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Abstract

The existence of fast travelling pulses of the discrete FitzHugh–Nagumo equation is obtained in the weak-

recovery regime. This result extends to the spatially discrete setting the well-known theorem that states that

the FitzHugh–Nagumo PDE exhibits a branch of fast waves that bifurcates from a singular pulse solution.

The key technical result that allows for the extension to the discrete case is the Exchange Lemma that we

establish here for functional differential equations of mixed type.
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1 Introduction

In this paper we consider the discrete FitzHugh–Nagumo equation

u̇i(t) = α[ui+1(t) + ui−1(t)− 2ui(t)] + g
(
ui(t)

)
− wi(t),

ẇi(t) = ε
(
ui(t)− γwi(t)

)
,

(1.1)

where ui, wi ∈ R for each i ∈ Z. The nonlinearity g is taken from a class of bistable nonlinearities
that includes the cubic polynomial g(u; a) = u(1 − u)(u − a) for some 0 < a < 1

2 . We consider
arbitrary positive coupling coefficients α > 0, take 0 < ε� 1 to be small, and assume that γ > 0 is
not too large so that {(ui, wi)}i∈Z = (0, 0) is the only i-independent rest state of (1.1); this requires
that g(γw) 6= w for all w 6= 0.

Our primary reason for looking at the spatially discrete FitzHugh–Nagumo equation is its rele-
vance in modelling. For example, when studying the propagation of electrical signals through nerve
fibers, it turns out to be more natural to study the discrete system (1.1) instead of its continuous
counterpart that is traditionally used for this purpose. This is related to the fact that a nerve axon
is almost entirely surrounded by an insulating myeline coating that admits small gaps at regular
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intervals. These nodes were first observed in 1878 by Ranvier [42] and now carry his name. The insu-
lation induced by the myeline causes excitations of the nerve at these nodes of Ranvier to effectively
jump from one node to the next, through a process called saltatory conduction. This mechanism
was first suggested in 1925 by Lillie [37] and demonstrated convincingly in 1949 by Huxley and
Stämpfli [29]. Other discrete lattice models have appeared in a wide range of scientific disciplines,
including chemical reaction theory [19, 36], material science [2, 5] and image processing and pattern
recognition [13].

Our goal is to show that (1.1) admits travelling pulse solutions

(ui, wi)(t) = (u∗, w∗)(i+ ct)

for some positive wave speed c > 0, where the profiles (u∗, w∗) are localized so that (u∗, w∗)(ξ)→ 0
as ξ → ±∞. Substituting our ansatz into (1.1), we see that these profiles must satisfy the system

cu′∗(ξ) = α[u∗(ξ + 1) + u∗(ξ − 1)− 2u∗(ξ)] + g
(
u∗(ξ)

)
− w∗(ξ),

cw′∗(ξ) = ε
(
u∗(ξ)− γw∗(ξ)

)
.

(1.2)

Such equations are referred to as functional differential equations of mixed type (MFDEs), since
they contain both advanced and retarded terms. This class of equations is notoriously difficult to
analyse.

Previous work on the discrete FitzHugh–Nagumo equation and variants thereof can be split into
two main directions. On the one hand, rigorous results have been obtained for specially tailored
nonlinearities g. Tonnelier [45] and Elmer and Van Vleck [18], for example, considered the McKean
sawtooth caricature of the cubic, while Chen and Hastings [10] studied a discrete Morris–Lecar type
system with a nonlinearity that vanishes identically on certain critical regions of u and w. On the
other hand, using asymptotic techniques, formal results have been obtained for (1.1) by Carpio and
coworkers [7–9]. We are, however, not aware of any rigorous results for (1.1) that hold for the cubic
polynomial or more general bistable nonlinearities, and it is this issue that we shall address in this
paper. Before outlining our result in more detail, we briefly discuss the spatially continuous case, for
which a large body of literature exists.

1.1 Travelling waves for the FitzHugh–Nagumo PDE

Let us therefore consider the spatially continuous FitzHugh–Nagumo system

ut = uxx + g(u)− w,
wt = ε(u− γw), (1.3)

where x ∈ R. This partial differential equation (PDE) plays an important role as a tractable simpli-
fication of the Hodgkin–Huxley equations that are widely used to model the propagation of signals
through myelinated nerve fibers [25]. As a consequence, (1.3) has been analysed extensively in the
literature. A large portion of the results that have been obtained concern travelling-wave solutions to
(1.3), that is, solutions of the form (u,w)(x, t) = (u,w)(x+ ct) that depend on the single argument
ξ = x+ ct. Such solutions must satisfy the ordinary differential equation (ODE)

u′ = v,
v′ = cv − g(u) + w,
w′ = ε

c (u− γw).
(1.4)

For simplicity, we take g to be the cubic nonlinearity g(u; a) = u(1− u)(u− a). Note that the origin
p0 = (0, 0, 0) is an equilibrium for (1.4) regardless of the precise values of a, c and ε. Finding travelling
pulses of (1.3) then amounts to constructing homoclinic orbits for (1.4) that are bi-asymptotic to
p0.
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Fig. 1: Phase diagram for the travelling-wave equation (1.4) of the FitzHugh–Nagumo PDE.

In the regime 0 < ε � 1, this question can be answered using geometric singular perturbation
theory. We will now outline this approach and refer to Figure 1 for an illustration. First, we set ε = 0
in (1.4) to get the system

u′ = v,
v′ = cv − g(u) + w,
w′ = 0,

(1.5)

which admits a manifold M of equilibria that consists of all points (u, 0, w) that have w = g(u).
Obviously, this manifold contains the points p0 and p1 = (1, 0, 0). One can now choose a neighborhood
ML ⊂M around p0 together with a neighborhoodMR ⊂M around p1. If these neighborhoods do
not contain the knees of the cubic polynomial, they are normally hyperbolic invariant manifolds that
hence persist as locally invariant sets for small ε > 0 as a consequence of Fenichel’s first theorem [20].
It is well-known that, for each fixed 0 < a < 1

2 , there exists a heteroclinic solution Qf = (qf , q′f , 0)
to (1.5) that connects p0 to p1 and has wave speed c = c∗ for some c∗ > 0: indeed, these solutions
correspond to travelling fronts of the Nagumo equation

ut = uxx + g(u). (1.6)

In addition, for any such a there exists a w∗ > 0 such that (1.4) with ε = 0 and c = c∗ admits
a heteroclinic solution Qb = (qb, q′b, w∗) that connects MR to ML. We can now write Γfs

0 for the
singular orbit that arises by combining these orbits with the segments ofMR andML that connect
w = 0 to w = w∗. The superscript fs is used in view of the fact that we are considering fast waves
with speed c∗ > 0. The following well-known result is the ODE analogue of the result we set out to
obtain for the functional differential equation (1.2).

Proposition 1.1 Consider (1.4) with the cubic nonlinearity g = g(· ; a) for any fixed 0 < a < 1
2 ,

then there exists a unique curve in the (ε, c)-plane emanating from the point (0, c∗) that consists of
homoclinic solutions to (1.4) that are bi-asymptotic to 0, while being O(ε)-close to Γfs

0 and winding
around Γfs

0 exactly once.

The first proofs establishing the existence of the branch of homoclinics described in the result
above are due to Carpenter [6] and Hastings [24], who obtained their results independently using

3



Fig. 2: Illustration of the geometric setting of the Exchange Lemma.

classical singular perturbation theory [6] and the Conley index [24]. A more streamlined proof of
Proposition 1.1 that also gives transversality and local uniqueness is based on a geometrical con-
struction developed by Jones and coworkers [33]. The idea is to construct the desired homoclinic
orbits as an intersection of the unstable manifold Wu(0) and the stable manifold W s(ML). The
main difficulty is to track the unstable manifold Wu(0) as it passes close to MR, since it spends
time of order O(ε−1) here. The tool developed in [33] to deal with this tracking is referred to as the
Exchange Lemma. We refer to Figure 2 for an illustration of the geometric setting of this result,
which we describe here briefly.

The statement of the Exchange Lemma can be explained most easily in terms of the Fenichel
normal form [20, 32]: in a neighborhood of MR, the ODE (1.4) can be put into the form

x′ = −As(x, y, z)x,
y′ = Au(x, y, z)y,
z′ = ε[1 +B(x, y, z)xy],

(1.7)

where the new coordinates x, y and z are real-valued, the functions As, Au and B are smooth, and
As and Au are bounded from below by some constant η > 0. The Exchange Lemma then states that
(1.7) has, for each z0 ∈ R, each sufficiently large T and each sufficiently small ε > 0 and ∆ > 0, a
solution that satisfies the boundary conditions x(0) = ∆, z(0) = z0 and y(T ) = ∆. Furthermore,
the norms |y(0)|, |x(T )| and |z(T )− z0 − εT | and their derivatives with respect to T , ε, z0 and any
other parameters that may appear in the problem are of order e−ηT as T →∞.

Instead of attempting to analyse the intersection of Wu(0) with Ws(MR) directly, one can now
decouple the problem for large T and study separately howWu(0) andWs(ML) behave near x = ∆
and y = ∆, respectively, which are far easier to analyse and lead to a two-dimensional nonlinear
system that involves the three variables ε, c and T [35]. This system can be solved to yield the
branch of homoclinic orbits described in Proposition 1.1.

A great deal more is known about (1.4). For example, the PDE stability of the resulting fast
travelling pulses was proved independently by Jones [30] and Yanagida [46]. It is also known that
there is a second slow travelling wave that exists, for fixed 0 < a < 1

2 , in the limit c→ 0 and ε/c→ 0.
The resulting singular homoclinic orbit Γsl

0 for ε = ε/c = 0 is actually a regular homoclinic orbit to
the origin that lives in the plane w = 0. Since Γsl

0 does not contain any segments of ML and MR,
perturbations are easier to analyse and one may show that a branch of slow homoclinic solutions
can be constructed near Γsl

0 for small c > 0 and ε > 0 [44].
A conjecture due to Yanagida [46] states that these branches of fast and slow waves connect to

each other. At the moment, this has only been confirmed for a near the critical point a = 1
2 , where

the two singular orbits Γfs
0 and Γsl

0 coalesce [35]. We remark that [35] also contains a proof that,
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somewhere along this connecting curve, the homoclinic orbits undergo an inclination-flip bifurcation.
The presence of such a bifurcation makes it very likely to find homoclinic solutions that wind around
the singular orbit an arbitrary number of times. To establish this rigorously, a specific non-degeneracy
condition needs to be verified. At the moment, this is only feasible when considering orbits that have
winding number two, in which case a result due to Nii [41] can be invoked.

1.2 The discrete Nagumo equation

The construction of fast pulses of the continuous FitzHugh–Nagumo equation relied on gluing trav-
elling fronts and backs of appropriate Nagumo equations (1.6) together. Thus, it is natural to start
our discussion of the discrete FitzHugh–Nagumo system by summarizing a few key features of the
discrete Nagumo equation

u̇i(t) = α[ui+1(t) + ui−1(t)− 2ui(t)] + g(ui(t); a) (1.8)

with g(u; a) = u(1−u)(u−a). Travelling waves ui(t) = u∗(i+ct) of (1.8) satisfy the scalar functional
differential equation

cu′∗(ξ) = α[u∗(ξ + 1) + u∗(ξ − 1)− 2u∗(ξ)] + g(u∗(ξ); a) (1.9)

of mixed type. The first numerical study of travelling fronts of (1.1) was conducted by Chi, Bell and
Hassard [11]. Since that early paper, the discrete Nagumo equation and the associated travelling-wave
MFDE (1.9) have served as prototype systems for investigating the properties of lattice differential
equations.

In contrast to the continuous case where travelling fronts with positive wave speeds exist for
each 0 < a < 1

2 , the discrete Nagumo equation may not support travelling fronts for each such a.
The reason is that the limit c → 0 in (1.9) is highly singular. Indeed, the limiting system is a map
which may admit transverse heteroclinic orbits that preclude the existence of travelling fronts. More
precisely, the combined results of Keener [34] and Mallet-Paret [39, Theorem 2.6] give the following:
for each sufficiently small α > 0, there exists an 0 < a0 <

1
2 such that, for each a ∈ [a0,

1
2 ], heteroclinic

solutions to (1.9) that connect the two equilibria u = 0 and u = 1 exist if and only if c = 0. This
feature is called propagation failure and distinguishes (1.8) from its continuous counterpart (1.6).
By now there is an abundance of numerical evidence showing that this phenomenon may occur in
an extremely robust fashion throughout a wide range of discrete systems [1, 15–17]. One implication
of this feature for the present work is that we need to assume that a does not lie inside the region
of propagation failure for the discrete Nagumo equation.

