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Abstract

The existence of fast travelling pulses of the discrete FitzHugh—Nagumo equation is obtained in the weak-
recovery regime. This result extends to the spatially discrete setting the well-known theorem that states that
the FitzHugh—Nagumo PDE exhibits a branch of fast waves that bifurcates from a singular pulse solution.
The key technical result that allows for the extension to the discrete case is the Exchange Lemma that we
establish here for functional differential equations of mixed type.
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1 Introduction

In this paper we consider the discrete FitzHugh—Nagumo equation

Wi(t) = afuiri(t) +uim1(t) = 2ui(t)] + g (i) —wilt), (1.1)

wi(t) = e(ui(t) —ywi(t)), )
where u;, w; € R for each ¢ € Z. The nonlinearity g is taken from a class of bistable nonlinearities
that includes the cubic polynomial g(u;a) = u(l — u)(u — a) for some 0 < a < 1. We consider
arbitrary positive coupling coefficients a > 0, take 0 < € < 1 to be small, and assume that v > 0 is
not too large so that {(u;, w;)}iez = (0,0) is the only i-independent rest state of (1.1); this requires
that g(yw) # w for all w # 0.

Our primary reason for looking at the spatially discrete FitzHugh—-Nagumo equation is its rele-
vance in modelling. For example, when studying the propagation of electrical signals through nerve
fibers, it turns out to be more natural to study the discrete system (1.1) instead of its continuous
counterpart that is traditionally used for this purpose. This is related to the fact that a nerve axon
is almost entirely surrounded by an insulating myeline coating that admits small gaps at regular
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intervals. These nodes were first observed in 1878 by Ranvier [42] and now carry his name. The insu-
lation induced by the myeline causes excitations of the nerve at these nodes of Ranvier to effectively
jump from one node to the next, through a process called saltatory conduction. This mechanism
was first suggested in 1925 by Lillie [37] and demonstrated convincingly in 1949 by Huxley and
Stampfli [29]. Other discrete lattice models have appeared in a wide range of scientific disciplines,
including chemical reaction theory [19, 36], material science [2, 5] and image processing and pattern
recognition [13].
Our goal is to show that (1.1) admits travelling pulse solutions

(ui,wi)(t) = (u*, ’LU*)(Z + Ct)

for some positive wave speed ¢ > 0, where the profiles (u.,w,) are localized so that (u.,w.)(§) — 0
as £ — £oo. Substituting our ansatz into (1.1), we see that these profiles must satisfy the system

cul(§) = afu (§+1) +ud(§—1) = 2u(§)] + g(u*(ﬁ)) —w(§), (1 2)
Wl®) = e(un() - . (6)) '

Such equations are referred to as functional differential equations of mixed type (MFDEs), since
they contain both advanced and retarded terms. This class of equations is notoriously difficult to
analyse.

Previous work on the discrete FitzHugh—Nagumo equation and variants thereof can be split into
two main directions. On the one hand, rigorous results have been obtained for specially tailored
nonlinearities g. Tonnelier [45] and Elmer and Van Vleck [18], for example, considered the McKean
sawtooth caricature of the cubic, while Chen and Hastings [10] studied a discrete Morris—Lecar type
system with a nonlinearity that vanishes identically on certain critical regions of u and w. On the
other hand, using asymptotic techniques, formal results have been obtained for (1.1) by Carpio and
coworkers [7-9]. We are, however, not aware of any rigorous results for (1.1) that hold for the cubic
polynomial or more general bistable nonlinearities, and it is this issue that we shall address in this
paper. Before outlining our result in more detail, we briefly discuss the spatially continuous case, for
which a large body of literature exists.

1.1 Travelling waves for the FitzHugh—Nagumo PDE

Let us therefore consider the spatially continuous FitzHugh—-Nagumo system

wy = €elu—yw),

where x € R. This partial differential equation (PDE) plays an important role as a tractable simpli-
fication of the Hodgkin—Huxley equations that are widely used to model the propagation of signals
through myelinated nerve fibers [25]. As a consequence, (1.3) has been analysed extensively in the
literature. A large portion of the results that have been obtained concern travelling-wave solutions to
(1.3), that is, solutions of the form (u,w)(z,t) = (u,w)(z + ct) that depend on the single argument
& = x + ct. Such solutions must satisfy the ordinary differential equation (ODE)

/

o= v,
o= ev—g(u)+w, (1.4)
w = S(u—yw).

For simplicity, we take g to be the cubic nonlinearity g(u;a) = (1 — u)(u — a). Note that the origin
po = (0,0,0) is an equilibrium for (1.4) regardless of the precise values of a, ¢ and e. Finding travelling
pulses of (1.3) then amounts to constructing homoclinic orbits for (1.4) that are bi-asymptotic to
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Fig. 1: Phase diagram for the travelling-wave equation (1.4) of the FitzHugh—Nagumo PDE.

In the regime 0 < € < 1, this question can be answered using geometric singular perturbation
theory. We will now outline this approach and refer to Figure 1 for an illustration. First, we set ¢ = 0
in (1.4) to get the system

u v,
vo= o —g(u)+w, (1.5)
w = 0,

which admits a manifold M of equilibria that consists of all points (u,0,w) that have w = g(u).
Obviously, this manifold contains the points pg and p; = (1,0, 0). One can now choose a neighborhood
M, C M around pg together with a neighborhood Mpr C M around p;. If these neighborhoods do
not contain the knees of the cubic polynomial, they are normally hyperbolic invariant manifolds that
hence persist as locally invariant sets for small € > 0 as a consequence of Fenichel’s first theorem [20].
It is well-known that, for each fixed 0 < a < %, there exists a heteroclinic solution Q¢ = (qf, q}, 0)
to (1.5) that connects py to p; and has wave speed ¢ = ¢, for some ¢, > 0: indeed, these solutions
correspond to travelling fronts of the Nagumo equation

Ut = Uy + g(u). (1.6)

In addition, for any such a there exists a w, > 0 such that (1.4) with e = 0 and ¢ = ¢, admits
a heteroclinic solution Q, = (g», ¢}, w«) that connects Mpr to M. We can now write I's for the
singular orbit that arises by combining these orbits with the segments of Mg and M that connect
w = 0 to w = w,. The superscript fs is used in view of the fact that we are considering fast waves
with speed ¢, > 0. The following well-known result is the ODE analogue of the result we set out to
obtain for the functional differential equation (1.2).

Proposition 1.1 Consider (1.4) with the cubic nonlinearity g = g(-;a) for any fired 0 < a < %,
then there exists a unique curve in the (e, c)-plane emanating from the point (0, c.) that consists of
homoclinic solutions to (1.4) that are bi-asymptotic to 0, while being O(e)-close to T and winding
around T ezactly once.

The first proofs establishing the existence of the branch of homoclinics described in the result
above are due to Carpenter [6] and Hastings [24], who obtained their results independently using
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Fig. 2: [llustration of the geometric setting of the Fxchange Lemma.

classical singular perturbation theory [6] and the Conley index [24]. A more streamlined proof of
Proposition 1.1 that also gives transversality and local uniqueness is based on a geometrical con-
struction developed by Jones and coworkers [33]. The idea is to construct the desired homoclinic
orbits as an intersection of the unstable manifold W*(0) and the stable manifold W*¥(My). The
main difficulty is to track the unstable manifold W*(0) as it passes close to Mg, since it spends
time of order O(e~1) here. The tool developed in [33] to deal with this tracking is referred to as the
Exchange Lemma. We refer to Figure 2 for an illustration of the geometric setting of this result,
which we describe here briefly.

The statement of the Exchange Lemma can be explained most easily in terms of the Fenichel
normal form [20, 32]: in a neighborhood of Mg, the ODE (1.4) can be put into the form

' = _As(x7y’ Z)x7
y = A(x,y,2)y, (1.7)
2 = €l + B(z,y,2)zyl,

where the new coordinates x, y and z are real-valued, the functions A*, A* and B are smooth, and
A® and A" are bounded from below by some constant i > 0. The Exchange Lemma then states that
(1.7) has, for each zg € R, each sufficiently large T" and each sufficiently small ¢ > 0 and A > 0, a
solution that satisfies the boundary conditions z(0) = A, z(0) = zy and y(T') = A. Furthermore,
the norms |y(0)|, |z(T)| and |2(T) — 2o — €T| and their derivatives with respect to T, €, zp and any
other parameters that may appear in the problem are of order e~ as T — oc.

Instead of attempting to analyse the intersection of W*(0) with W*(Mg) directly, one can now
decouple the problem for large T and study separately how W*(0) and W#*(M ) behave near x = A
and y = A, respectively, which are far easier to analyse and lead to a two-dimensional nonlinear
system that involves the three variables e, ¢ and T [35]. This system can be solved to yield the
branch of homoclinic orbits described in Proposition 1.1.

A great deal more is known about (1.4). For example, the PDE stability of the resulting fast
travelling pulses was proved independently by Jones [30] and Yanagida [46]. It is also known that
there is a second slow travelling wave that exists, for fixed 0 < a < %, in the limit ¢ — 0 and ¢/¢ — 0.
The resulting singular homoclinic orbit 1"31 for e = €/c = 0 is actually a regular homoclinic orbit to
the origin that lives in the plane w = 0. Since I'jl does not contain any segments of M, and Mg,
perturbations are easier to analyse and one may show that a branch of slow homoclinic solutions
can be constructed near I'jl for small ¢ > 0 and € > 0 [44].

A conjecture due to Yanagida [46] states that these branches of fast and slow waves connect to
each other. At the moment, this has only been confirmed for a near the critical point a = %7 where
the two singular orbits T'f and T§! coalesce [35]. We remark that [35] also contains a proof that,



somewhere along this connecting curve, the homoclinic orbits undergo an inclination-flip bifurcation.
The presence of such a bifurcation makes it very likely to find homoclinic solutions that wind around
the singular orbit an arbitrary number of times. To establish this rigorously, a specific non-degeneracy
condition needs to be verified. At the moment, this is only feasible when considering orbits that have
winding number two, in which case a result due to Nii [41] can be invoked.

1.2 The discrete Nagumo equation

The construction of fast pulses of the continuous FitzZHugh—Nagumo equation relied on gluing trav-
elling fronts and backs of appropriate Nagumo equations (1.6) together. Thus, it is natural to start
our discussion of the discrete FitzHugh—Nagumo system by summarizing a few key features of the
discrete Nagumo equation

i(t) = ofuipr(t) + uim1(t) — 2ui(t)] + g(ui(t); a) (1.8)

with g(u; a) = w(l—wu)(u—a). Travelling waves u;(t) = u.(i+ct) of (1.8) satisfy the scalar functional
differential equation

et (§) = afu. (€ + 1) + ua(§ — 1) = 2u(§)] + g(us(€); a) (1.9)

of mixed type. The first numerical study of travelling fronts of (1.1) was conducted by Chi, Bell and
Hassard [11]. Since that early paper, the discrete Nagumo equation and the associated travelling-wave
MFDE (1.9) have served as prototype systems for investigating the properties of lattice differential
equations.

In contrast to the continuous case where travelling fronts with positive wave speeds exist for
each 0 < a < %, the discrete Nagumo equation may not support travelling fronts for each such a.
The reason is that the limit ¢ — 0 in (1.9) is highly singular. Indeed, the limiting system is a map
which may admit transverse heteroclinic orbits that preclude the existence of travelling fronts. More
precisely, the combined results of Keener [34] and Mallet-Paret [39, Theorem 2.6] give the following:
for each sufficiently small a > 0, there exists an 0 < ag < % such that, for each a € [ag, %], heteroclinic
solutions to (1.9) that connect the two equilibria v = 0 and u = 1 exist if and only if ¢ = 0. This
feature is called propagation failure and distinguishes (1.8) from its continuous counterpart (1.6).
By now there is an abundance of numerical evidence showing that this phenomenon may occur in
an extremely robust fashion throughout a wide range of discrete systems [1, 15-17]. One implication
of this feature for the present work is that we need to assume that a does not lie inside the region
of propagation failure for the discrete Nagumo equation.

We remark that propagation failure in the underlying discrete Nagumo equation is the reason
why slow waves do not exist for the discrete FitzHugh-Nagumo equation in the same way as they
do for the continuous case. Hence, we focus on fast waves in this paper.

1.3 Travelling waves for the discrete FitzHugh—Nagumo system

We now turn to the travelling-wave equation (1.2),

caw'(€) = e(u(€) —rw(9), '

associated with the discrete FitzHugh—-Nagumo equation (1.1). Our goal is to find an appropriate
value of ¢ > 0 and construct solutions (u,w)(&) of this MEDE for 0 < e < 1 that converge to zero
as |¢] — oo.

Similar to the case of delay equations, the state space associated with (1.10) will necessarily be
infinite-dimensional, and we will consequently work with (u,w) € Y = C([-1,1],R) x R in this
paper. In contrast to the case of delay equations, however, the initial-value problem associated with



(1.10) on the space Y is ill-posed’ due to the presence of both advanced and retarded terms. This
issue prevents us from using the semigroup techniques developed for retarded differential equations
[14]. An alternative strategy is to utilize Fredholm properties and exponential dichotomies, which
were developed for MFDEs by Mallet-Paret [38], Verduyn Lunel [40] and Hérterich, Sandstede and
Scheel [23]. This approach was recently used successfully by Hupkes and Verduyn Lunel to extend
Lin’s method to MFDEs [27].

The key complication that needs to be overcome before homoclinic solutions to (1.10) can be
constructed in the singular limit ¢ — 0, is that geometric singular perturbation theory is not readily
available for MFDEs. Indeed, this theory relies heavily on the existence of semiflows which, as we
outlined above, do not exist in our MFDE setting. For instance, almost all proofs of Fenichel’s first
theorem [20] about the persistence of normally hyperbolic slow manifolds are based on Hadamard’s
graph transform technique [21].

The approach that we use in this paper to resolve these issues is based on a combination of
the ideas contained in [26, 27, 35, 43]. First, the work of Sakamoto [43] uses analytic techniques to
establish Fenichel’s first theorem for ODEs through a systematic use of the concept of slowly varying
coefficients. Combining this approach with our recent results [26] concerning linear MFDESs that have
slowly varying coefficients we construct one-dimensional slow manifolds My, and Mg for (1.10) that
persist for small € > 0. To prove an appropriate version of the Exchange Lemma, we exploit the ideas
in [35] in which an analytic proof was given that is based on Lin’s method. The key feature of this
approach is that, unlike earlier proofs using differential forms [31] or boundary-value techniques [4],
the construction of the stable and unstable fibers of Mg can be done globally, thereby allowing us
to immediately reduce the existence problem to a finite set of nonlinear equations, similar to those
that we need to solve. Borrowing the techniques used in [27] to generalize Lin’s method to MFDEs
and again applying the slowly-varying coefficient framework developed in [26], we can imitate this
construction in the current setting.

While we concentrate in this paper on the concrete discrete FitzHugh-Nagumo equation, we
believe that our techniques can be used in a much wider context than in just the construction of
pulses for the specific system (1.1). For example, we expect that after some minor adaptations it
should be possible to study travelling multi-pulse solutions or long-period wave train solutions to
general MFDESs in which a slow time-scale can be identified. In addition, we currently use our singular
perturbation framework to assess the stability of the fast waves constructed here with respect to the
dynamics of the underlying lattice equation.

The rest of this paper is organized as follows. We state our main result in §2 and give a detailed
outline of the main steps that are need to prove this result in §3, while hiding most of the technical
details behind a sequence of propositions. The invariant slow manifolds My, (¢, €) and Mpg(c,€) are
constructed throughout §4. We then study the stable and unstable foliations of these slow manifolds
in §5 and develop a suitable version of the Exchange Lemma in §6. Section 7 contains a brief
discussion.

2 Main result

Recall that travelling waves of the discrete FitzHugh—Nagumo equation (1.1) can be found as solu-
tions of the system

c(€) = afu(€+1)+ul€—1)—2u()] +g(u§)) —w(©),
/ (2.1)
caw'(€) = e(u(§) —yw(9)).
Throughout this paper we will assume that o > 0 and v > 0. The prototype nonlinearity that we
have in mind is given by the cubic polynomial g = g(u;a) = u(l — u)(u — a) for some 0 < a < 1.
However, we will focus on a broader class of bistable nonlinearities in order to illustrate the generality

n general, given an initial condition in Y, we cannot solve (1.10) forward or backward in &.



U = yw

RSX SR

Fig. 3: Illustration of the assumptions on the nonlinearity g(u) and the constant .

of our approach. We therefore impose the following generic assumptions on the nonlinearity g, which
are also illustrated in Figure 3.

Hypothesis (H1) The nonlinearity g is C™+3-smooth for some integer r > 2.
Hypothesis (H2) We have g(0) = g(1) =0, ¢’(0) < 0 and ¢'(1) < 0.

On account of condition (H2), we may choose closed intervals I, and Ig, with 0 € I and
1 € Ig, that have non-empty interior and in addition have ¢'(u) < 0 for all uw € I, U Ir. We pick
constants Wiy < 0 and wyax > 0 in such a way that both wmin, Wmax € 9(Ir) Ng(Igr). The implicit
function theorem can now be used to define two C™t3-smooth functions 5y, : [Wimins Wmax] — I, and
SR ¢ [Wmin, Wmax] — Ig in such a way that

g(5L(w)) = g(5r(w)) =w

for all w € [Wmin, Wmax)- Notice that $1,(0) = 0 and Sg(0) = 1. Our next assumption roughly states
that —g is N-shaped, admitting precisely one extra solution to g(u) = w.

