mn) o1 — 6ol
(bl 2 +m)sl 101 = ol (sl| Anio — Tl = +2(5 + M)
5 (180T = Tl = + (6 + M) ) lr = vall
(1wl + ms 10— Wallgg (I1AnTo = Tl = +26(5 + M)
< 01— Wallggs (24 25m + 8T 2 + 5Tl 2 ) (sl AnTo — Tl = +2(6 + M) ).
(4.37)
u

With these estimates in hand, we can choose our parameters § and 7 to ensure that the map T
maps X, into itself and is a contraction. This allows us to prove our first main theorem.

Proof of Theorem 2.1. We let
Co = max {Co(1+ slalls + sllwhll 2 + ), Co (44 slwhl 2 + slwh 2 ) } (4.38)

which is independent of 6, h and 1 € (0,s71]. Using Lemma 4.5 together with (4.12) and (4.13), we
see that for all 0 < n <1y, ¥ = (¢, ¢) € X,,, U1 = (¢1,¢1) € X, and Uy = (¢2,92) € X,, we have

1T < Co(11AkT0 — T 2 + 87+ M?) (4.39)

and
IT(@1) = T(W2)llgs < Co(sAntio — Tl +2(0 + M) ) [ W1 = Wollggs. (4.40)
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We fix

5§ = L
8¢ ) (4.41)
n = min{no, mL

so that indeed 1 < ng. Using the notation from Corollary 4.1, we pick 0 < h, < ho(d) in such a way
that

sWpe(o.n) [AnTo —Tgll 2 < - (4.42)

Then we see for h € (0, h,) that

IT(®)]| 2

IN

Co (|1 AnTo — T + 60 + Mop?)

1 1
CG (% + @77 + Mm?]) (443)
n

IN

IN

and
1T(¥1) = T(¥2)l|g

IN

Cio (sl AnTio — T + 25 + M) ) [ — Wl

IN

Co (55t + 2ty + Mzi) )11 = allgp (4.44)
%H‘Ijl - \I'2||H1~

IN

In particular, 7" maps X, into itself and is a contraction. The local uniqueness of the family
(ch,up,wr,) follows directly from the uniqueness of solutions to fixed point problems. This com-
pletes the proof. [
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5 The point and essential spectrum

In this section we discuss several properties of the operator that arises after linearising the travel-
ling pulse MFDE (2.12) around our wave solution (@p,wp). The main goals are to determine the
Fredholm properties of this operator. In particular we show that both the linearised operator and
its adjoint have Fredholm index 0 and that they both have a one-dimensional kernel. Moreover, we
construct a family of kernel elements of the adjoint operator that converges to (¢ , %, ), the kernel
element of the operator L .

Pick 0 < h < min{h,, h}, where h, is given in Theorem 2.1 and h is characterized by (3.51). We
recall the operator Ly : H' — L2, introduced in §2, which acts as

Lh — ( ch% - Ah - gu(ﬂh) 1 ) . (51)
—p Chigs + 1P

In addition, we write Lj : H' — L? for the formal adjoint of Ly, which is given by

d —
. —Chgy — An— gu(@n) —p
L, = < o i ) (5.2)

We emphasize that Lj; and Lj correspond to the operators Z:,o and Z;,o defined in §3 respectively
upon writing

(Un, @n) = (Un,Wh),
- (5.3)
Ch = ¢n
for the family featuring in (hFam). Finally, we introduce the notation
Oy = (dn, )
1 = =/
T w7 Tz (2 ) (5.4)
Of = (&d,%)
oy = (¢0:%0)

The results of this section should be seen as a bridge between the singular perturbation theory
developed in §3 and the spectral analysis preformed in §6. Indeed, one might be tempted to think
that most of the work required for the spectral analysis of the operator L, can already be found
in Proposition 3.2 and Proposition 3.3. However, the problem is that we have no control over the

d-dependance of the interval (0,h((d)), which contains all values of h for which Ly + § = ZZ’(; is

invertible. In particular, for fixed h > 0 we cannot directly conclude that Z,té is invertible for all §
in a subset of the positive real axis.

Our main task in this section is therefore to remove the J-dependence and study L, and Lj
directly. The main conclusions are summarized in the results below.

Proposition 5.1. Assume that (HP1), (HS), (Hal) and (Ho?2) are satisfied. Then there erists a
constant X > 0 such that for all A € C with Re A > —\ and all 0 < h < min{h.,h} the operator
Ly, + X is Fredholm with indez 0.

Proposition 5.2. Assume that (HP1), (HS), (Hal) and (Ha?2) are satisfied. Then there exists a
constant hy, > 0, together with a family ®, = (¢, ,7, ) € H', defined for 0 < h < h,, such that
the following properties hold.
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1. For each 0 < h < hyy we have the identities

ker(L,) = span{®;} 55)
= {WeL?:(V,0)=0 for all © € Range(L})}
and
ker(Ly) = span{®,} (5:6)

= {UeL?:(V,0)=0 for all © € Range(Ly)}.

2. The family ®, converges to ®5 in H' ash 0.

3. The functions @Z and ®, together with their derivatives decay exponentially for each 0 < h <
P -

4. Upon introducing the spaces
X, = {6cH:(,,0)=0} (5.7)

and
Y, = {©@€L’:(®,,0)=0} (5.8)

the operator Ly : Xy — Yy is invertible and there exists a constant Cynie > 0 such that for
each 0 < h < h.x we have the uniform bound

HL}:IHB(Y;Z,X,L) < Cunit- (5.9)

A direct consequence of these results is that the zero eigenvalue of Lj is simple. In addition,
these results allow us to construct a quasi-inverse for L;, that we use heavily in §6 and §7.

Corollary 5.3. Assume that (HP1), (HS), (Hal) and (Ha2) are satisfied. Then for any 0 < h < R
the zero eigenvalue of Ly is simple.

Proof. We can assume that <<I>,:,<I>Z> # 0 for all 0 < h < hs, since by Proposition 5.2
(@, ,®) — (®;,®F) # 0. Equation (5.6) now implies that ®; ¢ Range(Ly), which together
with (5.5) completes the proof. L]
Corollary 5.4. Assume that (HP1), (HS), (Hal) and (Ha2) are satisfied. There exist linear maps

v o L? - R

. (5.10)
L. r* — H,
such that for all © € L? and each 0 < h < hy, the pair
(1, ¥) = (m6,L}™e) (5-11)
is the unique solution to the problem
L,y = ©+~®) (5.12)
that satisfies the normalisation condition
(®,,¥) = 0. (5.13)
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Proof. Fix 0 < h < h,, and © € L% Upon defining
_ _(2,.©)
me] = -~ (514)
we see that © + 3, [@]@Z € Y},. In particular, Proposition 5.2 implies that the problem
Lo = ©+,[0)0F (5.15)

has a unique solution ¥ € X, which we refer to as L?Linv@. n

The results in [3, 39] allow us to read off the Fredholm properties of L, from the behaviour of
this operator in the limits £ — *o00. In particular, we let Lj, o, be the operator defined by

d . —
Lne = ( Chigy — An —ggrﬁgogu(uh(f)) 1 ) )
—p Chgg TP (5.16)
_ ( Ch%—Ah—gu(O) 1 )
—p Chigy + P
This system has constant coefficients. For A € C we introduce the notation
Lh,oo;/\ = Lh,oo + A (517)

We show that for A in a suitable right half-plane the operator Lj . is hyperbolic in the sense of
[3], i.e. we write

ALh,oc;)\ (Z) = |:Lh,oo;>\ezé:| (O)
Chz — %[ > ag (ekhz + e~khz 2)} —gu(0)+ X 1 (5.18)
= k>0
—-P chz+yp+ A

and show that det(Ap, _,(iy)) # 0 for all y € R. In the terminology of [3, 39], this means that
Ly, 4+ X is asymptotically hyperbolic. This allows us to compute the Fredholm index of Ly + A.

Remark 5.5. From this section onward we assume that (Ha2) is satisfied. This is done for technical
reasons, allowing us to apply the results from [3]. In particular, this condition implies that the
function A, _ ,(2) defined in (5.18) is well-defined in a vertical strip |Re (2)| < v .

Lemma 5.6. Assume that (HP1), (HS), (Hal) and (Ha?2) are satisfied. There evists a constant
A > 0 such that for all 0 < h < min{h.,h} and all A € C with Re A > —X the operator Ly, co.x s
hyperbolic and thus the operator L + X\ is asymptotically hyperbolic.

Proof. Remembering that —g,,(0) = 1o > 0 and picking y € R, we compute

cpiy + %[ > ak<2 - 2cos(khy))] +ro+A 1

Ap, o liy) = k>0
—p criy +yp (5.19)
B ( cniy + = A(hy) +ro+ X 1 >
S\ chiy +yp+A )7

where A(hy) > 0 is defined in (Hal). We hence see

det(Ap, _, (iy) = (chiy + L A(hy) + 7o+ A) (chiy o+ A) +p. (5.20)

33



Let A = 1 min{yp, 7o} and assume that Re A > —X If y # =12 then we obtain

Ch

Im (de‘c(ALhm;A (zy))) = (cpy +Im A)(vp+ Re A) + (75 A(hy) + o + Re A)(cpy +Im )
= (chy+Im A)(yp+ = A(hy) + 70 +2Re )
£ 0,
(5.21)
since vp + 75 A(hy) + ro + Re A > 0. For y = —% we obtain
Re (det(ALhmM(y))) = (%A(hy) + 70 + Re )\) (vp + Re )\) +p
> p (5.22)
> 0.
In particular, we see that det(Agr, _ , (iy)) # 0 for all y € R, as desired. n

Before we consider the Fredholm properties of L + A\, we establish a technical estimate for the
function AL;L,OO;,M which we need in §7 later on.

Lemma 5.7. Assume that (HP1), (HS), (Hal) and (Ha2) are satisfied. Fiz 0 < h < min{h,,h}
and S C C compact in such a way that Re A > —X for all X € S. Then there exist constants k > 0
and T > 0, possibly depending on h and S, such that for all z = x + iy € C with |z| < k and all
A € S we have the bound

[det(AL, o\ ()] = T (5.23)

Proof. Using assumption (Ha2) we can pick k; > 0 and I'; > 0 in such a way that the bound

1L A(he)| = %{k§0ak(276kh276*khz)”
< Ay |ak|(ehk|’”‘—|—3) (5.24)

k>0
< Iy

holds for all z = z + iy € C with |z| < k1.
Observe that for z =z 41y € C and A € S we have

Re (det(ALhm;A (z))) = (chx + 7= Re A(hz) + 19+ Re /\) (chx +7vp+ Re )\)

(5.25)
—(cny +1Tm A)? — (cpy + Im A) 75 (Im A(y)) + p.

Since S is compact we can find ¥ > 0 such that for all z = 2 + iy € C with |y| > Y and |z| < k;
and all A € S we have

%

1.2,2
26y

1 .2v2
Z ichY .

] Re (det(ALh,m;A(Z)))’ (5.26)

Seeking a contradiction, let us assume that for each 0 < k < k1 and each I' > 0 there exist A € .S
and z = z + iy € C with |z| < k and |y| <Y for which

|det(Az, .. (2)] < (5.27)

==

Then we can construct a sequence {ky, zn, A } with 0 < k,, < k1 for each n, K, = 0, A, € S for each
n and z, = ¥, + iy, € C with |z,| < &, and |y,| <Y in such a way that |det(Ag, _, (zn))] <+
for each n. By taking a subsequence if necessary we see that A\, — A for some A € S and z, — iy
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for some y € R with [y| < Y. Since det(Apr, ., (2)) is continuous as a function of A and z it follows
that

det(ALh,oc;/\ (Zy» = nh—>120 det(ALh,oo;)\"(Zn)) (528)
which contradicts Lemma 5.6. Hence we can find x > 0 and I" > 0 as desired. [ ]

Proof of Proposition 5.1. We have already seen in Lemma 5.6 that Lj,+ )\ is asymptotically hyperbolic
in the sense of [3]. Now according to [3, Theorem 1.4], which is a variation of [37, Theorem 2|, we
obtain that Lj + X is a Fredholm operator and that the following identities hold

dim (ker(Lh + )\)) — codim (Range(L;; + X)),
codim (Range(Lh + /\)> = dim (ker(LZ + X)), (5.29)
ind(Ly, + \) = —ind(L} + \),
where
ind(Lp, +A) = dim (ker(Lh + )\)) — codim (Range(Lh + )\)) (5.30)

is the Fredholm index of Lj, + .
We follow the proof of [32, Theorem B]. For 0 < 9 < 1, we let the operator LY(h) be defined by
LP(h) = (1—=9)(Ln+ A +9(Lnco+ A). (5.31)
Note that the operator L”(h) is asymptotically hyperbolic for each 9 and thus [3, Theorem 1.4]

implies that these operators LY(h) are Fredholm. Moreover, the family LY(h) varies continuously
with ¢ in B(H', L?), which means the Fredholm index is constant. In particular, we see that

ind(L, + ) = ind(Lh’oo + )\)
(5.32)
= 0’
where the last equality follows from [3, Theorem 1.4]. n

We can now concentrate on the kernel of Lj,. The goal is to develop a Liapunov-Schmidt argument
to exclude kernel elements other than @Z. In order to accomplish this, we construct a quasi-inverse
for Lj, by mimicking the approach of [23, Proposition 3.2]. As a preparation, we obtain the following
technical result.

Lemma 5.8. Assume that (HP1), (HS) and (Ha1) are satisfied. Recall the constant oy from Lemma
3.1. Let 0 < A < min{%,80} be given. Then there exists constant 0 < h} < min{h,,h} and £ > 0

such that for all 0 < h < h] we have
(g, (L +X)~Lof) A Heg, @)
-

Ly (5.33)

S NI~ N

>
>
>

Proof. We know from Lemma 3.1 that (&5, ®¢) > 0. Since @Z converges to ®F in L2, it follows
that (@, , @) converges to (®,,®F) > 0. Fix h} < min{h., h, hj(\)} in such a way that

- dF
of — @ flp. < 4{Getw) (5.34)
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holds for all 0 < h < h}, where
Ounif = 40(/) (535)

and C} is defined in Proposition 3.2. The factor 4 in the definition is for technical reasons in a later
proof. We assume from now on that 0 < h < hj. Using Lh<I>2' = 0 we readily see

(Lp +N)71ef = A1), (5.36)
Recall that ||®g || 2 = 1. Since 1 < A™!, we may use Proposition 5.2 to obtain

I+ ) Hef = ARl = [[(Ln+ ) HEG — @] e

IA

Con 197 = 8 gz + A7 (@] - 08,00
< CumeA 1|25 = @ flga (1+ 195 )

QCunif)\_l ||(I)ar — ‘I);{HLQ.

Remembering (@, ,(I> ) > 0 and using Cauchy-Schwarz, we see that

J(Ln+N)7Teg) AT = Ly +X)"'05 — At

=

<I> _
< Bl oG9 - @l

o,
|<<<I> <I>+>

(5.38)
20 )\ 11 <I>0 7<DI>
(@ @* unif A3 "2 Chnir

_  1h-1
= L

Hence we must have
(®g, (Lp +AN)710f) > A1y, @) > 0. (5.39)

Lemma 5.9. Assume that (HP1), (HS) and (Hal) are satisfied. There exists 0 < hy. < min{h.,h}
together with linear maps
2 - R

- (5.40)
AR S - )
defined for all 0 < h < hy., such that for all © € L* the pair
(v¥) = (3fe.Li™e) (5.41)
is the unique solution to the problem
LyV = O+4®; (5.42)
that satisfies the normalisation condition
(®y,¥) = 0. (5.43)

In addition, there exists C > 0 such that for all 0 < h < hy, and all © € L? we have the bound

eI+ 1Ly Ollm < CllOllg. (5.44)
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Proof. Fix 0 < A < min{%,d0} and let 0 < h < min{h., h, h{j(A)} be given, where h()) is defined
in Proposition 3.2. We define the set

zZ' = {VecH: (d;,T)=0}. (5.45)
Pick © € L% We look for a solution (7, ¥) € R x Z' of the problem
U = (Lp+A)7O +~dF + V. (5.46)

By Lemma 5.8 we have (®;, (L, + A\)~'®1) # 0. Hence for given © € L%, U € Z', h, A\, we may

write

(@, (LrtN)TH(O+AD))
Y(¥,0,h, ) = e (5.47)

which is the unique value for « for which
(Ln + )70 +v@f +A¥] € Z%. (5.48)

Recall the constant Cypnis from (5.35). With Proposition 3.2 we obtain

(@5 (Ln+ 07O+ AD)| < [07 2 Cni [0 + ATz + %10 + A, 25|
< 195 g Canie [(1+ )OIz + A llgs (5.49)
<

LAl + AW e

for some C; that is independent of h, A\. Here we used that A < 1 and thus 1 + % < % Exploiting
A< % and applying Lemma 5.8, we see that

_ - -1 1
|’Y(\Ijv®a h7>‘)| - |<q)0 7(Lh+>‘) (@+A\II)>||(‘I>;,(L;L+)\)—1¢>U+>|

< Al + MYl | = (5.50)
\ 5.50

< 01[||@||L2+m2||\I'IIL2]

<

ACT TSI ME

Here we used that (9, @) converges to (®,, ®F) > 0, which means that (®;, ®,) can be bounded
away from zero. For ¥ € Z! we write

t¥) = O+~(V,0,h NP + AU (5.51)

and
T(V) = (Lp+\)"H(W). (5.52)

For U € Z' Proposition 3.2 implies

IT@) e < Cunit [0 +7(¥, 0,5, NPT + AWl
+1(O + (¥, 0, h, \)BF + AT, &7)|

C3[11O1lgs + AW 2]

Ca[ 11012 + M¥ gz .