We remark that propagation failure in the underlying discrete Nagumo equation is the reason
why slow waves do not exist for the discrete FitzHugh–Nagumo equation in the same way as they
do for the continuous case. Hence, we focus on fast waves in this paper.

1.3 Travelling waves for the discrete FitzHugh–Nagumo system

We now turn to the travelling-wave equation (1.2),

cu′(ξ) = α[u(ξ + 1) + u(ξ − 1)− 2u(ξ)] + g
(
u(ξ)

)
− w∗(ξ),

cw′(ξ) = ε
(
u(ξ)− γw(ξ)

)
,

(1.10)

associated with the discrete FitzHugh–Nagumo equation (1.1). Our goal is to find an appropriate
value of c > 0 and construct solutions (u,w)(ξ) of this MFDE for 0 < ε � 1 that converge to zero
as |ξ| → ∞.

Similar to the case of delay equations, the state space associated with (1.10) will necessarily be
infinite-dimensional, and we will consequently work with (u,w) ∈ Y = C([−1, 1],R) × R in this
paper. In contrast to the case of delay equations, however, the initial-value problem associated with
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(1.10) on the space Y is ill-posed1 due to the presence of both advanced and retarded terms. This
issue prevents us from using the semigroup techniques developed for retarded differential equations
[14]. An alternative strategy is to utilize Fredholm properties and exponential dichotomies, which
were developed for MFDEs by Mallet-Paret [38], Verduyn Lunel [40] and Härterich, Sandstede and
Scheel [23]. This approach was recently used successfully by Hupkes and Verduyn Lunel to extend
Lin’s method to MFDEs [27].

The key complication that needs to be overcome before homoclinic solutions to (1.10) can be
constructed in the singular limit ε→ 0, is that geometric singular perturbation theory is not readily
available for MFDEs. Indeed, this theory relies heavily on the existence of semiflows which, as we
outlined above, do not exist in our MFDE setting. For instance, almost all proofs of Fenichel’s first
theorem [20] about the persistence of normally hyperbolic slow manifolds are based on Hadamard’s
graph transform technique [21].

The approach that we use in this paper to resolve these issues is based on a combination of
the ideas contained in [26, 27, 35, 43]. First, the work of Sakamoto [43] uses analytic techniques to
establish Fenichel’s first theorem for ODEs through a systematic use of the concept of slowly varying
coefficients. Combining this approach with our recent results [26] concerning linear MFDEs that have
slowly varying coefficients we construct one-dimensional slow manifoldsML andMR for (1.10) that
persist for small ε > 0. To prove an appropriate version of the Exchange Lemma, we exploit the ideas
in [35] in which an analytic proof was given that is based on Lin’s method. The key feature of this
approach is that, unlike earlier proofs using differential forms [31] or boundary-value techniques [4],
the construction of the stable and unstable fibers of MR can be done globally, thereby allowing us
to immediately reduce the existence problem to a finite set of nonlinear equations, similar to those
that we need to solve. Borrowing the techniques used in [27] to generalize Lin’s method to MFDEs
and again applying the slowly-varying coefficient framework developed in [26], we can imitate this
construction in the current setting.

While we concentrate in this paper on the concrete discrete FitzHugh–Nagumo equation, we
believe that our techniques can be used in a much wider context than in just the construction of
pulses for the specific system (1.1). For example, we expect that after some minor adaptations it
should be possible to study travelling multi-pulse solutions or long-period wave train solutions to
general MFDEs in which a slow time-scale can be identified. In addition, we currently use our singular
perturbation framework to assess the stability of the fast waves constructed here with respect to the
dynamics of the underlying lattice equation.

The rest of this paper is organized as follows. We state our main result in §2 and give a detailed
outline of the main steps that are need to prove this result in §3, while hiding most of the technical
details behind a sequence of propositions. The invariant slow manifolds ML(c, ε) and MR(c, ε) are
constructed throughout §4. We then study the stable and unstable foliations of these slow manifolds
in §5 and develop a suitable version of the Exchange Lemma in §6. Section 7 contains a brief
discussion.

2 Main result

Recall that travelling waves of the discrete FitzHugh–Nagumo equation (1.1) can be found as solu-
tions of the system

cu′(ξ) = α[u(ξ + 1) + u(ξ − 1)− 2u(ξ)] + g
(
u(ξ)

)
− w(ξ),

cw′(ξ) = ε
(
u(ξ)− γw(ξ)

)
.

(2.1)

Throughout this paper we will assume that α > 0 and γ > 0. The prototype nonlinearity that we
have in mind is given by the cubic polynomial g = g(u; a) = u(1 − u)(u − a) for some 0 < a < 1

2 .
However, we will focus on a broader class of bistable nonlinearities in order to illustrate the generality

1In general, given an initial condition in Y , we cannot solve (1.10) forward or backward in ξ.
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Fig. 3: Illustration of the assumptions on the nonlinearity g(u) and the constant γ.

of our approach. We therefore impose the following generic assumptions on the nonlinearity g, which
are also illustrated in Figure 3.

Hypothesis (H1) The nonlinearity g is Cr+3-smooth for some integer r ≥ 2.

Hypothesis (H2) We have g(0) = g(1) = 0, g′(0) < 0 and g′(1) < 0.

On account of condition (H2), we may choose closed intervals IL and IR, with 0 ∈ IL and
1 ∈ IR, that have non-empty interior and in addition have g′(u) < 0 for all u ∈ IL ∪ IR. We pick
constants wmin < 0 and wmax > 0 in such a way that both wmin, wmax ∈ g(IL)∩ g(IR). The implicit
function theorem can now be used to define two Cr+3-smooth functions s̃L : [wmin, wmax]→ IL and
s̃R : [wmin, wmax]→ IR in such a way that

g
(
s̃L(w)

)
= g
(
s̃R(w)

)
= w

for all w ∈ [wmin, wmax]. Notice that s̃L(0) = 0 and s̃R(0) = 1. Our next assumption roughly states
that −g is N -shaped, admitting precisely one extra solution to g(u) = w.

Hypothesis (H3) For any w ∈ [wmin, wmax], there exists a ρ ∈
(
s̃L(w), s̃R(w)

)
such that g(ρ) = w.

In addition, we have

g(u) > w, u ∈
(
−∞, s̃L(w)

)
∪
(
ρ, s̃R(w)

)
,

g(u) < w, u ∈
(
s̃L(w), ρ

)
∪
(
s̃R(w),∞

)
.

In order to ensure that (2.1) admits a suitable singular orbit, we will need to assume that this
equation with ε = 0 admits a front and a back solution that propagate at the same wave speed.

Hypothesis (H4) There exist two constants w∗ ∈ (0, wmax) and c∗ > 0 such that (2.1) with ε = 0
and c = c∗ admits two solutions (qf , 0) and (qb, w∗) that satisfy the limits

lim
ξ→−∞

qf (ξ) = 0, lim
ξ→∞

qf (ξ) = 1,

lim
ξ→−∞

qb(ξ) = s̃R(w∗), lim
ξ→∞

qb(ξ) = s̃L(w∗).
(2.2)

We remark here that [38, Proposition 5.3] in combination with the fact that g′(0) 6= 0, g′(1) 6= 0,
g′
(
s̃L(w∗)

)
6= 0 and g′

(
s̃R(w∗)

)
6= 0 allows us to conclude that qf and qb approach their limits at

±∞ at an exponential rate. Such an argument is made explicit in the proof of [39, Theorem 2.2].
In contrast to the setting of Proposition 1.1, the possibility of propagation failure prevents us

from obtaining results that hold for the cubic polynomial g(· ; a) with arbitrary 0 < a < 1
2 .
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Fig. 4: Panel (i) shows the graph of a given function u, while panel (ii) illustrates the associated function
evξu : [−1, 1]→ R for a fixed ξ.

Lemma 2.1 Fix any positive coupling coefficient α > 0, then the conditions (H1)-(H4) are satisfied
for the cubic nonlinearity g(u) = u(1− u)(u− a) provided a > 0 is sufficiently small.

Proof. The conditions (H1) through (H3) are obviously satisfied. Using [39, Theorem 2.6], one can
conclude the existence of a wave speed c∗ > 0 and a wave profile qf such that the pair (qf , 0) satisfies
(2.1) with ε = 0 and c = c∗, while satisfying the limits given in the first line of (2.2). The requirement
that a is sufficiently small is needed here to ensure that the wave speed c∗ does not vanish. To obtain
the existence of the pair (qb, w∗) that solves (2.1) at the same speed c∗, one may exploit the mirror
symmetry of cubic polynomials.

Our final assumption concerns the parameter γ and ensures that, for any ε > 0 and c 6= 0, the
only equilibrium solution to (2.1) is given by (0, 0).

Hypothesis (H5) The parameter γ > 0 is so small that g(γw) 6= w for all w 6= 0.

Let us now write Γfs
0 for the singular homoclinic orbit that arises by following the heteroclinic

connection qf from (0, 0) to (1, 0), moving along the manifold MR := {(s̃R(w), w)} from (1, 0) to
(s̃R(w∗), w∗), following qb from (s̃R(w∗), w∗) to (s̃L(w∗), w∗) and finally moving back to (0, 0) along
the manifold ML := {(s̃L(w), w)}. Our main result is concerned with homoclinic solutions to (2.1)
that bifurcate off Γfs

0 as ε moves away from zero and wind around this singular homoclinic exactly
once.

In order to define this winding number properly, we need to have a notion of transversality that
will allow us to construct Poincaré sections. The winding number can then be related to the number
of times a homoclinic orbit passes through these sections. Let us therefore write X = C([−1, 1],R)
for the state space associated with the first component of (2.1). The state of a function u ∈ C(R,R)
at ξ ∈ R will be denoted by evξu ∈ X = C([−1, 1],R) and is defined by

[evξu](θ) := u(ξ + θ), θ ∈ [−1, 1];

see Figure 4. We can now pick two subspaces X̂f and X̂b of X such that

X = span{ev0q
′
f} ⊕ X̂f , X = span{ev0q

′
b} ⊕ X̂b. (2.3)

We are now ready to describe the type of solutions to (2.1) that we are interested in and refer to
Figure 5 for an illustration.

Definition 2.2 (Homoclinic solution) For each 0 < δ � 1 and ξ∗ � 1, we say that a pair
(u,w) ∈ C(R,R2) is a (δ, ξ∗)-homoclinic solution if (u,w) satisfies (2.1) for all ξ ∈ R and meets the
following conditions:

(i) There exists exactly one ξf ∈ R for which
∥∥evξfu− ev0 qf

∥∥ < δ, |w(ξf )| < δ, and evξfu ∈
ev0 qf + X̂f .
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Fig. 5: Shown are the singular homoclinic orbit Γfs
0 and the location of the two Poincaré sections along the

front (evξqf , 0) and the back (evξqb, w∗) in the underlying phase space C([−1, 1],R)× R.

(ii) There exists exactly one ξb ∈ R for which ‖evξbu− ev0 qb‖ < δ, |w(ξb)− w∗| < δ, and evξbu ∈
ev0 qb + X̂f .

(iii) We have limξ→±∞
(
u(ξ), w(ξ)

)
= 0.

(iv) The solution (u,w) is close to Γfs
0 in the sense that

|u(ξ)− qf (ξ − ξf )| < δ and |w(ξ)| < δ for ξ ≤ ξf + ξ∗,∣∣u(ξ)− s̃R
(
w(ξ)

)∣∣ < δ for ξf + ξ∗ ≤ ξ ≤ ξb − ξ∗,
|u(ξ)− qb(ξ − ξb)| < δ and |w(ξ)− w∗| < δ for ξb − ξ∗ ≤ ξ ≤ ξb + ξ∗,∣∣u(ξ)− s̃L

(
w(ξ)

)∣∣ < δ for ξb + ξ∗ ≤ ξ.