Hypothesis (H3) For any w € [Wmin, Wmax], there exists a p € (51(w), Sg(w)) such that g(p) = w.
In addition, we have

g(u) > w, u € (—o00,5.(w)) U (p,5p(w)),
g(u) <w, (NS (SL(w)ap) U (SR(w)a OO)
In order to ensure that (2.1) admits a suitable singular orbit, we will need to assume that this

equation with e = 0 admits a front and a back solution that propagate at the same wave speed.

Hypothesis (H4) There exist two constants ws € (0, Wmax) and c. > 0 such that (2.1) with e =0
and ¢ = ¢, admits two solutions (qr,0) and (g, w.) that satisfy the limits

lim ¢¢(§) = 0, lim ¢¢(§) = 1,
S o o0 o (2.2)
(i w(&) = 3Sr(w.), Jim (&) = sp(ws).

We remark here that [38, Proposition 5.3] in combination with the fact that ¢’(0) # 0, ¢’(1) # 0,
¢ (50(wy)) # 0 and ¢’ (3g(w.)) # 0 allows us to conclude that ¢y and g, approach their limits at
+oo at an exponential rate. Such an argument is made explicit in the proof of [39, Theorem 2.2].

In contrast to the setting of Proposition 1.1, the possibility of propagation failure prevents us
from obtaining results that hold for the cubic polynomial g(-;a) with arbitrary 0 < a < 3.
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Fig. 4: Panel (i) shows the graph of a given function u, while panel (ii) illustrates the associated function
eveu : [—1,1] — R for a fized &.

Lemma 2.1 Fiz any positive coupling coefficient o > 0, then the conditions (H1)-(H4) are satisfied
for the cubic nonlinearity g(u) = u(l — u)(u — a) provided a > 0 is sufficiently small.

Proof. The conditions (H1) through (H3) are obviously satisfied. Using [39, Theorem 2.6], one can
conclude the existence of a wave speed ¢, > 0 and a wave profile gy such that the pair (¢, 0) satisfies
(2.1) with e = 0 and ¢ = ¢, while satisfying the limits given in the first line of (2.2). The requirement
that a is sufficiently small is needed here to ensure that the wave speed c, does not vanish. To obtain
the existence of the pair (g, w.) that solves (2.1) at the same speed c,, one may exploit the mirror
symmetry of cubic polynomials. "

Our final assumption concerns the parameter v and ensures that, for any € > 0 and ¢ # 0, the
only equilibrium solution to (2.1) is given by (0,0).

Hypothesis (H5) The parameter v > 0 is so small that g(yw) # w for all w # 0.

Let us now write I'§ for the singular homoclinic orbit that arises by following the heteroclinic
connection ¢y from (0,0) to (1,0), moving along the manifold Mg := {(sg(w),w)} from (1,0) to
(Sr(w), wy), following ¢, from (Sg(w.), ws) to (51 (ws),ws) and finally moving back to (0,0) along
the manifold My, := {(57(w),w)}. Our main result is concerned with homoclinic solutions to (2.1)
that bifurcate off T§ as ¢ moves away from zero and wind around this singular homoclinic exactly
once.

In order to define this winding number properly, we need to have a notion of transversality that
will allow us to construct Poincaré sections. The winding number can then be related to the number
of times a homoclinic orbit passes through these sections. Let us therefore write X = C([-1,1],R)
for the state space associated with the first component of (2.1). The state of a function u € C'(R,R)
at £ € R will be denoted by eveu € X = C([—1,1],R) and is defined by

leveu|(0) == u(§ +0), 0el-1,1];
see Figure 4. We can now pick two subspaces X ¢ and )A(b of X such that
X = span{evoq;} @ Xy, X = span{evoq)} @ Xo. (2.3)

We are now ready to describe the type of solutions to (2.1) that we are interested in and refer to
Figure 5 for an illustration.

Definition 2.2 (Homoclinic solution) For each 0 < § < 1 and & > 1, we say that a pair
(u,w) € C(R,R?) is a (6, &.)-homoclinic solution if (u,w) satisfies (2.1) for all € € R and meets the
following conditions:
(i) There exists exactly one £ € R for which HeVEfu—evO qu < 6, |[w(és)| < 6, and eve,u €
evoqr + Xy.
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Fig. 5: Shown are the singular homoclinic orbit T and the location of the two Poincaré sections along the
front (eveqy,0) and the back (eveqy,ws) in the underlying phase space C([—1,1],R) x R.

(i) There exists exactly one & € R for which ||eve,u — evo gp|| < 0, |w(&) — wy| < 0, and eve,u €
evoqy + Xy.

(iti) We have lime_+o0 (u(€), w(€)) = 0.

(iv) The solution (u,w) is close to T in the sense that

[u(€) —ar(€ —&p)| <6 and |w(§)| <6 Jor  £<&+E&.,
|’u,§ —§R( )‘ <4 fOT' §f+£*§§§£b_§*7
[u(€) — a» 5 §b)\ <6 and |w(€) —w. <d  for & —&<ESE+E,
|u(§ —SL ‘ <é fOT' &+ & <&

Our main result shows that by varying the wave speed ¢, one may obtain a one-parameter branch
of such solutions that bifurcates away from T'f.

Theorem 1 Consider the nonlinear system (2.1) and suppose that Hypotheses (H1)-(H5) hold,
then there are constants 0 < § < 1 and &, < 1 with the following property: for each ¢ < c. that is
sufficiently close to c., there exists a unique € = €(c) > 0 for which (2.1) admits a (6, &.)-homoclinic
solution (u,w). This pair (u,w) is O(c — c,)-close to T¥ and unique up to translations.

3 Proof of Theorem 1

Our proof of Theorem 1 is split into four main parts. In this section we will describe each of these
steps, hiding the technical details behind four propositions that will be proved throughout the
remainder of this paper. At the end of this section, our main claim will have been reduced to a
statement concerning the roots of a two-dimensional nonlinear system involving three variables. The
desired one-parameter branch of (9, £,)-homoclinic solutions to (2.1) can subsequently be read off
from these equations.

The four main parts of our argument can be outlined roughly as follows. First, we consider the
equilibrium manifolds My, = {(5(w),w)} and Mg = {(5r(w), w)}. We show that these curves can
be perturbed to yield slow manifolds M, (c,€) and Mg(c, €) that remain invariant when considering
(2.1) with small € > 0 and ¢ = c,.

In the next step, we show that, for each € ~ 0 and ¢ = ¢, there are two unique solutions near
the front (gs,0) so that the first orbit lies in the infinite-dimensional unstable manifold of (0, 0), the
second solution lies in the infinite-dimensional stable manifold of Mg(c,€), and their difference at
& = 0 is contained in a certain one-dimensional subspace. Thus, up to this one-dimensional jump,
these manifolds have a unique intersection near the front. We refer to such connections as quasi-front



solutions and refer to Figure 7 below for an illustration. Similarly, for each such € and ¢, and for each
choice of wy, there are unique quasi-back solutions in the unstable manifold of Mg(c,€) and the
strong stable fiber of M (¢, €) belonging to w = wy, respectively, so that their difference at £ = 0
again lies in an appropriate fixed one-dimensional subspace. Using the Hale inner product, which is
tailored specifically for functional differential equations, the derivatives of the aforementioned jumps
with respect to the three free parameters can be related to Melnikov-type integrals whose signs we
can evaluate.

In the third step, we prove an Exchange Lemma for MFDEs that allows us to match quasi-fronts
and quasi-backs as they pass near the manifold Mg(c,€). This can be done up to two extra jumps
that lie in the same one-dimensional spaces that we discussed above. These extra jumps turn out
to be C'-exponentially small with respect to the time spent near the slow manifold Mg(c, €). This
allows us to set up and analyse the resulting two-dimensional nonlinear system that describes the
size of the remaining gaps in the final step.

3.1 Step 1 - The slow manifolds

We now describe the slow manifolds M, (¢, €) and Mg(c, €) in more detail. In order to avoid compli-
cations that arise when w leaves the region [wmin, Wmax], we will need to modify (2.1). To this end,
we choose a C'*°-smooth cut-off function yg : R — R as shown in Figure 6 and consider the system

cu’(€) afu(€ +1) + u(§ — 1) — 2u(§)] + g (u(§)) — w(&), (3.1)
caw'(§) = e(ul§) —yw(§))xs(w(€)), '

instead of working directly with (2.1). The following result will be established in §4.

Proposition 3.1 Consider the nonlinear system (3.1) and suppose that (H1)-(H3) are satisfied,
then there exist constants . > 0 and 6. > 0, together with two C"T2-smooth functions

SRy SL ¢ [Wminy Wmax] X [¢x — Oc, Cx + 0] X [0,0] — R,
such that the following is true:

(i) For each ) € [Wmin, Wmax), € € [Cx—0c, Cx+0.] and € € [0, ], we have the identities sgr(¥,¢,0) =
Sr(9) and s(9,¢,0) = 5L(9).

(1) For each ¥ € [Wmin, Wmax), € € [cx — O, Cs + 0c] and € € [0,.], consider the unique solution of
the ODE
cf'(€) = e(sr(0(8), ce) —0(€))xa1 (0(€)),  0(0) =, (32)
then the pair (u,w) defined by u(&) = sr(0(§),c,€) and w(§) = 0(€) satisfies (3.1). The same
statement holds upon replacing the subscript R by L.

(iii) There exists a constant § > 0 such that any solution (u,w) to (3.1) with |c —ci| < . and
0 < e < 6, that has both wmin < wW(E) < Wmax and |u(§) — §R(w(§))| < 6§ for all £ € R must in
fact satisfy u(€) = sp(w(§),c,€) for all £ € R. The same statement holds for the subscript L.

Wmin 0 Wi Wmax

Fig. 6: The definition of the cut-off function x«i(w).
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The functions sy, and s can be used to define the invariant manifolds My (¢, e) and Mg(c,¢)
mentioned at the start of this section. In particular, we take Mp(c,e) = {(sp(w,c,€),w)} and
Mg(c,€) = {(sr(w,c,€),w)}, letting w run through the interval [Wmin, Wmax]-

In the sequel we will often need to refer to the flow on these manifolds M and Mg, so we will
introduce some notation here for convenience. Recall the constants d. > 0 and §. > 0 that appear
in Proposition 3.1 and introduce the functions

TR, TL : [wminawmax] X [C* - 5570* + 6(:] X [0766] — R
that are given by

) = [53(197 c, 6) - Wﬁ]XSl(ﬁ)y
T.(0,¢c,e) = [sp(¥,¢,€) — v xa (D).

For each ¥ € [Wmin, Wmax), ¢ € [cx — O¢, s + 6] and € € [0,6,], we write ©% (0, c,e) € C(R,R) to
denote the unique solution of the ODE

ct'(§) = €Tr(0(§),c.¢),  6(0) = 9. (3.3)
Similarly, we introduce the notation ©% (9, ¢, €) € C(R,R) to denote the unique solution of the ODE
ct'(§) = €TL(0(8),c.e),  0(0) = 9. (3.4)

The superscript fs refers to the fact that (3.3) and (3.4) are written in terms of the fast time scale.
In contrast, we will write @s}’%(ﬂ, ¢, €) for the unique solution of the ODE

60/(4) = TR(Q(C)v &) 6)’ 0(0) = 19,

where the superscript now indicates that we solve with respect to the slow time scale. Note that

6%{(197 c,€)(§) = @7%(197 G, 6)(65)

3.2 Step 2 - Quasi-fronts and quasi-backs: stable and unstable foliations

We now construct the quasi-front connections between (0,0) and Mg(c,€) that are illustrated in
Figure 7. As shown there, the construction depends on the choice of the one-dimensional subspace
I'y that contains the difference of two solutions of the underlying MFDE. Thus, we first focus on
outlining our choice of I'y and of the space I'y, that we shall use to construct quasi-back solutions
which connect Mpg(c, €) back to (0,0). We will use the decomposition (2.3),

X = span{evoqs} @ X; = span{evoq)} & Xy,

of the phase space X = C(]—1,1],R) and the associated Poincaré sections that we introduced in

Definition 2.2(i)-(ii) for this purpose. Our goal is to find suitable subspaces I'y and I'y, of )/(\'f and X,
that contain the jumps.

As a preparation, we substitute the ansatz u(§) = qf(&) + v(§) into the first equation of (2.1)
and set w = 0 and € = 0. We obtain the variational MFDE

cv'(€) = afv(§ +1) +v(€ — 1) — 2v(§)] + g(gr(§) +v(&)) — g(ar(€))

whose linearization about v = 0 gives the operator Ay : Wlf)’cl (R,R) — Ll .(R,R) with

[Apv](€) = cv'(§) — alv(€ +1) +v(€ — 1) — 20(&)] — ¢ (¢r(€))v(E).

We also define the formal adjoint A : WoUHR,R) — L (R, R) of A via

loc

[AF0)(§) = v’ () + av(€ + 1) +v(§ — 1) — 20(8)] + g' (47 (£)) v (&)

11



Fig. 7: Shown is a quasi-front solution which consists of two solutions that lie respectively in the unstable
manifold of the equilibrium (u,w) = 0 and the stable foliation of the slow manifold Mgr. These solutions
will, in general, not coincide but we will show that they can be chosen so that their difference at § = 0 lies in
the one-dimensional subspace 'y of the phase space C([—1,1],R). The new equilibria inside Mg are created
by the cut-off function in (3.1).

The dual product between Ay and A} is provided through the Hale inner product [22], which is
given by

(6.6) = h(0)6(0) — a [ [ vte = no(ras+ [ uio 4 1ote) do

for any pair ¢,1 € X. It was established in [40] that the Hale inner product is non-degenerate in
the sense that if (1, ¢) = 0 for all 1) € X then necessarily ¢ = 0. A key feature of the Hale inner
product is the identity

d x
d—£<eV5¢,eVg¢> = Y(E)[Arel(€) + [AFY](E)d(E), (3.5)
which holds for any pair ¢,¢ € C'(R,R) and ¢ € R. Indeed, if we pick ¢ in such a way that
A}y = 0, one readily sees that integration of (3.5) will yield Melnikov-type identities. In view of
these considerations, it is important to understand the kernels

Ky
Ky

{0 € C'(R,R) | Ayp=0and [¢],, < oo},

{t € C'(R,R) | A% = 0 and 9. < o} (36)

In addition, we will also need to consider the kernels K; and K that arise in the exact same fashion
after substituting the ansatz u(§) = ¢,(§) + v(€) into (2.1), while keeping w = w, and € = 0 fixed.
The following result follows directly from [39, Theorem 4.1].

Lemma 3.2 Consider the nonlinear system (2.1) and suppose that (H1)-(H4) are satisfied, then we
have ¢(§) > 0 and ¢,(§) < 0 for all § € R, together with

Ky =span{q;}, K =span{q}.

In addition, there exist two bounded functions dy and dy that decay exponentially at both +oo and
have d;(€) > 0 and dy(§) > 0 for all £ € R, such that

K% = span{dy}, K} = span{dy}.

Let us consider any non-zero dy € K%, write
X ={p e Xy | (evody, ) =0}
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and define )A(If- in the analogous fashion. Note that X Jﬁ- cX 1 is closed and of codimension one and

that the same holds for the inclusion X ,j- C )/(:b. This allows us to choose appropriate one-dimensional
spaces I'y C X and I', C X and write
X = span{evoq;} @ )?JJ; & Ty = spanfevoqy} & Xi- @ Ty, (3.7)

By construction, any ¢ € I'y satisfies ¢ = 0 if and only if (evods,¢) = 0, which in combination
with (3.5) ensures that I'; and Iy are ideally suited to capture the j jumps that the qua81 fronts and

quasi-backs make when they pass through the hyperplanes evq qr @ X ¢ and evyqy @ Xb
As a final preparation, let us consider the homogeneous MFDESs

cv'(§) = afu(§ +1) +v(§ — 1) — 20(§)] — ¢ (3;(9))v(6),

for j = L, R, where the quantity ¥ is taken from [wmin, Wmax]|. Looking for solutions of the form
v(€) = e*¢ we obtain the characteristic equations A; y(z) = 0, with

Ajg(z)=cz—ale®+e 7 -2]—¢ (f§j (19)) (3.8)

Notice that Im A y(ik) = cx for any x € R, while ReA;(0) = —¢'(5;(9)). Our choice of the
constants wpyi, and wpy.x hence ensures that we can pick 7, > 0 in such a way that the characteristic
equations Aj y(z) = 0 have no roots with |[Rez| < n, for any ¢ # 0, any ¥ € [Wmin, Wmax] and
7 = L, R. This constant 7, will be used ubiquitously throughout this paper.

We are now ready to define the concept of a quasi-front solution; see again Figure 7. Recall the
quantities 6. > 0 and . > 0 that appear in Proposition 3.1 and fix ¢ € [c. —d,, cx +0.] and € € [0, d].