(5.53)

IN

N
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since ||®;7]|.2 can be uniformly bounded by a constant for 0 < h < h,. For ¥y, ¥, € Z!, a second
application of Proposition 3.2 yields

"V(\Ijla @7 hv )\) - 7(\1}27 97 h? )‘)|

‘ (D5 (Ln+2) " (AT —AT,)) ’
(@ (Lr+A)~107)

IN

ey Canir M1 — Wl + 1100 — A2, 05)]|
< 04/\[/\ Wy — Wl +0}
< O 0y — Uo g1

(5.54)
Applying Proposition 3.2 for the final time, we see

IT() = T(@2)llg < Cume [[11(21) = £(T2) g + 11((T1) = 1(T2), 05)]]
< umf[nt( 1) = H(W2) e
+ (7 (W1, 0, B, ) — (W2, 0, h, )BT + \(Ty, ), q>0—>}
< Cunie [[11) = H(¥2) |2 + § (CaA? |91 = Vsl +0)]
< CunitCaN? || V1 — Ualgg1 + Canit A W1 — Wallgpn + Ca [ P01 — U lgp
< CsA[¥1 — Vol

(5.55)
In view of these bounds, we pick A to be small enough to have C3\ < % and Cs\ < % In addition,
we write h., = min{hj, h{(\)} and pick 0 < h < hu. Then T : Z' — Z! is a contraction, so the
fixed point theorem implies that there is a unique L{™ (6) € Z' for which

L9™(©) = (Ly+ M) [@ + (LI (0),0,h, ) BF + ALI™(0)]. (5.56)

Furthermore, we have

IO < (1= AC)ILE™ () g
< C327HO]|p2 (5.57)
S C4H®HL2.

Writing 7,7 (©) = V(f/zinv(@), ©,h,\), we compute

T O] < CalllOllgz + AA7H[O]|g:]

(5.58)
< Cs]|O]|g:-

Finally we see that (5.46) is in fact equivalent to (5.42)-(5.43), so in fact L{™ (©) and ;' (©) do not
depend on A. =

With this quasi-inverse in hand we are able to characterize the kernel of L. Indeed, Lemma 5.9
allows us to generalize the Liapunov-Schmidt argument developed in [22] to our current singularly
perturbed setting.

Lemma 5.10. Assume that (HP1), (HS), (Hal) and (Ha?2) are satisfied. Let 0 < h < hyy be given.
Then we have the inclusion

span{®,} C ker(Ly)

) (5.59)
= {¥eL :(V,0)=0 for all © € Range(L})},

where Ly is the formal adjoint of Ly,.
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Proof. By differentiating the differential equation (2.12) we see that th): = 0. We know that
(@, W) — (o, Wo) — 0 € H'. Since (W), W,) decays exponentially, we get (7, w)) € L?. Hence we
can assume that h,, is small enough such that @Z e L? for all 0 < h < h,,. Since Lh@; =0 we
obtain from the differential equation that also (@) € L2. In particular, we see that P € H' and
hence ®; € ker(Ly,). L]

Lemma 5.11. Assume that (HP1), (HS), (Hal) and (Ha2) are satisfied. Let 0 < h < hy. be given.

Then we have
ker(L,) = span{®;}

= {VeL?:(¥,0)=0 for all © € Range(L})},

where L} is the formal adjoint of Ly,.

(5.60)

Proof. We show that dim(ker(Ly)) = 1. We follow the steps on page 11 and Proposition 3.3 of
[22]. For notational consistency we write

Ly = LF
Ly = £, (5.61)
where the operators L(jf were defined in §3. We introduce the shorhand
R = Range(Ly), (5.62)
together with
K = ker(Lg)
(5.63)
= span{®]}.
Moreover we define
Ke = {TecH :(V,;)=0} (5.64)
and
R. = span{®]}. (5.65)

From Lemma 3.1 it follows that we can decompose H' and L2 as H' = K@ K. and L’=R® R.
respectively.

Fix 0 < h < hy.. For B € {K,K.,R,R.} let 7 denote the projection from H' or L? onto B,
corresponding to the above decompositions. We first show that

ﬂ'RLh:/CC - R (5.66)

is invertible.

Consider any ¥ € K. for which mg Lp ¥ = 0. This mean that L,V € R, and hence L,V = ,u@ér
for some p € R. Since ¥ € K. we must have (¥, ®;) = 0. Lemma 5.9 now implies

poo= 7ol
= O7
. (5.67)
U= Ly™[0]
— O7

by linearity of fy;f and ffginv. In particular, we must have ¥ = 0, which means that mg L, is injective.
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Pick © € R. Lemma 5.9 implies that we can choose ¥ € K, and v € R for which
Ly¥ = ©++9]. (5.68)
Since v®4 € R. we have 7 (y®d) = 0. This allows us to compute
mR[Ly¥] = wR[Lp¥ — 7]
= 7wr[0] (5.69)
- o,

since © € R. Hence mr Lj, is also surjective and hence invertible as a map from K. to R.

We now consider the map
wh): K — K,

(5.70)
B — —[ﬂ'RLh]_l’ITRLhB.

We claim that looking for a solution ¥ of L, ¥ = © is equivalent to finding a solution B € K of the
problem

7R, Ln(B + u(h)B) R, O — R, Lp[rr Ly 7R O. (5.71)
Indeed, let B € K be a solution of (5.71) and write
U = [rrLy 'mr© + B+ u(h)B. (5.72)
By substitution it is clear that
TR Ly Y = 7R Ly[trLp]"'TRO + 7R Lp(B + pu(h)B) (5.73)
= 7Rr,0.
Furthermore we see that
RV = 7wrLplrrLy) 'nr® + mr Ly B + nr Lyu(h)B
= RO +7mRLyB — nrLy[rr Ly 'rr Ly B (5.74)
= 7RO

by our choice of u(h), which gives L, ¥ = O. Clearly each different choice of B gives a different
choice of W.
Conversely, let U be a solution of L,V = ©. Writing B = mc¥ € K, we compute
B+ H,(h)B = 7wV - [ﬂ'RLh]_lﬂ'RLh[ﬂ']c\I/]
= 7wV - [ﬂ'RLh]_l’ﬂ'R@ + [WRLh]_lﬂ'RLh[’iT]CC\I/]

(5.75)
= mV¥— [TFRL}L]ilTl"R@ + W}CC\I/

x — [rrLy) 17RO,
which shows that B satisfies (5.71). Finally, upon defining
v = [WRLh]ilﬂR@ + B + ,u(h)B, (576)

we see that

K
|

(7R Lp])"'7r© + B + pu(h)B
= [ﬂ'RLh]_lﬂ'R@-i-\If — [ﬂ'RLh]_lﬂ'R@ (577)
= v
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In particular, there is a bijection between the set of solutions ¥ of L,¥ = © and the solutions of
equation (5.71) and this bijection is linear if © = 0. From this we can derive

dim(ker(Ly)) = dim (ker(ﬂ'RC [La](I + u(h))))

dim(K) — dim (Range(ﬂnc [Lp](I + u(h))))
dim(K)

1.

(5.78)

IN

Since we already know that ®; € ker(Lj), we must have dim (ker(Ly)) = 1, which completes the
proof. [

The remaining major goal of this section is to find a family of elements ®, € ker(Lj) which
satisfies ®; — ®; as h | 0. To establish this, we repeat part of the process above for the adjoint
operator L} . The key difference is that we must construct the family ®,” by hand. This requires a
significant refinement of the Liapunov-Schmidt argument used above to characterize ker(L; ). First
we need a technical result, similar to Lemma 5.8.

Lemma 5.12. Assume that (HP1), (HS) and (Hol) are satisfied. Fiz 0 < A < 3 and 0 < h <
min{/ .., hy(\)}, where hy(\) is defined in Proposition 3.2. Then we have

(@F, (Lp +N)1oy) > (Zia) -1 (5.79)

Proof. Lemma 3.1 implies that (®, ®;) > 0. Remembering that

d @
S ( 0 (co—cn) s (580)
and that L{®, = 0, we obtain
L+ N[E 40700 (o0 | = @ — g+ (LG - LT+ ey

= (L - LA 8,
Recall the constant Cyyi¢ from (5.35). Proposition 3.2 yields

I(L; +0) 7 ey — (L5 + ) g [l < Cunif[ll(L}'l — LA ® [le + (L), — LEA' Dy, @g))|
< Camit(L+ XY (L) — LA DG ||z

Using Lemma 3.5 and the fact that ¢;, converges to ¢y, it follows that (52
Canit(L+ XYLy = LA 1Oy ||z — O (5.83)
as h | 0. Possibly after decreasing h., > 0, we hence see that
(@0, (Ly +N)710g) = (g, (L5 +A) 1 0g) + (27, (L +A) 105 — (Li +A) ' Dp)
= MNP, Pg) + (g, (Lh + X)) @p — (L5 +A) "' D) (5.84)
holds for all 0 < h < h. u
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Lemma 5.13. Assume that (HP1), (HS), (Hal) and (Ha2) are satisfied. Fiz 0 < h < ha.. There
exist linear maps

?}? . o R (5.85)
Ly . 1* —» H'
such that for all © € L? the pair
(v¥) = (3,0.L;"6) (5.86)
is the unique solution to the problem
L;v = 04+, (5.87)
that satisfies the normalisation condition
(@, ¥) = 0. (5.88)

Furthermore, there exists C* > 0, such that for all 0 < h < h., and all © € L? we have the bound
A0+ 1™ 0, < Ol (5.89)
Proof. We define the set
zZ' = {VecH:(®],T) =0} (5.90)
Pick © € L% We look for a solution (7, ¥) € R x Z' of the problem
U = (L} +XN)7HO +9®, + AV (5.91)
Lemma 5.12 implies that (&, (L + \)~'®;) # 0. Hence for given © € L%, ¥ € Z' h, \, we may

write

_ (@ (LN " HO+AD))
7(\1”(97]7" )‘) - - ?‘bg’?L:+)‘)_l‘I’o_> 5 (592)

which is the unique value for + for which
(L; + A)7HO + @5 + 2] € ZL. (5.93)
From now on the proof is identical to that of Lemma 5.9, so we omit it. [

Lemma 5.14. Assume that (HP1), (HS), (Hal) and (Ha?2) are satisfied. For each 0 < h < hy
there exists an element ®, € ker(L;) such that the family ®, converges to ®y in H' ash | 0.

Proof. We repeat some of the steps of the proof of Lemma 5.11, but now for Lj.

Fix 0 < h < hyy. We let

R* = Range(L{) (5.94)
and we let
K* = ker(L§)
(5.95)
= span{®, }.
Moreover we define
K: = {TecH': (Vo)) =0} (5.96)
and
R; = span{®;}. (5.97)
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From Lemma 3.1 it follows that we can decompose H* and L? as H' = K* ® K and L? = R* @ R}
respectively.

For S € {K*,K}, R*,R:} let mg denote the projection from H' or L? onto S, corresponding to
the above decompositions. Following the same steps as in the proof of Lemma 5.11 we obtain that

mReLiKE - R (5.98)

is invertible and that _
[WR*LZ]_I = L,*L’qmv. (5.99)

We now write

w*(h) : K* — KZ,

B +— —[rg-L}] ‘ng-L;B. (5:100)
Lemma 5.11 together with (5.29) and (5.30) implies that
dim (ker(L;;)) - L (5.101)
Arguing as before, we see that
1 = dim (ker(LZ))
— dim (ker (mz (L] + ,u*(h))))
= dim <IC*) — dim (Range (7‘(’72: (L3]I + p* (h)))) (5.102)
< dim (IC*)
= 1
In particular, wr-[L}](I + #*(h)) must be the zero map on K*. Upon defining
oy = By + pr(h)By, (5.103)
we hence see that ®, € ker(L;). In addition, Lemma 5.11 implies that
12 =gl = [lu*(W)Pg [l
= |llmr~Li] " e L @ |l (5.104)

1Ly e Ly @ g

C*lmr- L3, ®q ||z

IN

The final term goes to 0 as h | 0, since we know that L; ¥ — LiW whenever ¥ € H?(R) x H'(R).
So we obtain that ®, — @, strongly in H' as h | 0. [

In the final part of this section we establish items (3) and (4) of Proposition 5.2. To this end, we
recall the spaces

X, = {0cH':(d,,0)=0} (5.105)

and
V, = {0cl?®:(®,,0) =0}, (5.106)

together with the constant C\ypir from (5.35).
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Lemma 5.15. Assume that (HP1), (HS), (Hal) and (Ha2) are satisfied. For each 0 < h < hy, we
have that Ly, : Xy — Yy, is invertible and we have the uniform bound

15l < Cani- (5.107)

Proof. Fix 0 < h < hyy. Clearly Ly, : X;, — Y}, is a bounded bijective linear map, so the Ba-
nach isomorphism theorem implies that L;l : Y, — X, is bounded. Now let § > 0 be a small
constant such that 6Cyunis < 1. Without loss of generality we assume that 0 < h,. < h((d) and that
[|®, — @y || <0 forall 0 < h < hy,. This is possible by Lemma 5.14.

Pick any ¥ € X},. Remembering that (¥, ®,") =0 and (L, ¥, ®,") = 0, we obtain the estimate
(L +0)T @) = FH(Ln+0)0, 5 — ;)|

SII(Lp + 6)¥| 26 (5.108)

1Ln Wl + 0[]l g

IN

IA

Applying Proposition 3.2, we hence see

1Pl < 5Cuniell(Ln + )Tz + 51{(Ln + 8)T, g )]
< LCol2 s + 2] ] (5.109)
< 30t La¥lpe + ¥/ g -
We therefore get the bound
[Pl < Cunitl| Loz, (5.110)
which yields the desired estimate HL;IH < Clunit- n

Lemma 5.16. Fiz 0 < h < h... Then there exist constants K1 > 0,Ks > 0,8 > 0 cmdﬂ~ > 0,
possibly depending on h, such that

275 (9)]
B, (6)] < Koe PlEl|@r |,

Kie PElof .,

IN

(5.111)

A

for all € € R.

Proof. Recall from Lemma 5.6 that L, is asymptotically hyperbolic. Hence we obtain from [3,
Lemma 4.3] that there are constants § > 0 and K; > 0 for which

W) < Kie PR+ Ky [7 e Pleliom)|dn (5.112)
holds for each ¥ € H!, where ©® = L, V. Since L;ﬁbﬁ = 0 we conclude that
@5 < Kie PlElaf | (5.113)

for all . As stated on [3, Page 33] the operator L} is also asymptotically hyperbolic. Hence there
are > 0 and K5 > 0 for which

W) < Ko PENW||__ + Ky [*_ e BlE=nl|0(n)|dn (5.114)

holds for each ¥ € H', where © = L;W. Since L} ®,” = 0 we obtain that
|®5(&)] < Koe A7) (5.115)

for all &. [
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Lemma 5.17. Assume that (HP1),(HP2), (HS), (Hal) and (Ha?2) are satisfied. Then there exist

constants K3 > 0 and 8 > 0, possibly depending on h, such that
(@) < Kse Pl

for all € € R.

Proof. Lemma 5.16 implies that

|ARdl(€)] < %fﬁ ST Jag|(e PIETREl 4 o=BIE=RE] 1 9o=BIE])
k>0
< Kie PPl 3 Jon|(2¢7M + 2)),

k>0

where the last sum converges by (Ha2), possibly after decreasing 8 > 0. Using the fact that

((I)Jr)/ - 1 ( Ah(ﬁz +gu(ﬂh)¢; - ¢}T >
h o\ pdl — pyoy

we hence see that there exists a constant K3 > 0 such that

I(@7)(6)] < Kse Pl

The proof for the bound on (®, )" is identical.

(5.116)

(5.117)

(5.118)

(5.119)

Proof of Proposition 5.2. This result follows directly from Lemmas 5.11, 5.14, 5.15, 5.16 and 5.17. m.
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6 The resolvent set

In this section we prove Theorem 2.2 by explicitly determining the spectrum of the operator —Lj
defined in (2.18). Our approach hinges on the periodicity of this spectrum, which we describe in our
first result.