Our main result shows that by varying the wave speed c, one may obtain a one-parameter branch
of such solutions that bifurcates away from Γfs

0 .

Theorem 1 Consider the nonlinear system (2.1) and suppose that Hypotheses (H1)-(H5) hold,
then there are constants 0 < δ � 1 and ξ∗ � 1 with the following property: for each c < c∗ that is
sufficiently close to c∗, there exists a unique ε = ε(c) > 0 for which (2.1) admits a (δ, ξ∗)-homoclinic
solution (u,w). This pair (u,w) is O(c− c∗)-close to Γfs

0 and unique up to translations.

3 Proof of Theorem 1

Our proof of Theorem 1 is split into four main parts. In this section we will describe each of these
steps, hiding the technical details behind four propositions that will be proved throughout the
remainder of this paper. At the end of this section, our main claim will have been reduced to a
statement concerning the roots of a two-dimensional nonlinear system involving three variables. The
desired one-parameter branch of (δ, ξ∗)-homoclinic solutions to (2.1) can subsequently be read off
from these equations.

The four main parts of our argument can be outlined roughly as follows. First, we consider the
equilibrium manifoldsML = {(s̃L(w), w)} andMR = {(s̃R(w), w)}. We show that these curves can
be perturbed to yield slow manifoldsML(c, ε) andMR(c, ε) that remain invariant when considering
(2.1) with small ε > 0 and c ≈ c∗.

In the next step, we show that, for each ε ≈ 0 and c ≈ c∗, there are two unique solutions near
the front (qf , 0) so that the first orbit lies in the infinite-dimensional unstable manifold of (0, 0), the
second solution lies in the infinite-dimensional stable manifold of MR(c, ε), and their difference at
ξ = 0 is contained in a certain one-dimensional subspace. Thus, up to this one-dimensional jump,
these manifolds have a unique intersection near the front. We refer to such connections as quasi-front
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solutions and refer to Figure 7 below for an illustration. Similarly, for each such ε and c, and for each
choice of w0, there are unique quasi-back solutions in the unstable manifold of MR(c, ε) and the
strong stable fiber of ML(c, ε) belonging to w = w0, respectively, so that their difference at ξ = 0
again lies in an appropriate fixed one-dimensional subspace. Using the Hale inner product, which is
tailored specifically for functional differential equations, the derivatives of the aforementioned jumps
with respect to the three free parameters can be related to Melnikov-type integrals whose signs we
can evaluate.

In the third step, we prove an Exchange Lemma for MFDEs that allows us to match quasi-fronts
and quasi-backs as they pass near the manifold MR(c, ε). This can be done up to two extra jumps
that lie in the same one-dimensional spaces that we discussed above. These extra jumps turn out
to be C1-exponentially small with respect to the time spent near the slow manifold MR(c, ε). This
allows us to set up and analyse the resulting two-dimensional nonlinear system that describes the
size of the remaining gaps in the final step.

3.1 Step 1 - The slow manifolds

We now describe the slow manifoldsML(c, ε) andMR(c, ε) in more detail. In order to avoid compli-
cations that arise when w leaves the region [wmin, wmax], we will need to modify (2.1). To this end,
we choose a C∞-smooth cut-off function χsl : R→ R as shown in Figure 6 and consider the system

cu′(ξ) = α[u(ξ + 1) + u(ξ − 1)− 2u(ξ)] + g
(
u(ξ)

)
− w(ξ),

cw′(ξ) = ε
(
u(ξ)− γw(ξ)

)
χsl

(
w(ξ)

)
,

(3.1)

instead of working directly with (2.1). The following result will be established in §4.

Proposition 3.1 Consider the nonlinear system (3.1) and suppose that (H1)-(H3) are satisfied,
then there exist constants δε > 0 and δc > 0, together with two Cr+2-smooth functions

sR, sL : [wmin, wmax]× [c∗ − δc, c∗ + δc]× [0, δε]→ R,

such that the following is true:

(i) For each ϑ ∈ [wmin, wmax], c ∈ [c∗−δc, c∗+δc] and ε ∈ [0, δε], we have the identities sR(ϑ, c, 0) =
s̃R(ϑ) and sL(ϑ, c, 0) = s̃L(ϑ).

(ii) For each ϑ ∈ [wmin, wmax], c ∈ [c∗ − δc, c∗ + δc] and ε ∈ [0, δε], consider the unique solution of
the ODE

cθ′(ξ) = ε
(
sR(θ(ξ), c, ε)− γθ(ξ)

)
χsl

(
θ(ξ)

)
, θ(0) = ϑ, (3.2)

then the pair (u,w) defined by u(ξ) = sR(θ(ξ), c, ε) and w(ξ) = θ(ξ) satisfies (3.1). The same
statement holds upon replacing the subscript R by L.

(iii) There exists a constant δ > 0 such that any solution (u,w) to (3.1) with |c− c∗| < δc and
0 ≤ ε ≤ δε that has both wmin ≤ w(ξ) ≤ wmax and

∣∣u(ξ)− s̃R
(
w(ξ)

)∣∣ < δ for all ξ ∈ R must in
fact satisfy u(ξ) = sR(w(ξ), c, ε) for all ξ ∈ R. The same statement holds for the subscript L.

Fig. 6: The definition of the cut-off function χsl(w).
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The functions sL and sR can be used to define the invariant manifolds ML(c, ε) and MR(c, ε)
mentioned at the start of this section. In particular, we take ML(c, ε) = {(sL(w, c, ε), w)} and
MR(c, ε) = {(sR(w, c, ε), w)}, letting w run through the interval [wmin, wmax].

In the sequel we will often need to refer to the flow on these manifolds ML and MR, so we will
introduce some notation here for convenience. Recall the constants δc > 0 and δε > 0 that appear
in Proposition 3.1 and introduce the functions

TR, TL : [wmin, wmax]× [c∗ − δc, c∗ + δc]× [0, δε]→ R

that are given by

TR(ϑ, c, ε) = [sR(ϑ, c, ε)− γϑ]χsl(ϑ),
TL(ϑ, c, ε) = [sL(ϑ, c, ε)− γϑ]χsl(ϑ).

For each ϑ ∈ [wmin, wmax], c ∈ [c∗ − δc, c∗ + δc] and ε ∈ [0, δε], we write Θfs
R(ϑ, c, ε) ∈ C(R,R) to

denote the unique solution of the ODE

cθ′(ξ) = εTR(θ(ξ), c, ε), θ(0) = ϑ. (3.3)

Similarly, we introduce the notation Θfs
L(ϑ, c, ε) ∈ C(R,R) to denote the unique solution of the ODE

cθ′(ξ) = εTL(θ(ξ), c, ε), θ(0) = ϑ. (3.4)

The superscript fs refers to the fact that (3.3) and (3.4) are written in terms of the fast time scale.
In contrast, we will write Θsl

R(ϑ, c, ε) for the unique solution of the ODE

cθ′(ζ) = TR(θ(ζ), c, ε), θ(0) = ϑ,

where the superscript now indicates that we solve with respect to the slow time scale. Note that
Θfs
R(ϑ, c, ε)(ξ) = Θsl

R(ϑ, c, ε)(εξ).

3.2 Step 2 - Quasi-fronts and quasi-backs: stable and unstable foliations

We now construct the quasi-front connections between (0, 0) and MR(c, ε) that are illustrated in
Figure 7. As shown there, the construction depends on the choice of the one-dimensional subspace
Γf that contains the difference of two solutions of the underlying MFDE. Thus, we first focus on
outlining our choice of Γf and of the space Γb that we shall use to construct quasi-back solutions
which connect MR(c, ε) back to (0, 0). We will use the decomposition (2.3),

X = span{ev0q
′
f} ⊕ X̂f = span{ev0q

′
b} ⊕ X̂b,

of the phase space X = C([−1, 1],R) and the associated Poincaré sections that we introduced in
Definition 2.2(i)-(ii) for this purpose. Our goal is to find suitable subspaces Γf and Γb of X̂f and X̂b

that contain the jumps.
As a preparation, we substitute the ansatz u(ξ) = qf (ξ) + v(ξ) into the first equation of (2.1)

and set w = 0 and ε = 0. We obtain the variational MFDE

cv′(ξ) = α[v(ξ + 1) + v(ξ − 1)− 2v(ξ)] + g
(
qf (ξ) + v(ξ)

)
− g
(
qf (ξ)

)
whose linearization about v = 0 gives the operator Λf : W 1,1

loc (R,R)→ L1
loc(R,R) with

[Λfv](ξ) = cv′(ξ)− α[v(ξ + 1) + v(ξ − 1)− 2v(ξ)]− g′
(
qf (ξ)

)
v(ξ).

We also define the formal adjoint Λ∗f : W 1,1
loc (R,R)→ L1

loc(R,R) of Λ via

[Λ∗fv](ξ) = cv′(ξ) + α[v(ξ + 1) + v(ξ − 1)− 2v(ξ)] + g′
(
qf (ξ)

)
v(ξ).

11



Fig. 7: Shown is a quasi-front solution which consists of two solutions that lie respectively in the unstable
manifold of the equilibrium (u,w) = 0 and the stable foliation of the slow manifold MR. These solutions
will, in general, not coincide but we will show that they can be chosen so that their difference at ξ = 0 lies in
the one-dimensional subspace Γf of the phase space C([−1, 1],R). The new equilibria inside MR are created
by the cut-off function in (3.1).

The dual product between Λf and Λ∗f is provided through the Hale inner product [22], which is
given by

〈ψ, φ〉 = cψ(0)φ(0)− α
[∫ 1

0

ψ(σ − 1)φ(σ) dσ +
∫ −1

0

ψ(σ + 1)φ(σ) dσ
]

for any pair φ, ψ ∈ X. It was established in [40] that the Hale inner product is non-degenerate in
the sense that if 〈ψ, φ〉 = 0 for all ψ ∈ X then necessarily φ = 0. A key feature of the Hale inner
product is the identity

d
dξ
〈evξψ, evξφ〉 = ψ(ξ)[Λfφ](ξ) + [Λ∗fψ](ξ)φ(ξ), (3.5)

which holds for any pair ψ, φ ∈ C1(R,R) and ξ ∈ R. Indeed, if we pick ψ in such a way that
Λ∗fψ = 0, one readily sees that integration of (3.5) will yield Melnikov-type identities. In view of
these considerations, it is important to understand the kernels

Kf = {φ ∈ C1(R,R) | Λfφ = 0 and ‖φ‖∞ <∞},
K
∗
f = {ψ ∈ C1(R,R) | Λ∗fψ = 0 and ‖ψ‖∞ <∞}. (3.6)

In addition, we will also need to consider the kernels Kb and K∗b that arise in the exact same fashion
after substituting the ansatz u(ξ) = qb(ξ) + v(ξ) into (2.1), while keeping w = w∗ and ε = 0 fixed.
The following result follows directly from [39, Theorem 4.1].

Lemma 3.2 Consider the nonlinear system (2.1) and suppose that (H1)-(H4) are satisfied, then we
have q′f (ξ) > 0 and q′b(ξ) < 0 for all ξ ∈ R, together with

Kf = span{q′f}, Kb = span{q′b}.

In addition, there exist two bounded functions df and db that decay exponentially at both ±∞ and
have df (ξ) > 0 and db(ξ) > 0 for all ξ ∈ R, such that

K
∗
f = span{df}, K

∗
b = span{db}.

Let us consider any non-zero df ∈ K∗f , write

X̂⊥f = {φ ∈ X̂f | 〈ev0df , φ〉 = 0}

12



and define X̂⊥b in the analogous fashion. Note that X̂⊥f ⊂ X̂f is closed and of codimension one and
that the same holds for the inclusion X̂⊥b ⊂ X̂b. This allows us to choose appropriate one-dimensional
spaces Γf ⊂ X and Γb ⊂ X and write

X = span{ev0q
′
f} ⊕ X̂⊥f ⊕ Γf = span{ev0q

′
b} ⊕ X̂⊥b ⊕ Γb. (3.7)

By construction, any φ ∈ Γf satisfies φ = 0 if and only if 〈ev0df , φ〉 = 0, which in combination
with (3.5) ensures that Γf and Γb are ideally suited to capture the jumps that the quasi-fronts and
quasi-backs make when they pass through the hyperplanes ev0 qf ⊕ X̂f and ev0 qb ⊕ X̂b.