Definition 3.3 (Quasi-front solution) For each 0 < § < 1 and &, > 1, we say that the quadru-
plet

(u™,ut,w,9) € CO((—0,1],R) x C([-1,00),R) x C(R,R) x [, ]
s a (0, &« )-quasi-front solution if the following is true:
(i) The pair (u™,w) satisfies (3.1) on the interval R*.
(i) We have lime_, o (u™ (§),w(€)) =0 and

\U('S)—Qf(ﬁ)|<5 and |w(§)] <6 for &<
[ut (&) = 5r(w(9)]| < for & <,

where u(&) should be read as u™ (&) for £ < —1, as ut(€) for € > 1, and as both u* (&) in the
region —1 < ¢ < 1.

(iii) We have limg_, o €™ [w(€) — O (9, ¢, €)(€)] = 0.
(iv) We have evou™ € evyqs & )?f, evout € evq gy EB)A(f, and evolu~ —ut] € T'y.

Roughly speaking, these properties imply that u* and w can be combined to build a solution
to (3.1) that remains d-close to the portion of the singular orbit I‘gs that consists of ¢y and Mg
and that is continuous everywhere except on the interval [—1,1]. On this interval the solution is
double-valued, with a difference that is contained in I';.

We need one more definition before we can state our result concerning the existence of quasi-
front-solutions. To this end, consider any interval Z C R. We introduce the following family of
Banach spaces, parametrized by n € R,

BC,(TR) = {zeC@R)||z], = supecre ¢ 2(¢)] < oo}

In the sequel, we will also use the spaces BC}(Z,R) = {y € BC,(Z,R) | ¢ € BC,(Z,R)}.
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Fig. 8: Shown is a quasi-back solution that connects Mg to (0,0) and has a discontinuity at & = 0 with a
jump that lies in the one-dimensional I'y.

Proposition 3.4 Consider the nonlinear equation (3.1) and assume that (H1)-(H4) are satisfied,
then there are constants & > 1 and 0 < 6,6.,0. < 1 and a set of maps

uy [cx — ¢, ek + 0c) X [0,d] — C((—o0,1],R),

u}' © [ex = Oey e 6] X [0, 6] = C([—1,00),R),

wy [¢x — ey ek + 0c] X [0,8] = C(R, [Wimin, Wmax))s
Oy [x — Oc, Cu + d¢] X [0,8e] — [0, 9]

that satisfies the following properties.

(i) For any c € [cx — ¢, s + 0] and € € [0,0,], the quadruplet (u;(c, e)7u;{(c, €),wr(c,€),9s(c,€))
is the unique (9, &, )-quasi-front solution to (3.1).

(it) Write £ (c,€) := evoluy (c,€) — u}r(c, €)] € 'y and pick a non-zero dy € K} with d¢(0) > 0,
then the following Melnikov inequalities hold,

DCKGVOdf’ 5]?0 (C’ 6)”626*,620 < 0,

DE[<ev0df,£cf>°(c, ]e=c,.e=0 < 0. (3.9)

(tii) The maps (c,€) — J¢(c,e) € R and

u;(g 6) — 45 € BO—W*((_OO’ 1]7R)

(c,€) —s wy(c, €)r_ € BC_, ((—o0,0],R)
’ we(c,€)r, —O%(Ws(c,e),c,e) € BO_,, ([0,00),R)

u;(c, €) — sp(ws(c,€)(-),c,e) € BC_,, ([—1,00),R)

are C"-smooth with values in the spaces indicated above, where r appeared in (H1).

Moving on to study the connections between Mpg(c, €) and My (¢, €), we now define quasi-back
solutions, which are illustrated in Figure 8.

Definition 3.5 (Quasi-back solution) Foreach0 < § < 1 and &, > 1, we say that the quintuplet
(u™,ut w,97,97) € C((—o0,1],R) x C([~1,00),R) x C(R,R) x [ws — , w, + 6]?
is a (9, &4 )-quasi-back solution if the following is true:

(i) The pair (u™,w) satisfies (3.1) on the interval RT.
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(ii) We have lime_ o0 (u™(§), w(€)) =0 and

[u™(€) = 5r(w(§))] < for —oo <€<—¢.,
|u( ) —q(§)| <0 and |w(§) —w. <4 for =&, <E<E&,,
|ut(§) = 51 (w(§))| < for & <E,

where u(&) should be read as u™ (&) for € < —1, as ut(€) for € > 1, and as both u* (&) in the
region —1 < £ < 1.

(iii) We have

lime_ oo ™ ¥l [u(¢) — OB, (€)] = 0,
lime_oo 0 [w(€) ~ OFWF,c,0€)] = 0

(iv) We have evou™ € evy qy B )/(:b, evou' € evgqy @ )/(:b, and evglu™ —ut] € T.

Compared to the existence result for the quasi-fronts, an additional degree of freedom arises

when constructing quasi-back solutions to (3.1). This freedom is used in the following result to fix
w(0).

Proposition 3.6 Consider the nonlinear equation (3.1) and suppose that (H1)-(H5) are satisfied.
Then there exist constants £ > 1 and 0 < 6,8y, d¢, 0 K 1, together with a set of maps

Uy [wi — 0y, Wi + dy] X [Cx — Oc, Cx + 6] X [0,0] — C((—00,1],R),

uy [ws — 0y, ws + 9] X [cx — ¢, es + 6] X [0,0¢] — C([—1,00),R),

Wy [U}* - 519; Wy + 519] X [C* - 5(:7 Cx + 5c] X [07 66] - C(R, [wmin»wmax])a
19; [w* - 619; Wy + 619] X [C* - (507 Cyx + 60] X [Oa 66] - [wmin; wmax];

?9;_ [w* - 519, Wy + 519] X [C* - 6C7 Cyx + 6c] X [Oa 66] - [wmina wmax]

that satisfies the following properties.
(i) For any ¥° € [wy — 8y, ws + 0y], ¢ € [cx — O¢y e + 8] and € € [0,6,], the quintuplet
(ub_(ﬁo,c, €),ui (9°, ¢, €),wy(9°, ¢, €), 9, (9°, ¢, €), 9 (9°, e, €))
is the unique (3, &.)-quasi-back solution to (3.1) that has w(0) = 9°.

(ii) Write &°(9°, ¢, €) == evoluy, (9°,¢,€) —uyf (9°,¢,€)] € Ty and pick a nonzero dy € K} that has
dp(0) > 0, then the following Melnikov inequalities hold,

)

D.[(evody, &°(9°, ¢, €))oloo—w, c=cr.eco > 0
076) O]ﬂozw*,c:c*,e:o < 0.

Dﬂ0[<eV0dba£go(190a
In addition, we have Dgodif (w., c,,0) # 0.
(iii) The maps (9°, ¢, €) — 9F(9°,c,€) € R and

’LUb('ﬂ 876)\R @fs(ﬂl)_(ﬁ07c’e)7c7e) EBO_W*((—OO,OLR)

(190 ¢ 6) — ub_(l9 y Gy 6) SR(wb(ﬁovca 6)(')367 6) € BC—W*((ioovl}vR)
' (8, g, — OF (07 (9°,¢,),¢,¢) € BC_y ([0, 00), R)
uf (9% e,6) = s (wy(95,¢,9(),0,6) € BOy. (-1,00), R)

are C"-smooth with values in the spaces indicated above, where v appeared in (H1).
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(Use, W)

Mg
Mpg

Fig. 9: An dllustration of quasi-solutions and their passage near the slow manifold Mg.

3.3 Step 3 - The passage near Mpy: the Exchange Lemma

We now proceed to connect the quasi-front solutions to the quasi-back solutions somewhere near the
manifold Mpg(c, €): Figure 9 illustrates the solutions we shall construct in this section.

We will use the time 7" that solutions spend near My as our primary parameter. We note that
(H5) allows us to define the slow time T%' > 0 as the unique time for which

O%(0, c., 0)(T3") = w,. (3.10)

Since we need solutions to follow the back g, with w ~ w,, we require that €' = T*!. In particular, this
means that € and the fast time T" cannot be treated as independent parameters. To accommodate this
requirement, we introduce the slow time variable 75! = €T and treat ¢, T%' and T as the independent
parameters. We therefore introduce the parameter space

Q= Q0,04 T) =[x — Oc, Co + 6] X [T — 64, T + 6] x [T, 00). (3.11)

Recall the functions 9, and 19;“ that appear in Propositions 3.4 and 3.6: these functions select the
specific fiber of Mg(c,€) that quasi-fronts and quasi-backs approach as & — oo or £ — —oo. We
will use the additional parameter 9° that is available when selecting a quasi-back to ensure that
these fibers match up properly after the time T spent near Mg(c, €). Specifically, we introduce the
function 9%, : Q — [Wmin, Wmax| that is uniquely defined by the requirement that

Uy (9% (W), ¢, T%/T) = ©% (0} (¢, T*/T), ¢, T /T)(T™)
for allw = (¢, T%,T) € Q. On account of Proposition 3.6(ii), the function ¥, is well-defined provided

that T is chosen to be sufficiently large and é. > 0 and d5 > 0 are chosen to be sufficiently small.
In addition, we have the expansion

99 (W) — wy = k1 (W) [T = T8 + ko (w)/T + K3(w)(c — ¢), (3.12)
in which k1, ra and k3 are of class CF on Q, with k1 (c., TS, 00) # 0.

Definition 3.7 (Quasi-solution) Pick T. > 1 and 0 < 64,5, < 1, choose w = (¢, T%,T) €
Q(d.,04,T.), and consider (3.1) with € :== T /T. For each 0 < § < 1 and &, > 1, we say that the
quadruplet

(ug, up, Uxe, w) € C((—00,1],R) x C([T —1,00),R) x C([-1,T + 1], R) x C(R,R)
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is a (0, &, )-quasi-solution if the following holds:

(1) The pairs (us,w), (Uxe, w), and (uy, w) satisfy (3.1) on the intervals (—oo, 0], [0, T], and [T, c0),
respectively.

(i) We have lime_, oo (uyr(§), w(§)) = 0 and limg_, o0 (up(§), w(§)) = 0.
(iii) We have

[u(§) —qr(§)] <3 and |w(§)| <é for € <¢&,,
[u(€) —5r(w(©)| <6 for & <EST -,
[u() =@ =T)[ <0 and |w(§) —w. <o  for T—E<ESTHE,,
lu(€) =50 (w(©)] <6 for T+e. <,

where u(§) should be read as up(§) for € < —1, uxe(€) for 1 <E<T —1, up(§) for & > T +1,
both up(§) and uxc(§) in the region —1 < & < 1, and both up(§) and ux(§) in the region
T-1<¢<T+1.

(iv) We have
evouf, €Volxe € eVo qf B )?f, evruy, eVylxe € €Vo qp D )A(b,
(v) We have evgluy — uxe] € I'y and evplup — uxe] € Ty.

Our next result, which can be interpreted as an extension of the Exchange Lemma to MFDEs,
is concerned with the existence of quasi-solutions.

Proposition 3.8 Consider the nonlinear equation (3.1) and suppose that (H1)-(H5) are satisfied,
then there are constants £, > 1, T, > 1 and 0 < 6, ., g1 < 1 with the following property. For each
w=(c, T, T) € Q= Q(d,,04q,T,), there exists a quadruplet (uf(w),ub(w),uxc(w),w(w)) with

uf(w) € C((_OO’ 1]7R)7

up(w) € C(T-1,00),R),
U‘XC(w) € C([717T+ 1]3R)7
w(w) € C(Ra [wmin7wmax])

that satisfies the following properties.

(i) For any w € Q, the quadruplet (us(w), up(w), uxc(w), w(w)) is the unique (3, &,)-quasi-solution
to (3.1) with e = TS!/T.

(i) The maps w — &r(w) and w — &(w) defined by

{r(w) = evolup(w) — uxc(w)] €Ty,
&lw) = evplup(w) — uxe(w)] € Ty

are C"-smooth, where the integer r appeared in (H1).
(iii) Consider the maps
& ¢ we W) =R, TYT),
& we ff(W) - 5?0(1920 (W), ¢, TSl/T)’

then there exists a constant C' > 0 such that, for any integer 0 < ¢ < r and any w € ), we
have the estimate

‘Dﬁ{ﬂw)k+yD£§(wwj§Cb*mT. (3.13)

With this result in hand we have gathered all the ingredients we need to establish our main
theorem.
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3.4 Step 4 - Proof of Theorem 1

The remaining arguments are almost identical to those used in the proof of [35, Theorem 1]. Let
) be as in Proposition 3.8. Finding (9, {.)-homoclinic solutions to (3.1) has now been reduced to
finding w € Q that have £;(w) = &(w) = 0. This leads to the system

bW T = —ei(w)(e— ) — ea(w)/T,

bo(w)e ™™ T = c3(w)(e— i) — ca(w)[Wo (W) — wy] + e5(w) /T, (3.14)

in which the functions by, bs and ¢; through cs and their derivatives are bounded on €. In addi-
tion, setting wp = (cx, T, 00), we have c;(wp) # 0, ca(wp) # 0, ca(wo) # 0 and sign(cl(wo)) =
sign(cz2(wo)). Using (3.12) and solving the second equation in (3.14), we find

Tsl Tsl 1 (Cic)l
T T T )

Substituting this expression into the first line of (3.14) and solving, we obtain

1 c1(w 2
P (e Ol e

which, using e = T%!/T, yields the desired expansion

C1 (wo)
c2(wo)

€= — (c—c*)—i—O((c—c*)Q).
This completes the proof of our main result subject to proving the propositions that we stated in
the preceding sections. Their proofs will occupy the remainder of this paper.

4 Persistence of slow manifolds

In this section we set out to prove Proposition 3.1. The approach in this section is based heavily
on the construction developed in [43§2] to establish the persistence of slow manifolds in the context
of singularly perturbed ODEs. At the appropriate points in the analysis, the machinery that was
developed in [26§6] for MFDEs with slowly modulating coefficients will be put to work. We will focus
on the construction of the function sg, noting that sy can be constructed in a similar fashion. Our
approach will be to fix wo, ¢ and € > 0 and look for a bounded solution (u,w) to (3.1) that remains
close to Mg and has w(0) = wo. We will then write sg(wo, ¢, €) = u(0) and show that this function
has the desired properties. In essence, we are constructing a center manifold around Mpg.
Let us start by introducing the new variable v via

w€) = Fr(w(©)) +v(8). (4.1)
Substituting this back into (3.1) and recalling the identity g(Sg(w)) = w, we find that the pair
(v, w) must satisfy
(€ )))ev§v — eD3g(w(6)) [Sr(w(€)) +v(€) —yw(&)]x1 (w(9))

c'(€) = L(Sr(w
+G(v(&) ) + H(GVEU}), (4.2)
cw'(€) = elsp(w()) + yw (&) xs (w(€)),

in which the operator L : R — L£(X,R) is given by

L(u)ever = afv(§+1) +v(€—1) = 20()] + g'(u)v(§), (4.3)
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while the nonlinear operators G : R x R — R and H : C([—1, 1], [Wmin, Wmax]) — R are given by

Gv,w) = g(3r(w)+v) —g(Er(w)) — ¢ (Br(w))v, (4.4)
H(evew) = a[gR(w(f + 1)) + §R(w(£ - 1)) — 2'§R(w(§))}. ’

In order to stay as close as possible to the setting in [43] and in particular to reproduce the estimate
[43, Equation (2.3)], we will split the operator H into a part Hj;, that is linear in w and a nonlinear
part Hy . After using the differential equation for w to transform Hy,, we write

Hyiy(evev, evew) = %DgR(w(é)) [ 5“ [SR( (fl)) +v(f') - ’Yw(f,)])(sl (w(fl)) d¢’
+ 5 Br(w(€) +v(€) = 7€) xa(w(e) ag'], (4.5)

Hy(evew) = alSp(w(E+1)) +35r(w(—1)) — 25z (w(9))]
—aDsg(w(€))[w(€+1) + w(€ — 1) — 2w())].

Since we are only interested in solutions for which v is small, we will add a cut-off to v. In addition,
to bound the Lipschitz constant associated with Hy;, we will need to apply a special cut-off to w.
To this end, let us introduce for any w € C(R,R), the notation

cevew = (w(§ +1) —w(§),wE—-1)— w(f)) € R2. (4.6)

We pick an arbitrary C*°-smooth function x : [0,00) — R that has x({) = 1 for 0 < ¢ < 1 and
x(¢) =0 for ¢ > 2. For any ¢ > 0, we write ys for the function xs5(¢) = x(¢/J). We are now ready
to define, for small quantities J,, > 0 and 6,, > 0, the cut-off nonlinearities

G4 (v, w) = (Ivl) (v, w),
Hij, (evev,evew) = ﬂDS (w(€)) [fg (f’)) +0(&) = yw(€)]xa(Jo(€))xa (w(€)) dg’
7 Br(w(©) +o(€) =10 xallvE))xa (w()) g,
HE (evew) = (\CeV£w|)Hnl(€sz)
(4.7)
Putting this together, we pick ¢ > 0, introduce the nonlinearity
Rem : BC:(R,R) x C(R, [Wmin, Wmax]) X R x R — BC¢(R,R) (4.8)

that is given by

Rim(v,w,6,¢)(€) = —eDsgp(w(§)) [Sr(w(§)) +v(&) —yw(€)]x1(Jv(€))xa(w(§)) (4.9)
+G°(v ( ), 0(¢)) +H1m(eV£” evew) + H (evew) ’

and study the equation
(&) = L(gR (w(f)))evw + RS (v, w, €, ¢)(E), (4.10a)
cw'(§) = e[Sr(w(§)) +v(&) —yw()]xs (w(€))xi([v(€)])- (4.10b)

Let us pick small constants . > 0 and §. > 0. For quantities a and b that depend on the various
cut-offs 4§, ., 0. and d. that we have introduced, we will use the notation

a<,b (4.11)

to express the fact that there exists a C' > 0 that does not depend on these cut-offs, such that a < Cb
holds for all 6, <1, 4§, <1, 6. <1andd <1.
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Notice that for any w,w;,ws € C(R, [Wmin, Wmax)), v,v1,v2 € BC:(R,R), € € [0,d.] and ¢ €
[¢x — ¢, € + 0c], we have the inequalities

[ Rm (v, w, ¢, €)(§)] <i O+ 0y + 03,
IR (01, 01,06 = Rz, 6)c <o (Gt 0+ u)llor = wall + s = wa ). 412
We proceed with our analysis by considering the linear part of (4.10a). We will write this as
A(w, c)v = h, (4.13)
in which the linear operator A(w,c) : C1(R,R) — C(R,R) acts as
[Afw,e)e](€) = ev'(€) — L(5r(w(€) )ever, (4.14)

for any w € C(R, [Wmin, Wmax)) and ¢ # 0. The next result shows that for any n € [—n.,7.], an
inverse can be defined for the operator A(w,c) on the space BC,(R,R) provided that |w'[ is
sufficiently small.