Lemma 6.1. Assume that (HP1), (HS), (Hal) and (Ha2) are satisfied. Fiz 0 < h < hy. Then the
spectrum of Ly, is invariant under the operation A — X + 2m’ch%.

In particular, we can restrict our attention to values with imaginary part in between —™7* and
. We divide our ’half-strip’ into four regions and in each region we calculate the spectrum. Values
close to 0 (region R;) will be treated in Proposition 6.2; values with a large real part (region R3) in
Proposition 6.3 and values with a large imaginary part (region R3) in Proposition 6.6. In Corollary
6.7 we discuss the remaining intermediate subset (region Ry), which is compact and independent of

h. The regions are illustrated in Figure 1 below.

Im A\

len]
h
Rs R

A2

—A3 i ﬁ\/\o A1
J Re A

—Xo

/

Rs3

Figure 1: Illustration of the regions Ri, Ry, R and R4. Note that the regions Rs and R3 grow when
h decreases, while the regions R; and Ry are independent of h.

From this section onward we need to assume that (HP2) is satisfied. Indeed, this allows us to lift
the invertibility of Ly + A to Ly + A simultaneously for all A in appropriate compact sets.
Proof of Lemma 6.1. Fix k € Z and write p = 27m'k%. We define the exponential shift operator e,

by
e V](z) = e**V(x). (6.1)
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For any A\ € C, ¥ = (¢,7) € H' and 2 € R we obtain

(e—pAnep)o(z) = e P*Ap(epo)(x)
= 53 a(ed(x +1h) + e Pg(x — Ih) — 2¢(x))

1>0 (6.2)
= 2 lX%) ay(¢(z +1h) + ¢p(x — lh) — 2¢(x))
>
= Ah(b(x)a
since plh € 2miZ for all [ > 0. In particular, we can compute
le—p(Ln = Nep¥](z) = e P*[(Ln — N)ep¥(x)
- *pw( Ch%@pw(b(x)) - Ah(ep¢>($> )
—peP” + e g (P ()
pempe(| ZOMIIEO() 4 P (a) A o(x)
pErT () — Aerip(x)

6.3
_ ( pend(z) + cnd’' (v) — gu(Un)p(x) + () ) 03
—pd(z) + peptp(z) + epd’ (z) + v (x) — M) ()

(oot =200 )

= (Ln = A+ pep)¥().

Since e, and e_,, are invertible operators on H' and L? respectively, we know that the spectrum of
Ly, equals that of e_, Lpe, and thus that of Ly, + pcy,. n

Region R;.

Since L; has a simple eigenvalue at zero, it is relatively straightforward to construct a small
neighbourhood around the origin that contains no other part of the spectrum. Exploiting the results
from §5, it is possible to control the size of this neighbourhood as h | 0.

Proposition 6.2. Assume that (HP1),(HP2), (HS), (Hol) and (Ha?2) are satisfied. There exists a
constant N\g > 0 such that for all 0 < h < h., the operator Ly + X : H — L? is invertible for all
A€ C with 0 < |A] < Ao.

Proof. Fix 0 < h < hy and © € L% We recall the notation (7[6], inm’@) from Corollary 5.4
for the unique solution (v, ¥) of the equation

Ly¥ = O+~ (6.4)
in the space
X, = {0cH': (®,,0)=0} (6.5)
Also recall the space
Vi, = {0e€l’:(,,0)=0}. (6.6)

Now for A € C with |A| small enough, but A\ # 0, we want to solve the equation L, ¥ = AU + O.
Upon writing _ .
U = LYO + A ly,[0)0) + U, (6.7)

with U € X}, we see that
(L = AN)¥ = (Lp — NLEVO + A (L, — Nya[01®) + (L, — NP

; N (6.8)
O + Y, [O]®) — ALI™O — 4, [0]®;F + (L, — A) V.
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In particular, we must find a solution U € X}, for the equation

Ly¥ = AU+ L™, (6.9)

which we can rewrite as R .
[I—AL'W = AL, 'L§™e. (6.10)
Note that L;l : X, — X3, is also a bounded operator since X C Y},. Since

”L}:l\P”Hl < Cunif”q/”]_,?

B (6.11)
CunifH\I’”H17

IN

we obtain

”Ll:lHB(Xh,Xh) < Chnit- (6.12)

We choose \g in such a way that 0 < A\gCunir < 1. Then it is well-known that I — )\Lgl is invertible
as an operator on Xy, for 0 < [A| < Ag. Since AL, 'L{™ O € X, we see that (6.10) indeed has a

unique solution ¥ € X,. Hence the equation (Lj, —\)¥ = © always has a unique solution. Proposition
5.1 states that Lj, — A is Fredholm with index 0, which now implies that L, — A is indeed invertible. m

Region R».

We now show that in an appropriate right half-plane, which can be chosen independently of h,
the spectrum of —Lj, is empty. The proof proceeds via a relatively direct estimate that is strongly
inspired by [1, Lemma 5].

Proposition 6.3. Assume that (HP1),(HP2), (HS), (Hol) and (Ha2) are satisfied. There exists a
constant A1 > 0 such that for all A € C with Re A > A1 and all 0 < h < h, the operator Ly + X\ is
invertible.

Proof. Write
Moo= l4g.+3(1-)p), (6.13)

where g, is defined in Lemma 3.9. Pick any A\ € C with Re A > A\; and any 0 < h < hy.. Let
U = (¢,7) € H' be arbitrary and set © = L, ¥ + AW. Then we see that

1] 211Ol2 > Re(Lp¥ + AT, ¥)
> Re(—Ano, &) — [lgu (@)l |6]|7
—(1 - p)| Re (¢, )| + pllv[|72 + Re A|[P|f;2
> —g.]¢l7: — (1 - p)| Re (6, 9)]
N ) (6.14)
+pllYll72 + Re A[[¥||g.
> —gulol: — (1= o)l 1]l 12
+7pll¥ )72 + Re Al[W]1Es
> (g + 11— p)¥]72 + Re A [z
Hence we obtain
(Re A= (g + 31— )Wz < (O]l (6.15)

Since Re A > 1+ g, + 3(1 — p), we obtain the bound [|¥||;> < [|O]|-.
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In particular, if ® = 0 then we necessarily have ¥ = 0, which implies that L, + A is injective.
Since also ind(Lp + A) = 0 by Proposition 5.1, this means that Lj, + X is invertible. [

Region Rjs.

We now use a Fourier transform argument to determine the spectrum of —Lj in the region R3
where the imaginary part of A is large.

Pick A € C with Ao < [Im A| < [l7 and write
A = A+ idim (6.16)

Introducing the new variable 7 = Im A, we can write the eigenvalue problem (Lj + A)(v,w) =0 in
the form

cpor (1) = ﬁ kgo ag [’U(T + khAim) + (7 — khAim) — 20(7)
a0 (T (7) Jo(r) — iv(r) = S e(m) — shw(),(67)
(1) = st (po(r) = prw(r) + Aw(n)).

Our computations below show that the leading order terms in the appropriate |Ai,| — oo limit are
encoded by the homogeneous operator’ Hj, » that acts as

Hp () = cpor(r)+iv(r) — ﬁ S ag [U(T + khA) +v(T — khX) — 21}(7)]. (6.18)
k>0
Writing #Hp, » for the Fourier symbol associated to Hp, x, we see that

Haaliw) = cpiw+i— 5z > i [exp(ihk)\imw) + exp(—ihkAimw) — 2]
T E>0
(6.19)
= cpiw+1i— ﬁ > oy [cos(hk)\imw) — 1}.
k>0
Lemma 6.4. Assume that (HP1),(HP2), (HS), (Hal) and (Ha?2) are satisfied. There exist small
constants € > 0, hy > 0 and wo > 0 so that for all A € C\R, all 0 < h < h, and all w € R, the
inequality

[Im Hp 2\ (iw)] < € (6.20)
can only be satisfied if the inequalities
lenw| <3
? (6.21)
|l > wo
both hold.
Proof. Note that
[ Im Hpa(iw)] = |cpw+1]. (6.22)

In particular, upon choosing ¢ = %, we see that
|III1 ’Hh,,\(iw)| < € (6.23)

implies
llenw] = 1] < Jeww+1] < ¢ (6.24)
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and hence
1 < l-¢ < |gw < 1+ < 3. (6.25)

Since ¢, — ¢o # 0 as h | 0, the desired inequalities (6.21) follow. [

Lemma 6.5. Assume that (HP1),(HP2), (HS), (Hal) and (Ha?2) are satisfied. Then there exists
a constant C > 0 such that for allw € R and 0 < h < hy and all X € C with |A| > Ao and

[Tm A| < li}—”"w, we have the inequality
[ Hpa(iw)] > & (6.26)

Proof. We show that Hj, »(iw) is bounded away from 0, uniformly in h, A and w. To do so, we
show that the real part of Hp, x(iw) can be bounded away from zero, whenever the imaginary part
is small, i.e. when (6.21) holds.

Recall the function A(y) = > ag[l — cos(ky)] defined in Assumption (Hal), which satisfies
£>0
A(y) > 0 for y € (0,27). A direct calculation shows that A’(0) = 0 and

A"(0) = Y axpk?
k>0 (6.27)
= 1.
Hence we can pick dy > 0 in such a way that

y%A(y) > dy (6.28)

holds for all 0 < |y| < 3.

Writing p = hAjpw, we see

Re Hpa(iw) = 2“’;% > g {1 - cos(k,u)]
£>0

o (6.29)
= = A).

Now fix w, h, A for which |Im Hj, »(iw)| < €. The conditions (6.21) now imply that |w| > wy and
|| < h%ﬂ|w| < 37. Using (6.27), we hence see that

|Re Hpa(iw)] = |22 A(p)|
> 9 A lwdo (6.30)
> 2\owido,
which shows that Hp, x(iw) can indeed be uniformly bounded away from zero. L]

Proposition 6.6. Assume that (HP1),(HP2), (HS), (Hal) and (Ha?2) are satisfied. There ewxist

constants Aa > 0 and Az > 0 such that for all A € C with Aa < |Im | < ‘;—Z‘ZW and =3 < |Re A| <
A1 and all 0 < h < hy, the operator Ly + X\ is invertible.

Proof. Since Proposition 5.1 implies that Ly + A is Fredholm with index zero, it suffices to prove
that Ly + A is injective.
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Let A3 = mim{%p’y7 Ay 5\}, where A, is defined in (HP2) and ) is defined in Proposition 5.1. Pick

A€ C with Ay < |Im A| < ‘S—Z‘QW and —As3 < |Re A| < A;. Write A = A\, + i\ as before. Suppose
U = (v,w) satisfies (L + \)¥ = 0.

Write ¢ and @ for the Fourier transforms of v and w respectively. For f € L? with Fourier
transform f, the identity

Hppv = f (6.31)
implies that
Hpa(iw)i(iw) = f(iw). (6.32)
In particular, we obtain .
(iw) = mf(zw), (6.33)
which using Lemma 6.5 implies that
ol < CllfllL- (6.34)

for some constant C' > 0 that is independent of h, A and w.

Since W is an eigenfunction, (6.17) hence yields

Il < Crblo+ Dol + Ol e (6.35)
Furthermore applying a Fourier Transform to the second line of (6.17), we find
AimCriw(iw) = pd(iw) — pyw(iw) + Ab(iw). (6.36)
Our choice A3 < % py implies that —py + A, is bounded away from 0. We may hence write
’ID(ZLU) = P’Y*)\Hri(w&imch*%m)p@(iw)’ (637)
which yields the bound
Jwllp, < Coll (6.38)
for some constant C’ > 0. Therefore we obtain that
ol < € silloll,s (6.39)

for some constant C”, which is independent of A\, h and v. Clearly this is impossible for v # 0 if
Aim| > A2 = 20", (6.40)

Furthermore if v = 0, then clearly also w = 0. Therefore ¥ = 0, allowing us to conclude that Ly + A
is invertible. [

Region R,.

We conclude our spectral analysis by considering the remaining region R4. This region is compact
and bounded away from the origin, allowing us to directly apply the theory developed in §3.

Corollary 6.7. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. For all A € C
with |A| > Ao, =A3 < |Re A < A1 and [Im A| < Ay and all 0 < h < h.. the operator Ly + X is
invertible.

Proof. The statement follows by applying Proposition 3.3 with the choices (@, wp) = (Tp, @),
¢n = cp and M = Ry. [ ]

Proof of Theorem 2.2. The result follows directly from Lemma 6.1, Proposition 6.2, Proposition 6.3,
Proposition 6.6 and Corollary 6.7. [
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7 Green’s functions

In order to establish the nonlinear stability of the pulse solution (@, W), we need to consider two
types of Green’s functions. In particular, we first study G (€, &o), which can roughly be seen as a
solution of the equation

[(Ln+ NGha(,€0)] (€) = 3l — &), (7.1)

where ¢ is the Dirac delta-distribution. We then use these functions to build a Green’s function G
for the linearisation of the LDE (2.1) around the travelling pulse solution.

We will loosely follow §2 of [20]. We will also base quite a few results on [2]. However, we em-
phasize that both [20] and [2] only consider finite range interactions.

In order to proceed, let us consider the linearisation of the original LDE (2.1) around the travelling
pulse solution Uy, (t) given by (2.21). In particular, we introduce the Hilbert space

L2 = {V e (Maty(R))%: Z:Z|V(j)|2 < 0o}, (7.2)
Jje
in which Maty(R) is the space of 2 x 2-matrices with real coefficients which we equip with the

. : yah - p2)
maximum-norm | - |. For any V € L?, we often write V = ey pe2 | when we need to refer

to the component sequences V() ¢ ¢*(Z;R). For any t € R we now introduce the linear operator
Ap(t) : L? — L2 that acts as

g A(l’l)(t) A12) (t) V(l’l) V(1,2)
Ah(t) Vo= cn < A(Z,l)(t) A2,2) (t) v P2,2) ) (7'3)
where
(A(l’l)(t)'l))j = % Z Oék['UjJrk + Vj—k — 2’Uj] + gu (ﬂh(h] + C}ﬂf))’l)j
k>0
(A®D(t); = pu;
(AP (tp); = —pyw;

for v € (?(Z;R) and w € £3(Z;R). With all this notation in hand, we can write the desired lineari-
sation as the ODE
FV@) = At)- V() (7.5)

posed on L2
Fix tg € R and jo € Z. Consider the function
RSt Gt to,h) = {GI(tto,h)}jez € L2 (7.6)

that is uniquely determined by the initial value problem

%‘gjo (ta th h) = Ah (t) . gjo (t7 tO» h) (7 7)
G (to, to,h) =681 '
Here we have introduced
, 1if j = jo
620 — 78
J {O else, (7.8)
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where I € Maty(R) is the identity matrix. We remark that Qjo (t,to, h) is an element of Mats(R) for
each j € Z.

This function G is called the Green’s function for the linearisation around our travelling pulse.
Indeed, the general solution of the inhomogeneous equation

av. — . F
V() = VY,
where now V (t) € (2(Z; R?) = (2(Z; R**!) and F(t) € (?(Z;R?) = (%(Z;R**1), is given by
V}(t) = Z gjo (t7 0, h)‘/]?) + fot Z QJJO (t, t(), h)Fjo (t()) dto. (710)
Jo€Z Jo€EZ
Introducing the standard convolution operator *, this can be written in the abbreviated form
V= G(t,0,h) VO + [ G(t, to, h) * F(to) dto. (7.11)

The main result of this section is the following proposition, which shows that we can decompose
the Green’s function G into a part that decays exponentially and a neutral part associated with
translation along the family of travelling pulses.

Proposition 7.1. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. For any pair
t >ty and any j,jo € Z, we have the representation

Git(tto,h) = EP(tto, ) + G (110, ), (7.12)
in which
v — b ( O (hjo + ento)dy, (hj + cnt) Wy, (hjo + cento) @y (hj + cnt) ) (7.13)
7oA M\ ¢, (hjo + cnto) by (hj +cnt) 4y, (hio + ento) ) (hj +cnt) )’

while G satisfies the found
‘Q;O(t,to,hﬂ < Ke—Bt—to) g—Blhj+ent—hjo—cntol (7.14)

for some K >0 and B > 0 which may depend on h. The constant M > 0 is given by

M = (®,,0)). (7.15)
Furthermore for any t > ty we have the representation
gjo(t7t07h) = Z |:5;(t7t05h)g£0(t0at05h) +g~;(t7t0ah)(5zol_ggﬂ(thtO;h))}v (716)
i€Z

which can be abbreviated as
Gt,to,h) = E(t.to,h) * E(to, o, h) + Gt to, h) * (I — S(to,to,h)). (7.17)

Our first task is to define Gp,\ in a more rigorous fashion. Recall the operator Lj .» and
the function Az, . from Lemma 5.6. We will show that Lj .. has a Green’s function which
takes values in the space Mato(R) and that this function has some nice properties. Recall the

constant \ from Lemma 5.6. For each A € C with Re \ > 7% and each 0 < h < h,, we define
Gh,oo;)\ R — Matg(R) by

Ghoon(§) = 37 [ €™ (AL, ()~ dn. (7.18)

We also introduce the notation
CVVh,oo = Gh,oo;O- (719)

Here (Ha2) is essential to ensure that that these Green’s functions decay exponentially.
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Lemma 7.2. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. Fiz A € C with

Re A > —% and 0 < h < hu. The function G eon is bounded and continuous on R\ {0} and
Ct-smooth on R\ hZ. Furthermore (Lp oo + A)Gh,cox(- — &) is constantly zero except at & = &y and
satisfies the identity

S5 [Broe + N Geir (- = €0) | (€)£(€) d€ = F(&0) (7.20)
for all € €R and all f € H.