As a final preparation, let us consider the homogeneous MFDEs

cv′(ξ) = α[v(ξ + 1) + v(ξ − 1)− 2v(ξ)]− g′
(
s̃j(ϑ)

)
v(ξ),

for j = L,R, where the quantity ϑ is taken from [wmin, wmax]. Looking for solutions of the form
v(ξ) = ezξ we obtain the characteristic equations ∆j,ϑ(z) = 0, with

∆j,ϑ(z) = cz − α[ez + e−z − 2]− g′
(
s̃j(ϑ)

)
. (3.8)

Notice that Im ∆j,ϑ(iκ) = cκ for any κ ∈ R, while Re ∆j,ϑ(0) = −g′
(
s̃j(ϑ)

)
. Our choice of the

constants wmin and wmax hence ensures that we can pick η∗ > 0 in such a way that the characteristic
equations ∆j,ϑ(z) = 0 have no roots with |Re z| ≤ η∗ for any c 6= 0, any ϑ ∈ [wmin, wmax] and
j = L,R. This constant η∗ will be used ubiquitously throughout this paper.

We are now ready to define the concept of a quasi-front solution; see again Figure 7. Recall the
quantities δc > 0 and δε > 0 that appear in Proposition 3.1 and fix c ∈ [c∗−δc, c∗+δc] and ε ∈ [0, δε].

Definition 3.3 (Quasi-front solution) For each 0 < δ � 1 and ξ∗ � 1, we say that the quadru-
plet

(u−, u+, w, ϑ) ∈ C((−∞, 1],R)× C([−1,∞),R)× C(R,R)× [−δ, δ]

is a (δ, ξ∗)-quasi-front solution if the following is true:

(i) The pair (u±, w) satisfies (3.1) on the interval R±.

(ii) We have limξ→−∞(u−(ξ), w(ξ)) = 0 and

|u(ξ)− qf (ξ)| < δ and |w(ξ)| < δ for ξ ≤ ξ∗∣∣u+(ξ)− s̃R
(
w(ξ)

)∣∣ < δ for ξ∗ ≤ ξ,

where u(ξ) should be read as u−(ξ) for ξ ≤ −1, as u+(ξ) for ξ ≥ 1, and as both u±(ξ) in the
region −1 ≤ ξ ≤ 1.

(iii) We have limξ→∞ eη∗ξ[w(ξ)−Θfs
R(ϑ, c, ε)(ξ)] = 0.

(iv) We have ev0u
− ∈ ev0 qf ⊕ X̂f , ev0u

+ ∈ ev0 qf ⊕ X̂f , and ev0[u− − u+] ∈ Γf .

Roughly speaking, these properties imply that u± and w can be combined to build a solution
to (3.1) that remains δ-close to the portion of the singular orbit Γfs

0 that consists of qf and MR

and that is continuous everywhere except on the interval [−1, 1]. On this interval the solution is
double-valued, with a difference that is contained in Γf .

We need one more definition before we can state our result concerning the existence of quasi-
front-solutions. To this end, consider any interval I ⊂ R. We introduce the following family of
Banach spaces, parametrized by η ∈ R,

BCη(I,R) =
{
x ∈ C(I,R) | ‖x‖η := supξ∈I e−η|ξ| |x(ξ)| <∞

}
.

In the sequel, we will also use the spaces BC1
η(I,R) = {y ∈ BCη(I,R) | y′ ∈ BCη(I,R)}.

13



Fig. 8: Shown is a quasi-back solution that connects MR to (0, 0) and has a discontinuity at ξ = 0 with a
jump that lies in the one-dimensional Γb.

Proposition 3.4 Consider the nonlinear equation (3.1) and assume that (H1)-(H4) are satisfied,
then there are constants ξ∗ � 1 and 0 < δ, δc, δε � 1 and a set of maps

u−f : [c∗ − δc, c∗ + δc]× [0, δε]→ C((−∞, 1],R),
u+
f : [c∗ − δc, c∗ + δc]× [0, δε]→ C([−1,∞),R),
wf : [c∗ − δc, c∗ + δc]× [0, δε]→ C(R, [wmin, wmax]),
ϑf : [c∗ − δc, c∗ + δc]× [0, δε]→ [−δ, δ]

that satisfies the following properties.

(i) For any c ∈ [c∗− δc, c∗+ δc] and ε ∈ [0, δε], the quadruplet
(
u−f (c, ε), u+

f (c, ε), wf (c, ε), ϑf (c, ε)
)

is the unique (δ, ξ∗)-quasi-front solution to (3.1).

(ii) Write ξ∞f (c, ε) := ev0[u−f (c, ε) − u+
f (c, ε)] ∈ Γf and pick a non-zero df ∈ K∗f with df (0) > 0,

then the following Melnikov inequalities hold,

Dc[〈ev0df , ξ
∞
f (c, ε)〉]c=c∗,ε=0 < 0,

Dε[〈ev0df , ξ
∞
f (c, ε)〉]c=c∗,ε=0 < 0. (3.9)

(iii) The maps (c, ε) 7→ ϑf (c, ε) ∈ R and

(c, ε) 7−→


u−f (c, ε)− qf ∈ BC−η∗((−∞, 1],R)
wf (c, ε)|R− ∈ BC−η∗((−∞, 0],R)
wf (c, ε)|R+ −Θfs

R(ϑf (c, ε), c, ε) ∈ BC−η∗([0,∞),R)
u+
f (c, ε)− sR(wf (c, ε)(·), c, ε) ∈ BC−η∗([−1,∞),R)

are Cr-smooth with values in the spaces indicated above, where r appeared in (H1).

Moving on to study the connections between MR(c, ε) and ML(c, ε), we now define quasi-back
solutions, which are illustrated in Figure 8.

Definition 3.5 (Quasi-back solution) For each 0 < δ � 1 and ξ∗ � 1, we say that the quintuplet

(u−, u+, w, ϑ−, ϑ+) ∈ C((−∞, 1],R)× C([−1,∞),R)× C(R,R)× [w∗ − δ, w∗ + δ]2

is a (δ, ξ∗)-quasi-back solution if the following is true:

(i) The pair (u±, w) satisfies (3.1) on the interval R±.
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(ii) We have limξ→∞(u+(ξ), w(ξ)) = 0 and∣∣u−(ξ)− s̃R
(
w(ξ)

)∣∣ < δ for −∞ ≤ ξ ≤ −ξ∗,
|u(ξ)− qb(ξ)| < δ and |w(ξ)− w∗| < δ for −ξ∗ ≤ ξ ≤ ξ∗,∣∣u+(ξ)− s̃L

(
w(ξ)

)∣∣ < δ for ξ∗ ≤ ξ,

where u(ξ) should be read as u−(ξ) for ξ ≤ −1, as u+(ξ) for ξ ≥ 1, and as both u±(ξ) in the
region −1 ≤ ξ ≤ 1.

(iii) We have

limξ→−∞ eη∗|ξ|[w(ξ)−Θfs
R(ϑ−, c, ε)(ξ)] = 0,

limξ→∞ eη∗ξ[w(ξ)−Θfs
L(ϑ+, c, ε)(ξ)] = 0.

(iv) We have ev0u
− ∈ ev0 qb ⊕ X̂b, ev0u

+ ∈ ev0 qb ⊕ X̂b, and ev0[u− − u+] ∈ Γb.

Compared to the existence result for the quasi-fronts, an additional degree of freedom arises
when constructing quasi-back solutions to (3.1). This freedom is used in the following result to fix
w(0).

Proposition 3.6 Consider the nonlinear equation (3.1) and suppose that (H1)-(H5) are satisfied.
Then there exist constants ξ∗ � 1 and 0 < δ, δϑ, δc, δε � 1, together with a set of maps

u−b : [w∗ − δϑ, w∗ + δϑ]× [c∗ − δc, c∗ + δc]× [0, δε]→ C((−∞, 1],R),
u+
b : [w∗ − δϑ, w∗ + δϑ]× [c∗ − δc, c∗ + δc]× [0, δε]→ C([−1,∞),R),
wb : [w∗ − δϑ, w∗ + δϑ]× [c∗ − δc, c∗ + δc]× [0, δε]→ C(R, [wmin, wmax]),
ϑ−b : [w∗ − δϑ, w∗ + δϑ]× [c∗ − δc, c∗ + δc]× [0, δε]→ [wmin, wmax],
ϑ+
b : [w∗ − δϑ, w∗ + δϑ]× [c∗ − δc, c∗ + δc]× [0, δε]→ [wmin, wmax]

that satisfies the following properties.

(i) For any ϑ0 ∈ [w∗ − δϑ, w∗ + δϑ], c ∈ [c∗ − δc, c∗ + δc] and ε ∈ [0, δε], the quintuplet(
u−b (ϑ0, c, ε), u+

b (ϑ0, c, ε), wb(ϑ0, c, ε), ϑ−b (ϑ0, c, ε), ϑ+
b (ϑ0, c, ε)

)
is the unique (δ, ξ∗)-quasi-back solution to (3.1) that has w(0) = ϑ0.

(ii) Write ξ∞b (ϑ0, c, ε) := ev0[u−b (ϑ0, c, ε)− u+
b (ϑ0, c, ε)] ∈ Γb and pick a nonzero db ∈ K∗b that has

db(0) > 0, then the following Melnikov inequalities hold,

Dc[〈ev0db, ξ
∞
b (ϑ0, c, ε)〉0]ϑ0=w∗,c=c∗,ε=0 > 0,

Dϑ0 [〈ev0db, ξ
∞
b (ϑ0, c, ε)〉0]ϑ0=w∗,c=c∗,ε=0 < 0.

In addition, we have Dϑ0ϑ±b (w∗, c∗, 0) 6= 0.

(iii) The maps (ϑ0, c, ε) 7→ ϑ±b (ϑ0, c, ε) ∈ R and

(ϑ0, c, ε) 7−→


wb(ϑ0, c, ε)|R− −Θfs

R(ϑ−b (ϑ0, c, ε), c, ε) ∈ BC−η∗((−∞, 0],R)
u−b (ϑ0, c, ε)− sR(wb(ϑ0, c, ε)(·), c, ε) ∈ BC−η∗((−∞, 1],R)
wb(ϑ0, c, ε)|R+ −Θfs

L(ϑ+
b (ϑ0, c, ε), c, ε) ∈ BC−η∗([0,∞),R)

u+
b (ϑ0, c, ε)− sL(wb(ϑ0, c, ε)(·), c, ε) ∈ BC−η∗([−1,∞),R)

are Cr-smooth with values in the spaces indicated above, where r appeared in (H1).
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Fig. 9: An illustration of quasi-solutions and their passage near the slow manifold MR.

3.3 Step 3 - The passage near MR: the Exchange Lemma

We now proceed to connect the quasi-front solutions to the quasi-back solutions somewhere near the
manifold MR(c, ε): Figure 9 illustrates the solutions we shall construct in this section.