Lemma 4.1 Consider the linear system (4.13) and suppose that (H1)-(H3) are satisfied. Then there
exists a constant d. > 0, together with a family of maps

Ky : C(R, [Wiin, Wmax]) X [cx — ¢, €4 + 0c] — L(BC,,(R, R),BC’U(R,R)) (4.15)
defined for all n € [—nw,ni], such that the following properties are satisfied.

(i) There exists k > 0, such that if w € CH(R,[Wmin, Wmax]) and |w'(§)| < & for all & € R,
then v = K, (w,c)h satisfies A(w,c)v = h for any n € [—n., ], ¢ € [cx — ¢, cu + 6] and
h € BC,(R,R).

(it) The norm ||K,(w,c)|| can be bounded independently of n € [—n.,nx], ¢ € [cx — Oc, cx + 0c] and
w e C(Ra [wmin; wmax])-

(iii) There exists a constant C' > 0 such that for any m > 0, any n2,m3 € [—N«, M that have
m +n2 < 3, any two functions wi, ws € C(R, [Wyin, Wmax]), any two c1,ca € [cx — Oc, Cx + O]
and any h € BC,,(R,R), we have the estimate

1KCns (w1, e1)h = Ko, (wa, c2)bl, < Clllwy —wall,, +ler — call ], - (4.16)

(iv) Consider a pair m,n2 € [—14, n«] together with a function
h € BC,, (R,R) N BC,, (R, R). (4.17)
Then for any w € C(R, [Wmin, Wmax]) and ¢ € [cx — ¢, ¢« + 8¢, we have
Ko (w, c)h = Ky, (w, €)h. (4.18)
(v) Recall the integer r that appears in (H1). Consider any integer 0 < £ < r + 2 and pick n; > 0
and M2,M3 € [N, M) in such a way that n3 > €y + n2. Then the map (0,¢) — K(6,c¢)
is C*-smooth when considered as a map from BCy, (R, [Wmin, Wmax]) X [cx — dc, Cx + Oc] into

L(BCy,(R,R), BC,, (R,R)). In addition, for any pair of integers py,ps > 0 with py + ps = £,
the derivative DV D5?KC is well-defined even when interpreted as a map

DI'DY?*K ¢ BC,, (R, [Wmin, Wmax]) X [cx — 0c, Cx + Oc]

— £0(BC,, (R R x R, £(BC,, (R, B), BO,R,R))) 417

with n =y + 2.
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(vi) For any & € R, n € [=n«, i), w € C(R, [Wmin, Wmax]), ¢ € [cx —0c, ¢+ 0] and h € BC,(R,R),
we have

Ky (Teow, ¢)Tegyh = Te, Ky (w, €)h, (4.20)
in which Tg, denotes the shift [T¢,h|(£') = h(& +&').

Proof. We first consider the linear system A(w, ¢)v = h in the special case that w is a constant, i.e.,
w(§) = wg for all £ € R. In this case (4.13) reduces to a linear constant-coefficient inhomogeneous
MFDE that has been studied extensively [28, 38]. The characteristic function A associated with
this MFDE can be obtained by seeking a solution of the form v(£) = exp(z£) to the homogeneous
system A(wol,c)v = 0. Recalling (3.8), we find that A(z) = Apg.w,(2), from which it follows that
the characteristic equation A(z) = 0 admits no roots with |Re z| < 7..

After picking . to be sufficiently small, the constructions in [28§5] can be used to define, for any
Wo € [Wimin, Wmax), a0y ¢ € [¢x — O, ¢x + dc] and any 7 € [—n., n.], the operators

K5 (wo, ¢) : BCy(R,R) — BC, (R, R) (4.21)

that solve the constant coefficient system A(wo1,¢)v = h. More precisely, for any v € BC} (R, R) we
have K (wo, c)A(wol, c)v = v and for any h € BC,(R,R) we have A(wol,c)K;(wo,c)h = h. One
can now employ simplified versions of the arguments in [26§6] and use these operators K7 (wo, ¢) to
construct a family K, that satisfies the properties (i) through (vi). ]

Lemma 4.2 Consider the linear system (4.13) and suppose that (H1)-(H3) are satisfied. Then there
exist constants k > 0 and 0, > 0, such that for any ¢ € [cx—0., cx+0.] and any w € C(R, [Wmin, Wmax))
that has |w'(§)| < k for all £ € R, the homogeneous equation A(w,c)v = 0 admits no non-zero
solutions v € BC}, (R,R).

Proof. In the special case that w is a constant function, the claim follows from [28, Proposition 5.2],
in view of the observation contained in the proof of Lemma 4.1 that the characteristic function
A(z) = 0 admits no roots with |Re z| < .. A simplified version of the proof of [26, Lemma 6.4] can
now be used to generalize the claim to functions w that have a sufficiently small derivative. "

We now turn our attention to the equation for w given by (4.10b). For any fixed v € C(R,R)
and ¢ # 0, this equation is an ODE with a smooth right-hand side. This allows us to introduce, for
0. > 0 sufficiently small and any d. > 0, the operator

W [Winin, Wmax] X C(R,R) X [cx — ¢, €s + 0c] X [0,e] = C(R, [Winin, Wmax]) (4.22)

that is uniquely defined by the property that w = W (wq, v, ¢, €) solves (4.10b) with w(0) = wg. Our
next result is the equivalent of [43, Lemma 2.4] and can be proved using Gronwall’s inequality and
variational equations.

Lemma 4.3 There exist constants Lo > 0 and L1 > 0 such that the following hold true.

(i) For any wo € [Wmin, Wmax), € € [0, 0], ¢ € [cx — b, ¢ + 6] and v € C(R,R), we have

(W (wo, v, ¢,e)(§)] < [€] + eLo [€]. (4.23)

(i) Consider any € € [0,0], ¢ € [cx — Oc,Cx + 0c] and any n > eLy. Then for any two pairs
(wg,vh), (g, v?) € [Wmin, Wmax) X BCH(R,R), we have the estimate

ELl

W (wg,v', ¢, €)(€) = W (wg, 0%, ¢,€)(§)] < wp —wh| € + —

Jo! = o?|[ €™, (4.24)
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(iii) Recall the integer r that appears in (H1). Consider any 0 < £ < r + 3 and pick my > d.1,
and 1z in such a way that ny > ¢ny. Then the map (wo,v,c,€) — W (wo,v,c,¢€) is Ct-smooth
when considered as a map from [Wmin, Wmax] X BCp, (R,R) X [ex — d¢, cx + 6] X [0,d¢] into
BC,, (R,R). In addition, if 1 < £ < r+ 3, then for any set of integers p1,p2, p3,pa > 0 that
have p1+p2+p3+ps = £, the derivative DV* D5? DE* DY*W is well-defined even when interpreted
as a map

Dzln D52D§3D24W : [wmimwmax] X BC'n1 (R,R) X [c* — O, Cx + 50} X [0,(56]
— LO(RP1 x BC,, (R,R)P2 x RPs x RP+, BC,(

,R))
with n = 4.

(iv) For any & € R, wp € [Wiin, Wmax], ¥ € C(R,R), ¢ € [cx — d¢, Cx + 0] and € € [0, 5], we have

W (W (wo, v, ¢, €)(&o), Te,v, ¢, €) = Te, W(wo, v, ¢, €). (4.26)

Proof of Proposition 3.1 We will only consider the statements concerning sp. Possibly after

decreasing J. > 0, pick n in such a way that d.L1 < 1 < 1. Fix any wg € [Wmin, Wmax|, € € [0, ]
and ¢ € ¢, — dc, ¢« + 6. and consider the fixed point equation

v =G(wo,v,c,e€) ==K, (W(wo,v,c, e))T\’,im (1}, W (wo, v, ¢, €), ¢, e) (4.27)

that is posed on the space BC, (R, R). To see that the right hand side of this equation is a contraction,
let us pick a pair vi,v2 € BC,(R,R) and write Ag = [|G(wo,v1, ¢, €) — G(wo, v2, ¢, €)|,. We may use
Lemma 4.1(iii) with n, = n3 =7 and 72 = 0, together with Lemma 4.3(ii) to compute

Ag < H[ICW(W(wO,vl,c,e))—ICW(W(wO,v%c,e))]Rgm(v,W(wo,ul,c,e)7c,e)

+H’CTI(W(U’0’U2’C’ ) |

[Rgm (Ulv W(w07 V1, C, 6)7 ¢, 6) - Rgm (U% W(wO; V2, C, 6)7 & 6)} H (428)

n
<« HW(wOavlvca 6) - W('ZUO,’UQ,C, E)”n HRgm(UvW(wOavlvca 6)7Ca 6)”0
+ ||RC (vl,W(wo,Ul,c, €),¢, e) — ’Rgm(vg, W (wo, v, ¢, €), ¢, e)Hn

cm

S* [65 +5’U+6w] ||U1 _U2||n'
Using the estimates (4.12) once more, we also find
1G(wo, v, ¢, €)]],, <« b + 62 +62. (4.29)

By choosing §, > 0, §,, > 0 and J. > 0 to be sufficiently small, we can hence use the contraction
mapping principle to ensure that the fixed point equation (4.27) has a unique solution that we will
write as v = v*(wo, ¢, €). In addition, we may immediately read off the estimate

v (wo, ¢, €)(€)] <« 0c + 8, + 5 (4.30)

by considering (4.27) in the space BCy(R,R). After possibly decreasing 4., d,, and . even further,
we hence find that v* remains unaffected by the cut-offs introduced in (4.7).
We are now ready to define sg by means of

sg(wo, ¢, €) = Sg(wg) + v* (wo, ¢, €)(0). (4.31)

Item (i) now follows from the observation that v*(wp,¢,0) = 0. To establish (ii), we introduce the
notation w*(wy, ¢,€) = W(wo,v*(wo, ¢, €), ¢, €). Using Lemma 4.1(iv) and Lemma 4.3(iv), it is not
hard to verify that

G(w* (wo, ¢, €)(&0), Te,v™ (wo, ¢, €), ¢, €) = Te,v™ (wo, ¢, €). (4.32)
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Due to the uniqueness of solutions to the fixed point equation (4.27), this implies that
v*(w* (wo, ¢, €)(&o), ¢, €) = Te,v™ (wo, ¢, €). (4.33)
In particular, we have

Sr(w” (wo, ¢, €)(€)) +v" (wo, ¢, €)(§) = sr(w" (wo, ¢, €)(€), ¢, €), (4.34)

which shows that w*(wp, ¢, €) in fact satisfies (3.2) and hence establishes (ii). Item (iii) together with
the smoothness of sg can be established exactly as in [43, Theorem 3.1]. "

5 Melnikov Computations

The goal of this section is to establish Propositions 3.4 and 3.6. In order to do this, we will need to
understand the variational equations that arise when studying orbits that converge to the manifolds
Mpg(c,€) and My (c,€). This issue is studied in the first part of this section, which is inspired by
[4383]. In the second part we consider the variational equations that occur in a neighborhood of ¢y
and gp, recalling material from [27, 40]. After these preparations, we will be able to construct the
quasi-front and quasi-back solutions featured in Propositions 3.4 and 3.6 in the final two parts of
this section.

5.1 Linearization around center manifolds

Let us proceed by studying the stable and unstable fibers associated with the center-like manifolds
Mp(c,€) and My (c,€). We will focus for the moment on perturbations from Mpg(c, €) and look for
solutions to (3.1) on Ry that can be written in the form

w€) = sp(OR(, ) +0(), ) +v(), 5.1
w§) = OF(W,ce)€)+0(6) |

in which both v and 6 should decay exponentially as & — oco. The variable ¥ encodes the fiber of
Mg(c, €) around which we are linearizing. For convenience, we adopt the shorthand © = 0% (¥, ¢, €).
In terms of these coordinates, the equation for # can be written as

cf'(§) = —cO' (&) +e[sr(O&) +0(€),c,€) +v(§) —7(O(8) +0(8))Ix1(O(€) +0(S)) (5.2)
eSr(0(£),0(8),v(E), ¢, €), '

in which we have introduced the function

Sk ¢ [Wiin, Wmax]® X R X [, — ¢, ¢x + 8] x [0,6] — R (5.3)
that is given by
Sr(©,0,v,¢c,¢) = €[sr(O+0,c,6) —sr(0,c,€) +v—0]x1(0 + 0) (5.4)
+e[sr(©, ¢, ¢) =70][xa (0 + ) — xa1(O)]- '
We now turn our attention to the equation for v. Direct substitution of (5.1) into (3.1) yields
c'(€) = —cDisr(O(&) +0(8), ¢, e)[0'(§) + ()]
Falsr(O(E+1) +0(E +1),c,6) + sp(O(E ~ 1) + 6 ~ 1), c.6)

~25R(6(E) + (). . )| (5.5)

Fafo(€ +1) + (€ —1) = 20(¢)]
+9(sr(0(8) +0(8), ¢, €) +v) — O() — 0(¢).
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Using Proposition 3.1(ii), one may verify the identity

cD1sr(©(§),c,)0'(§) = afs ((§+1) )+SR(®(£ 1),¢,€) = 25r(O(E), ¢, €)]
+9(sr c,6)) —O(¢

Substituting this back into (5.5), we find

(€)= L(sp(©(6).c.0)ever
+F(©(£),0(8),v(§), ¢ €) + G(O(§),0(£), v(§), ¢, €) (5.7)
+H{ (eve©,evel, c,e) + Hy(eve®, eved, c,e),

with
Hi,(eve®,eveld, ce) = a[Disr(O(E +1),¢,¢) — Disr(0(§), ¢, €)0(§ +1)
+a[D1sg(0(§ — 1), ¢,¢€) — D18R(@() ,6)0(§ —1)
+aD1sr(O(€),c,e)[0(§ + 1) +0(§ — )*29(5)]
Hy(eve®,eveb,coe) = a[sp(O(E+1)+0(E+1),c6) —sp(OE+1),c6€)

—D1sp(O(§+1),c,€)0 (5 +1)] (5.8)
+alsr(OE—1)+0(£—1),c,¢) — sr(O(& —1),c,¢)
—D1sr(©(§ —1),c,€)0(¢ — 1)]
_2Q[SR( ( ) +9( )’ ) ) —SR(G)(f)’Q 6)
*DlSR(@(g),C, 6)9(5)]

together with

F(©,0,v,c,¢) = —e[DlsR(@—l—H,c,e)—DlsR(@,c,e)]TR(G),c,e)
—eD1sgr(0© 4+ 0,¢,6)Sr(0,0,v,¢,¢€),
G(©,0,v,c,e) = g(sR(@+0,c,e)+v)—g(sR(@,c,e))
—4' (sr(©,¢,€))[v+ D1sg(©,c,€)f] (5.9)

+ [g’(sR(@, c,€))D1sg(©,c,e)
*g/(SR(@, c, 0))D15R(@, c, O)] 0.

In the above computation we used the fact that for any ¥ € [Wyin, Wmax), the identity
g (sr(9,¢,0))Dysg(9,c,0) =1 (5.10)

holds. As in §4, we will modify the function H{ to make the dependence on e more explicit. We
therefore introduce the new function

Hiin(eveO,eveb,evev, c,e) = [ &l D3sr(0(0),c,€)Tr(0(0),c,¢€) da]9(§ +1)
e [ £ D2sr(0(0), ¢, ) Tr(O(0), ¢, €) doO(€ — 1)
2Dy sp(O(6). e.6)| ST Sr(6(0),0
© ) J: ™ Sr(6(0).0

5.11
) (5.11)
+%DISR (5)?076

o),v

(o)
(0),v(0),c,€)do].