Finally for each x > 0 there exist constants K. > 0 and . > 0, which may depend on x and h,
such that for each \ € C with —% <Re A< x and |Im A| < % we have the bound

|Ghiooin(€ = &o)| < Koem 165! (7.21)
for all £,& € R.

Pick A € C\ o(—Ly) with Re A > —%. Observe that

Lih—Lhoo = ( agu(ﬂh) + 70 8 ) . (7.22)

We know that G, con(- — &) € L(R, Mat2(R)) since it decays exponentially. Therefore also
[Lh — Lh,oo]Gh,oo;)\(' — 50) € LQ(R, Matg((C)). (723)

Hence it is possible to define the function Gy » by

Gra(&&) = Ghoon(€—&) — [(A+ L) ' [Li — Lioo)Ghyoon (- — fo)} (€)- (7.24)

The next result shows that G}, » can be interpreted as the Green’s function of Lj + A. It is based
on [20, Lemma 2.6].

Lemma 7.3. Assume that (HP1),(HP2), (HS), (Ha1) and (Ha2) are satisfied. For A € C\o(—Ly)

with Re A\ > —3 we have that Gy (-, y) is continuous on R\ {y} and C'-smooth on R\ {y + kh :
k € Z}. Furthermore it satisfies

I [+ Ln)Gan (- )] (©£(8) dg = F(&) (7.25)

for all€ € R and all f € H'.

The link between our two types of Green’s functions is provided by the following key result. It
is based on [2, Theorem 4.2], where it was used to study one-sided spatial discretisation schemes for
systems with conservation laws.

Proposition 7.4. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. Let x > Aunit
be given, where Aunir is as in Lemma 7.5. For all t > ty the Green’s function Q;“ (t,to,h) of (7.7) is
given by
. X+
Gl (t,to,h) = —55 [ TGy, (hj + ent, hjo + cato)dA (7.26)

27
iTCy

where G,y is the Green’s function of A+ Ly, as defined in (7.24).
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In the first half of this section we establish several basic facts concerning G, that can be used to
verify the integral representation (7.26). We then establish a meromorphic expansion for Gy, x that
allows us to shift the integration path in (7.26) to the left of the imaginary axis. The decomposition
(7.12) for the Green’s function G can subsequently be read off from this expression.

Proof of Lemma 7.2. Lemma 5.6 implies that Ly + A is asymptotically hyperbolic. Hence these results
except the smoothness properties and the bound (7.21) follow from [3, Theorem 3.7].

We show that ApGh o (- — &o) is continuous outside of {§y + kh : k € Z}. For convenience we
set & = 0 and A = 0. Pick £ € R with £ ¢ {kh : k € Z}. Then G}, »(-) is continuous in each point

o0

£+ kh for k € Z. Choose € > 0. Since G,00(+) is bounded and 3~ |a;| < oo, we can pick K > 0 in
such a way that !
NGnoeloois > layl < 5. (7.27)
=K
For j € {1,..., K — 1} we can pick ; > 0 in such a way that
olas|Ghoo (6 + 5+ 1) = Groo€ + hi)| < e (7.28)

for all y € R with |y| < §;. Let § = min{d; : 1 < j < K} > 0. Then for y € R with |y| < § we obtain

|ALGho(§+ 1) — AGhoo(§)] < %jZK |Oéj|(|Gh7oo(§ +y 4+ jh)| + |Ghoo (€ +jh)|)
K-1

+az 2 |%‘|‘Gh,oo(€ +y+jh) = Gheol§ +jh)’
0 = K-1

< & X lllGheolle + X 5@

=K j=1
< §5+5
= e

(7.29)
So ApGh.00(+) is continuous outside of {kh : k € Z}. Hence by definition of Lj o, we obtain that
Gh.00(+) is C'-smooth outside of {kh : k € Z}.
Pick x > 0 and set
R = {AeC:-3<ReA<yand|Im ) < Hel} (7.30)

From [3, Proposition 3.7] it follows that for each A € R there exist constants K > 0 and S5 > 0 for
which

|G (€ = €o)| < KyemPrIE] (7.31)
for all £,&y € R. Lemma 5.7 implies that we can choose 8, > 0 and K, > 0 in such a way that

Ay N € e [ = o (7.32)

for all A € R and all z € C with | Re z| < 2f,. Shifting the integration path in (7.24) in the standard
fashion described in [3], we obtain the bound

|Ghiooin (€ —&o)| < Koem P16l (7.33)
for all £,y € R and )\ € R. [
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Proof of Lemma 7.8. Pick A € C\ o(—Ly,) and compute

A+ Ln)Gra(&) = A+ Lin)Ghooa(- = $0) = [Lin = Lin,oo]Ghoon (- — o) (7.34)
= (A + Lhoo)Ghioon (- — &0)- .
The last statement follows immediately from this identity.
Write R
Ghroon(- =€) = [Ln = LinoolGhcon (- — o) (7.35)
We have already seen that G, sox(- — &) € L2(R, Maty(C)). Hence it follows that
A+ L) 'Ghoon(- — &) € HY(R,Maty(C)). (7.36)

In particular this function is continuous. Together with Lemma 7.2 we obtain that Gp x(-, &) is
continuous on R\ {{p}.

gAY A.2)

Set H = (A + Lj,) ' Gh.oox and write H = ( ey e

). Using the definition of L, we

see that R )
ctH = —MH-Gho—H, (7.37)
where
ﬁ _ *AhH(l’l) - gu(ﬁh)H(l’l) + H(271) Ahl;l(l’Z) - gu(ﬂh)H(Lz) + H(2$2) (7 38)
- _pH(lvl) +fypH(2’1) _pH(LQ) +fypH(2’2) : .

Since W), € H' and hence continuous, we must have that w; is continuous. As argued before
ARHOD and A, H®2) are also continuous. Hence we see that ch%H is continuous on R\ {&}

and thus that %H is continuous on R\ {{o}. Therefore we obtain that Gp, A(+, &) is C'-smooth on

R\ {& + kh: k € Z}. .

Now we show that for A with sufficiently large real part, G (-, &o) is bounded uniformly by a
constant. This result is based on [2, Lemma 4.1].

Lemma 7.5. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. Then there exist
constants K and Aynie, which may both depend on h, so that the Green’s function G, enjoys the
uniform estimate

IGha(& &)l < K, (7.39)
for all £, & € R, whenever Re A > Aynit-

Proof. We write Ly = ch% + B with

B = (:?h_gu(“h) ip ) (7.40)

We introduce G?L’)\ as the Green’s function of (A + ch%) viewed as a map from H' to L2, Luckily,
it is well-known that this Green’s function admits the estimate

G &) < paqe ReMemtol/lenl, (7.41)
We can look for the Green’s function Gy, as the solution of the fixed point problem

Gua(&&) = G) (&) + [z Gra(é,2)(BGY, ,)(z, &) dz. (7.42)
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Since ALy, is invertible by Theorem 2.2, G}, » must necessarily satisfy the fixed point problem (7.42).

AL 4(1,2)

For a matrix A € Maty(C) we write A = < 42D 422

). We make the decomposition

B = By+ By, (743)
where
[ =AL 0
BO - ( 0 0 )7
B (7.44)
—p VP
We estimate
[(BoGh ) (& &)l = |ARGY \(&,&0) Y|
< 5 [l (1G4 1. £0)] + 160 (€ — B 0) )| +21G8, (6,60 V)
=
[ee] ) .
< Fﬂ\j; [#I%—I (67 Re A¢+hj—¢ol/len] 4 o= Re Ag—hj—¢ol/len] } 9o~ Re A\s—m/\ch\ﬂ
(7.45)

and observe that

Jo l(BoG) )(€. )| dE - < i(ﬂi‘l[iﬂaﬂm})

- (7.46)
= h21§e)\ Z |a.
j=1
We now fix G € L (R? Maty(C)) and consider the expressions
. .
To = Jp [GEBG &) d
(11) (7.47)
L= L[eeamel)es)

Using Fubini’s theorem for positive functions to switch the integral and the sum, we obtain the

estimates 0
Zol < NGllpe Jo[(BoGy 2)(2:&0)| dz

S (7.48)
< Gl s 2 o]
j=1
and
Tl < 1G] e fi (l9u @ (DIIGE (2 80) D1+ pIGS A (2, 60) V] + (1 4+ 79)[GY 5 (2 60) V] ) d
< NGy Jr ((l9u (@ ()] 4+ p+ 1+ 5p)em R NeGal/lent) g
< NGl e 21 (lgu @+ +14+70) (o)
<

1Gl (9 + P+ 14+70) (m5)

(7.49)
Similar estimates hold for the other components of fR G(&, z)(BG?L))\)(z, &o)dz. Therefore, the map-
ping G — [, G(&,2)(BGY) ,)(z,&)dz is a contraction in L>°(R?, Maty(C)) for Re A > Aynir for Aunit
large enough, with Ayni¢ possibly dependent of h € (0, h..). Hence we get a unique bounded solution
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of (7.42), which must be G}, . The desired bound on Gy, is now immediate. n

Proof of Proposition 7.4. Fix jo € Z and tg € R. Since (7.7) is merely a linear ODE in the Banach
space L2, it follows from the Cauchy-Lipschitz theorem that (7.7) indeed has a unique solution
V : [tg,o0) — L2, For any Z € C°(R;1L?), an integration by parts yields
oo dz; oo av;
I S [ = ROV — (A0 V0250 )de = f S [ (G0 — (Ante) VD)) Z5(0) e
J€ JjE
=2 jez Vi(to)Z;(to)
= _Zjo (t()).
(7.50)

We want to show that the function Vj(t) := g;fo (t,to, h) defined by (7.26) coincides with V on
[to, 00). To accomplish this, we define

L= 7S [ ROV - (A0 V)2 0)]a (7.51)
JS
and show that V' is a weak solution to (7.7) in the sense that
I = —Z,(t) (7.52)

holds for all Z € C2°(R;1L?). Indeed, the unicity of weak solutions then implies that V = V.

Note first that V(t) = 0 for ¢ < ty, which can be seen by using (7.39) and taking x — oo in
(7.26). We write y = hjo + cato, X— = x — 32 and x4+ = x + “5*. We see that

I o= [ X |- B0V - () V(0),2(0)] dt. (7.53)

since V (t) = 0 for ¢ < to. Moreover we write

G;(t) = Gpa(hj+cut,y). (7.54)
Using our definition of V' (¢), we have
X+ oo
I = 35 [ X2 [ J Ij(t,A)dt}dA, (7.55)
X— JEZ L—o0
where
Lit,) = A0 | -GS (1) — (An(t) - G1);Z5(1)]- (7.56)

The permutation of the summations and integrations is allowed by Legesgue’s theorem because Z

and ’fl—f are compactly supported and Gy, is uniformly bounded by (7.39). Fix x_— < A < x4 and

j € Z. Using the change of variable x = hj + ¢t we obtain

Jmiena = £ [ = enGy (2522) 42 + 3G, (251 ) 25(2, M)
k. P (7.57)
,(Ah(“%hhj) .G(”;—F))ij(x,)\)}dx,
where
Zi(x,\) = e)\((-’l’/'—hj)/ch—to)zj (%) (7.58)

Exploiting the fact that Z; and therefore Z; is compactly supported, (7.25) yields

oo

_f Ti(t, \)dt L% [(Ln + N Gra(z, ) Zj(z, N)]dx

Ch

(7.59)
= 2.
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Now since Z; is compactly supported, we can exchange sums and integrals in equation (7.55). This
allows us to compute

~
Il

_77‘/’2 It Ndtdx

amien jEZ 0

= —27“7 { ]%:ZZ Y, A)dA

= chh ’f Jze:ZeA (hig=hi) m)Zj ((hjocijhj) +t0)d>\ (7.60)

S j%j X{ MRz, (M + to)d)\

= o S22 (M 1 )

— -z,

as desired. (]
We recall the spaces

X, = {0cH":(9,,0)=0} 761)
YV, = {0€L?:(®,,0)=0},

together with the operators L, ' in the spaces B(Xj, Xp,) and in B(Yj, Xj) that were defined in
Proposition 5.2. We also recall the notation L™ © that was introduced in Corollary 5.4 for the
unique solution ¥ of the equation

LW = o-— @ <D+>><I>+ (7.62)

in the space X}, which is given explicitly by

qinv _ -1 <‘I’T’@> +
Lo = I @—@;’@D@h] (7.63)

We now exploit these operators to decompose the Green’s function of A + Lj; into a meromorphic
and an analytic part. This result is based on [20, Lemma 2.7].

Lemma 7.6. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. For all 0 < h < R
there exists a constant 0 < Ap, < A such that for all 0 < |\| < A\p, we have the representation

Gra(&,&) = Epa(& &)+ Gra(€ &) (7.64)

Here the meromorphic (in A) term can be written as

— +

and the analytic (in \) term Gy, » is given by

Gra(€,6) = Ghoon(€—&)— [[I F AL T LY (L — Lioo) Ghioon (- — fo)} &) (7.66)
(@5, Ghooo(- — &))P1 (6.
Here we recall the notation
M = (®,,0)). (7.67)
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Proof. Pick A € C with 0 < |A| < Ap and 0 < h < h... By the proof of Proposition 6.2 we see

that

(Lh + )\)_19 = )\—1%1@; + L;lliHV(_) _ [I + )\L}:I]—IAL;IinnV@.

We now compute
(P, (Lh — Lh,oo)Ghoon (- —&0)) = (P}, —Lh,ccGh,oon (- — &0))
—®;, (§0) + MP;, Ghoon (- — £o))-

In particular, writing

Ly, = Lp— L,
we obtain
1 P e (L w,:@ow)
(Ln +XN)""LpGhoo(- — &) = ’\M(%(&JW;{ by (€0)

+ <<1>;T,Gh,o]\o4;x(~*£o)) (D;tl’ + L?Linv-i/hGh,oo;)\(' — &)
[T+ AL TINL L™ Ly Goon (- — 0)-
We may hence write R
Gna(€60) = Ena(§6) +Gna(€ o)
with

e = (8

Gaa(,6) = Ghoon(-—&) — L‘fbinvﬁhGh’oo/\(. — &)
I+ ALY IAL L™ LG o (- — €o)
=37 (®h s Ghoon (- — &))@
= Ghoon(- =€) = [+ AL T LE™ LiGhyooin (- — &)
—21(®4 Ghoo - = &)) P}

Clearly E}, » is meromorphic in A, while G’h,A is analytic in X in the region |A| < Ag.

shs+

(©) wh(ﬁo)ﬁ(&))
(©) Uy (&0)¥y (&)

and

We fix x > Aunif, where Aynir was defined in Lemma 7.3, and set

R = {\eC:—3 <ReA<yand|Im ) < Zly,

(7.68)

(7.69)

(7.70)

(7.71)

(7.72)

(7.73)

(7.74)

(7.75)

We now set out to obtain an estimate on the function éh, » from Lemma 7.6 by exploiting the
asymptotic hyperbolicity of Lj,. We treat each of the terms in (7.66) separately in the results below.

Lemma 7.7. Assume that (HP1),(HP2), (HS), (Ha1) and (Ha2) are satisfied. There exist constants

K, >0 and x > 0, which may depend on h, such that for all A € R

|<®}:7 (Lh - Lh7OO)Gh,OO;>\(' — 50)>| S K4€7)2|50|.

(7.76)

Proof. We reuse the notation Ln=1L,— Lj, o from the previous proof. Lemma 7.2 implies that

we can pick constants S, > 0 and K, > 0 in such a way that

|Ghson(E = &) < K,e Pl
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for all values of &,&. Recall the constants K, & from Lemma 5.16 and set K3 = K»||®, || .. Then
we obtain

|<<D}73 f/hGh,oo;)\(' - 50)>‘ < f_oooo K367&|£|9*K*676*‘€7£0‘ df

- K30.K. (&—:B* (8160l 4 g=ul6ol) 4 L (e=aléol efﬂ*|£o|)>

*

< K3g.K. (&J:B* 9~ min{& . }éo| L \ﬂ*17&| 2¢~ min{@ﬁ}\fd)

= K467)2‘£0‘
(7.78)
for some K4 > 0 and x > 0. u

Lemma 7.8. Assume that (HP1),(HP2), (HS), (Ha1) and (Ha2) are satisfied. There exist constants
Ky > 0 and 7 > 0, which may depend on h, such that for all A\ € R

IN

Kyge él =71l

Kloef”ﬂg*gol.