We will use the time T that solutions spend near MR as our primary parameter. We note that
(H5) allows us to define the slow time T sl

∗ > 0 as the unique time for which

Θsl
R(0, c∗, 0)(T sl

∗ ) = w∗. (3.10)

Since we need solutions to follow the back qb with w ≈ w∗, we require that εT ≈ T sl
∗ . In particular, this

means that ε and the fast time T cannot be treated as independent parameters. To accommodate this
requirement, we introduce the slow time variable T sl = εT and treat c, T sl and T as the independent
parameters. We therefore introduce the parameter space

Ω = Ω(δc, δsl, T∗) = [c∗ − δc, c∗ + δc]× [T sl
∗ − δsl, T sl

∗ + δsl]× [T∗,∞). (3.11)

Recall the functions ϑf and ϑ+
b that appear in Propositions 3.4 and 3.6: these functions select the

specific fiber of MR(c, ε) that quasi-fronts and quasi-backs approach as ξ → ∞ or ξ → −∞. We
will use the additional parameter ϑ0 that is available when selecting a quasi-back to ensure that
these fibers match up properly after the time T spent near MR(c, ε). Specifically, we introduce the
function ϑ0

∞ : Ω→ [wmin, wmax] that is uniquely defined by the requirement that

ϑ−b (ϑ0
∞(ω), c, T sl/T ) = Θsl

R(ϑ+
f (c, T sl/T ), c, T sl/T )(T sl)

for all ω = (c, T sl, T ) ∈ Ω. On account of Proposition 3.6(ii), the function ϑ0
∞ is well-defined provided

that T∗ is chosen to be sufficiently large and δc > 0 and δsl > 0 are chosen to be sufficiently small.
In addition, we have the expansion

ϑ0
∞(ω)− w∗ = κ1(ω)[T sl − T sl

∗ ] + κ2(ω)/T + κ3(ω)(c− c∗), (3.12)

in which κ1, κ2 and κ3 are of class Crb on Ω, with κ1(c∗, T sl
∗ ,∞) 6= 0.

Definition 3.7 (Quasi-solution) Pick T∗ � 1 and 0 < δsl, δc � 1, choose ω = (c, T sl, T ) ∈
Ω(δc, δsl, T∗), and consider (3.1) with ε := T sl/T . For each 0 < δ � 1 and ξ∗ � 1, we say that the
quadruplet

(uf , ub, uxc, w) ∈ C((−∞, 1],R)× C([T − 1,∞),R)× C([−1, T + 1],R)× C(R,R)
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is a (δ, ξ∗)-quasi-solution if the following holds:

(i) The pairs (uf , w), (uxc, w), and (ub, w) satisfy (3.1) on the intervals (−∞, 0], [0, T ], and [T,∞),
respectively.

(ii) We have limξ→−∞(uf (ξ), w(ξ)) = 0 and limξ→∞(ub(ξ), w(ξ)) = 0.

(iii) We have

|u(ξ)− qf (ξ)| < δ and |w(ξ)| < δ for ξ ≤ ξ∗,∣∣u(ξ)− s̃R
(
w(ξ)

)∣∣ < δ for ξ∗ ≤ ξ ≤ T − ξ∗,
|u(ξ)− qb(ξ − T )| < δ and |w(ξ)− w∗| < δ for T − ξ∗ ≤ ξ ≤ T + ξ∗,∣∣u(ξ)− s̃L

(
w(ξ)

)∣∣ < δ for T + ξ∗ ≤ ξ,

where u(ξ) should be read as uf (ξ) for ξ ≤ −1, uxc(ξ) for 1 ≤ ξ ≤ T − 1, ub(ξ) for ξ ≥ T + 1,
both uf (ξ) and uxc(ξ) in the region −1 ≤ ξ ≤ 1, and both ub(ξ) and uxc(ξ) in the region
T − 1 ≤ ξ ≤ T + 1.

(iv) We have

ev0uf , ev0uxc ∈ ev0 qf ⊕ X̂f , evTub, evTuxc ∈ ev0 qb ⊕ X̂b,

(v) We have ev0[uf − uxc] ∈ Γf and evT [ub − uxc] ∈ Γb.

Our next result, which can be interpreted as an extension of the Exchange Lemma to MFDEs,
is concerned with the existence of quasi-solutions.

Proposition 3.8 Consider the nonlinear equation (3.1) and suppose that (H1)-(H5) are satisfied,
then there are constants ξ∗ � 1, T∗ � 1 and 0 < δ, δc, δsl � 1 with the following property. For each
ω = (c, T sl, T ) ∈ Ω = Ω(δc, δsl, T∗), there exists a quadruplet

(
uf (ω), ub(ω), uxc(ω), w(ω)

)
with

uf (ω) ∈ C((−∞, 1],R),
ub(ω) ∈ C([T − 1,∞),R),
uxc(ω) ∈ C([−1, T + 1],R),
w(ω) ∈ C(R, [wmin, wmax]),

that satisfies the following properties.

(i) For any ω ∈ Ω, the quadruplet
(
uf (ω), ub(ω), uxc(ω), w(ω)

)
is the unique (δ, ξ∗)-quasi-solution

to (3.1) with ε = T sl/T .

(ii) The maps ω 7→ ξf (ω) and ω 7→ ξb(ω) defined by

ξf (ω) := ev0[uf (ω)− uxc(ω)] ∈ Γf ,
ξb(ω) := evT [ub(ω)− uxc(ω)] ∈ Γb

are Cr-smooth, where the integer r appeared in (H1).

(iii) Consider the maps

ξ̃f : ω 7→ ξf (ω)− ξ∞f (c, T sl/T ),
ξ̃b : ω 7→ ξf (ω)− ξ∞f (ϑ0

∞(ω), c, T sl/T ),

then there exists a constant C > 0 such that, for any integer 0 ≤ ` ≤ r and any ω ∈ Ω, we
have the estimate ∣∣∣D`

ω ξ̃f (ω)
∣∣∣+
∣∣∣D`

ω ξ̃b(ω)
∣∣∣ ≤ Ce−η∗T . (3.13)

With this result in hand we have gathered all the ingredients we need to establish our main
theorem.
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3.4 Step 4 - Proof of Theorem 1

The remaining arguments are almost identical to those used in the proof of [35, Theorem 1]. Let
Ω be as in Proposition 3.8. Finding (δ, ξ∗)-homoclinic solutions to (3.1) has now been reduced to
finding ω ∈ Ω that have ξf (ω) = ξb(ω) = 0. This leads to the system

b1(ω)e−η∗T = −c1(ω)(c− c∗)− c2(ω)/T,
b2(ω)e−η∗T = c3(ω)(c− c∗)− c4(ω)[ϑ0

∞(ω)− w∗] + c5(ω)/T, (3.14)

in which the functions b1, b2 and c1 through c5 and their derivatives are bounded on Ω. In addi-
tion, setting ω0 = (c∗, T sl

∗ ,∞), we have c1(ω0) 6= 0, c2(ω0) 6= 0, c4(ω0) 6= 0 and sign
(
c1(ω0)

)
=

sign
(
c2(ω0)

)
. Using (3.12) and solving the second equation in (3.14), we find

T sl

T
=
T sl
∗
T

+ O
(

1
T 2

+ (c− c∗)
1
T

)
.

Substituting this expression into the first line of (3.14) and solving, we obtain

1
T

= − c1(ω0)
c2(ω0)T sl

∗
(c− c∗) + O

(
(c− c∗)2

)
,

which, using ε = T sl/T , yields the desired expansion

ε = −c1(ω0)
c2(ω0)

(c− c∗) + O
(
(c− c∗)2

)
.

This completes the proof of our main result subject to proving the propositions that we stated in
the preceding sections. Their proofs will occupy the remainder of this paper.

4 Persistence of slow manifolds

In this section we set out to prove Proposition 3.1. The approach in this section is based heavily
on the construction developed in [43§2] to establish the persistence of slow manifolds in the context
of singularly perturbed ODEs. At the appropriate points in the analysis, the machinery that was
developed in [26§6] for MFDEs with slowly modulating coefficients will be put to work. We will focus
on the construction of the function sR, noting that sL can be constructed in a similar fashion. Our
approach will be to fix w0, c and ε > 0 and look for a bounded solution (u,w) to (3.1) that remains
close to MR and has w(0) = w0. We will then write sR(w0, c, ε) = u(0) and show that this function
has the desired properties. In essence, we are constructing a center manifold around MR.

Let us start by introducing the new variable v via

u(ξ) = s̃R
(
w(ξ)

)
+ v(ξ). (4.1)

Substituting this back into (3.1) and recalling the identity g
(
s̃R(w)

)
= w, we find that the pair

(v, w) must satisfy

cv′(ξ) = L
(
s̃R(w(ξ))

)
evξv − εDs̃R

(
w(ξ)

)[
s̃R
(
w(ξ)

)
+ v(ξ)− γw(ξ)

]
χ1

(
w(ξ)

)
+G
(
v(ξ), w(ξ)

)
+H(evξw),

cw′(ξ) = ε[s̃R
(
w(ξ)

)
+ v(ξ)− γw(ξ)]χsl

(
w(ξ)

)
,

(4.2)

in which the operator L : R→ L(X,R) is given by

L(u)evξv = α[v(ξ + 1) + v(ξ − 1)− 2v(ξ)] + g′(u)v(ξ), (4.3)
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while the nonlinear operators G : R× R→ R and H : C([−1, 1], [wmin, wmax])→ R are given by

G(v, w) = g
(
s̃R(w) + v

)
− g
(
s̃R(w)

)
− g′

(
s̃R(w)

)
v,

H(evξw) = α[s̃R
(
w(ξ + 1)

)
+ s̃R

(
w(ξ − 1)

)
− 2s̃R

(
w(ξ)

)
]. (4.4)

In order to stay as close as possible to the setting in [43] and in particular to reproduce the estimate
[43, Equation (2.3)], we will split the operator H into a part Hlin that is linear in w and a nonlinear
part Hnl. After using the differential equation for w to transform Hlin, we write

Hlin(evξv, evξw) = εα
c Ds̃R

(
w(ξ)

)[ ∫ ξ+1

ξ

[
s̃R
(
w(ξ′)

)
+ v(ξ′)− γw(ξ′)

]
χsl

(
w(ξ′)

)
dξ′

+
∫ ξ−1

ξ

[
s̃R
(
w(ξ′)

)
+ v(ξ′)− γw(ξ′)

]
χsl

(
w(ξ′)

)
dξ′
]
,

Hnl(evξw) = α[s̃R
(
w(ξ + 1)

)
+ s̃R

(
w(ξ − 1)

)
− 2s̃R

(
w(ξ)

)
]

−αDs̃R
(
w(ξ)

)
[w(ξ + 1) + w(ξ − 1)− 2w(ξ)].

(4.5)

Since we are only interested in solutions for which v is small, we will add a cut-off to v. In addition,
to bound the Lipschitz constant associated with Hnl, we will need to apply a special cut-off to w.
To this end, let us introduce for any w ∈ C(R,R), the notation

cevξw =
(
w(ξ + 1)− w(ξ), w(ξ − 1)− w(ξ)

)
∈ R2. (4.6)

We pick an arbitrary C∞-smooth function χ : [0,∞) → R that has χ(ζ) = 1 for 0 ≤ ζ ≤ 1 and
χ(ζ) = 0 for ζ ≥ 2. For any δ > 0, we write χδ for the function χδ(ζ) = χ(ζ/δ). We are now ready
to define, for small quantities δv > 0 and δw > 0, the cut-off nonlinearities

Gc(v, w) = χδv (|v|)G(v, w),
Hc

lin(evξv, evξw) = εα
c Ds̃R

(
w(ξ)

)[ ∫ ξ+1

ξ

[
s̃R
(
w(ξ′)

)
+ v(ξ′)− γw(ξ′)

]
χ1(|v(ξ′)|)χsl

(
w(ξ′)

)
dξ′

+
∫ ξ−1

ξ

[
s̃R
(
w(ξ′)

)
+ v(ξ′)− γθ(ξ′)

]
χ1(|v(ξ′)|)χsl

(
w(ξ′)

)
dξ′
]
,

Hc
nl(evξw) = χδw(|cevξw|)Hnl(evξw).