To write these definitions more concisely, let us consider any two functions 8 € C'([—1, 00), [Wmin, Wmax))
and v € C([—1,00),R). We now introduce two new functions by way of

REWO,v,9,¢,¢)(€) = F(OR,c,€)(€),0(5),v(€), ce)
+G(®f1§(1970 €)(£),0(),v(§), ¢, €)
+Hiin (eve O (9, ¢, €), eved, evev, c, €) (5.12)
+Hp(eveOF (9, ¢, €),eved, c,€),
Sr(O%(D, ¢, )(©), 0(¢), v(E).c,).

S%’(Q, v, 9, ¢,€)(§)

24



In terms of these new functions, the variational equation for the pair (v,6) can be written as

cv' (€) L(sR(Gg(ﬁ,qe)(f)m,e))evw—i—R%(&u&c,e)({), (5.13a)
(&) = eSP0,v,c€)(C). (5.13b)

Let us now consider any ¥ € [Wmin, Wmax); ¢ € [cx — 0¢, ¢ + ] and € € [0,d]. It is easy to see
that

R(0,0,9, ¢, e) = SP(0,0,9,¢,¢) = 0. 5.14
R R

In addition, let us fix ¢ < 0 and consider a pair v1,v2 € BC¢([—1,00),R) together with a pair
01,02 € BC¢([—1,00), [Wmin, Wmax]|). We will assume that [[v;[|. < 0, and [|0;[| < 6y for i = 1,2.
Then upon writing

Ag, = ||’R§$(91,v1,19,c, €) — ’R%’(Gg,vg,ﬂ,c, e)”c + ||S§b(91,v1,19,c, €) — S;b(t?g,v%ﬁ,c, €)||(7 (5.15)
we have the Lipschitz estimate
Afb S* ((5E + 61} + 5w)[||vl — v2||C + ||01 — 92||<] (516)

Using standard arguments as in [43, Lemmas 3.3-3.4], one may obtain the following two smoothness
results. We note that R¥ loses two orders of smoothness as a consequence of (5.11).

Lemma 5.1 Recall the integer r appearing in (H1). There exists a constant Ny > 0 such that for
any integer 0 < £ < r+2 and any n > €5, N1, the maps OF and ©F are C*-smooth when considered
as maps from [Wmin, Wmax) X [¢x — ¢, €« + 0] X [0,0¢] into BC,(R,R).

Lemma 5.2 Recall the integer r that appears in (H1). There exist constants Ny > 0, 6. > 0 and
dc > 0, such that for any —n. < n < —rdcN1 and any integer 0 < £ < r, the nonlinearity R% 18
C*t-smooth when considered as a map

R%) : BC’I’]([_17OO>7 [wmin7wmax]) X BC’I’]([_17OO)7R) X [wminvwmax] X [C* - 6630* + 50] X [0366]
— BC,,([0,00),R)

(5.17)
with ng > n + £0.N1. The same result holds for S%’.
Let us now consider the linear part of (5.13a), which we will write as
AR, c,e)v = h, (5.18)
in which AfP(9, c,€) acts as
AR (W, ¢, )u](€) = cv'(§) = L(sr(OR(Y, ¢, )(€), ¢, ) Jeveu. (5.19)

The following result shows that (5.18) can be solved when considered on appropriate function spaces.
It can be obtained by combining Lemmas 4.1 and 5.1.

Lemma 5.3 Consider the linear system (5.18) and suppose that (H1)-(H3) hold. Then there exist
constants 0. > 0, 6. > 0 and N1 > 0, together with maps

IC%,W : [wmina wmax] X [C* - 507 Ccy + 5c] X [07 66]

— L£(BC,(]0,50), R), BC,(|-1,0),R)) (5.20)

defined for 1 € [—n«, ], such that the following properties are satisfied.
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(i) Consider any h € BC,([0,00),R) for some n € [—n.,n.]. Then the function v = K%’n(ﬁ,c, €)h
satisfies A2 (9, ¢, e)v = h for any ¥ € [Wmin, Wmax], € € [cx — 6, Cx + 0c] and € € [0,5,].

(i) The norm HIC%,n(ﬂ,c, e)” can be bounded independently of n € [—nx, ], ¥ € [Wmin, Wmax],
€ € [Cx — OcyCu + 0] and € € [0,5].

(iii) Consider a pair ni,n2 € [—N«, 1] together with a function
h € BC,, ([0, 00),R) N BC,, ([0, 00),R). (5.21)
Then for any ¥ € [Wmin, Wmax|, € € [cx — ¢, cx + I¢] and € € [0, 6.], we have
IC%’,771 (9, ¢,e)h = K%m (9, ¢, €)h. (5.22)
(iv) Recall the integer r that appears in (H1). Consider any integer 0 < £ < r + 2 and pick
N,M2 € [N, 1] in such a way that o > €5.N1 + n1. Then the map (9, c,€) — KP(9,c,¢)

is C*-smooth when considered as a map from [Wumin, Wmax] X [Cx — Oc; s + 6c] % [0,0¢] into
‘C(ch([ovOo)ﬂR)7BCTZ2([_1ﬂOO)7R))'

Before we can study solutions to the homogeneous equation A%(ﬂ, ¢, €)v = 0, we need to introduce
some terminology. For any wg € [Wmin, Wmax), consider the autonomous homogeneous system

v’ (€) = L(5r(wo))evev. (5.23)

The following result is based on [40, Theorems 3.1-3.2] and characterizes the set of solutions to (5.23)
posed on half-lines.

Lemma 5.4 Consider the linear system (5.23) and suppose that (H1)-(H3) are satisfied. Then for
every wo € [Wmin, Wmax), there exist closed subspaces Plf%b(wo) C X and Q%(wo) C X such that the
following properties hold.

(i) We have the splitting X = P2 (wo) ® QP (wo) for all wy € [Winin, Wiax)-

(ii) Suppose that ¢ € P2 (wg) for some wy € [Wmin, Wmax]. Then there exists v € C((—o0,1],R)
that solves (5.23) and has evov = ¢. In addition, there exists a constant C > 0, that does not
depend on ¢, such that the estimate

levev|| < Ce™ Il |g)] (5.24)
holds for every £ < 0.

(iii) Suppose that ¢ € Q2 (wg) for some wy € [Wmin, Wmax]. Then there ezists v € C([—1,00),R)
that solves (5.23) and has evov = ¢. In addition, there exists a constant C > 0, that does not
depend on ¢, such that the estimate

levev|| < Ce™™ 14l g (5.25)
holds for every & > 0.
(iv) Any v € BCy((—o0,1],R) that satisfies (5.23) for all € <0 must have evov € P2 (wy).
(v) Any v € BCy([—1,00),R) that satisfies (5.23) for all € > 0 must have evov € Q2 (wy).

We will write Ipm () @ X — Pp(wo) and Igm ) : X — Q(wo) for the projections that
can be associated with the splitting obtained in (i) above. Based on this result and the techniques
developed in [26], we can now study the solutions to the slowly-modulating homogeneous system
AP (9, ¢, €)v = 0. We obtain the following characterization.
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Lemma 5.5 Consider the linear system (5.18) and assume that (H1)-(H3) are satisfied. Fiz wo €
(Wmin, Wmax), then there exist constants Ny > 0, §y > 0, 6. > 0 and §. > 0, together with a map

EP wo * (W0 — 09, w0 + dp] X [cx — ¢, s + 0c] X [0,0] — L£(Q% (wo), BC_,, ([-1,00),R)), (5.26)
such that the following properties are satisfied.

(i) For any ¢ € Q% (wo), ¥ € [wo — 0y, wo + dp), ¢ € [cx — b¢, Cu + 5] and € € [0,0.], the function
v= Elfgwo (9, ¢,€)p satisfies AR (9, ¢, e)v = 0.

(i) We have HQ%(wO)eVOElfgwo(ﬁ,c, €)p = ¢ for all ¢ € QF(wp), I € [wo — dy,wo + dy], ¢ €
[cx — Oc,yca + d¢] and € € [0,0].

(i11) Suppose that v € BCy([—1,00),R) satisfies A(Y,c,e)v = 0 for some n € [—n.,n], ¥ € [wo —
89, wo + dy], ¢ € [cx — O, c* +4.] and € € [0,0]. Then v satisfies the identity
v = Eijb,wo (9, ¢, )l gt (1) EVOL- (5.27)

(iv) Recall the integer r that appears in (H1). Consider any integer 0 < £ < r + 2 and pick
1N > —ns + L5 N1. Then the map (9, ¢, €) — E%,wo (9, ¢,€) is C*-smooth when considered as a
map from [wo — &g, wo + V] X [cx — 8¢, s + c] x [0,8] into L(QF (wo), BC,([—1,00),R)).

Proof. For each fixed wy € [Wmin, Wmax), One can mimic the construction in [26§6] to obtain an
operator E}c;ibﬂu0 (wo, -, -) that satisfies (i) through (iii) with dy = 0. This setup can be generalized
to include situations where dy > 0 by recalling from [27] that for each ¢ sufficiently close to wy,
there exists a linear map uy, (¥) : Q(wo) — X that depends smoothly on 1, with the property that
Range (uj, (¢9)) = Q% (), while o (1) Ui, (9) = I. In view of equation [26, Equation (6.59)], the
smoothness property (iv) can be read off from Lemma 5.3. "

We conclude this section by noting that the objects R, S| ICbeﬂ7 and Eib,wo can be constructed

in an analogous fashion. In addition, operators analogous to IC%’J] and Ezfa?wo that are related to
(5.18) posed on (—o0,0] can also be constructed.

5.2 Linearization around front and back

We start out by considering the variational equations near the front gy. Substituting the ansatz
w(&) = qr(&) +v(€), w(&) = 0(§) into (3.1), we arrive at the system

(5) = L(Qf(g))eva_w(g)+Rf(97vvca€)(€)’ (5.28a)
c*ef(g) = &S¢(0,v,c,€)(€), (5.28D)
in which
Ri(0,v,c,6)(€) = gl (& v(€)) + << [L(qr(€))evev — 0(€) + g (€, v(€))]
4= [g(qf(f)) + g€ = 1) +qp(€+1) —2q7(9)]], (5.29)
Sp(0,v,¢c,6)(€) = gp(€) +v(€) —0(E)],
with
gl (&,v0) = g(qr(€) +v) — g (a(6))v — g(ar (€)). (5.30)

Moving on to the variational equations near g, we use the ansatz u(§) = ¢,(&) + v(€), w(§) =
wy + 60(§) and find

e’ (§) = Lig(§))evev+ Ru(0,v,c,€)(€), (5.31a)
0 (&) = €Sp(0,v,c,€)(€), (5.31b)
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in which

Ry(0,0,¢,€)(€) = g (& v(€)) + “[L(an(€))ever — 0(€) + ghy (&, v(€))]
+e4[g(a(€)) +alap(€ — 1) + (€ +1) — 2qb(£)] w.], (5.32)
Sb(97v7 ¢, 6)(§) = %[qb(g) + U(f) YWsx — ’79(5)]

with

gm(&v) = g(a(€) +v) — g’ (w(€)v — 9(a(9))- (5.33)

We recall from §3 the operators Ay and A, that are associated to the linear parts of (5.28a) and
(5.31a). These operators are elements of £(W*°(R,R), L°(R,R)) and act as

[Apul(€) = en'(§) = Lgr(€))evev,
[A0](€) = ev'(€) — L(gs(€))even. (5.34)

We will focus on Ay for the moment. We recall the kernels Ky and K7} defined in (3.6). Let us
write

XH(E) = {¢ € X | (eved, ¢) = 0 for all d € K}}, (5.35)
which is a closed subspace of codimension one in X for each £ € R. In addition, we write
By(§) ={¢ € X | ¢ = eved for some b € Ky}. (5.36)
The first result concerns a precise splitting for X fL(f ) and was established in [40].

Lemma 5.6 For any £ € R, there exist closed subspaces ﬁf(f) C X]%(f) and @f(é) C X]J;(f)
together with constants K > 0 and a > 0, such that the following properties hold.

(i) For any & € R we have the decomposition
X7 (€) = Pr(&) ® Qf(&) @ By (&) (5.37)

(ii) Consider any ¢ € ﬁf(g) @ By(€). There exists a function v = E¢ € BCy((—o0,& + 1], R) that
has [Apv](§) = 0 for all & < €. In addition, in the special case that ¢ € P;(€), we have the
bound

(e < Ke €=l lg)l  foralie' <¢. (5.38)

(ii) Consider any ¢ € @f(f) @ By(&). There exists a function v = E¢ € BCy([¢ —1,00),R) that
has [Afv](&') = 0 for all & > &. In addition, in the special case that ¢ € Q¢(§), we have the
bound

(e < Ke €l g)l  foralie’ > ¢. (5.39)

(iv) /Alny v € BCy((—00,& + 1],R) that has [Asv]|(&') = 0 for all & < & must satisfy evev €
Pr(&) & By (§).

(v) Any v € BCy([§ —1,00),R) that has [Asv](&') = 0 for all & > & must satisfy evev € @f(f) ®
By (8)-

28



Recalling the one-dimensional subspaces I'y C X and Iy, C X defined in §3 and noticing that
span{evoq}} = By(0) and span{evoq,} = By(0), we may refine the splitting (3.7) and obtain

X = B(0)® P;(0) ® Q4(0) & Ty = By(0) & Py(0) & Qy(0) & T (5.40)

We will write 11, (o), pr(o) and Hégf(o) together with Tl p, (o), HPb(o) and HQb(O) for the projections
that are associated with this splittings.

As a final preparation, we need to consider perturbations to Ay and Ay. Let us therefore consider
a parameter dependent operator A (&g, u) : WH°(R,R) — L (R, R) that is given by

[A s (&0, )o](§) = €0 (§) — afv(§ + 1) +v(§ — 1) = 20(§)] — A(&o + & p)v(8), (5.41)

in which the parameters £ and p are taken from an open neighborhood of 0 € R and A(£,0) =
9" (q7(€)). We will assume that the map (o, 1) — Ag(&o, p) is C*-smooth. With this requirement
out of the way, we will subsequently drop the dependence on &y and simply write Ay(u) = Af(0, p).
The theory developed in [27§3] shows that the homogeneous system Af(u)v = h can be solved on
half-lines.

Lemma 5.7 For any sufficiently small p and any n € [—n«, n.|, there exist operators
R),

AFY () BCn( 00, 0],R) — BC,((—o0,1

00, 0], o0, 1],
inv 5.42
AL () BO,(0,00), B) — BC,([-1,00), ), (>42)

that depend C*-smoothly on p and satisfy the following two properties.

(i) For any h € BC,((—o0,0],R), the function v = Aifrfi (1)h satisfies
(A (p)v](€) = h(E) (5.43)
for all £ <0.

(ii) For any h € BC,([0,00),R), the function v = A (u)h satisfies

[A g ()](€) = h(E) (5.44)

for all € > 0.

The following result was obtained in [2785] and establishes the existence of exponential di-
chotomies on the half-lines Ry for the homogeneous system A¢(u)v = 0.

Lemma 5.8 For every sufficiently small p, there exist a family of closed subspaces Qs(&, 1) C X
and S§(&, 1) C X parametrized by & > 0, together with two constants o > 0 and K > 0, such that
the following properties are satisfied.

(i) For every & > 0, we have the splitting
X =Qf(& ) & 5¢(& 1) (5.45)
with accompanying projections g, ¢ .y X — Qf(&, 1) and g, (¢ )+ X — S¢(&, ).

(i1) Consider any ¢ € Q (&, ). There exists a function v = E¢ € C([¢ —1,00),R) with evev = ¢
that has [A(u)v](§") =0 for all & > €.

(i11) Consider any ¢ € Sy(&, n). There exists a function v = E¢ € C([-1,€ + 1],R) with evey = ¢
that has [A(u)v](§) =0 for all 0 < & < E.
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(iv) For any integer 0 < £ < k we have the estimates

Deer’EHQf(g,u)H Ke_ak/_&' fO’F every g/ > ga
DleV§/EHSf(£7M)H < Keole'=¢] for every 0 < ¢ < ¢,

IN

(5.46)

in which the differentiation operator D acts with respect to the parameter .

Our final result shows how these parameter-dependent subspaces at £ = 0 or § ~ oo can be
written as graphs over Q(0) @ By(0) and P2 (0). For a proof, we again refer to [27§5].

Lemma 5.9 For any sufficiently small p, there exist a linear map Eq, () : @f(()) @ B¢(0) —
C([~1,00),R) that depends C*-smoothly on p and satisfies the following properties.

(i) We have Q5(0, 1) = Range(evoEq, (1)) and Eq, (1) = EevoEQf ().
(ii) We have g o) ® s, ©0evoEq, (n) =1 and [evoEq, (1) — I] = O(|u|) as u — 0.
(iii) The map p — evoEq, () is C*-smooth.

In addition, for any sufficiently small p and any sufficiently large & there exists a linear map
Es, (& p) : PR(0) — C([-1,& + 1], R), such that the following properties hold.

(iv) We have Sy (&, ) = Range(eveEs, (€, 1)) and Es, (&, 1) = EcvaSf (& ).
(v) We have pn g eveEs, (€ 1) = I and [eveEs, (1) — 1] = O(|p| + e ) as (u, &) — (0, 00).
(vi) The map (&, p) — eveEs, (&, 1) is C*-smooth.