’ {Lgi“V(Lh — L) Ghyooin (- — §o)} (f)’ (7.79)

IN

Proof. We reuse the notation L, = Ly — Ly, from the previous proof. Recall the constants
K;, a from Lemma 5.16. Writing

He () = [L3™ EnGroen(- = )| (©), (7.80)
we may use [3, Lemma 4.3] to estimate
[He,(6)] < Kue ®l||Hey || + Ky [75 e | Ly, He, ()] (7.81)
Recalling (7.61)-(7.63), we obtain

Helloo < [1Heo ll

< Cunitl|| LnGooin (- — o) — arteal =l g, (7.82)
o R .
< Cunit (1 L2 197 2 ) |G sein (- = €0)Ie
< Ks|LnGhoson(- — &)l
for some constant K5 > 0.
Using Lemma 5.16 we see that there exists a constant K¢ > 0 for which
@@ = | [T () d¢
<SS K| @, @) e dg! (7.83)
= Kge @l
holds for all £ € R. Recall that
- . —gu(Tp)+1r9 O
Ln = ( 0 0 > . (7.84)
Observe that —g,(0) + 9 = 0. Then we obtain that
| = gu(@n (&) + 10| < Kre ok (7.85)
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for all £ € R and for some constant K7 > 0. Lemma 7.2 implies that
Ghoon(€ = &)l < Kee P65l (7.86)

for all £ € R. Therefore we must have

||EhGh>00;>\(' - fO)HiQ < f]R K?Kfe—Qa\ﬁ\e—%*\&—éo\ dg (7 87)
< Kge 236l '
for some constants Kg > 0, ¥ > 0 with 4 < 5,, 7 < %Oz and ¥ < %)Z In particular we obtain the
estimate
|He e < Koy/Ree e, (7.88)

In a similar fashion, using Lemma 7.7, we see that

|LnHe, (§)]

IN

- & LnGhocon(-—
|[LGroear - = €0)] () — L2teCeanSd oy )
KK, e~ ®élg=Fle=6ol 4 ﬁ[g&e—il&ol}(le—a\f\ (7.89)

IN

< K, [g%lﬂgilﬁf&)\ i ewwao\efmq

for all £ € R and some constant K9 > 0. Combining (7.81) with (7.82) and (7.87), we hence obtain

[Heo ()] < Kie ®8l|[He, || + Ky [22, e Ly He, ()] dn

S Klefo“‘f‘qu /Ksefﬂ&)\ —+ Kl ffo e*a\E*W\Kg {e*%lnle*ﬂﬂfﬁo\ —+ efﬁlgﬂlef;ﬂnqdn
< Kie Bl /Kge 76l + K, ffo e~ €12 Kge—Inl e =Fl€0l gy
< Kyge VEle=7l%l
< Kjge Vel

(7.90)

for some constant K79 > 0.
| |

Lemma 7.9. Assume that (HP1),(HP2), (HS), (Ha1) and (Ha2) are satisfied. There exist constants
Kiz > 0 and w > 0, which may depend on h, such that the function Gy x from Lemma 7.6 satisfies
the bound

Gha(&60)] < Kyzemwle=ol (7.91)
for all £,&y and all 0 < [N < Ap.
Proof. As before, we write
He,(§) = L™ LpGhoon(- — &)(9). (7.92)
Using [3, Lemma 4.3], Lemma 7.8 and (7.88) and recalling (7.61)-(7.63), we obtain the estimate
Ly Hey ()] < Kyem L, Hey |l oo + K [7 €157 He, (n)ldn
< Klewlélclmif||H§O||L2 + K, ffooo efa\sfn\Kwef'?\non\dn (7.93)
< Kie i Ko Kge 110l 4 Ky [ emelénl ¢ ge=TIn—toldy '
< KK e 716l
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for some constant K17 > 0. Using Proposition 5.2 and (7.88) we obtain that
(L, )" He |l < KsV/Kg(Cunig)"e 71!
for all n € Z~(. Continuing in this fashion, we see that
(L, )" He,(§)] < KyoKpye 7165l
for all n € Z~q. If we set

_ LA 1 1
Ap = mln{Qa)‘O>Xa Comit KsvVEKs’ K1 J?

then for each n € Zs( and each 0 < |A| < A, we have
I=X™(Ly ) He e < 3

In particular, it follows that
> (AL ey~ [+ AL
n=

in H'. Since H'-convergence implies point-wise convergence, we conclude that

o0

[T+ AL O] = | N ) e 6
< 3 )\ZKHK{LQe—“?IE—Eo\
n=0
Ky —v[&—
S me ¥1€—&ol
— Kue*:ﬂﬁffo\

for all £ € R and for some constant Ko > 0.

Combining this estimate with Lemma 5.16 and Lemma 7.8 yields the desired bound

|éh,)\(£a §O)| = ’Gh,oo;)\(g - gO) - [I + )‘LI:I]_lL%inVIA/hGh,oo;)\(' - gO):| (f)
— 37 (@, Ghooo- = €0)) ) (€)]

K,e 8168l 4 K pe 71680l K4ﬁe*>"<|§o|[(le*a|£\||q>ZHOO

Klge_w‘g_go‘

IN

A

for some constants K13 > 0 and w > 0.

We write
S = {Mriwiw e[l ),

where )y is defined in the proof of Lemma 7.9.

(7.94)

(7.95)

(7.96)

(7.97)

(7.98)

(7.99)

(7.100)

(7.101)

Lemma 7.10. Assume that (HP1),(HP2), (HS), (Hal) and (Ho2) are satisfied. Then there exist
constants K > 0 and 8 > 0, which may depend on h, such that for all X € S we have the bound

IGha(6,8)] < Ke Bleol

for all £,&.
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Proof. Fix A\g € S. For A € S sufficiently close to A we have

L +Ar

[Lh+>\0+)\—)\0}71

[(Zn+20) (1+ (L JFA(J)‘l(A—Ao))r1 (7.103)
= [ @20 - 20)] Lt a]

In particular, upon writing

He () = [[Lh + 0] T LaGh oo (- — 50)} &), (7.104)
we see that
Gra(§,60) = Ghoon(§ — &) = [[I + (L 4+ Xo) (A — Ao)]*ngo] (). (7.105)

Lemma 5.6 implies that Ly + A\ is asymptotically hyperbolic. Using [3, Lemma 4.3] we can pick
constants ky, > 0 and a, > 0 in such a way that

[He, (€)] < hage™ ol Hey || o + kg [7 el 7(Ly, + Xo) He, () |di. (7.106)
Recall the constant C's appearing in Proposition 3.3. This allows us to estimate

Helloo < [1Heo [l

< Cs||LnGhorg (€,60) e (7.107)
< Cgy/Kge ol

This yields the bound
[He, (9] < Eage™ ol Csy/Re 70l + ky, [7 em@ 6| Ly, Gy xo0 (0, €0)[dn
kAOe*Mo‘g‘Cy /Kge 76l + kx, ffom e~ xolénl KL K e elnle=28-n=%ol gy (7.108)

< k)\o_ze—axgzﬂf—fd

IN

for some constants ky,.2, @y,;2, which may depend on Ag, but not on A. Arguing as in (7.93), we
obtain

|[Ln + o] " He, (€)|

IN

Fage™ 0¥l [[Ly 4+ M) T He, [l o 4 Fng [0 €767 He (1) |dny

kixgi2king e o2l =0l

IN

(7.109)
for some constant ky,.3 > 0, which may depend on Ay, but not on A. Following the same steps as
the proof of Lemma 7.9 and setting

_ : 1 1
5)\0 == mln{ kAOCS\/Kiaﬂ k)\D::s }7 (7110)
we conclude that

|GroA (€ 60) — Ghyoon (€ — &0)|

I+ [+ 2] 0= 20)] 1 He, | €))

(7.111)
< k‘>\0.46_0‘*0?2‘§_5°‘

holds for each X € S with |\ — Ag| < ey, for some constant ky,;4 > 0, which may depend on Ag. In
particular, we obtain that

Gral6.&0)l < ke o2 lE-80l 4 g, o Hle)

IN

(7.112)

N

k)\o;5€7a’\0;2‘5750|
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holds for each A € S with |A — X\g| < €),, for some constant ky,.5 > 0, which may depend on .

Since S is compact we can find Ay, ..., A\, € 5 in such a way that

S c U{PreC: i h=X\]<eyl (7.113)
i=1
Setting
K = max{ky:1€{l,..n}},
~ (7.114)
B = min{ay,2:i€{l,...,n}t},
we conclude that )
Gra(€ &) < Ke Ple—tol (7.115)

holds for all A € S and all £,&, € R.

We now use the spectral properties of —Lj, to also decompose the Green’s function G(t,tg,h)
into two parts. We obtain the following result, which is based on [20, Corollary 2.8].

Lemma 7.11. Assume that (HP1),(HP2), (HS), (Hal1) and (Ho2) are satisfied. For any pairt > to
and any j,jo € Z, we have the representation

Gl (t,to,h) = E]°(t,t0,h) + GJ°(t,to, h) (7.116)
in which
E1(ttg h) = B ( o5, (hjo + cnto)dy (hj +cat) Py, (hjo + cato)dy (hj + cat) > (7.117)
7o MA@y, (hjo + cnto)y (hj +cnt) by, (hjo + ento)iy, (hj +ent) )’

while G satisfies the found
GP(tto )] < KePwe ittt hiral (r.118)

for some K >0 and B > 0 which may depend on h.

Proof. Recall the representation of gj“ from Proposition 7.4. Note that G}, 1 (€, &) is meromorphic
for A in the strip {A € C: Re A > —A3,|Im A\[ < %} with a simple pole at A = 0 by Lemma 7.6,
Lemma 7.3 and Theorem 2.2. Lemma 7.6 also implies that the residue of Gp z(£,&p) in A = 0 is

given by
- + - +
Res(G , .0 . _ 1 < ¢}i(£0)¢h (5) 1/);1(50)% (5) > ) 7.119
(Ghrl€, ), 0) W gy (G0 (&) vy (G0 (&) (7.119)
We write N
H(,&) = Mo (L + X+ 2mik 5 )e_sni1,Grals €o)- (7.120)
In a similar fashion as in the proof of Lemma 6.1 we see that for k € Z we have
Therefore it follows that
H(\6) = e HR0(Ly + A+ 2wk )e_ g1 1 Grn(- o)

- (7.122)
= e 506_27m%k(Lh + NG o)
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For any f € H' we may hence compute

JH(E &) f (&) dGo = [ e2muheoe=2make(Ly 4+ N)Gpa (-, €0)(€) (&) do

_ e—2m%k§ [€2wi%k§f(€)} (7.123)
= f(&)
Therefore by the invertibility of Ly + A + 2mik <, we must have
Grnraminan (€60) = EHEEO9G (€ ). (7.124)

Now recall the constants x, x4+, x— from (the proof of) Proposition 7.4 and define

PN _ A TCh

— 3Tk
i ° ﬂ’;h (7.125)
T
Writing x = hj + cnt,y = hjo + cpto, we see that
f;(: e/\(tfto)GhA(x,y) d\ fx+ (AF2mi ) (t—to) g—2mig (y— le Az, y) dX
h (7.126)

— fX+ A(t— tO)Gh)\(l‘ y) d\.

Hence if we integrate the function e*(*=*) G, A(hj + ent, hjo + cnto) along the rectangle with edges

)‘2’” —i g — An g- i, x — 17 and x+i"5 that the integrals from x —i %2 to —)‘2—’” i*7 and from
—H”h to X—H”h cancel each other out. In particular, again writing x = hj+cpt,y = hjo+canto,

the res1due theorem implies

Gt to,h) = 52 TR MGy (2,y) dA
mi Jx—i T
— (Nt — ()b
- _h —SpiTh eAMi—to) ¢ z d)\+h< Qsﬁ(y)(bh () ¢@(y)¢h () )
ot s iz w9 3 @) ey ()
(7.127)
Using Lemma 7.10 we also get the estimate
,&+iﬂ - Ch — _ —_Blz—
E= YA A1) G\ (z,y) AN < L 2T Mnltto) e Fle—yl, (7.128)
which yields the desired bound (7.118). ]
For any t € R, we introduce the suggestive notation
I (t) = £&(t,th) (7.129)
together with
;) = I-T5(1). (7.130)

Recalling the notation introduced in (7.11), we set out to show that II{(¢) * II (t) = II§(t) and
IT; (t) = II7 (t) = II (¢t). Later on, we will view these operators as projections that correspond to the
center and stable parts of the flow induced by G respectively.

To establish the identity IIf, (¢) * IIf, (¢) = IIf, (¢), it suffices to show that
M( O ()oy () Uy, (y)oy (2) ) - ¥ ( ¢, (hi+ ent)dy, () ¥y, (hi+ ent)) (x) )
On W)y (2) Wy, ()0 () iez \ Sy (hi+ ety (x) oy, (hi + ent)dy ()
y ( o, (V)on (hi + ent) Wy (y)oy (hi + ent) )
Sr, W)y (hi+ cnt) Wy (y)vy (hi + chtz |
7.131
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in which x = hj + ¢t and y = hjg + cpt. We now write our linear operator in the form

LiW(E) = W@+ X A(OU(E+5h), (7.132)
j=—0o0
where
1
(612%' 8) if 540
4 = 2L Y+ gu(@n(€) 1 (7.133)
k>0 if j =0.
—p Py

Before we continue, we first prove a small lemma that will help us to relate discrete inner products
with their continuous counterparts.

Lemma 7.12. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. For all € € R we
have the identity

on (OO (©) ) _ o
<'(/}}h(€)'(/) (5)) B j_aof B(§+0 — hj)A;(§+0 — hj)®y; (€ + 0)do, (7.134)

where )
B = <§h(€) i;(é))' (7.135)

Proof. Our strategy is to differentiate both sides of (7.134) and to show their derivatives are
equal. Starting with the first component, we pick N € Z~q U {co} and write

D(N) = d%ﬁ I (e +0— hg)[Aj(sw—hj)cb,f(fw)](l)do. (7.136)

For finite NV, we may compute

DY) = S o000 +15)] " a
b (7.137)

€] N
= z ash()[ HOSTE )] = X or (€~ )| A6~ hi) @ (€)]

j=—N j=—N

Now for j > 0 we have |A;(£)®; (¢ + hj)| < 7z|a;|, so the partial sums converge uniformly. Hence
it follows that

D) = 5 sr@[a@niern] — 5 e n[ase -]
= &, (O)en(df) (&) + enle;,) (©)dr () (7.138)
= (o) (€),

since ®; € ker(Ly) and @, € ker(L}).

We now set out to show that both sides of (7.134) converge to zero as £ — co. Pick ¢ > 0 and
let N € Z~( be large enough to ensure that

Al < € .
jZZthjlaJ| = 40+¢n o) 195 oo (7.139)
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In addition, let = be large enough to have

65 (O < c

' 4(1+,§: FETIDIE 24 (7.140)
j=—N
for all ¢ > = — N. This  exists since ¢, € H'. For such { we may estimate
(1

} .

| S R enEro—nm[As+o-hpefcto) do < (7.141)
j=—o0

which allows us to compute

1)
Jm S en(e+0—hi)[Aie+0 - @i +0)] a0 = 0

o0 j=—o00 ' - . (7.142)
= Jim cngy, (€)ey (€)-
With that we have proved our claim. Furthermore we can repeat the arguments above to obtain
- N . _ (2)
i ©Uf ) = X fTUnE+0-ni) A€ +0-h)@F(E+0)] db.  (7.143)
j=—00
n

We are now ready to show that II§ (¢) = IIf, (¢) = II7 (¢) and II7 (¢) * II} (¢t) = II; (¢). This result is
based on the first part of [20, Lemma 2.9].

Lemma 7.13. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. Then IIS (t) *
IIS (t) = II9 (t) and II5 (¢) * 1T (t) = II5 (t) for allt € RR.