(4.7)

Putting this together, we pick ζ ≥ 0, introduce the nonlinearity

Rccm : BCζ(R,R)× C(R, [wmin, wmax])× R× R→ BCζ(R,R) (4.8)

that is given by

Rccm(v, w, ε, c)(ξ) = −εDs̃R
(
w(ξ)

)[
s̃R
(
w(ξ)

)
+ v(ξ)− γw(ξ)

]
χ1(|v(ξ)|)χsl

(
w(ξ)

)
+Gc

(
v(ξ), θ(ξ)

)
+Hc

lin(evξv, evξw) +Hc
nl(evξw) (4.9)

and study the equation

cv′(ξ) = L
(
s̃R
(
w(ξ)

))
evξv +Rccm(v, w, ε, c)(ξ), (4.10a)

cw′(ξ) = ε[s̃R
(
w(ξ)

)
+ v(ξ)− γw(ξ)]χsl

(
w(ξ)

)
χ1(|v(ξ)|). (4.10b)

Let us pick small constants δc > 0 and δε > 0. For quantities a and b that depend on the various
cut-offs δv, δw, δc and δε that we have introduced, we will use the notation

a ≤∗ b (4.11)

to express the fact that there exists a C > 0 that does not depend on these cut-offs, such that a ≤ Cb
holds for all δv ≤ 1, δw ≤ 1, δc ≤ 1 and δε ≤ 1.
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Notice that for any w,w1, w2 ∈ C(R, [wmin, wmax]), v, v1, v2 ∈ BCζ(R,R), ε ∈ [0, δε] and c ∈
[c∗ − δc, c∗ + δc], we have the inequalities

|Rccm(v, w, c, ε)(ξ)| ≤∗ δε + δ2
v + δ2

w,
‖Rccm(v1, w1, c, ε)−Rccm(v2, w2, c, ε)‖ζ ≤∗ (δε + δv + δw)[‖v1 − v2‖ζ + ‖w1 − w2‖ζ ].

(4.12)

We proceed with our analysis by considering the linear part of (4.10a). We will write this as

Λ(w, c)v = h, (4.13)

in which the linear operator Λ(w, c) : C1(R,R)→ C(R,R) acts as

[Λ(w, c)v](ξ) = cv′(ξ)− L
(
s̃R
(
w(ξ)

))
evξv, (4.14)

for any w ∈ C(R, [wmin, wmax]) and c 6= 0. The next result shows that for any η ∈ [−η∗, η∗], an
inverse can be defined for the operator Λ(w, c) on the space BCη(R,R) provided that ‖w′‖∞ is
sufficiently small.

Lemma 4.1 Consider the linear system (4.13) and suppose that (H1)-(H3) are satisfied. Then there
exists a constant δc > 0, together with a family of maps

Kη : C(R, [wmin, wmax])× [c∗ − δc, c∗ + δc]→ L
(
BCη(R,R), BCη(R,R)

)
(4.15)

defined for all η ∈ [−η∗, η∗], such that the following properties are satisfied.

(i) There exists κ > 0, such that if w ∈ C1(R, [wmin, wmax]) and |w′(ξ)| < κ for all ξ ∈ R,
then v = Kη(w, c)h satisfies Λ(w, c)v = h for any η ∈ [−η∗, η∗], c ∈ [c∗ − δc, c∗ + δc] and
h ∈ BCη(R,R).

(ii) The norm ‖Kη(w, c)‖ can be bounded independently of η ∈ [−η∗, η∗], c ∈ [c∗ − δc, c∗ + δc] and
w ∈ C(R, [wmin, wmax]).

(iii) There exists a constant C > 0 such that for any η1 > 0, any η2, η3 ∈ [−η∗, η∗] that have
η1 + η2 ≤ η3, any two functions w1, w2 ∈ C(R, [wmin, wmax]), any two c1, c2 ∈ [c∗ − δc, c∗ + δc]
and any h ∈ BCη2(R,R), we have the estimate

‖Kη2(w1, c1)h−Kη2(w2, c2)h‖η3
≤ C[‖w1 − w2‖η1

+ |c1 − c2|] ‖h‖η2
. (4.16)

(iv) Consider a pair η1, η2 ∈ [−η∗, η∗] together with a function

h ∈ BCη1(R,R) ∩BCη2(R,R). (4.17)

Then for any w ∈ C(R, [wmin, wmax]) and c ∈ [c∗ − δc, c∗ + δc], we have

Kη1(w, c)h = Kη2(w, c)h. (4.18)

(v) Recall the integer r that appears in (H1). Consider any integer 0 ≤ ` ≤ r + 2 and pick η1 > 0
and η2, η3 ∈ [−η∗, η∗] in such a way that η3 > `η1 + η2. Then the map (θ, c) 7→ K(θ, c)
is C`-smooth when considered as a map from BCη1(R, [wmin, wmax]) × [c∗ − δc, c∗ + δc] into
L
(
BCη2(R,R), BCη3(R,R)

)
. In addition, for any pair of integers p1, p2 ≥ 0 with p1 + p2 = `,

the derivative Dp1
1 Dp2

2 K is well-defined even when interpreted as a map

Dp1
1 Dp2

2 K : BCη1(R, [wmin, wmax])× [c∗ − δc, c∗ + δc]
→ L(`)

(
BCη1(R,R)p1 × Rp2 ,L

(
BCη2(R,R), BCη(R,R)

)) (4.19)

with η = `η1 + η2.
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(vi) For any ξ0 ∈ R, η ∈ [−η∗, η∗], w ∈ C(R, [wmin, wmax]), c ∈ [c∗−δc, c∗+δc] and h ∈ BCη(R,R),
we have

Kη(Tξ0w, c)Tξ0h = Tξ0Kη(w, c)h, (4.20)

in which Tξ0 denotes the shift [Tξ0h](ξ′) = h(ξ0 + ξ′).

Proof. We first consider the linear system Λ(w, c)v = h in the special case that w is a constant, i.e.,
w(ξ) = w0 for all ξ ∈ R. In this case (4.13) reduces to a linear constant-coefficient inhomogeneous
MFDE that has been studied extensively [28, 38]. The characteristic function ∆ associated with
this MFDE can be obtained by seeking a solution of the form v(ξ) = exp(zξ) to the homogeneous
system Λ(w01, c)v = 0. Recalling (3.8), we find that ∆(z) = ∆R,w0(z), from which it follows that
the characteristic equation ∆(z) = 0 admits no roots with |Re z| ≤ η∗.

After picking δc to be sufficiently small, the constructions in [28§5] can be used to define, for any
w0 ∈ [wmin, wmax], any c ∈ [c∗ − δc, c∗ + δc] and any η ∈ [−η∗, η∗], the operators

Kcs
η (w0, c) : BCη(R,R)→ BC1

η(R,R) (4.21)

that solve the constant coefficient system Λ(w01, c)v = h. More precisely, for any v ∈ BC1
η(R,R) we

have Kcs
η (w0, c)Λ(w01, c)v = v and for any h ∈ BCη(R,R) we have Λ(w01, c)Kcs

η (w0, c)h = h. One
can now employ simplified versions of the arguments in [26§6] and use these operators Kcs

η (w0, c) to
construct a family Kη that satisfies the properties (i) through (vi).

Lemma 4.2 Consider the linear system (4.13) and suppose that (H1)-(H3) are satisfied. Then there
exist constants κ > 0 and δc > 0, such that for any c ∈ [c∗−δc, c∗+δc] and any w ∈ C(R, [wmin, wmax])
that has |w′(ξ)| < κ for all ξ ∈ R, the homogeneous equation Λ(w, c)v = 0 admits no non-zero
solutions v ∈ BC1

η∗(R,R).

Proof. In the special case that w is a constant function, the claim follows from [28, Proposition 5.2],
in view of the observation contained in the proof of Lemma 4.1 that the characteristic function
∆(z) = 0 admits no roots with |Re z| ≤ η∗. A simplified version of the proof of [26, Lemma 6.4] can
now be used to generalize the claim to functions w that have a sufficiently small derivative.

We now turn our attention to the equation for w given by (4.10b). For any fixed v ∈ C(R,R)
and c 6= 0, this equation is an ODE with a smooth right-hand side. This allows us to introduce, for
δc > 0 sufficiently small and any δε > 0, the operator

W : [wmin, wmax]× C(R,R)× [c∗ − δc, c∗ + δc]× [0, δε]→ C(R, [wmin, wmax]) (4.22)

that is uniquely defined by the property that w = W (w0, v, c, ε) solves (4.10b) with w(0) = w0. Our
next result is the equivalent of [43, Lemma 2.4] and can be proved using Gronwall’s inequality and
variational equations.

Lemma 4.3 There exist constants L0 > 0 and L1 > 0 such that the following hold true.

(i) For any w0 ∈ [wmin, wmax], ε ∈ [0, δε], c ∈ [c∗ − δc, c∗ + δc] and v ∈ C(R,R), we have

|W (w0, v, c, ε)(ξ)| ≤ |ξ|+ εL0 |ξ| . (4.23)

(ii) Consider any ε ∈ [0, δε], c ∈ [c∗ − δc, c∗ + δc] and any η > εL1. Then for any two pairs
(w1

0, v
1), (w2

0, v
2) ∈ [wmin, wmax]×BCη(R,R), we have the estimate

∣∣W (w1
0, v

1, c, ε)(ξ)−W (w2
0, v

2, c, ε)(ξ)
∣∣ ≤ ∣∣w1

0 − w2
0

∣∣ eεL1ξ +
εL1

η − εL1

∥∥v1 − v2
∥∥
η

eηξ. (4.24)
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(iii) Recall the integer r that appears in (H1). Consider any 0 ≤ ` ≤ r + 3 and pick η1 > δεL1

and η2 in such a way that η2 > `η1. Then the map (w0, v, c, ε) 7→ W (w0, v, c, ε) is C`-smooth
when considered as a map from [wmin, wmax] × BCη1(R,R) × [c∗ − δc, c∗ + δc] × [0, δε] into
BCη2(R,R). In addition, if 1 ≤ ` ≤ r + 3, then for any set of integers p1, p2, p3, p4 ≥ 0 that
have p1+p2+p3+p4 = `, the derivative Dp1

1 Dp2
2 Dp3

3 Dp4
4 W is well-defined even when interpreted

as a map

Dp1
1 Dp2

2 Dp3
3 Dp4

4 W : [wmin, wmax]×BCη1(R,R)× [c∗ − δc, c∗ + δc]× [0, δε]
→ L(`)

(
R
p1 ×BCη1(R,R)p2 × Rp3 × Rp4 , BCη(R,R)

) (4.25)

with η = `η1.

(iv) For any ξ0 ∈ R, w0 ∈ [wmin, wmax], v ∈ C(R,R), c ∈ [c∗ − δc, c∗ + δc] and ε ∈ [0, δε], we have

W (W (w0, v, c, ε)(ξ0), Tξ0v, c, ε) = Tξ0W (w0, v, c, ε). (4.26)

Proof of Proposition 3.1 We will only consider the statements concerning sR. Possibly after
decreasing δε > 0, pick η in such a way that δεL1 < η < η∗. Fix any w0 ∈ [wmin, wmax], ε ∈ [0, δε]
and c ∈ [c∗ − δc, c∗ + δc] and consider the fixed point equation

v = G(w0, v, c, ε) := Kη
(
W (w0, v, c, ε)

)
Rccm

(
v,W (w0, v, c, ε), c, ε

)
(4.27)

that is posed on the space BCη(R,R). To see that the right hand side of this equation is a contraction,
let us pick a pair v1, v2 ∈ BCη(R,R) and write ∆G = ‖G(w0, v1, c, ε)− G(w0, v2, c, ε)‖η. We may use
Lemma 4.1(iii) with η1 = η3 = η and η2 = 0, together with Lemma 4.3(ii) to compute

∆G ≤
∥∥∥[Kη

(
W (w0, v1, c, ε)

)
−Kη

(
W (w0, v2, c, ε)

)
]Rccm

(
v,W (w0, v1, c, ε), c, ε

)∥∥∥
η

+
∥∥∥Kη(W (w0, v2, c, ε)

)
[Rccm

(
v1,W (w0, v1, c, ε), c, ε

)
−Rccm

(
v2,W (w0, v2, c, ε), c, ε

)
]
∥∥∥
η

≤∗ ‖W (w0, v1, c, ε)−W (w0, v2, c, ε)‖η
∥∥Rccm

(
v,W (w0, v1, c, ε), c, ε

)∥∥
0

+
∥∥Rccm

(
v1,W (w0, v1, c, ε), c, ε

)
−Rccm

(
v2,W (w0, v2, c, ε), c, ε

)∥∥
η

≤∗ [δε + δv + δw] ‖v1 − v2‖η .