Very similar results can be obtained for the family of splittings X = Qp(&, p) B Sp(&, 1) with
& > 0. In addition, for every £ < 0, we have the splitting

that is accompanied by linear maps Ep, (1) : P,(0) ® B,(0) — C((—o0,1],R) and Eg, (& 1) -
QP (w,) — C([¢ — 1,1],R) in such a way that analogous versions of Lemmas 5.8 and 5.9 hold.

5.3 Construction of quasi-fronts

We set out to prove Proposition 3.4. Our approach is to choose a large constant £, > 0 and split the
real line into the three intervals (—oo, 0], [0, &o] and [£p, 00) that we each consider separately. To aid
us in this scheme, we introduce the families of function spaces

BCS = {(v,0) € C((—,1],R) x C((—00,0],R) for which
1(0,0)]| pee = supe<y e u(€)] + supe<o e 6(€)] < oo},
BC@ = {(1},9) € C([*Lfo + 1]aR) x C([07£0]3R) for which (5 48)
[(v,0) | pce = SUP_1<e<g,41 [V(E)] + SuPp<e<g, [0(§)] < oo}, ’
BC? = {(v,0) € C([¢& — 1,00),R) x C([&o — 1,00),R) for which
1(0,0)]| g == supesg,—1 €%l (Ju(€)[ +10(6)]) < oo},
parametrized by a > 0, together with the families
BC; = {g9=1(91,92) € C((=00,0],R) x C((—00,0],R) for which
19l e = supg<o e (|g1(€)] + [g2(€)]) < o0},
BC® = {(91792) € C([Oa§0]aR) X C([07£0]aR) for which (549)

9l poo = SUPg<e<e, [91(E)] + &0 1g2(§)] < oo},
{(g1,92) € C([é0, 20),R) x C([¢,00), R) for which

9]l gt = supesg, €%l (|g1()] + |92(6)]) < o0}

BCH
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Notice the additional factor &, that appears in the second component of the norm defined on BC®.
We recall the constant 7, > 0 appearing in §3. Our goal is to find 97 € [Wmin, Wmax] together

with pairs (v=,607) € BCS, , (v°,6°) € BC® and (vt,0%) € BC®, | such that the choice

0= (&) for £ <0,
wr(§) = ¢ 0°(8) for 0 <& < &, (5.50)
OR(WT,ce)(&) +0T(E)  for £ > &,

in combination with u (§) = g¢(£§) +v7(€) for £ <1 and

_ qr (&) +v°(&) for —1 < ¢ <&,
uple) = { srOwp(©),ce) +oH(E)  for £ > o, (5.51)

satisfies the conditions of Proposition 3.6.
Recalling the computations in the previous part of this section, we find that the pair (v=,67)
must satisfy the equation

Am(w™,07)=(=0",0) + N~ (67,v",¢ce), (5.52)

in which A~ : BC’?U* — BCZ, is given by A~ (v™,07) = (A v™,A; 07), with

Arel(§) = ew'(e) — L(as(€))ever,
[A50)(&) = c.0'(6), (5.53)

for £ <0, while N™ = (N7, N, ) is given by

Nl_ (9,’[),0, E)(E) = Rf(a,’u,c, 6)(5), (554)
./\/27(9,1),6, 6)(5) = GSf(ngvC’ 6)(5)7
again for £ < 0. Similarly, we write

A°(v®,60°) = (—6°,0) + N°(v°,0°,c,€), (5.55)

for the equation that the pair (v®,6°) must satisfy, noting that the operators A° : BC® — BC*® and
N? differ only from A~ and N~ by the interval on which the relevant functions are defined.
Finally, the pair (v, 6%) must satisfy

AT, e )(w,07) = N (00" 97 c.e), (5.56)

in which AT(97F,¢,€) : BC®, — BCT, is given by AT (97, ¢c,e)(vt,07) = (AT (97, ¢, e)vt, AS (c)0T)
with

[AT (19+’ ¢, 6)1}] (5) = [Afb(ﬂ—i_’ G, 6)1}] (5);
M@ = e, (5:57)
while N'F = (M7, N5F) is given by
N (0,v,9F,c,e)(€) = RE(O,0,9%,¢,€)(€), (5.58)

N;_(a’ IU’ Q9+7C’ 6)({) = ES%(07’U77‘9+7C7 6)(6)7
after slightly modifying R and S to account for the fact that v and 07 are defined on [¢5 — 1, o0)

instead of [—1, 00).
For ease of notation, we introduce the family of function spaces

HZ = BCS, xBC®xBC% ., (5.59)
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parametrized by ¢ > 0. When ¢ = 0, we will also use the shorthand H° = Hj. In addition, we write

He = BOZ, x BC°x BCY (5.60)

n«+¢?

again with H = Hg. For any h = (v—,07,v°,0°,vT,0%) € H°, we write 7, h = v~ and define the
projections myo, T+, Tgo and T+ in a similar fashion.

Let us combine the parameters appearing in the equations above into a single quantity p =
(97, ¢, €). Choosing a set of small constants dy > 0, 5. > 0 and §. > 0, we write

Dy = Dp(09,0¢,0c) = [—dy,09] X [cx — b, e + 6] X [0, 6] (5.61)

for the parameter space we are interested in. We also choose a large constant &, > 0 and again
write a <, b to express the fact that there exists a C' > 0 that does not depend on & > &,,
any of the cut-offs appearing in (5.61) or the cut-off §, that will be introduced in the sequel,
such that a < Cb for all quantities a and b that depend on these constants. In addition, for any
h € H® and p € D,, we will use the shorthand N~ (h,p) = N~ (7,-h, - h, 0", ¢, €), together with
analogous definitions for N°(h,p) and Nt (h, p). Finally, we use the notation N'(h,p) to denote the
set (N (h,p),N°(h,p),NT(h,p)) € H.

The first step in the proof of Proposition 3.4 is to consider the linearized equations that the
quasi-fronts must solve. Note that the quantity 9+ is a free parameter in this step, but we do impose
the shape conditions from Definition 3.3(iii)-(iv).

Lemma 5.10 Fiz a sufficiently large constant &, and sufficiently small 6. > 0, 9 > 0 and §¢ > 0.
Choose any & > &. Then for any g = (97,9°,97) € H, any boundary condition ¢ € X and any
p= (97, c,€) € Dy(dy, 0, 0c), there exists a unique

h= (v ,0,v°0°%v", 0") c H° (5.62)
that satisfies the following properties.

(i) The linear systems

A= (v7,07) = (=07,0)+g,
A°(v°,6°) = (~6°,0)+g¢°, (5.63)
A ()", 6%) = g*

are all satisfied.
(i) The identity 6°(0) = 0~ (0) holds.

(iii) We have the inclusions

evouT € Pp(0)@Qr(0) @ Ty,

evor® € Py (0)® Qf (0)® Iy. (5:64)

(iv) The gap between v~ and v° at zero satisfies evolv™ —v°] € T'y.
(v) Upon writing vy (£) = D1sr(O%(p)(€))07 (), the following boundary condition is satisfied,
eve, [v° — T —vT] = ¢ (5.65)
The function h € H® described above will be denoted by

h = Li(p)(g, ). (5.66)
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Recalling the integer r appearing in (H1), there exists a constant N1 > 0 such that for any integer
0</{<7r+2 and any ¢ > €5.Ny, the map p — L1(p) is C*-smooth when considered as a map

Ly : Dy — L(H x X, HE), (5.67)

with derivatives that can be bounded independently of § > &«. Finally, consider any d € K%. Then
the following identity holds for the gap at zero,

(evod,evolo™ —v°)) = [2_d(&)gy (€) €'+ [5° d(€)g?(€") &’
_é fi)oo d(gl) ffoo g; (5//) dfﬁ dg/ , (568)
— A2 gx (€ A€ + 5 g3(€") €] de’

—(eve,d, eve,v°).
Proof. First of all, we can use Lemma 5.3 to define an operator
AF ()7 BOy. ([0, 50), R) — BC_. (1€ — 1,50), R) (5.69)
and Lemma 5.7 to define linear operators

[Ar]7Y + BC_y.((—00,0,R) — BC_y, ((—o0, 1], R),

AT+ BGo(I0,60).B) = BCo(I-1, + 1} R), (570)
such that the choice hg = (vy, 07, v, 0%, v, 07) with
0-(¢) = L[ ga(€)de, vy = AT Vgr — 0],
0°(6) = 07(0)+ L [ros(ehde, w3 = [AS]gs — 60, (5.71)

o) = L[S gF(E)ae, of = [AF() et

satisfies items (i) and (ii).

We note here that the exponents —1 above are used suggestively, since the relevant homogeneous
equations have non-zero solutions. We shall use this freedom to ensure that the remaining properties
(iii) - (v) are also satisfied. In particular, we will modify v, , v§ and vy by choosing ¥B° € B;(0),
WB= € By(0), wP~ € Py(0), v € Qf(0), ¥°° € Py and v@+ € Q% and writing

vt = wp BT (WP 4P,
v = v+ BB 4 8) 4 ESoySe (5.72)
vt o= uf + B9 (p)yet,

in which the extension operators EF~, EQ° and E®° are relabelled versions of those defined in
Lemma 5.9, while E?" is constructed from the operator E}fgo appearing in Lemma 5.5.
In terms of these new variables, the boundary condition in (v) can be written as

¢p = 5 +1pp eve, B + ) — pm eve, B9 (p)y+, (5.73)
bo = YO —Tlgy eve, BX (1P + %),
in which
¢p = Ipp ¢ —Tpm eve,vf + Mpm eve, [V +vg ], (5.74)
¢q = —lgu ¢+ HQ%’Oev&vg — Mg eve, [05 + vg). '
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Conditions (iii) and (iv) are equivalent to the system

—1Ip;(0)evovy = B,

s, 0)evovs = 9P+ Il pevo B,

—p, yevolvy —vf) = wP- — Mp, ()eva 54, (5.75)
My, oo (vg —v§) = V8 4 HQf(O)evoESOwSQ,

Inspection of the system (5.73)-(5.75) readily shows that for sufficiently large &, and sufficiently
small §., 0y and J., the right hand side is close to the identity matrix. This allows the linear system
to be solved, yielding the desired set h = L1(p)(g, ) € H°. To complete the proof, observe that the
integral expression (5.68) follows from (3.5), while the smoothness of the map p — Ly(p) follows
from Lemmas 5.3 and 5.5. "

As a second step towards establishing Proposition 3.4, we will need to study the nonlinear fixed
point problem

h = f(hvp) = Ll(p) (N(hap)v (I)(hap))v (576)
in which

®(h,p) = eve,[sr(OF(p) +607,p) — Disr(0%(p),p)0" — sr(O%(p),p)] (5.77)
+eve, [sr(O%(p), p) — a5]- .

Let us introduce the set By = {h € H° | [|h[|;;o < 6, }. It is not hard to see that for all A € Hg and
p € Dy, we have

|®(h, p)|| <i 62+ b9 + Sc + O + e 150, (5.78)
In addition, for a pair hq,hy € B and p € D), we have the Lipschitz estimate

[@(h1,p) = ©(h2, p)|| i 0u [h1 — hall3 - (5.79)
Combining this estimate with (5.16) and inspecting (5.29), we find the estimates

| F (R, p) |40 <o 02409 + 0+ 0e&o + e Moo,

5.80
|F(h,p) = Flhap)llae <u (B0 + 0+ 8e60) 71 — halyge (5.80)

which hold for all p € D), and h, hy, hy € B . After writing
69 =022 5.=062,  S.=02/& (5.81)

and choosing §, to be sufficiently small, we hence see that F(-,p) is a contraction mapping on the
set B3 for all p € D,. This shows that the fixed point problem (5.76) has a solution i = h*(p) that
is unique in the set Hs, .

Before we can proceed further, we need to obtain estimates on the derivative D,h*. This can be
done by writing D,h*(p) = ™M and noting that A(!) must satisfy the linear fixed point problem

hV) = DyLi(p)(N(h*(p),p), ®(h*(p), p))
+L1(p) (DuN (h*(p), p), Dr®(h*(p), p)) ™) (5.82)
+L1 (p) (DpN (h*(p), p), Dp®(h*(p), ),

posed on the space H¢ for some 6. N1 < ¢ < 7. To see that this well-defined, we observe that L;(p)
can also be treated as a map from H¢ x X into He. We have the estimate

HDhN(haleﬁ(Hg,’H{) S« Oy +0c +0co (5.83)
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for any h € H;, and p € D,. In addition, for such h and p we have
1D~ (D)l o, + DN )l | e 1, (5.8
together with

|1 De N°( P)lpes <x o,

5.85
IDAN (b, D) oo + Dot NO(hyp) | pos <o (5.85)

After these preparations, it is clear that the fixed point problem (5.82) has a unique solution h(*) =
h*M)(p) for all p € D,. In addition, we find

| Deh*(p) ||Hg
1D (D) 1342 + Do+ h* (Pl

&o,

N (5.86)

<
<

Inspection of (5.71) shows that both mgo L1 (p) and 7g+ L1 (p) do not depend on ¥+. We may therefore
compute
Dyemel*(®) = 7o La(p) (0, DaNg (0 (9),9), (0, DaNE (0" (p), ),
(0, DR (" (1), ), 0) Dy " (p) (5.87)
o0 L1(p) (0,0, (0, Dy N5 (0" (1), ), 0)).

A similar computation can be performed for Dy+mg+h*(p). Upon using (5.86), we may hence conclude
[ Dy+moe h*(P)I| ) ¢ + [ Doemoch*(P)llg <+ delo- (5.88)

We have now gathered all the ingredients we need in order to find 97 as a function of ¢ and e.
Indeed, the requirement that the function wy constructed in (5.50) is continuous at &, leads to the
fixed point problem

0 =Fa(07F, ¢ €) = [moe h* (97, ¢, €))(&0) — [mo+h™ (97, ¢, €)](€0)- (5.89)

In view of the scalings (5.81), it is not hard to see that |Fa(p)| <. 62, for all p € D,, which implies
that, possibly after decreasing d, > 0, the operator Fa(-, ¢, €) maps the interval [—dy, dy] into itself.
In addition, (5.88) implies that F5(-, ¢, €) is a contraction mapping, which implies that we can find
a solution ¥+ = 91 (c, €) to the fixed point problem (5.89) for all ¢ € [cy — ¢, cx + 0] and € € [0, J].
In addition, for such ¢ and € we find the bounds

| DY (¢, €) « 1

| <
DT (c,e)] <. &o. (5.90)

Finally, we set out to establish the Melnikov inequalities (3.9). Let us therefore fix a d € K* that
is normalized to have d(0) > 0 and ||d||, = 1. We study the map M : D, — R that is given by

M :p— (evod,evom,- h*(p) — evomye h*(p)). (5.91)
Using the identity (5.68), we may write
M(p) = f? Nf (h*(p), )(£ A&+ Jy" AENT U (), p)E) €

I f‘f — ) )(5//) g// dé—/ (592)

cl* f0° f_ooNz h*( ).D)(E")AE” + [£ N3 (h*(p), p)(€”) d€”] de’
— <eV§0 d, €V, TTyo h* (p)>
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Let us now write M : [¢, — 8., ¢x + 0c] x [0,8.] — R for the operator M(c,e) = M (9% (c,€), ¢, €). Let
us write pg = (0, ¢4, 0). Observe first that DN~ (h*(po), po) = 0 and DpN°(h*(po),po) = 0. Using
the estimates (5.86) and (5.90), we may hence compute

D.M(e.,0) = [° <§/>D N (0,p0) () ¢’
+ " d( DN°<0 Po)(€ )d£’+0(e m-60)
= ffi,od ¢} (&) dg' + O(e %)
D.M(c.,0) = —éf? &) <. DN (0,p0)(€7) d€” €’ (5.93)
U‘ DNy (0,p0)(€") + [£ DN (0,p0)(€7)] de” de/
+O(£06 77*60)
_ fﬁo d /f§ 5// f”df/—FO(foe_n*EO)

The inequalities (3.9) now follow from Lemma 3.2.

Proof of Proposition 3.4 We fix gy > 0, 6. > 0 and d. > 0 as in (5.81), for some sufficiently
small &, > 0. Let us choose any pair (¢, €) € [cx — ¢, ¢ + ], write

(U77077UQ’ 00’ ,U+79+) = h*(l9+(c’ 6)703 €) (5'94)
and define u?(c, €) and wy(c, €) as in (5.50)-(5.51). In addition, write
V(e e) = ORI (c,€), ¢, €)(—&o). (5.95)

The properties required in Definition 3.3 and in (ii) are satisfied as immediate consequences of the
construction above. The smoothness properties in (iii) can be established using arguments analogous
to those used above to establish the C'-smoothness of 2*. It remains to show that the functions thus
constructed are locally unique. Let us therefore assume for some pair (¢, €) the existence of a second
quasi-front solution to (3.1). In view of the uniqueness claim in Lemma 5.10 and the uniqueness of
solutions to fixed point equations, it suffices to show that the first two estimates in Definition 2.2(iv)
hold with respect to an exponentially weighted norm and not merely with respect to the supremum
norm. This can be established as in the proof of [43, Claim 3.7]. ]

5.4 Construction of quasi-backs

We now set out to proof Proposition 3.6. The ideas and techniques are very similar to those used
previously to establish Proposition 3.4, so we will focus mainly on the differences needed here. Since
the quasi-backs need to follow both Mg and My, we will split the real line into four separate parts
instead of three. In particular, we will study (3.1) on the four intervals (—oo, —&g], [—&o, 0], [0, &o]
and [&g, 00).