Proof. Using the results from Lemma 7.12 we may compute

on S b (hk+ cat) i (ks + cnt) S SS9 g (bt et + 6 — hy)

k=—o00 k=—o00 j=—00

(€]
xA-hk;+cht+9—hj<I’+ hk +cpt + 0 do
h

- k_f_ S e [405r 0+ )]
= 5 [ @[ 6+n)] s

(7.144)
where we were allowed to interchange the two infinite sums because

hk+ch _ RIS
Z A on )[40 + )| a0

IN

i (1)
75367 (0)[A;(00@F (0 + hj)| " do]
3 1 7 L1 167 1l

IN

(7.145)
holds for all N € Z~q and j € Z. This expression is summable over j, allowing us to apply Lebesgue’s
theorem. On the other hand, we have

on 2o &n ()61 (€) dg f Z Sy’ (g +o- hy)[Aj<£+9—hj)@t(ue)](”dads

(1)
fo 7% O 6+ 0= hj) [A5(€ + 0 — h))@F (€ +0)] Y dedo

j=—o00

S o h) [Aste - i (©)] dzas

.:i hj [ 5 (€ = hi) {Aj<f _ hj)(p;(g)} 1) .

(7.146)
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Interchanging the integral with the sum was allowed since ¢, and (bZ decay exponentially, say
|95, (z)] < ke~ 2l and |¢ (x)| < ke=@I#l, and thus for each N € Z~ and each ¢ € R we have

N . (1) 0
| S L7 on (0= [Ase+ 0PI+ O)] db] < X hwteoleljoy |9 |,
=

Jj=—00
(7.147)
which is integrable in €. Furthermore the interchanging of the two integrals was allowed, since by
the exponential decay of ¢, we also see that for each j € Z,& € R and 6 € (0, hj) we have

N . ) ¢)) aléto_hi
67 (€ +0— ) [A5(€ + 0 = P@F©)] | < wemeleHoPil|ay ) .. (7.148)
This is an integrable function for (£,6) € R x (0, hj), allowing us to apply Fubini’s theorem.

In particular, we see that

[ on©6r(©) de = h S oy (hk+ cnt)ot (b + ent). (7.149)

k=—o0

In the same way we obtain

JX O ©UE) de = h S by (ks + cnt)it (hk+ cnt), (7.150)

k=—o0

By writing out the sums it now follows that indeed (7.131) holds. ]

Proof of Proposition 7.1. The calculations above imply that £(¢,t9,h) = E(¢, 0, h) * IIf, (o), which
means that we must also have E(t,to, h) * II7 (t9) = 0.

o1 (hj + ent)
Ui (hj + ent)

). Hence by the definition of the Green’s function G(,tg, h)

Observe that for any ¢ty € R, the function Vj(t) := (

¢ (hj + cnto)
Ui (hj + ento)

V() = G(tto,h)*Vi(to) (7.151)

) is the unique solution to

(7.5) with V;(to) = (

we see that

for all t € R. Furthermore we recall that
EP (o to,h) = Vj(to)®;, (hjo + cnto). (7.152)

For j, jo € Z we may hence compute
Ji ) .
(Gt t0,m) + T (o) | " = 32 Gt to, ) = E° (8,10, )

j i€z ‘

= 4 Y Gilt to, h)i * Vi(to)®,, (hjo + cnto)
=

= 17 Vi(t)®;, (hjo + cnto)
= EP(t,to,h).

(7.153)

In particular, we obtain G(¢,to, h) * II5 (t9) = E(t, to, h) and thus

G(t.to,h) x L5 (to) = G(t,to, h) * 115 (to) — E(t, 2o, h) x 1T}, (to)
= E&(t,to, h) — E(t,to, h) (7.154)
= 0.
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Therefore we must have
G(t,to,h) = E(t,to,h) +G(t,to, h)
= E(t,tg, h) * (Hg(to) + H;(to)) +G(t,to, h) * (H,g(to) + H;(to)) (7.155)
= E(t,to, h) * 1I5 (to) + G(t, to, h) * 1T (o),

which completes the proof. [
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8 Nonlinear stability

In this section we will finally prove Theorem 2.3, along the lines of the approach described in [20].
Recall from §2 that the space /P is defined by

= {Ve®)2: V=X [VjIP < oo} (8.1)
JEZ
for 1 < p < oo and
> = {V e ®)”: V] :=sup|Vj| < oo} (8.2)
JEZ

In addition, we recall the notation (Up);(t) = (Hh(hj +cpt), wr(hj + cht)) and we let § > 0 be the
constant appearing in Proposition 7.1.

Exploiting Proposition 5.2 we see that
IE0 (0, h)]| < CrePlhtent=hin=—entol (8.3)

for some constant C; > 0. Lemma 7.13 hence allows us to define IIf,(t) € B(¢?;¢P) and IIj (¢) €
B(¢P, ¢P) by writing
@)V = E(t,th)*V,
(8.4)
GV = [I—Hz(t)}V.
The proof of our nonlinear stability result proceeds in two main steps. In particular, we first

construct the stable manifolds of the solutions (@, @ )(- — 0) for each 6 € R. This result is based
on the first half of the proof of [20, Proposition 2.1].

Proposition 8.1. Assume that (HP1),(HP2), (HS), (Ha1) and (Ho2) are satisfied. There exists a
constant n > 0, independent of p, but possibly depending on h, such that for each 6 € R and each
Wy € Range(IT; (0)) with |Wsl|,» < n there is a unique function U? (W) : [0,00) — ¢P such that

1. U®t)=Tn(t+0) —l—Uf(Ws)(t) is a solution of (2.1) for allt >0,

2. US(W,)(t) decays exponentially to 0 as t — oo,
3. II (0)U (W) (0) = W,

In addition, there exist constants Cg > 0 and Cy13 > 0, independent of p, but possibly depending on
h, such that the estimate
c(Fv1 /0 2
5 (O (W) (Ol < Coll Wl (8.5)

holds for all § € R and each W, € Range(IT; (0)) with |Wy]|,, < 1, while the estimate

XI5 (B2 (W2 (0) = 105 (Bt (W2 Ol < Crs[IW g + (W21

(8.6)
x| IWE = W2l + 101 - 2]

holds for all W} € Range(IT(61)), all W2 € Range(II;(f2)) and all 6, € R and 6, € R with
Wille <. IW2llg < and |02 — 61] <.

It then suffices to show that the space around the family of travelling pulse solutions can be
completely covered by these stable manifolds. We remark that 6 in the result below will correspond
with the asymptotic phase shift.
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Proposition 8.2. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. Then there
exists a constant 6 > 0, which may depend on h but not on p, such that for all initial conditions
U € 7 with ||[U° — Up(0)||,, < & there exists § € R and W, € Range(IL; (9)) such that

UO_

Tn(6) + (W) (87)
We write the LDE (2.1) as
aviey = m(vo), (8.8)
where
B e[V + V@) —2v V0| + 9V ) - v
A (V). - ( ; k(z k[]+k<2> 0 =200 + o) - v 0 | 59
! PV (1) =V (1)
Then we see that Ay, (t) = DFy, (ﬁh (t)), where Ay () is defined in (7.5). We now write
Nio(LV(®) = Fa(VO) + Tt +0)) = Fa@(t +6) — DF(Tat +0)) V() (8.10)
and set out to solve the differential equation
dy(t) DF, (Uh(t + 0)>V(t) + N (t, V(t)). (8.11)
Indeed, if V satisfies (8.11), then we see that
#Oe+0+ve) -

Fh (U(t - 9)) + DFy (Uh(t + 0)> V() + N (t7 V(t)) (8.12)
= F (Uh(t +0) + V(t)>’

which means that Uy (- + ) + V is indeed a solution of (2.1).

Our goal is to construct decaying solutions to (8.11) for multiple values of 6 using a single Green’s
function. To this end, we write

M (9, ¢, V) = No (t, V(t)) + DF (Uh(t + 9))V(t) _ DF, (Uh(t n é))V(t). (8.13)
This allow us to rewrite (8.11) as
&V =

DF (Uh(t + é))V(t) + Ml (9, ¢, V). (8.14)

Lemma 8.3. Assume that (HP1),(HP2), (HS), (Hal) and (Ha?2) are satisfied. Then Mﬁ(@,t,)
maps ¢P into itself and there exists a constant Co > 0, independent of p and 6 but possibly depending
on h, so that we have the estimate

IMR 0, .Vl < CollV g + C2lf = 011V ],

(8.15)

for V€ 7 with ||V||,, <1 and § € R with |0 — 0| < 1, together with
|ME (61,8, V) = M3 (02, Va)lgp < Ca[IVillgw + [Vallgn + 10 = 1] + 102 = 1] I1Vi = Val»
+Calfs = OV llw + V2l

) ~ (8.16)
for Vi € P, Vo € £P,0; € R and 02 € R with ||[Vi ||, < 1,[[Vallpp < 1,100 — 0] <1 and |62 — 0] < 1.
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Proof. A Taylor expansion around US) (t + 0) yields the pointwise identity

MIOV) = L ( g(VvO+T ¢ +0)) — 0 (T 4+ 0))VO -9 (T 2 +9)) )
0
_ 1< Lou &) (V) + [0 (T (¢ +0)) — 0 (T1) (2 4 0)) [y )
N\ 0
_ 1< L0unl€) (V) + guu(&2) [U1 ¢ + ) - Uﬁkt+éﬂv0>>
0

_ ( Lun€) (VD) + Lguu(€2) [ 4T (&) 10 - BV
Ch 0
(8.17)

77(1)

where & is between US)(t +0) and U, (t +0) + V, & is between U,(ll)(t +6) and Uél)(t) and &3 is
between ¢t + 6 and ¢t + 6. For a bounded function f, we have the pointwise bound

‘guu(f” = |6f+27”0+2‘
(8.18)
< 6| fllo + 270 + 2.
Therefore we get the pointwise bound
~ T T —_9lv@)
MGV < $é<$wmfwm+ﬂwﬂw99w
6V oo + 6]/l + 2 +2) V(D)2
+Clhé<§|| i =+ 6110l + 20 +2) (VD) 5.19)
< 2 (Bl + 2r0 +2) [T l10l6 — AV

A 361Vl + 61T, + 270 + 2|V,

> VP
JEL ’

0 " » (8.20)
((%Z'Vj 'p) (supyezlV; "’)>

2
Ve

Furthermore, for 1 < p < oo we see

I e

Sl

IN

IN

which clearly also holds for p = co upon skipping the intermediate two steps. We hence obtain the
bound

IME@O,t V), <

‘C;L‘ 2

L (6l1Tnllog + 20+ 2) 1746 = BV s
1276l + 200 + 8) VI, (8:21)
< ClVIE +Col0 =0V,

for some constant Cy > 0, which is independent of p and 6.
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We now write
M = Mg(@ht, Vl) _Mg(gz,t%>
L ( i(Vl(l) +U§3)(t+61)) — Gu (Uél)(t—i—é))vl(l) —g(UEf)(tJrel)) >

Ch

1 ( (Vi + T+ 6)) + 0 (TP +8)) VD + (T (1 4 05)
0

(8.22)
Using Taylor expansions around US) (t+6;) and US) (t 4+ 65), we obtain the pointwise identities

g(V+ T +00) —9(T @ +00) = Eguunl €)Y + S0 @) ¢+ 00) (V)
+u (U(” t461) )
g(ViV+ T +02) = 9(T 0 +62)) = Louan(@) VIV + 30T (¢ +02)) (V)2

+gu<Uh (t+62) )
(8.23)

where & is in between US)(t +6,) and VM + Ugll)(t +61) and & is in between UELI)(t + 65) and
U S)(t + 6) + V5. This allows us to collect all terms of the same order together and write

dM = dMy + dMs + dMs, (8.24)

where

i = (g V) = dgu(&) (VD) )

ot = [ (T4 00) 0~ L0 (T 04 02) 2 (1))2>
Ch 0 ’

AM; = 1< [gu(Uh t+91)) gu(Uﬁﬁ( é))}vf” (8.25)
Ch 0

Ch

1< ~[ou (T ¢+ 02)) = 0u (T + ) |11 )
0

Note that gyu, = 6 is constant. A Taylor expansion around U;l)(t + 61) yields the pointwise
identity

S

O =

(g““(US)(t +01)) — ua (T3 (8 + 92))> (V)2 )

1 ( L@+ 0) (V) = (v)?) )
0

Ch

1 ( 3(TL (t+00) =T, (0 4+ 02)) (Vi) = 390 (T, (2 4 02)) (472 = (V)?) )
0

)

( 305 () (01— 02) (V)2 = Lgun(T3 (¢ + 02) (3V)2 = (v{V)2)
0

(8.26)
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where &3 is in between ¢+ 67 and t 4 65. Using Taylor expansions around US) (t+63) and US) (t+6),
we obtain the pointwise identity

w = () OB
Ch 0
+£h(;[gu(US)“*@?))—gu(Ui)( f’)ﬂvf)) (8.27)

Ch ?

1 ( (60 01 = 62)| V) — [gu(63) (62 — )] V5" )
0

where &4 is in between U;l)(t + 61) and US)(L‘ + 6) and & is in between Uzl)(t) and U;Ll)(t + 03).

We estimate

JiMill < RlVE = Vil
< ‘Ch‘[nvlneoonvl VEl + 1Vi = Vellw IVl (8.28)
<

2
e Vil [IVall + 1V2llen [I1V2 = Vallow + V2 = Valln V21150

together with

77(1)
laMalle < i3I Y (&)1 = 02) | VAL
(61l oo + 270 + 2) [ Vill e V2 = Vallgw + 1V2 = Vall g Vall |

oy [Bllh 63 — O211VAIZ, + (61Tl e + 270 +2) Vil + 1Valln | 1V2 = Vallo
(8.29)

IN

and

[dMs]l

IN

e (19601 = 02) 1 IVillp + 190 (€)(62 = )| V2 — Vall]
< & [ (Bl + 270 +2) 161 — 6a01Vills + (Sl1Tnlloc + 270 +2) 162 = BlIVi = Vall,u] -

(8.30)
Combining these estimates yields
[aMllps < Col[Villes + WValls +16 = 621 4165 — 61 Vi = Vall .
+Calfr = B3] Vil + 1Vall |-
]

Lemma 8.4. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. Then there exists
a constant C3 > 0, independent of p but possibly depending on h, such that for V€ {P we have the
bound

IG(t to, )V |,y < Cae B0V, (8.32)
for all t,ty € R.

Proof. We let f(t,to, h); = e~ Plent=entothil and write V; = |V;| for V € 7. Using Lemma 7.11
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and Young’s inequality we obtain

Hg(t7 to, h)VHEP < 8C€_B(t_t0) Hf(t? to, h) * VHZP(Z,R)

< 8Ce=PUE|| £(t,to, M)l gy IV llow 2y (8.33)

= 8Ce 1| f(t,to, Mo zrllVlle

< Cae POV,
where o

O3 = 8Csupyey 2 e 1M+ < oo (8.34)
JEL

Note that C5 is independent of p. [

From the defining system (7.7), it is clear that for each 9:6 R the Green’s function of the lineari-
sation of (2.1) around the wave Up(- + 0) is given by G(t + 0,to + 6, h).

Fix W, € Range (Hi(é)) and consider the fixed point problem

V() = G(t+0,0, W, + [1G(t+0,t0+ 0, )T (to + é)Mﬁ(ato, V(to))dto

- - . (8.35)
t c 6
+ [LE+0,t0+ 0, h)II (to + G)Mh<9,t0, V(to))dto.

We aim to construct decaying solutions to (8.14) by solving this fixed point problem in the space
BC_5,,([0,00),£7) = {V € C([0,00),£7) : V|| _g/, < o0}, (8.36)
where .
8
IVI_g2 = supeciooo) €SIVl (8.37)

Here the integrals are taking component-wise, but we see that for each 1 < p < oo this component-
wise integral corresponds to the Bochner integral.

Lemma 8.5. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. If the function
V€ BC_5,,([0,00), ) satisfies the fived point problem (8.35), then V satisfies (8.14) and hence

V(t) + U(t +0) is a solution of (2.1).

Proof. If V (t) satisfies this fixed point problem then we see that

|
Il

<8

t(é(t+é, g, h)Ws) DF» (Uh(Hé))G(Hé, g, )W,
+DFy (Uh(t + é))g(t + 0,0, h)IIS (0)W,

0, h)HfL(é)WS) (8.38)

Writing
D) = 4v) -4 (é(t +0,0, h)Ws), (8.39)
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we can compute

D) = [54 to + 6, WIS (to + B) MO (9 to, V(to ))}dto

|—|

L[ LAt +0,t0 + 0, R)IIE t0+9M9(9to, )]dto
FG(t+ 0.t 4 0, W (¢ + )M (0,8, V(1))
HE(t+ 0,6+ 0, YT (¢ + )M (0,8, V(1)) (8.40)
_ g%[g( + 0,0+ 0, h)HS(to+9)M9(9 to, (to>)}dt0
I |G+ 0,80 + 0, )T (to + 0)ME (6,10, V(1)) |t

FG(t+0,t+ 9,h)M2(9,t, Vit )).
Exploiting G(t 4 0,t + 6, h) = I, this yields

D(t)

[ DF, (ﬁh(t + é))g(t + 0, to + 6, R)IIE (to + ) M? (0, to, V(to))dto
+ o DFu (Tnlt +0)) Gt + 6, to + 0, W)L (t0 + B)MJ, (6,0, V (to) ) dt
+M? (9 t, V(t))
= D]-‘h(Uh )fo G(t +0,to + 6, h)IT; (to +0)M9<0 to, V(to ))dto
+th(Uh (t+0) ) f E(t+0,to + 0, h)IIS (o +0)M9(9 to, V (t ))dto
M (0,6, (1))

(8.41)

and thus

N
<
=
3
S~—
I

DF, (Uh(t n é)) V() + M (9, ¢, V(t))

— DF, (m(t + 9)) V(t) + N (t, V(t)). (542

Lemma 8.6. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. There exists n > 0,
independent of p and 8, so that for all W, € Range (Hi(é)) that have |Wi|,» <1 and all |0—0] <1,

the fized point problem (8.35) has a unique solution Wf;e(WS) in the space BC_5 ([0, 00), £F).