(4.28)

Using the estimates (4.12) once more, we also find

‖G(w0, v, c, ε)‖η ≤∗ δε + δ2
v + δ2

w. (4.29)

By choosing δv > 0, δw > 0 and δε > 0 to be sufficiently small, we can hence use the contraction
mapping principle to ensure that the fixed point equation (4.27) has a unique solution that we will
write as v = v∗(w0, c, ε). In addition, we may immediately read off the estimate

|v∗(w0, c, ε)(ξ)| ≤∗ δε + δ2
v + δ2

w (4.30)

by considering (4.27) in the space BC0(R,R). After possibly decreasing δv, δw and δε even further,
we hence find that v∗ remains unaffected by the cut-offs introduced in (4.7).

We are now ready to define sR by means of

sR(w0, c, ε) = s̃R(w0) + v∗(w0, c, ε)(0). (4.31)

Item (i) now follows from the observation that v∗(w0, c, 0) = 0. To establish (ii), we introduce the
notation w∗(w0, c, ε) = W (w0, v

∗(w0, c, ε), c, ε). Using Lemma 4.1(iv) and Lemma 4.3(iv), it is not
hard to verify that

G(w∗(w0, c, ε)(ξ0), Tξ0v
∗(w0, c, ε), c, ε) = Tξ0v

∗(w0, c, ε). (4.32)
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Due to the uniqueness of solutions to the fixed point equation (4.27), this implies that

v∗(w∗(w0, c, ε)(ξ0), c, ε) = Tξ0v
∗(w0, c, ε). (4.33)

In particular, we have

s̃R
(
w∗(w0, c, ε)(ξ)

)
+ v∗(w0, c, ε)(ξ) = sR(w∗(w0, c, ε)(ξ), c, ε), (4.34)

which shows that w∗(w0, c, ε) in fact satisfies (3.2) and hence establishes (ii). Item (iii) together with
the smoothness of sR can be established exactly as in [43, Theorem 3.1].

5 Melnikov Computations

The goal of this section is to establish Propositions 3.4 and 3.6. In order to do this, we will need to
understand the variational equations that arise when studying orbits that converge to the manifolds
MR(c, ε) and ML(c, ε). This issue is studied in the first part of this section, which is inspired by
[43§3]. In the second part we consider the variational equations that occur in a neighborhood of qf
and qb, recalling material from [27, 40]. After these preparations, we will be able to construct the
quasi-front and quasi-back solutions featured in Propositions 3.4 and 3.6 in the final two parts of
this section.

5.1 Linearization around center manifolds

Let us proceed by studying the stable and unstable fibers associated with the center-like manifolds
MR(c, ε) and ML(c, ε). We will focus for the moment on perturbations from MR(c, ε) and look for
solutions to (3.1) on R+ that can be written in the form

u(ξ) = sR
(
Θfs
R(ϑ, c, ε)(ξ) + θ(ξ), c, ε

)
+ v(ξ),

w(ξ) = Θfs
R(ϑ, c, ε)(ξ) + θ(ξ), (5.1)

in which both v and θ should decay exponentially as ξ → ∞. The variable ϑ encodes the fiber of
MR(c, ε) around which we are linearizing. For convenience, we adopt the shorthand Θ = Θfs

R(ϑ, c, ε).
In terms of these coordinates, the equation for θ can be written as

cθ′(ξ) = −cΘ′(ξ) + ε[sR(Θ(ξ) + θ(ξ), c, ε) + v(ξ)− γ
(
Θ(ξ) + θ(ξ)

)
]χ1

(
Θ(ξ) + θ(ξ)

)
= εSR(Θ(ξ), θ(ξ), v(ξ), c, ε), (5.2)

in which we have introduced the function

SR : [wmin, wmax]2 × R× [c∗ − δc, c∗ + δc]× [0, δε]→ R (5.3)

that is given by

SR(Θ, θ, v, c, ε) = ε[sR(Θ + θ, c, ε)− sR(Θ, c, ε) + v − γθ]χsl(Θ + θ)
+ε[sR(Θ, c, ε)− γΘ][χsl(Θ + θ)− χsl(Θ)]. (5.4)

We now turn our attention to the equation for v. Direct substitution of (5.1) into (3.1) yields

cv′(ξ) = −cD1sR(Θ(ξ) + θ(ξ), c, ε)[Θ′(ξ) + θ′(ξ)]
+α
[
sR(Θ(ξ + 1) + θ(ξ + 1), c, ε) + sR(Θ(ξ − 1) + θ(ξ − 1), c, ε)

−2sR(Θ(ξ) + θ(ξ), c, ε)
]

+α[v(ξ + 1) + v(ξ − 1)− 2v(ξ)]
+g
(
sR(Θ(ξ) + θ(ξ), c, ε) + v

)
−Θ(ξ)− θ(ξ).

(5.5)
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Using Proposition 3.1(ii), one may verify the identity

cD1sR(Θ(ξ), c, ε)Θ′(ξ) = α[sR(Θ(ξ + 1), c, ε) + sR(Θ(ξ − 1), c, ε)− 2sR(Θ(ξ), c, ε)]
+g
(
sR(Θ(ξ), c, ε)

)
−Θ(ξ). (5.6)

Substituting this back into (5.5), we find

cv′(ξ) = L
(
sR(Θ(ξ), c, ε)

)
evξv

+F (Θ(ξ), θ(ξ), v(ξ), c, ε) +G(Θ(ξ), θ(ξ), v(ξ), c, ε)
+H0

lin(evξΘ, evξθ, c, ε) +Hnl(evξΘ, evξθ, c, ε),
(5.7)

with

H0
lin(evξΘ, evξθ, c, ε) = α[D1sR(Θ(ξ + 1), c, ε)−D1sR(Θ(ξ), c, ε)]θ(ξ + 1)

+α[D1sR(Θ(ξ − 1), c, ε)−D1sR(Θ(ξ), c, ε)]θ(ξ − 1)
+αD1sR(Θ(ξ), c, ε)[θ(ξ + 1) + θ(ξ − 1)− 2θ(ξ)],

Hnl(evξΘ, evξθ, c, ε) = α[sR(Θ(ξ + 1) + θ(ξ + 1), c, ε)− sR(Θ(ξ + 1), c, ε)
−D1sR(Θ(ξ + 1), c, ε)θ(ξ + 1)]

+α[sR(Θ(ξ − 1) + θ(ξ − 1), c, ε)− sR(Θ(ξ − 1), c, ε)
−D1sR(Θ(ξ − 1), c, ε)θ(ξ − 1)]

−2α[sR(Θ(ξ) + θ(ξ), c, ε)− sR(Θ(ξ), c, ε)
−D1sR(Θ(ξ), c, ε)θ(ξ)],

(5.8)

together with

F (Θ, θ, v, c, ε) = −ε
[
D1sR(Θ + θ, c, ε)−D1sR(Θ, c, ε)

]
TR(Θ, c, ε)

−εD1sR(Θ + θ, c, ε)SR(Θ, θ, v, c, ε),
G(Θ, θ, v, c, ε) = g

(
sR(Θ + θ, c, ε) + v

)
− g
(
sR(Θ, c, ε)

)
−g′
(
sR(Θ, c, ε)

)
[v +D1sR(Θ, c, ε)θ]

+
[
g′
(
sR(Θ, c, ε)

)
D1sR(Θ, c, ε)

−g′
(
sR(Θ, c, 0)

)
D1sR(Θ, c, 0)

]
θ.

(5.9)

In the above computation we used the fact that for any ϑ ∈ [wmin, wmax], the identity

g′
(
sR(ϑ, c, 0)

)
D1sR(ϑ, c, 0) = 1 (5.10)

holds. As in §4, we will modify the function H0
lin to make the dependence on ε more explicit. We

therefore introduce the new function

Hlin(evξΘ, evξθ, evξv, c, ε) = αε
c

[ ∫ ξ+1

ξ
D2

1sR(Θ(σ), c, ε)TR(Θ(σ), c, ε) dσ
]
θ(ξ + 1)

+αε
c

[ ∫ ξ−1

ξ
D2

1sR(Θ(σ), c, ε)TR(Θ(σ), c, ε) dσ
]
θ(ξ − 1)

+αε
c D1sR(Θ(ξ), c, ε)

[ ∫ ξ+1

ξ
SR(Θ(σ), θ(σ), v(σ), c, ε) dσ

]
+αε

c D1sR(Θ(ξ), c, ε)
[ ∫ ξ−1

ξ
SR(Θ(σ), θ(σ), v(σ), c, ε)dσ

]
.

(5.11)

To write these definitions more concisely, let us consider any two functions θ ∈ C([−1,∞), [wmin, wmax])
and v ∈ C([−1,∞),R). We now introduce two new functions by way of

Rfb
R (θ, v, ϑ, c, ε)(ξ) = F (Θfs

R(ϑ, c, ε)(ξ), θ(ξ), v(ξ), c, ε)
+G(Θfs

R(ϑ, c, ε)(ξ), θ(ξ), v(ξ), c, ε)
+Hlin(evξΘfs

R(ϑ, c, ε), evξθ, evξv, c, ε)
+Hnl(evξΘfs

R(ϑ, c, ε), evξθ, c, ε),
S fb
R (θ, v, ϑ, c, ε)(ξ) = SR(Θfs

R(ϑ, c, ε)(ξ), θ(ξ), v(ξ), c, ε).

(5.12)
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In terms of these new functions, the variational equation for the pair (v, θ) can be written as

cv′(ξ) = L
(
sR(Θfs

R(ϑ, c, ε)(ξ), c, ε)
)
evξv +Rfb

R (θ, v, ϑ, c, ε)(ξ), (5.13a)

cθ′(ξ) = εS fb
R (θ, v, c, ε)(ξ). (5.13b)

Let us now consider any ϑ ∈ [wmin, wmax], c ∈ [c∗ − δc, c∗ + δc] and ε ∈ [0, δε]. It is easy to see
that

Rfb
R (0, 0, ϑ, c, ε) = S fb

R (0, 0, ϑ, c, ε) = 0. (5.14)

In addition, let us fix ζ < 0 and consider a pair v1, v2 ∈ BCζ([−1,∞),R) together with a pair
θ1, θ2 ∈ BCζ([−1,∞), [wmin, wmax]). We will assume that ‖vi‖ζ ≤ δv and ‖θi‖ζ ≤ δw for i = 1, 2.
Then upon writing

∆fb =
∥∥Rfb

R (θ1, v1, ϑ, c, ε)−Rfb
R (θ2, v2, ϑ, c, ε)

∥∥
ζ

+
∥∥S fb

R (θ1, v1, ϑ, c, ε)− S fb
R (θ2, v2, ϑ, c, ε)

∥∥
ζ
, (5.15)

we have the Lipschitz estimate

∆fb ≤∗ (δε + δv + δw)[‖v1 − v2‖ζ + ‖θ1 − θ2‖ζ ]. (5.16)

Using standard arguments as in [43, Lemmas 3.3-3.4], one may obtain the following two smoothness
results. We note that Rfb

R loses two orders of smoothness as a consequence of (5.11).

Lemma 5.1 Recall the integer r appearing in (H1). There exists a constant N1 > 0 such that for
any integer 0 ≤ ` ≤ r+ 2 and any η > `δεN1, the maps Θfs

R and Θfs
L are C`-smooth when considered

as maps from [wmin, wmax]× [c∗ − δc, c∗ + δc]× [0, δε] into BCη(R,R).

Lemma 5.2 Recall the integer r that appears in (H1). There exist constants N1 > 0, δc > 0 and
δε > 0, such that for any −η∗ ≤ η < −rδεN1 and any integer 0 ≤ ` ≤ r, the nonlinearity Rfb

R is
C`-smooth when considered as a map

Rfb
R : BCη([−1,∞), [wmin, wmax])×BCη([−1,∞),R)× [wmin, wmax]× [c∗ − δc, c∗ + δc]× [0, δε]

→ BCη2([0,∞),R)
(5.17)

with η2 > η + `δεN1. The same result holds for S fb
R .

Let us now consider the linear part of (5.13a), which we will write as

Λfb
R (ϑ, c, ε)v = h, (5.18)

in which Λfb
R (ϑ, c, ε) acts as

[Λfb
R (ϑ, c, ε)v](ξ) = cv′(ξ)− L

(
sR(Θfs

R(ϑ, c, ε)(ξ), c, ε)
)
evξv. (5.19)

The following result shows that (5.18) can be solved when considered on appropriate function spaces.
It can be obtained by combining Lemmas 4.1 and 5.1.