To accommodate this, we introduce the family of function spaces

BCO? = {(079) € C((*OO, 750 + 1]7]R) X C((*OO, *60 + 1]7R) for which
1(0,0)]| e = supe< o1 €=l ([0(€)] +6(6)]) < oo},

BCO = {(0,0) € C(|~€o — 1,1, R) x C([~£0,0], R) for which
(v, )] peo- = sup_g,_1<e<1 [V(E)] +5UP_g <e<0 10(§)] < o0}, (5.96)
BCO* = {(1,0) € C([-1,& + 1, R) X C(I0, o], R) for which |
||(7)79)||Bc®+ = SUP_j<e<gp+1 [v(§)] + SUPg<e<e, 0(§)] < oo},
BCY = {(v,0) € C([& — 1,00),R) x C([¢o — 1,00),R) for which

1(v,0)ll pee = suPesg,—1 €™l (0 ()] +10(€)]) < oo},
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parametrized by o > 0, together with the family

BC; = {9=1(91,92) € C((—00,—=&],R) x C((—00, =&}, R) for which
19l g = supe<g e Tl (g1 (€)] + |g2(€)]) < oo},
BC° = {(g1,92) € C([~&0,0,R) x C([~&o, 0], R) for which
9l o- = SUP_¢,<£<0 lg1(E)] + &o lg2(&)| < o0}, (5.97)
BC°t = {(gl,gg) S C([O,fo],R) X C([O,fo],R) for which ’
9]l peo+ = SuPp<e<e, 191 (€)] + &0 192(€)] < o0},
BCH = {(g1,92) € C([&, ), R) x C([&o, 0),R) for which

e~lE=%l (g1 (&)] + |g2(€)]) < oo}

As before, notice the additional factor &, that appears in the second component of the norms defined
on BC%*.

9l o+ = supgse,

Our goal is to find 97, 9" € [Wmin, Wmax] together with pairs (v—,07) € Bc?n (o, 007) €
BCO, (v°7,0°7) € BCO and (v*,07) € BCG_BW*, such that the choice
OR(V ™, ¢, e)(€) + for £ < —&,
_ 'LU*+90 (5) for—gogfg()’
wp(§) = w, + 6°F() for 0 < £ < &, (5.98)
OF (W, c.e)(€) +07(6) for £ > &,
in combination with
w(e) = { srwl e v Horf< —&,
b (&) + 0o~ (€) for —& <&<1, (599)
u€) = (&) + v (€) for —1<¢ <&, :
) =

sp(wy(§),c,€) + vt (€)

satisfies the conditions of Proposition 3.6.
We will write the equations that arise after inserting the ansatz (5.98)-(5.99) into (3.1) in the
following fashion,

for 5 > 50’

Ai(ﬁ77c’€)(v7707) = Nf(vi70771‘977c’6)7
A (v°7,0°7) = (=0°7,0) + N° (v°7,0°,c,e), (5.100)
A<>+( o 90+) = (=0°%,0) + NF (v°F, 6%, ¢, ), '
AT@F ce)(0F,07) = NF@F,07,9%, ¢ e).
As before, we write
N et 05) = (AF(* c.ut AF (08%),
AT (vo:i: 90:&) _ A<1>j:1}:|: A;igi) (5'101)
now with A7 (97, ¢c,e) = AR (07, ¢,e), A (9T, ¢, e) = AP(WIT, ¢, €), AF(c) = eD and
[ATF0)(€) = /(&) = L{a(§))ever,
5.102
A5H0E) = (@), (102

Up to obvious adjustments concerning the domain of definition, the nonlinearities N'* are given by
N~ = (R, eSP) and N = (R, eSP), while N°F are given by N°F = (Ry, eSb)

The families of function spaces that are relevant for the construction of the quasi-backs are given
by

BC®
BC~

x BC®~ x BC®t x BC®

H¢
x BC°~ x BC*t x BCt

He

N«+¢
N«+¢

Nx+¢?
Nx+¢?

(5.103)
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both parametrized by ¢ > 0. As before, we employ the shorthands H° = H§ and ‘H = Hy. For
notational convenience, we now introduce the parameter vector p = (97,97, ¢, €), which we will take
from the space

Dy(89,0e,0¢) = [wy — 8y, wy + 9] X [ — e, + 02] X [0, 6] (5.104)

We also use the augmented parameter vector p = (9°,p) = (9°,9~,97F, ¢, €), which we will take from
the space

D, (690, 69,0c,0c) = [we — 590, ws + 690] X Dp(89, de, bc). (5.105)
The equivalent of Lemma 5.10 now reads as follows.

Lemma 5.11 Fiz a sufficiently large constant &, and sufficiently small 6y > 0, . > 0 and §c > 0.
Choose any & > &.. Then for every g = (97,9°7,9°7,97) € H, any pair of boundary conditions
bdr,¢r € X, any ¥° € R and any p= (9,97, ¢, €) € D,(dy,d.,0c), there exists a unique

h= (v ,0",v°,0° ,v°T,0° vt 67) € H° (5.106)
that satisfies the following properties.

(i) The linear systems

AL ,Ui’gi — i7
Aoi(}(?}gi 901? — ?_eoi O)—l—gi (5'107)

are all satisfied.
(ii) The identity 6°~(0) = 0°T(0) = 9 — w, holds.
(iii) We have the inclusions

evov®T € Eb(o) D @5(0) O T, (5.108)
evor®™ € Py(0) ® Qp(0) ® T

(iv) The gap between v°~ and v°T at zero satisfies evg[v®™ — v°T] € Ty.

(v) Upon writing v, = D1sg(©%(97, ¢, €),c,e)0~ and vy = D1s (09T, c,¢€),c,€)0T, the follow-
ing boundary conditions are satisfied,

ev_g [T —vT =T, ] = ¢r,
eve, 0T —ovt =3 = ¢r. (5.109)

The element h € H° given above will be denoted by
h = La(p)(9°, g, ¥R, $L)- (5.110)

Recalling the integer r appearing in (H1), there exists a constant N1 > 0 such that for any integer
0</l<7r+2and any > £5.N1, the map p — Ly(p) is C*-smooth when considered as a map

Ly:D, — L(RxH x X x X,H2), 5.111
P ¢

with derivatives that can be bounded independently of &y > &.. Finally, consider any d € Kj. Then
the following identity holds for the gap at zero,

(evod,evolv®™ —v*t]) = [0 d(€)gi™(€)dE + [ (€7 () d¢’
[ (&) ws —0° = L [ g5 (€") €] de’ (5.112)

S A€ e =9 = LT g (€) dg") dg
—(eveyd, eve, v°h) + (ev_g d, ev_g v 7).
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Proof. As in the proof of Lemma 5.10, we can use Lemma 5.3 to define linear operators

Ay (@) BC_y.((—00,&],R) = BC_y, ((—00,& + 1], R),

AFE]Y : BC-y (6,000, R) = BC—y. ([0 — 1,00), R) (5.113)
and Lemma 5.7 to define
[AT7]7Y ¢ BCo([—&,0],R) — BCy([—& — 1,1],R), (5.114)
[A<1>+]71 : BCO([ng()]vR) - BCO([_]-7£O + 1}7R)3 '
such that the choice hg = (vy,07,v5,0°, 05", 0", vf, 0F) with
0-(¢) = L[ g(€)ag, vy AL (P91
0= (&) = 190—“’*+1f0 - ')dﬁ' ve” = (AT Mgt -6,
o = v L sEag, o - wrlgroe), O
0O = L[S edE)de, i = @

satisfies items (i) and (ii).

As before, we will need to modify vy and v~ to ensure that the remaining propertles (iii) - (v) are
satisfied. In particular, we will choose 1/B°% € By, (0), szo’ S Pb( ), w@’* € Qb( ), pEe— e QP R
L= ngw*, Yoot € Pi'f’w*, POt € Q%,w* and write

v = vy +EP—(@¢P—
O = BT (P ) g By

Wt = oSt 4 BQoH(ypBot 4 Qo+ 4 pSotySot (5.116)
vt = il + B (R,

in which Ef°~, EP°~, EQ°t and E%°* are relabelled versions of those defined in Lemma 5.9, while
EP~ and EQ+ are constructed from the operators Elf?bw and Eibw appearing in Lemma 5.5. To
complete the proof, a linear system analogous to (5.73)- (5 75) can be constructed and solved. "

Proof of Proposition 3.6 Similarly as before, one can choose the constants 69 > 0, 69 > 0, 6. > 0,
d. > 0 and §, > 0 in such a way that the fixed point problem

h = LQ(@ (ﬁO,N(h’p), CDL(hvp)a @R(hap)) (5117)

has a solution i = h*(p) for each p = (¥°,p) € D, that is unique in the set B3 . Here the boundary
operators @, and P are defined in a fashion that is analogous to (5.77). In addition, one can define
9 (90, ¢, €) in such a way that the function wj defined in (5.98) is continuous.

Let us now fix d € Kj and consider the map

M : p— (evod, evomye—h*(p) — evomye+ h* (). (5.118)

Using (5.112) we may write

M(p) = [° d(&)w. — 0%+ N (1 (p), ) (€D] A€ + [ d(€)[we — 0° + NPT (R (p), p)(€)] A€’
—i fo N3~ (h*(p),p)(&") dg" d¢’
L fO N<>+ h* (p),p)(f”)df” df'
<ev50d ev507rv<>+h (p)) + (ev_g,d, ev_g,myo— h*(p)).
(5.119)
Let us now write M : [y — dgo, Wy + 090] X [cx — I, i + 0c] X [0, ] — R for the operator
M9, ¢c,e) = M®°, 07 (9°, c,€), 97 (9°, c,€), c,€). (5.120)
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A short computation now yields

Do M(wsse0,0) = =[5, d(€)dg’ +O(e), (5.121)
DM(w.,c.,0) = —[5 d€)g(€) g’ +O(e™™%). '
The remaining part of the proof is identical to that of Proposition 3.4. ]

6 The Exchange Lemma

In this section we set out to establish Proposition 3.8. First of all, we note that we will write T
throughout this section to denote the variable T' that appears in the statement of this proposition.
After fixing a suitable large constant §y > 0, we will use the variable T" here to denote the quantity
T= %T — &

We will need to use the T-dependent families of function spaces

BCY, = {(v,0) € C([& — 1,6 + T + 1],R) x C([&,& + T, R) for which
[ (v, G)HB(J%x T SUPg, _1<£<go+T+1 emolE=fl |y ()|
+Sup§OSESEO+T e_alg_fo‘ |9(§)| < OO}’ (6 1)
BCy, = {(v,0) € C([=& —T —1,—& + 1],R) x C([=& — T, =&, R) for which :

1w Ol pog, = sUP_g,-r-1<e<—e041 e~ et ol jy(¢)
T SUP_¢—T<e<—g, eeleteol |9 (¢)| < oo},

together with the families

BC;, = {(v,0) € C([&, & + T, R) x C([€o, o + T],R) for which
10.8) s 1= gy ceceyer el (u(E)] + 6(6)]) < o}, Ny
BC, = {(0,6) € C([-& — T\ &) ) x C(I~€ — T, &), R) for which (62)

10 O)ll pey, = sUP—g,—r<e<—g, € T (WE)] + [0()]) < o},

that are both parametrized by o € R. In addition, we will reuse some of the function spaces
introduced in §5. In particular, we recall the function spaces defined in (5.48)-(5.49) and write
BC’]?Q = BCY, BC, ,, = BCy, BC'JCCD = BC® and BC’;? = BC®. Similarly, we recall the func-
tion spaces defined in (5.96)-(5.97) and write BC,”~ = BC®~, BCP* = BC®*, BCy, = BCY,
BCy~ = BC®~, BCyt = BC°T and BC’;:Q = BC!.

We also introduce the family of composite function spaces

H¢ = BCY_, x BCY x BC}, x BCy, x BCY™ x BCPT x BCY_, ., (6.3)
together with the family
H¢=BC;_, x BCix BCf, xBC,, xBC;~ xBC;" xBCf ., (6.4)

both parametrized by ¢ > 0. It is important to note that we are using positive weights in the function
spaces that describe the passage near Mg. This will allow us to establish the exponential estimates
in (3.13).

We recall the slow time 7%! = €T and the set Q = Q(J,, dq1, T%) consisting of triplets w = (¢, T*!, T')
that was defined in (3.11). For any w € €2, our goal in this section is to find ¥° € [Wmin, Wmax] and

h=(v5,07,05,0%,0F,0F,v,,0, 05,0y v, 00% v, 0 ) € HO (6.5)
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in such a way that the choice T = 2&0 4 2T with

wy(c,€)(&) + 07 ()
wy(c,€)(&) +05(E)
wrle,)(€) + 0F (€)

w() =1 we(?9’,c, )€ =T)+0, (§-T)
wy(9°, ¢, €) (€ = T) +9° €&-1T)
wy (90, ¢, € —1:)+9§+(§—T)
wy(9°, ¢, €)(€ —T) + 0, (€ —

in combination with uy = u} (c,€) + v} and
_ uf (9%, c,e)(E—T)+v
we) = { uf (99, ¢, € —f)—i—vf(f—T)
uf (¢, €)(€) +v3 ()
e~ ] @+
- uw, (9°,¢,)(§ = T) + v, (£~ T)
ug(ﬁo’ 9 6) f - T) + vgi(g - T)

satisfies the conditions of Proposition 3.8.

We introduce the parameter vector p = (99, ¢, %), which we will take from the space

D, (890, 0, 0q) = [w

We also use the augmented parameter vector p = (p,

Dp(éﬁov 667 6s17 T*)

w — 090, Wi +5190] X

Cx _6coc*+5c] X[

— D, (840, 0¢,851) X

for £ <0,
forOS§§£07
for §o < <& + 1T,

f0r§o+T<§<§0+2T,

for§0—|—2T<§<T
forT<§<T+£o,
f0r§ZT+§07

for T—1<¢<T+&,
fOI‘ng—FE(M

for _]-Sggf()a
f0r§0§£§€O+T7

fOI'£0+T§£§§0+2T,

for {4+2T <ELT

T), which we take from the space

[Ty, 00).

Tfl - 6sla T:I + 551]

(6.8)

(6.9)

Substituting the ansatz (6.6)-(6.7) into (3.1), we arrive at a system of nonlinear equations that

we write as

Here we have

AY
for # = —,¢,+ and
A (9, c,
for # = —,0—, o+, +, in which
[Agl(c, €)v](§)
(A ;1(0, €)v](§)
(AT (9, ¢, €)v](€)

I
AAA/‘\/-\/‘\/‘\
|
>

(e, ), 07) = (AT

—0 ,0)+M+(v;{, f,c e)
,O)—|—./\/lb_(vb_,9;,190,c,e),

,0) + M;p~ (v g_,QZ_,ﬂO,c,e),
)+Mo+( o+ 9<>+ 190 )’
+/\/lb+(vb ,6‘;7190 c,€).

(c, e)vj?&, CDHJ#)

(i, 0f) = (AF,(0°,c, )T, cDO)
' (§) — L(u (c,e)( ))eviv,

i
' (€) — L(u}r
3

3
f))ev5v, for # = o, +,

cv'(€) — L(uy (0%, ¢, €)(§))even, for # = +,0+.
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The nonlinearities can be written as M?Q(u 0) = €[v — 0] for # = —, o, + and MZ%Q (v,0) = e[v — 0]
for # = +, o4, together with

M54 (v,0,¢,6)()

a7 (€. + )v(f)) — ¢/ (u (. )(©))v(©)

—9(uy (¢, )(€)),
M (0,6,¢,0©) = g(uf(e.)©) +0(©) — g (uf (.)())v(©) (6.12)
_g(uf (¢, e)(ﬁ)) for # = o, +, ’
M1 (0.6.9,c.0)(€) = g(uif(0°,c,) > +0()) — g (uj (°, ¢, ) (€))v(€)
fg(ub (¥° (f)) for # ==+,0+.
We can combine these nonlinearities into a single entity
M:H° xDp, —H, (6.13)
with the warning that H° and H both depend on T'. For any § > 0, we write
Bs ={h € H° | ||h|l}0 <6} (6.14)

We now pick a constant 6, > 0. For any p € D), and h, hy, ho € B§ __,, v, we have the bounds

M (R, )3 <. €&odpe T 4 §2e T,

[M(h1,p) = M(ha;p)llyy <s [e€o + 0] |1 = hallpe -

(6.15)

In addition, let us pick an arbitrary small constant v > 0 and recall the constant r appearing in (H1).
By picking T, to be sufficiently large, we can ensure that ¢ = T /T < v for all p = (9°,¢, 7%, T) €
D,,. For any integer 0 < ¢ < r and T > T\, we thus see that (h,p) — M(h,p,T) is C*-smooth when
considered as a map from H° x 51, into H¢ for any ¢ > £v. In addition, for any h € Bgve_,,*T, peD,
and ¢ > vy, we have the bound

”DBM(hvp)HHC <« e’yT(S?,e_n*T- (616)

The first step in the proof of Proposition 3.8 is to consider the linearized equations that the quasi-
solutions must solve, imposing the constraints in Definition 3.7(iv)-(v) concerning the discontinuities
that arise when passing from us to ux. and from uy. to us.