Proof. We first rewrite (8.35) as

Vo= T(W,V), (8.43)
where
T(W.,V) = G(t+0,0, )W, + [1G(t+0,t0+ 8, h)TT;, (to + 0) M) (9 to, V(t ))dto "
+ L E(t+ 0,10 + 0, TS (1o + a)Mz(e,tO,V(to))dto. (544
Pick V € BC_j ([0, 00), £7) with [[V]|_3,, < 1. Writing
T = [y G(t+0.to+0,h)IL; (o + 0) M3 (0,10, V (t0) ) dto. (8.45)
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Lemma 8.3 and Lemma 8.4 imply

[Eaiy

A

SNG40, t0 + 0. W) MG (6,10, V (t0) )l dto
Jy Coe= =M (0,10, V(t0) ) | dto
Jy Cae= B0 CI|V (t0) | IV (20)ll i + 10 = ]t (8.46)

INIA

IN

Jy Cae™ P Co[VI|_g ppePt0/2 P2V |_g 1y 410 = B dto

IA

CsO VI a[te P IVII_ + 37210 - 0]

Observe that if we multiply this final function with ePt/2 we still have a bounded function. Since
this holds for all p we see that

IZ0 g < CallVIl_gpa[IVI_g/2+ 10 1] (8.47)
for some constant Cy, which is independent of p.
We write
Jt) = [TE[E+0,to+ 6, (to + )M, (0, to, V(t0)>dt0. (8.48)
Mimicking the computation above and using the explicit expression (8.3), we see that

1Tl < [ CrCallVIl_g 60 [P0V, + 10— B o o)

C1CQHV||7B/2 [%eiﬁtHVHﬁé/Q + %67&/2\9 — 9~|}

B
p)

Observe that if we multiply this final function with ez? we still have a bounded function. Since this

holds for all p we see that
1132 < CslIVI_gs2 ]IVl +10 = ] (8.50)
for some constant C5, which is independent of p.

Finally, Lemma 8.4 yields the bound

IG(t+0,0,mWill, < Coe 5[ Will, (8.51)
which means ~ s
||g(t+0797h)Ws||_B/2 < C3||Ws||gp~ (8.52)
This yields the bound
1TV _gjs < CollWall + (Ca+ GV [IVIL 55+ 10 - ] (8.53)
Let Vi € BC_5,,([0,00),£7) and V2 € BC_; ,([0,00),¢7) with [[Vi]|_5,, <1 and [[Va|_g5,, < 1.

Again, we write

dM = M‘Z(e,t,vl(t))—Mi(e,t,vz(t)). (8.54)

Using Lemma 8.3 it follows that

laMly < Ca| IVl + Vellgs + 10 = 01| 1V2 = Vol (8.55)
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Mimicking the above computations, this yields

ITWo Vi) = (W Va)ll_gje < (Ca+Cs)[IVAll_g o+ IVRll_g o + 16— 81| Vi = Vall_g o

(8.56)
We now fix
6 = min{l,M} (8.57)
and
n = min{gedey 105 ) (8.58)

For each V' € BC_j,([0,00),£7), Vi € BC_z,([0,00),¢F) and V> € BC_5,,([0,00), ") with
IVI_g/2 <6, IVill_5,o < 6 and [[V2]|_5,, < 0, each § € R with |§ — 6] < n and each W, € (*

with ||[Ws]|,» < 1, we now obtain

~ < 9 1.1
ITWaV)ll g < §+0[4+1] (5.59)
<
and
ITWo Vi) = TWe, Vo)l < [543 +3]IVi=Vall g0 (8.60)
Hence we see that the equation (8.35) has a unique solution Wf;a(WS). "

Lemma 8.7. Assume that (HP1),(HP2), (HS), (Hal) and (Ha?2) are satisfied. For each W, €
Range(HfL(§)> with |Will,, < 1 and each |0 — 0] < n we have Hi(é)Wf;a(Ws)(O) = Ws and
HHZ(@)WE;Q(WQ)(O)H” < C’6||VVS||Z, for some constant Cs > 0, which is independent of p and 6,

but may depend on h.

Proof. Tt is clear that
_|_

(8.61)
+

This allows us to compute

I, (O)W2,(W:)(0) = TI;,(0)G(6. 6. )W,
HIT5,0) fy G0t + 0, I)TE; (to + B) M (6,0, WY, (W) (to) ) dto
+IT3 (0) [0 £(B, 1o + 0, R)TIS (1o + O) M (9, to, Wf;a(WS)(to))dtO
G (0)W, + [ TI(B)E(,to + 6, W)L (b + )M (6, to, W2 (W) (t0) ) o
Ws+0
= W,

(8.62)
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together with

I OW,(W)(0) = T5@)G.6, )W,
HII5(8) [y GO to + 0, T (o + B)MJ, (6 t0, W2, (W, ) (t0) ) dto
HIT5(0) [, €(6 to + 6, I)TI5 (to + B) MG (0, 10, WE o (W) (ko) ) dto

0+ 0+ [ TI5 ()0, to + 0, )T (to + ) MG (0, 10, W24 (W) (o) ) o

= [ &0, o + 0, )T (to + )M (9, to, Wf;e(Wg)(to))dto.

(8.63)
We assume without loss of generality that 7 is small enough to ensure

(Ca+ CoIWE(Wa)l_a [V Wl o +10 =81 < 3IWEG(WI_g0- (8.64)
Using (8.53), we obtain

0 c/h 5 c WYL j j 5
13 £t + 8, )5 (to + 0)ME, (6,10, WE (W) (ko) ) dtolls < Cs[IW20(Wo) g5 + 16— 8]
< 4CsCE|WL7
= Co|WilZ
(8.65)
This yields the desired estimate
I OYWE, (W)l < CollWill7o- (8.66)
| |
Exploiting Proposition 5.2, we pick C7 > 0 in such a way that
O]+ (@) ()] < Cre ] (8.67)
holds for all £ € R, decreasing B if necessary. We have
OV); = 37 3 (P (o + cnb), Vi) & (h + cp). (8.68)

Jo€Z

For notational compactness we write
sV = X(0)(V)® (h-+cpb). (8.69)

Lemma 8.8. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. Then there exists a
constant Cy > 0, independent of p, but possibly depending on h, such that for each 6 € R we have
the bound

1) (h-+0)[lp < Co. (8.70)
In addition, for each 6 € R and each sequence {£(j)} with ||&;]|, < 1, we have the bound
1(@,) (h-+EDln < Co. (8.71)
Proof. Note that for each k € Z we have
”(I);(h ’ Jral)H:Zp = Zjez @, (hj + 61)

(8.72)

.
h

3 ez 107 (g + b+ (01 = b)) P
o (

hj + 91 )|p
@5 (1 +(60 = 1) ) I

jGZ‘
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Hence we assume without loss of generality that |0;| < 1. We see with (8.67) that there is a constant
Cs > 0 such that

1@ (h - +c,01) Cyle= P+

IN

o zz

< Cs||€76~|h'|65|91‘||zp(z R)
. . 1
< Cgellonl He—ﬂp\h%”;l(zﬁ) (8.73)
< 2Csmax{l, ||€_B|h'|”zl(z,R)}
= CQ7
if we assume that B is small enough such that eB101l < ed < 2. A similar calculation yields

1(@,) (h-+E(Nlp < Cslle™ PO 4 gy
< C8||€7B|h'|63||zl(z,ﬂ§)
< Csel|le=Blml ler z.m) (8.74)
< 2Csmax{l, ||@_B|h'|”zl(z,R)}
== Cg.

n

Lemma 8.9. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. For V € (P and
01,02 € R with |63 — 01] < 1 we have the bounds

VIp < Cuol0r — 62|V, (8.75)

and
115 (0)II5, (02)V|,p < Crol61 — 62|V ] 0 (8.76)

for some constant C1g > 0 which does not depend on p, but may depend on h.

Proof. Writing

P o= X6 (IGe)V), (8.77)
we obtain
1Pl = 137 AZZ(‘I’E(hJ’O + cnth), (115, (02) V) j, )|

Jo€E
= M| 3 (@, (hjo + cnbr) — @, (hjo + cnba), (11} (02)V) )

SR o . (8.78)
< M7 (@) (hjo + enbh) — @y (hjo + cnb2)|[(11;(02)V) o |

Jo€EZ

< M7, (h-+epbr) — D (h - +cnba)l| 1T (02) V] o
< M0y = Oafllen(®y ) (B - +EC)) o T3 (62) V]

where each £(j) is in between ¢,6; and ¢j,0;. Thus we obtain with Lemma 8.4 and Lemma 8.8
L5, (00T (02)V [l pw - < 3 Colenl |01 — O2[[|(IL5 (02)V) |, Co

i Colenl|fr — 02]C5[[V ][, Co (8.79)
1C10/00 — 01|V | o

IN

IN
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for some constant Cyp > 0 which is independent of p.
Furthermore we can compute

GO0V = [1=105,00)] |1~ 1602 |V
V = TI5,(61)V — TI5,(62)V" + TG (00115 (62)V (3.80)
= —II5(01)V + 115 (02)V + 115, (61115, (62) V-

This allows us to estimate

[=TI5,(601)V + TI5(02) VI < [AG(01)(V) = A5 (02) (V)I[[®55 (01)]] o + IN(B2)[[|5; (61) — D55 (62) I
< Ol01 = 02|Col|V || o + Col62][601 — O2][[(@},) (h - +n( )2 [V [l 1o
< Colbh — 02|Co ||Vl + ColO2[161 — 02| Co || V]|,
< %C10|91 — 02| |V || 4o s
(8.81)
where each 7(j) is between cp6; and c¢;03. We thus obtain
(115 (0I5 (02) Ve < Chrolbr — 02|V |- (8.82)
n
Proof of Proposition 8.1. We set
Ulw,) = W2 (W,) (8.83)

for all 0 € R.

Fix § € R and pick # € R with |0 — 0] <  and pick W, € Range(II; (6)) with ||[W;]|,, < 7. By
unicity of the solution to (8.35) it follows that

UI(W) = W0 (WP) (8.84)

for some W? € Range(Hs( )) Since II§ (G)Wf;e(')(()) is the identity map on Range(Hi(é)), it
follows that

WP = TI;(0)ul (W;)(0). (8.85)
We now see ~
W) =W, = TG(0Ul(Ws)(0) - W,
= I (0)|US(W,)(0) — Wi | + 113 () Wy — W (5.56)
= TI;(O)1I5, (O)UL (W) (0) + W =TI, ()W, — W
= TI;(O)1T5,(O)U? (W) (0) — TI5, (O)1T;, (6) W
Lemma 8.9 hence implies
W2 =Wl < Cuold = 01Ul (W, )(0) ] + Crol6 — 61| W |
< Crold = 0| IWsllpw + CGIIWSIIZP} + Ciol0 — 0/ Wl o (8.87)
< C’11|§ - 9|||W9Hep-
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Now fix Wf € Range (Hz (é)) with ||Wf||€p < 7. Then we can compute

II5, (0)U2 (W) (0) — 5 (Ul (W)(0) = Ul(W,)(0) — W, — I (B)NV? (W0)

= W (WO)(0) = Wy = WP (WE)(0) + WE
= WO — W, + W, (W)(0) — W0 — W (W) (0) + W?.

s *;0

(8.88)
Writing )
Vio= Wl (W),
oo (8.89)
v, = Wi,
we can mimic the steps in (8.56) to obtain the estimate
IVi(0) = WO = Va(0) + Wil < Cua[IVll_gpo + IVall_gyo + 10 = 01]IV2 = V2l _g 590)

+Culd = 01 [IVAll_z 5 + IVall_3 ]

for some constant Cjo > 0, which is independent of p and 6. Without loss of generality we can
assume that 7 is small enough to ensure

012[\|V1||_3/2+\|V2||_B/2+|é—6\] < 3 (8.91)

An estimate similar to (8.56) therefore yields

Vi = Vall o < CaIW? = WEll+ CuafIVill g o+ IVall_z 0 + 16— 01] IV = Vall g5
+C2lf = O1[IVAl_g 2 + V2l
< CollWy = Wil + CallWs = WPllyy + 3IVi = Vall g
+Calf = 01 [IVAll g5 + V2l g 2]
< Cyl[Wo = Wil + CsCutl0 = 01 Wilo + 51V = Vall 35
+Ci2lf = 01 VAl g2 + V2l g 2],
(8.92)
and thus ) ~
Vi = Vall 5o < 2Cs| Wy = W +2C5C1a |0 — 0] Wi o)
8.93

+2C1/0 — 01 [IVall_g o + IVall_g.s)-

Exploiting (8.65), this yields

|ITL5, ()42 (W) (0) — T15, (YU (W) (0) ]

IN

Cll‘é — Ol Wil o+
Cua | IVall_g s + IVall o + 10 = 01| IV2 = Vall g
+Calf = 011Vl 2 + V2l g 2]

Cus [IWillgn + W21l + 18— 01] W, = W

IN

+C13ld = 01| Wall o + W2,
(8.94)
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for some constant C;3, which is independent of p and 6. [

We now expand upon the ideas developed in the second half of [20, Proposition 2.1] to foliate the
state space surrounding the travelling pulses Uj, (- + 5) by the stable manifolds constructed above.
We proceed by showing that these stable manifolds depend continuously on 6. This allows us to set
up an appropriate fixed point problem to establish Proposition 8.2.

We write ) ) i
Un(0) = UL0)— 6T, (0)+ N (8.95)

Lemma 8.10. Assume that (HP1),(HP2), (HS), (Hal) and (Ha?2) are satisfied. Then we have the
bounds

IN?llpe < Cuaf? (8.96)
and i i i o ]
INT2 =Nl < Cus(16a] + 182))161 — Bl (8.97)

for 5, él,ég € [-n,n] and for some constants C14 > 0 and C15 > 0, which do not depend on p, but
may depend on h.

Proof. Using Proposition 5.2 we see that there exists a sequence {¢;} with |¢;] < |6] such that

IVl = 3IHO2T5 () Hl o
< %C7§2H{efﬁlhj+c;b5jl}||p
< Lopf2ePlendl||{e= Ry (8.98)
< Crf?|{eAInilY,
= O146?,

where C14 does not depend on p as before. We can hence write

Un@) = T0) - §0,(0) + NY (8.99)
with ~ )
Ml < Craf®. (8.100)

Furthermore, using Proposition 5.2, we see that we can find sequences {{;} and {n;} with ¢;
between hj + cx01 and hj + c,02 and 7; between hj and hj + c;0; so that

T2 =Nl = T4 (61) +6:T,(0) = Tn(82) = 62T, (0)
< 1 = B PIHTEN o + 101 = 02T (0) = T (01) oo (s.101)
< 101 = ol I{TR(E) How + 101 = o162 14T ()} o
< Ci5(|61] +162])]61 — 6o,
similarly to the calculations from Lemma 8.3, where |&;| < |02 — 61| and |n;| < |61]. L]
We write ) ) 3 3
NIW) = Ul (0)w)(0) — 15 ()W (8.102)

for W € Range(II} (0)) with ||TI5(§)W||,, < n. We note that Lemma 8.4 implies that this inequality
holds if || W], < 2.
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Lemma 8.11. Assume that (HP1),(HP2), (HS), (Hal) and (Ha?2) are satisfied. Recall the constants
Cs and Cy3 appearing in Proposition 8.1 and Lemma 8.4. Then for any 0 € [—n,n] and W €

Range (HZ(O)) with (W, < & we have the bound

INEW) e < CollVI[Z- (8.103)

In addition, for any 01,0y € [—n,1] and Wy, W, € Range(Hzl(O)) with Wil < & and [[Wa[, <

o
oy we have

ING2(Wa) = NG* (W)l < Chs [||W1||ep + [[Wallgp + (61 — 92@ W1 = Wall

(8.104)
+Cialfs = [ Wil + [ Wal o]
Proof. Note that o

IL;, (NG (W) = 0, (8.105)

so that _ - . ~
M) = T @US)(0) ~ TG (0T ()W 5106

= T (O)UL(W)(0).