Lemma 6.1 Fix a sufficiently large constant T, and sufficiently small constants dgo > 0, 6. > 0
and dg > 0. Choose any T > T,. Then for every

9=197.97-9f95 9 -9 9, ) € H, (6.17)
any boundary condition ¢ny € X and any
p=(9%¢,T%) € D, = Dy(d90, 8¢, 91), (6.18)
there exists a unique
h=(v5,07,05,0%,0F,0F,v,,0, 05,0y v, 00F v, 0 ) € H (6.19)

that satisfies the following properties.
(i) The linear system

AF ()0}, 67) = (=67 .,0) + g (6.20)
is satisfied for # = —, o, 4. In addition, the linear system
AF ) 67) = (=07 .0) + gif (6.21)

is satisfied for # = — o—, o+, +.

42



(it) We have the continuity conditions 63(0) = 6;(0), 03(£0) = 9;{(50), together with 0, (—&o) =
0y (=€), 0,7 (0) = 057 (0) and 6, (¢0) = 05" (o).

(iii) The following continuity conditions all hold,

eve, v; = evg, v;[,
eV_g, Uy = eV_g, Uy, (6.22)
ev50 Ug+ = GV&) vb .

(iv) We have the inclusions

evov;,evov? € ﬁf(O)@Qf( 0)®Ty,

6.23
evouy ,evouy T € Pb(O) @ Qb( ) DT, (6.23)

(v) The gap between vy and v? at zero satisfies evg [UJT — v;] € I'y. In addition, the corresponding
gap between v°~ and v°* satisfies evolvy T —vpt] € Ty

(vi) The following boundary condition holds,
ev_go—TU, — ev50+TU}' = Ohw. (6.24)
The element h € H° described above will be denoted by
h = La(p, T)(g, $1w), (6.25)
and we have the estimate
[hll3o <s lglly + e [l drwll (6.26)

Recalling the integer r appearing in (H1), there exists a small constant v that tends to zero as
T, — 00, such that for any integer 0 < ¢ <r and any ¢ > {~, the map

p— L4(p,T) € L(H x X, Hg) (6.27)
is Ct-smooth with norm
IDRLa(®)|| <« e [llgllye + ™™ [l dnll) (6.28)

Proof. First of all, let us write p = (p,T') and define

076 = %ffoog;Q(E’)df’ Vo A7, ()] gy — 05 ],
03(§) = 0;(0) 1fo gf2 )dS’ v3o = [AG1(0)] gt — 05,
9?(5) = 90 (o) + 3 f 9f2 ') d¢’ U;O = [A}rJ(p)]_l[g}rJ_e}r]a
0 () 1ff gbmds’ vy = AL g - 6], (6.29)
0,76 = 05 ( Eo + 5 fgong (&) d¢’ vps = NI et - 6,7,
7€) = 60+ 1 gn ') dg’ vpo = M ey — 607,
0, (&) = 605 (- 50 +cf,gogb,2§)d£’ vo = M@ gpn — 6, ],

in which we have used Lemmas 4.1 and 5.7 to construct the various inverses used above.
We recall the slow time T%! defined in (3.10) and write

Pow = PRy Quw =Q% ., (6.30)
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in which the half-way point wpy, is defined as wpy = O3(0,c.,0)(37%!). We now choose variables

VB~ € Br(0), ¥P € Py(0), 47 € B(0), ¥F° € Q7(0), ¥ € PRy, 9 € Qb and * € Ph,

together with Y@~ € Quu, ¥F ™ € PRy, v € Q% vP° € By(0), v € By(0), vPot €
By(0), wQOJr € @b(O), ¢1§%+ c Pg?w*, wb € QL7w* and write

Vi = vpe+ BYT0)@F +00),

W= e+ BRI +05°) + B 0w

vio= vfo+E§+<p v B R

v, = Yot ()™ + B, ()Y, (6.31)
v o= vpe + BT + BP0 WP 4, 0),

vt o= kBT () S°++Ez?°+< YW+ g2,

voo= v+ BT el

in which the various extension operators E#b can be constructed from Lemmas 5.5 and 5.9 much as
before. In view of the desired exponential estimate (6.26), it will turn out to be fruitful to choose a
constant 6, > 0 and work with the rescaled variables

S+ _ LTS+
vpto= e T¢R (6.32)
b = 5¢e’7* ¢
In order to satisfy the boundary condition (vi), we must have
Ol = 51&6"*le}§+ - 5wen*THPhwev—fo—TE5_ (‘P){/;b -
Ve BF T ()07 —Tln,ev 1B, (D)0 (6.33)
b, = Opem Tyl — 5we"* HQhweV£o+TES+ 5+ |
g ev-g-1E; )~ — g, evesrEf 07T,
in which
Dy = Tp [Bhw — eV_go-TVh o + Ve 4707 g, (6.34)
D = @ [Bnw — eVogo-T5 o + Vo707 ).
The inclusions in (iv) yield the conditions
—Ilg,0evovy, = wf o
—Ilg,0)evovyy = ¢f + HBf(O)eVOESO( 7 (6.35)
~Ip,evov,, = V0T + g, o) evo By (p)p®, '
—Mp,evovy g = U7 +Tp,evol, *F (p)vy 7,
while the jump condition (v) yields
_ p_
_H}?f(O)eVO [Uf,o - U?,o] = Yy - Hbf(O)eVo [E,? (P)( °+ 1/)f )+ E}?Q(PW?Q],
g oevolvyo —viel = w,‘?° — 1Ly, yevolEf ~ (p) (7~ +¢f ?9 E?°(p)y§e],
~Hp, gyevolvy —visl = w7 = Hp, gevo[ B2 (0) (0" +07°") (6.36)
_|_ES<>+( ) So+ ERo ( )w ]7
HQb(O)GVO[U;B —vii,m = ;?M g, (©evo [E () (% 2o +1/Jb -)

ES<>+( )w§o++ERo ( ) 50 ]
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The continuity conditions in (iii) for the variables associated with the front can be translated as

—Mpe eveyvg — viol = U+ HPE‘foeVéOE?O(g)(w?Q +7°)
+ + S 0
e eveo[Ef T ()07 +0ue” TEF ()07 7], (6.37)
N .
Hgp eveolvgo —vfel = OF" — gy eve, BF°(0) (0" +0F°)
s 7S
Hlgn eve [due™ T BT (p)vy T — EF°(p)¥§°],
while the conditions in (iii) for the variables associated with the back yield
“pp, Ve lgh =l = ot + Hpp,. Ve EZT (p) (0" + 1/};9<>+)
_szb,w* eV§0E1?+(p) (?Jr,
+ B +
Hop, eveloff —vial = vf - Hop eve B (WP +uf*")
~Hgp | eve, By 7 (), (6.38)
— - Ro— Po— Bo— bo— :
—lgn  evoglug vl = ¢ + Mag,. ev-a by AR )~
~Hgn  eveg, [Ey " (p)vy ~ + dpe™ B ()],
Mpp evoglvpo —vol = W) —Tpp evog B (D)8 +4, )

Hlpg | evog e "B ()9 — B (0)yy ).

Putting these equations together, we arrive at a 16 x 16 linear system that can be solved for all
p € Dp, provided that 6., d¢, dq1 and dyo are chosen to be sufficiently small and 7 is chosen to be
sufficiently large. The bound (6.26) is a direct consequence of the scaling (6.32). The bound (6.28)
on the derivatives can be obtained by using Lemma 4.1 and a modified version of Lemma 5.5 and
noting that the embedding BC’Q?Q1 C BC@)QZ for a1 > as has norm e(® =T together with a

similar embedding for the family BC’b@. "
We are now ready to move on to the nonlinear system by considering the fixed point equation
h = f4(hap7 ¢hw) = L4(p)(M(hap)7 ¢hw) (639)

posed on the space H°, in which we take p = (p,T') € D, and consider all sufficiently small ¢p,,. Let
us pick a constant Cy > 0 and write d4 = 6, /Cy and

Bs, = {¢nw € X | [|nwll < 5} (6.40)
In addition, consider for any ¢ny, € Bs, the space
By, (0) = {h € H° | |hllye < C l|omull ™™ T} (6.41)
For any ¢ny € Bs,, p € Dp and h € By, (p), we have the estimate

1F4(h, 2, i) lpge < €€0C ldmwll ™™ + dmwl| €777 + 7" CF [ |I* (6.42)

Hence, after choosing Cy to be sufficiently large and possibly decreasing the size of D,,, we can ensure
that Fy(h, p) maps By, , (p) into itself for all p € D), and ¢ny € Bs, . In addition, it is straightforward
to show that Fu(:,p, ¢nw) is a contraction mapping on Bg,, (p) for all such p and ¢ny. We hence
obtain a solution map

h*: Dp X Bg¢ — B¢hw (p) Cc H° (6.43)

for the fixed point problem (6.39).
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Differentiating (6.39), we find
D¢hw h* (pa ¢hw) = L4(p) (DhM (h* (pv qshw)) ) 0) D¢hw h* (pv ¢hw) + L4(p) (07 I) (644)

Combining this with the bounds in Lemma 6.1, we conclude || D, h* (p, ¢nw)|| <. =T Substitut-
ing this back into (6.44), we obtain

Dy ot & T h* (P, ) <o ce™ 7 (6.45)
In addition, we may write
D?h*<p) = DﬁL4( )( ( ( )ap>7¢hw>
+Ly(p) (DnM(h*(p), p), 0) Dgh* (p) (6.46)
+La(p) (DeM(h*(p), ). 0),

which leads to the estimate
| Deh* (p, ¢hw)||7-[2 < @Te™ T || (6.47)

for some ¢ > 7.
For ease of notation, we will need to reparametrize the variable ¥°. To this end, we will take
variables

p=(0%w) = WA, T T) (6.48)
from the new parameter space
D, = D,(690,0c, 64, Ti) = [—690,090] X Q(J¢, 81, T). (6.49)
The relation between p and p = (9%, w) is given by
p= (0% (w) + X, w). (6.50)
Let us write
O, 0,6 T) = wf(e,e)(6o+T) —wy (17, ,6) (6 — T), 651)
Oy (90, c,6,T) = CV§0+Tu‘f"(c, €) —ev_go_ruy (99, c€)

for the gaps in the w and u variables that needs to be closed. Writing k'’ for the solution of the fixed
point problem (5.76) and h; for the solution of (5.76), we note that we can represent ©y,, as follows,

Oy (@) = OR(V} (W), w)(T™) — O% (I, (0, (w) + Vi, w),w) (=T
+mg+ b (U5 (w),w) (&0 +T)
g MO (@) I 0 (90 () + 0 ), 0 (00 () + ), ) (- — ).
(6.52)

Using this representation and the estimates (5.86), it is not hard to see that for all p € ﬁp we have

thw(ﬁ)H <« 190A +e*;*T7 -
[DwOnw @) <. [9Q| +eTe T, (6.53)
|Dson@| < 1

We may obtain a similar representation for ®y,, as a function of p, allowing us to obtain the bounds
[P (D) i |97 +e T
[ Doy Prw (D) | <o [9A]+e e T (6.54)

HDﬂOA‘bhw@)H < L
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We note that the choice ¢y, = Py (P) suffices to ensure that uy. as defined in (6.6) is a continuous
function. However, in order to make sure that the function w defined in (6.6) is also continuous, we
must find an appropriate ¥} for each w = (¢, T, T') € Q. In particular, we need solve the equation

ehW(ﬁOA7 w) = HXC(’ﬁoAv w)v (655)
in which 6y is given by

Oxe(D) = o W (05 (@) + VA, @, Pu (D)) (=€0 = T) — g ™ (95 (w) + VR, w, P (B)) (60 + T)-
(6.56)

The observation

|0 ()] (9] + e,

<.
Dogbeel)| <0 T[]+ ] 4 (6.57)

allows (6.55) to be solved. In particular, we find a function 99 : © — R that admits the bounds

0 —n.T
%ﬁéﬁu | Drad (w))| i: EWTef’mT? (6.58)
for all w € (). Finally, writing
H* s w = B (9% (w) + 94 (@), w, P (97 (), w)), (6.59)
this means that
IDH* (@)llye + 1D H (@) e <o €T, (6.60)

as desired.

The issue that now remains is smoothness with respect to the variable T. We proceed as in [27]
and pick a T > T. We reconsider the setting of Lemma 6.1 by considering g € H and looking for
h € H instead of g € H and h € H°, in which H~ and H are defined as in (6.3) and (6.4), after
replacing each occurrence of T by T. We still require the properties (i) and (v) to hold in terms of
the original T'. The construction in the proof of this lemma remains valid if we adapt the operator
Eer to map into C([¢p — 1,& + T + 1], R), by providing an appropriate extension on the interval
[€o+T +1,& + T + 1], together with a similar adaption for Ef_. For the purposes of solving the
linear system (6.33) through (6.38), the parameter T' can now be treated on the same footing as c.
However, a complication arises when constructing UJT and v, according to (6.31). Indeed E? * (QU)w?Jr
is only C%-smooth on the interval [y + T, & + T + 1], but calculating DTE;?+ (p) involves taking a
derivative on this interval. This issue can be resolved by studying the action of IIp, , and Ilg,  on
the function space

XW ={¢ € C([-L1,R) | $|-1,0) € C*([-1,0],R) and ¢jo,1) € C*([0, 1], R)}. (6.61)
It is not hard to see that IIp and IIg map X® into XM This allows us to define
EF*(p) : I, (XW) — Wh([§ ~ 1,6 + T + 1], R), (6.62)

which now does allow taking a derivative with respect to &, with the remark that the resulting
function may have a jump at & = & + T. By noting that in fact @y, (p) € X and taking war €
e, (XW) and o~ € Mg, (XM), we can argue that the gap functions & and &, are also O''-
smooth with respect to T', and that the desired exponential bounds hold. Higher order smoothness
with respect to T' can be obtained in a similar fashion.
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Proof of Proposition 3.8 We fix the parameter space 2 as above. For any w € €, we write
P (w) = 9% (w) + 9] (w), together with

(v, 07,5, ;,v}',ﬁ}r,vb_,Hb_,vg_,ﬁg_,vlfﬂﬁg*',v;,&;) = H*(w) (6.63)

and define w, uxc, uy and u; according to (6.6) and (6.7). The properties required in Definition 3.7
follow immediately from the construction above. The exponents « that appear in the estimates
throughout this section can be eliminated by slightly decreasing 7n,. The smoothness properties and
bounds in (ii) and (iii) have been established for £ = 1 and can be extended to 1 < ¢ < r using similar
arguments. As in the proof of Proposition 3.4, the local uniqueness properties can be established
using the proof of [43, Claim 3.7]. ]

7 Discussion
In this paper, we showed that the discrete FitzHugh—-Nagumo equation

u;(t) = ofuipr(t) +uim1(t) = 2wi()] + ui () (1 — ui () (ui(t) — a) — wi(t), (7.1)
wi(t) = e(ui(t) —ywi(t))

with ¢ € Z supports travelling pulses
(ui, w;)(t) = (us, wy) (i + ct) (7.2)

for some wave speed ¢ > 0 provided 0 < ¢ < 1 and a € (0, %) is such that the discrete Nagumo equa-
tion supports travelling fronts. To establish this result, we extended various concepts from geometric
singular perturbation theory from the more standard ODE setting to the functional differential equa-
tion

cl(§) = afu€+1)+u(€—1) = 2u ()] + g(us(§)) — wi(8), (7.3)
cawl(§) = e(ul§) —yw.(9)

that the travelling wave profiles (u., w.)(§) have to satisfy, in which g(u) = u(1 — u)(u — a). Specif-
ically, we proved the persistence of slow manifolds and their stable and unstable foliations, and
established an Exchange Lemma that can be used to track solutions that pass near hyperbolic slow
manifolds. The main difficulty in proving these results is the fact the initial-value problem associated
with the MFDE (7.3) is ill-posed: we overcame this difficulty by utilizing exponential dichotomies
for linear MFDEs with slowly varying coeflicients. In particular, we relied heavily on previous work
by Sakamoto and various works by us and our coworkers. While the proofs given here are techni-
cally involved, they are inspired by the same geometric intuition, illustrated in Figure 1, that led
to the ODE proofs of the existence of fast waves. As we already pointed out in the introduction,
the techniques we developed here should be general enough to apply to a broader class of singularly
perturbed functional differential equations.

We did not consider the stability of the travelling-pulse solutions (7.2) with respect to the un-
derlying lattice dynamical system (7.1). The results in [3, 12] imply that spectral stability of the
operator

L, : L*R,R?) — L*(R,R?),

(u) . (cu’(f) —afu(€+1)+u€—1) = 2u(€)] — ¢ (u(§))u() — w({))
w cw'(§) — e(u(§) —yw(§))

with domain H!(R,R?) implies nonlinear stability of the underlying pulse with respect to (7.1).
The eigenvalue problem associated with the operator L, is again singularly perturbed. It should
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therefore be possible to use the techniques outlined in this paper to study the spectrum of £, and
to assess the stability of the fast waves we constructed here: this is work in progress. In line with
the results for the spatially continuous FitzHugh-Nagumo system in [30, 46] and with the numerical
simulations of the spatially discrete FitzHugh—Nagumo system in [9], we expect that the fast pulses
are stable.
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