Therefore both bounds follow from Proposition 8.1. m

Let 0 > 0 be a small constant, which we will determine later. Pick U % in such a way that
(U —URO)||,p < 0. We write U = U (0) + V.

Our goal is to find a small W € Range (HZ(O)) and a small 6 in such a way that
Vo4 TL0) = UnB) + UL (6)W)(0). (8.107)
Using our notation from above we see that
Un(0) + VLA, 0)W)(0) = Tn(f) +10;,0)W + N7 (W)
= Tn(0) +60,(0) + N + I3 ()W + NZ(W) (8.108)
= Up(0) + 00, (0) + N? + W — II; ()W + NF (W),
which means that (8.107) can be written as
VO = GU,0) + N + W —TI5 ()W + N (W) (8.109)

We write A§ : Range(IIf (0)) — R for the map /,LU,h — . This allow us to rephrase (8.109) as
the fixed point problem

MOV =M + W — 015 (0)(W) + I1;,(0) (NF (W) 110
X [ OVO] =0+ 5[5, 0NF | = o5 [0 m @) )] + x5 [m o) (M) |
We show that equation (8.110) has a solution in the space
Xiey = {V € Range(IT;(0)) : [V, < £} x [~20,20] (8.111)

for some k,e9 which we will determine later. Without loss of generality we assume that k,e9 are
small enough such that all previous inequalities hold.
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Lemma 8.12. Assume that (HP1),(HP2), (HS), (Hal) and (Ha2) are satisfied. There are small
constants § > 0 k > 0 and €9 > 0, independent of p, but not necessarily of h, such that for each
VO e with [|[V°]|,, <6 (8.110) has a unique solution (W,0) € X, .,. Moreover there is a constant
Clg > 0 such that we have the bound

Wil < CiolVOlp- (8.112)

Proof. We show that the map

o [ THOVO S THOA S IGOIGEW) — 10 EW) ~
’ X5 [T (0)V | = 3 [ L5, 00| + 5 [ I3, ()15, () (W) | = ;[ 115, 0) (WE (W)
(8.113)
maps X, ., into X, ., and is a contraction. Recall the constant C; from (8.3). Note that
II;, (0)IL5, () (W) - = L5 (0)(W) — LI ()11, () (W) (8.114)
= (0 (6)(W)
We see, using Lemma 8.9, Lemma 8.10 and Lemma 8.11, and setting
Cig = O 3 e Al (8.115)
JEL
that
ITW.0) Ol < (14 Cro)[VO =AY = N (W)l + Caoll[W s
< @400Vl +Craf? + ColWIE) + CroldlI W (8.116)
< Cur[IIVOll + 8+ IW I, + 101IW s
and . L ) 5
(W, 9)(2)| < Cis(IV |l o +C140 +CeH‘I/‘J/Vl[\fp)+(1+016)Cm|9||\W||ep
. ) . (8.117)
< Cur[IVOl + 8+ IWIG, + 101IW s
for some constant C17 > 0, which is independent of p. Note that
105 (B2) (W) — 115, (61) (W) = TI5,(B2) W — TI5,(61) W + T15,(61) (W — Wa)
= TI5(G2) Wo — TI¢ (81) Wa + TT5. (6, ) (W — W) — TI5 (0) (W — Wa).
(8.118)

Using Lemma 8.9, (8.81), Lemma 8.10 and Lemma 8.11 we obtain

IT(W, 00D = T(Wa, 0) DVl < (1+ Cro) (JIWF* = N o+ T (02) (W) — 115, (61) (W)
N2 (W) = N (W), )

< (Ut Cuo) (Cus(1fn] + 162])102 —
+C10|01 — ba]|[Wal| + Cuol 61| W1 — Wal|
+C13 [ [Willgn + [Wal o + 101 = 8ol | | W2 = Wal
+Caalfy = 8] Wil + W2l ])
< Cus[181] + 1ol + (Wil + 1 Wall ] 162 = 82l + W2 = Wal,,]

(8.119)
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together with

016\|N52f/vfl+Hz(éz><w2>fn‘z<éll><wl>+/v§2<W2>7N§1<W1>||zp

M

Cs [101] + 102 + (Wil g + [Wall ] 101 = ol + W1 = Wa
(8.120)

for some constant Cig > 0, which is independent of p. First we let 0 < Kpax < 1 and 0 < Oppax < 1

be constants such that all inequalities above hold for all |k| < Kpax and all 0] < Opax. In particular,

we demand that Kmax < 7, Kmax < Cis and Opax < 7). Finally we write

|T(W1,61)® — T(Wa,02)@|

IN

IN

§ = & = e = 55 m0{Amax;Omax, g gg )t > 0. (8.121)

With these choices we obtain the estimate

ITW, 0Ol < Cur[IVOllgn + 8+ WG +1811W ]
< gkt gkt a5kt 35k (8.122)
< %Ii.
Furthermore we see that }
IT(W,0)®| < Lleg. (8.123)

Hence we see that the map 7" indeed maps X, ., into X, ,.

In addition, (8.119) implies

IT(Wa,80)® = T(Wa, 02) Ol < Cas[|B1] + 182l + (Wil + 1Walls | 181 = O] + W1 = Wal,
< 01— Os] + oWy — Wallp,
(8.124)
while (8.120) yields
IT(W1,00)® — T(Wa,02)P| < 5101 — Oa] + o ||[ W1 — Wal,0. (8.125)

Therefore the map 7' is a contraction and thus the fixed point problem (8.110) has a unique solution
(W,0). Moreover we see that

H(I/V)é)HZPXR = ”T(VVa é) _T(O’O)||€P><R+ ||T(O7O)||ZP><]R (8 126)
< S0l + 20170 VO
which yields
W, ur < 4C17|VO,
(W, 0)lgo e 7 [VEl, (8.127)
= CulVl,
as desired. (]
Proof of Proposition 8.2. If (W, ) satisfies (8.110) then we see from (8.108) that
Ul = Uh(()) + V0
o (8.128)
= Un(0) +U?(W)(0),
as desired. -
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Proof of Theorem 2.3. Let U be the solution of (2.1) with an initial condition U(0) = U° for which

|U® —Ux(0)||,» < d. By Proposition 8.2 and by uniqueness of the solution we see that
U = Tnld)+Us(w) (8.129)
for some small € R and W € ¢* with
Wle < CiollU° = Tn(0)ll- (8.130)

Hence we obtain

_ ~ _ﬁ. ~ c ~.
U@ =Tt +0), < e 21Ul (@) s,
< 2Cqe 5H[TIE (B) (W),
o 1715 () (W), @151)
< 203675t016“W”2p
< 205016C10|[U° — T (0) | e 2,
as desired. ]
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9 Discussion

In this paper, we considered the discrete FitzHugh-Nagumo equation

;= 75 Y ap[ujpr + e — 2ui] + g(uy) —w
' k>0 (9.1)
w; = pluy —ywj]

posed on the one-dimensional lattice with j € Z and where the cubic nonlinearity g is given by
g(u) = u(l — u)(u — r9) and where we allowed infinitely many of the coefficients {ay}r>o to be
non-zero. We were interested in finding travelling pulse solutions of the form U;(t) = V (hj + ct) for
certain wavespeed ¢ which satisfy the conditions that lim V(£) = 0 for the variable £ = hj + ct.

&|l—o00
In §4 we showed the existence of these travelling pulse ‘S(‘)lutions. In §6 we analyzed the spectrum of
the linearisation of our problem around the travelling pulse solution and proved that in a suitable
halfplane it consisted solely of the points k27i%> for k € Z, which are all simple eigenvalues. Finally,
in §8 we used Green’s functions to establish the nonlinear stability of our travelling pulse solutions.

When lifting the method from [1] to the system case in §3, it turned out that when controlling
the various cross terms, we were aided by the relative simplicity of the equation for w, since it has
constant coefficients. When generalizing this method to an even larger class of systems where this is
not the case, it might turn out that additional techniques will be required to control these cross terms.

Although most of our results in §6 and earlier are uniform in A, this is not the case for our main
nonlinear stability result. Indeed, the constants appearing in the statement of Theorem 2.3 could
in principle blow up or shrink to zero as h | 0. We do not believe that this is the case, but chose
to not fully pursue the matter in this paper. We are confident that Lemma 5.7 can be stated in
an h-independent fashion, but this requires delicate and involved estimates. In principle, this would
allow the exponents appearing in §7 to be chosen independently of h. However, the constants in [3,
Prop. 3.3] and [3, Lemma 4.3], results we apply multiple times, cannot be chosen independently of h.
In particular, using the notation from [3, Prop. 3.3], there is no constant K for which |£(s)+1I| < K
holds for all small A > 0. This is caused by the factor % appearing in our differential equation. In
addition, the integration path in (7.26) becomes unbounded as h | 0.

The methods used to prove our results circumvent the need to use a statespace as in [20], where
C(I;R?) was used with I = [—1,1]. In the infinite-range case considered here, one would be forced
to take I = R, which leads to many technical difficulties. For example, the Arzela-Ascoli theorem
no longer holds. Nevertheless, it would be convenient to have exponential dichotomies and tools like
Lin’s method for the general setting in this paper.

89



References

[1] P.W. Bates, X. Chen and A.J.J. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM
J. Math. Anal. 35 (2003), 520-546.

[2] S. Benzoni-Gavage, P. Huot and F. Rousset, Nonlinear Stability of Semidiscrete Shock Waves,
SIAM J. Math. Anal. 35 (2003), 639-707

[3] J.M. Bos, Fredholm eigenschappen van systemen met interactie over een oneindig bereik, Bach-
elor thesis, Leiden University, 2015 (in Dutch).

[4] P.C. Bressloff, Spatiotemporal dynamics of continuum neural fields, Journal of Physics A: Math-
ematical and Theoretical 45.3 (2011): 033001.

[5] P.C. Bressloff, Waves in Neural Media: From single Neurons to Neural Fields, Lecture notes on
mathematical modeling in the life sciences, Springer, 2014

[6] P.C. Bressloff, Spatiotemporal dynamics of continuum neural fields, Journal of Physics A: Math-
ematical and Theoretical 45 (2012)

[7] J.W. Cahn, Theory of Crystal Growth and Interface Motion in Crystalline Materials, Acta Met.
8 (1960), 554-562

[8] G. Carpenter, A Geometric Approach to Singular Perturbation Problems with Applications to
Nerve Impulse Equations, J. Diff. Eq. 23 (1977), 335-367

[9] P. Carter and B. Sandstede, Fast Pulses with Oscillatory Tails in the FitzHugh-Nagumo System,
SIAM J. Math. Anal., 47 (2015), 3393-3441

[10] P. Carter, B. de Rijk and B. Sandstede, Stability of Traveling Pulses with Oscillatory Tails in
the FitzHugh-Nagumo System, Journal of Nonlinear Science 26 (2016), 1369-1444

[11] 0. Ciaurri, L. Roncal, P.R. Stinga, J.L. Torrea and J.L. Varona, Fractional discrete Laplacian
versus discretized fractional Laplacian, arXiv:1507.04986 [math.AP] (2015)

[12] F. Ciuchi, A. Mazzulla, N. Scaramuzza, E.K. Lenzi and L.R. Evangelista, Fractional Diffusion
Equation and the Electrical Impedance: Experimental Evidence in Liquid-Crystalline Cells, The
Journal of Physical Chemistry C 116 (2012), 8773-8777.

[13] J.W. Evans, Nerve axon equations: III. Stability of the nerve impulse. Indiana Univ. Math. J.
22 (1972), 577-593

[14] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Bio-
physical J. 1 (1961), 445-466

[15] R. FitzHugh, Mathematical models of excitation and propagation in nerve, Publisher Unknown,
1966

[16] R. Fitzhugh, Motion picture of nerve impulse propagation using computer animation, Journal
of applied physiology 25.5 (1968): 628-630

[17] Q. Gu, E.A. Schiff, S. Grebner, F. Wang and R. Schwarz, Non-Gaussian transport measurements
and the Einstein relation in amorphous silicon, Physical review letters 76 (1996), 3196

[18] S. Hastings, On Travelling Wave Solutions of the Hodgkin-Huxley Equations, Arch. Rat. Mech.
Anal. 60, 229-257, 1976

[19] A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its appli-
cation to conduction and excitation in nerve, J. Physiol. 117 (1952), 500.

90



[20] H.J. Hupkes and B. Sandstede, Stability of Pulse Solutions for the Discrete FitzHugh-Nagumo
System, AMS 365 (2013), 251-301

[21] H.J. Hupkes and B. Sandstede, Travelling Pulses for the Discrete FitzHugh-Nagumo System,
SIAM Journal on Applied Dynamical Systems 9 (2010), 827-882

[22] H.J. Hupkes and S.M. Verduyn Lunel, Lin’s Method and Homoclinic Bifurcations for Functional
Differential Equations of Mixed Type, Indiana University Mathematics Journal 58 (2009), 2433-
2488

[23] H.J. Hupkes and E.S. van Vleck, Travelling Waves for Complete Discretizations of Reaction
Diffusion Systems, Journal of Dynamics and Differential Equations, 28.3-4 (2016), 955-1006

[24] C. Jones, N. Kopell and R. Langer, Construction of the FitzHugh-Nagumo Pulse using Dif-
ferential Forms In: H. Swinney, G. Aris, and D. G. Aronson (eds.): Patterns and Dynamics in
Reactive Media, Vol. 37 of IMA Volumes in Mathematics and its Applications, Springer, New
York, pp. 101-116, 1991.

[25] C. Jones, Geometric singular perturbation theory, C.I1.M.E. Lectures, Montecatini Terme. Lec-
ture Notes in Mathematics 1609, Springer, Heidelberg, 1995

[26] C. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system, Transactions
of the American Mathematical Society 286 (1984), 431-469

[27] A. Kaminaga, V.K. Vanag, I.R. Epstein, A Reaction-Diffusion Memory Device, Angewandte
Chemie International Edition 45 (2006), 3087-3089

[28] T. Kapitula and K. Promislow, Spectral and Dynamical Stability of Nonlinear Waves, Springer
New York, 2013

[29] J. Keener and J. Sneyd, Mathematical Physiology, Springer-Verlag, New York, 1998

[30] M. Krupa, B. Sandstede and P. Szmolyan, Fast and Slow Waves in the FitzHugh-Nagumo
Equation, Journal of Dynamics and Differential Equations 1 (1997), 49-97

[31] R.S. Lillie, Factors Affecting Transmission and Recovery in the Passive Iron Nerve Model, J. of
General Physiology 7 (1925), 473-507

[32] J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type,
Journal of Dynamics and Differential Equations 11 (1999), 1-47

[33] M. Or-Guil, M. Bode, C.P. Schenk and H.G. Purwins , Spot Bifurcations in Three-Component
Reaction-Diffusion Systems: The Onset of Propagation, Physical Review E 57 (1998), 6432.

[34] D.J. Pinto and G.B. Ermentrout, Spatially structured activity in synaptically coupled neuronal
networks: 1. Traveling fronts and pulses, SIAM J. of Appl. Math. 62 (2001), 206-225

[35] L.A. Ranvier , Lécons sur I’Histologie du Systéme Nerveux, par M. L. Ranvier, recueillies par
M. Ed. Weber. F. Savy, Paris, 1878

[36] N. Sabourova, Real and Complex Operator Norms, Licentiate thesis, Lulea University of Tech-
nology, 2007.

[37] A. Scheel and G. Faye, Fredholm properties of nonlocal differential operators via spectral flow,
Indiana University Mathematics Journal 63 (2014), 1311-1348

[38] A. Scheel and G. Faye, Center manifolds without a phase space, arXiv preprint arXiv:1611.07487
(2016)

91



[39] A. Scheel and G. Faye, Existence of pulses in excitable media with nonlocal coupling, Advances
in Mathematics 270 (2015), 400-456

[40] C.P. Schenk, M. Or-Guil, M. Bode and H. G. Purwins, Interacting Pulses in Three-component
Reaction-Diffusion Systems on Two-Dimensional Domains. Physical Review Letters 78 (1997),
3781.

[41] J. Sneyd, Tutorials in Mathematical Biosciences II, Lecture Notes in Mathematics, chapter
Mathematical Modeling of Calcium Dynamics and Signal Transduction, Volume 187, Berlin
Heidelberg, New York: Springer, 2005

[42] P.van Heijster and B. Sandstede, Bifurcations to Travelling Planar Spots in a Three-Component
FitzHugh-Nagumo system Physica D 275 (2014), 19-34

[43] A. Vainchtein and E. S. Van Vleck, Nucleation and Propagation of Phase Mixtures in a Bistable
Chain, Phys. Rev. B 79 (2009), 144123

[44] E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo equations, J.
Math. Biology 22 (1985), 81-104

92