Lemma 5.3 Consider the linear system (5.18) and suppose that (H1)-(H3) hold. Then there exist
constants δc > 0, δε > 0 and N1 > 0, together with maps

Kfb
R,η : [wmin, wmax]× [c∗ − δc, c∗ + δc]× [0, δε]

→ L
(
BCη([0,∞),R), BCη([−1,∞),R)

) (5.20)

defined for η ∈ [−η∗, η∗], such that the following properties are satisfied.
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(i) Consider any h ∈ BCη([0,∞),R) for some η ∈ [−η∗, η∗]. Then the function v = Kfb
R,η(ϑ, c, ε)h

satisfies Λfb
R (ϑ, c, ε)v = h for any ϑ ∈ [wmin, wmax], c ∈ [c∗ − δc, c∗ + δc] and ε ∈ [0, δε].

(ii) The norm
∥∥Kfb

R,η(ϑ, c, ε)
∥∥ can be bounded independently of η ∈ [−η∗, η∗], ϑ ∈ [wmin, wmax],

c ∈ [c∗ − δc, c∗ + δc] and ε ∈ [0, δε].

(iii) Consider a pair η1, η2 ∈ [−η∗, η∗] together with a function

h ∈ BCη1([0,∞),R) ∩BCη2([0,∞),R). (5.21)

Then for any ϑ ∈ [wmin, wmax], c ∈ [c∗ − δc, c∗ + δc] and ε ∈ [0, δε], we have

Kfb
R,η1

(ϑ, c, ε)h = Kfb
R,η2

(ϑ, c, ε)h. (5.22)

(iv) Recall the integer r that appears in (H1). Consider any integer 0 ≤ ` ≤ r + 2 and pick
η1, η2 ∈ [−η∗, η∗] in such a way that η2 > `δεN1 + η1. Then the map (ϑ, c, ε) 7→ Kfb(ϑ, c, ε)
is C`-smooth when considered as a map from [wmin, wmax] × [c∗ − δc, c∗ + δc] × [0, δε] into
L
(
BCη1([0,∞),R), BCη2([−1,∞),R)

)
.

Before we can study solutions to the homogeneous equation Λfb
R (ϑ, c, ε)v = 0, we need to introduce

some terminology. For any w0 ∈ [wmin, wmax], consider the autonomous homogeneous system

c∗v
′(ξ) = L

(
s̃R(w0)

)
evξv. (5.23)

The following result is based on [40, Theorems 3.1-3.2] and characterizes the set of solutions to (5.23)
posed on half-lines.

Lemma 5.4 Consider the linear system (5.23) and suppose that (H1)-(H3) are satisfied. Then for
every w0 ∈ [wmin, wmax], there exist closed subspaces P fb

R (w0) ⊂ X and Qfb
R (w0) ⊂ X such that the

following properties hold.

(i) We have the splitting X = P fb
R (w0)⊕Qfb

R (w0) for all w0 ∈ [wmin, wmax].

(ii) Suppose that φ ∈ P fb
R (w0) for some w0 ∈ [wmin, wmax]. Then there exists v ∈ C((−∞, 1],R)

that solves (5.23) and has ev0v = φ. In addition, there exists a constant C > 0, that does not
depend on φ, such that the estimate

‖evξv‖ ≤ Ce−η∗|ξ| ‖φ‖ (5.24)

holds for every ξ ≤ 0.

(iii) Suppose that φ ∈ Qfb
R (w0) for some w0 ∈ [wmin, wmax]. Then there exists v ∈ C([−1,∞),R)

that solves (5.23) and has ev0v = φ. In addition, there exists a constant C > 0, that does not
depend on φ, such that the estimate

‖evξv‖ ≤ Ce−η∗|ξ| ‖φ‖ (5.25)

holds for every ξ ≥ 0.

(iv) Any v ∈ BC0((−∞, 1],R) that satisfies (5.23) for all ξ ≤ 0 must have ev0v ∈ P fb
R (w0).

(v) Any v ∈ BC0([−1,∞),R) that satisfies (5.23) for all ξ ≥ 0 must have ev0v ∈ Qfb
R (w0).

We will write ΠP fb
R (w0) : X → P fb

R (w0) and ΠQfb
R (w0) : X → Qfb

R (w0) for the projections that
can be associated with the splitting obtained in (i) above. Based on this result and the techniques
developed in [26], we can now study the solutions to the slowly-modulating homogeneous system
Λfb
R (ϑ, c, ε)v = 0. We obtain the following characterization.
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Lemma 5.5 Consider the linear system (5.18) and assume that (H1)-(H3) are satisfied. Fix w0 ∈
(wmin, wmax), then there exist constants N1 > 0, δϑ > 0, δc > 0 and δε > 0, together with a map

Efb
R,w0

: [w0 − δϑ, w0 + δϑ]× [c∗ − δc, c∗ + δc]× [0, δε]→ L
(
Qfb
R (w0), BC−η∗([−1,∞),R)

)
, (5.26)

such that the following properties are satisfied.

(i) For any φ ∈ Qfb
R (w0), ϑ ∈ [w0 − δϑ, w0 + δϑ], c ∈ [c∗ − δc, c∗ + δc] and ε ∈ [0, δε], the function

v = Efb
R,w0

(ϑ, c, ε)φ satisfies Λfb
R (ϑ, c, ε)v = 0.

(ii) We have ΠQfb
R (w0)ev0E

fb
R,w0

(ϑ, c, ε)φ = φ for all φ ∈ Qfb
R (w0), ϑ ∈ [w0 − δϑ, w0 + δϑ], c ∈

[c∗ − δc, c∗ + δc] and ε ∈ [0, δε].

(iii) Suppose that v ∈ BCη([−1,∞),R) satisfies Λ(ϑ, c, ε)v = 0 for some η ∈ [−η∗, η∗], ϑ ∈ [w0 −
δϑ, w0 + δϑ], c ∈ [c∗ − δc, c∗ + δc] and ε ∈ [0, δε]. Then v satisfies the identity

v = Efb
R,w0

(ϑ, c, ε)ΠQfb
R (w0)ev0v. (5.27)

(iv) Recall the integer r that appears in (H1). Consider any integer 0 ≤ ` ≤ r + 2 and pick
η > −η∗ + `δεN1. Then the map (ϑ, c, ε) 7→ Efb

R,w0
(ϑ, c, ε) is C`-smooth when considered as a

map from [w0 − δϑ, w0 + ϑ]× [c∗ − δc, c∗ + δc]× [0, δε] into L
(
Qfb
R (w0), BCη([−1,∞),R)

)
.

Proof. For each fixed w0 ∈ [wmin, wmax], one can mimic the construction in [26§6] to obtain an
operator Efb

R,w0
(w0, ·, ·) that satisfies (i) through (iii) with δϑ = 0. This setup can be generalized

to include situations where δϑ > 0 by recalling from [27] that for each ϑ sufficiently close to w0,
there exists a linear map u∗w0

(ϑ) : Q(w0)→ X that depends smoothly on ϑ, with the property that
Range

(
u∗w0

(ϑ)
)

= Qfb
R (ϑ), while ΠQfb

R (w0)u
∗
w0

(ϑ) = I. In view of equation [26, Equation (6.59)], the
smoothness property (iv) can be read off from Lemma 5.3.

We conclude this section by noting that the objects Rfb
L , S fb

L , Kfb
L,η and Efb

L,w0
can be constructed

in an analogous fashion. In addition, operators analogous to Kfb
R,η and Efb

R,w0
that are related to

(5.18) posed on (−∞, 0] can also be constructed.

5.2 Linearization around front and back

We start out by considering the variational equations near the front qf . Substituting the ansatz
u(ξ) = qf (ξ) + v(ξ), w(ξ) = θ(ξ) into (3.1), we arrive at the system

c∗v
′(ξ) = L

(
qf (ξ)

)
evξv − w(ξ) +Rf (θ, v, c, ε)(ξ), (5.28a)

c∗θ
′(ξ) = εSf (θ, v, c, ε)(ξ), (5.28b)

in which

Rf (θ, v, c, ε)(ξ) = gfnl

(
ξ, v(ξ)

)
+ c∗−c

c [L
(
qf (ξ)

)
evξv − θ(ξ) + gfnl

(
ξ, v(ξ)

)
]

+ c∗−c
c

[
g
(
qf (ξ)

)
+ α[qf (ξ − 1) + qf (ξ + 1)− 2qf (ξ)]

]
,

Sf (θ, v, c, ε)(ξ) = c∗
c [qf (ξ) + v(ξ)− γθ(ξ)],

(5.29)

with

gfnl(ξ, v) = g(qf (ξ) + v)− g′
(
qf (ξ)

)
v − g

(
qf (ξ)

)
. (5.30)

Moving on to the variational equations near qb, we use the ansatz u(ξ) = qb(ξ) + v(ξ), w(ξ) =
w∗ + θ(ξ) and find

c∗v
′(ξ) = L

(
qb(ξ)

)
evξv +Rb(θ, v, c, ε)(ξ), (5.31a)

c∗θ
′(ξ) = εSb(θ, v, c, ε)(ξ), (5.31b)

27



in which

Rb(θ, v, c, ε)(ξ) = gbnl

(
ξ, v(ξ)

)
+ c∗−c

c [L
(
qb(ξ)

)
evξv − θ(ξ) + gbnl

(
ξ, v(ξ)

)
]

+ c∗−c
c

[
g
(
qb(ξ)

)
+ α[qb(ξ − 1) + qb(ξ + 1)− 2qb(ξ)]− w∗

]
,

Sb(θ, v, c, ε)(ξ) = c∗
c [qb(ξ) + v(ξ)− γw∗ − γθ(ξ)],

(5.32)

with

gbnl(ξ, v) = g(qb(ξ) + v)− g′
(
qb(ξ)

)
v − g

(
qb(ξ)

)
. (5.33)

We recall from §3 the operators Λf and Λb that are associated to the linear parts of (5.28a) and
(5.31a). These operators are elements of L

(
W 1,∞(R,R), L∞(R,R)

)
and act as

[Λfv](ξ) = c∗v
′(ξ)− L

(
qf (ξ)

)
evξv,

[Λbv](ξ) = c∗v
′(ξ)− L

(
qb(ξ)

)
evξv.

(5.34)

We will focus on Λf for the moment. We recall the kernels Kf and K∗f defined in (3.6). Let us
write

X⊥f (ξ) = {φ ∈ X | 〈evξd, φ〉 = 0 for all d ∈ K∗f}, (5.35)

which is a closed subspace of codimension one in X for each ξ ∈ R. In addition, we write

Bf (ξ) = {φ ∈ X | φ = evξb for some b ∈ Kf}. (5.36)

The first result concerns a precise splitting for X⊥f (ξ) and was established in [40].

Lemma 5.6 For any ξ ∈ R, there exist closed subspaces P̂f (ξ) ⊂ X⊥f (ξ) and Q̂f (ξ) ⊂ X⊥f (ξ)
together with constants K > 0 and α > 0, such that the following properties hold.

(i) For any ξ ∈ R we have the decomposition

X⊥f (ξ) = P̂f (ξ)⊕ Q̂f (ξ)⊕Bf (ξ). (5.37)

(ii) Consider any φ ∈ P̂f (ξ)⊕Bf (ξ). There exists a function v = Ẽφ ∈ BC0((−∞, ξ + 1],R) that
has [Λfv](ξ′) = 0 for all ξ′ ≤ ξ. In addition, in the special case that φ ∈ P̂f (ξ), we have the
bound

|v(ξ′)| ≤ Ke−α|ξ
′−ξ| ‖φ‖ for all ξ′ ≤ ξ. (5.38)

(iii) Consider any φ ∈ Q̂f (ξ) ⊕ Bf (ξ). There exists a function v = Ẽφ ∈ BC0([ξ − 1,∞),R) that
has [Λfv](ξ′) = 0 for all ξ′ ≥ ξ. In addition, in the special case that φ ∈ Q̂f (ξ), we have the
bound

|v(ξ′)| ≤ Ke−α|ξ
′−ξ| ‖φ‖ for all ξ′ ≥ ξ. (5.39)

(iv) Any v ∈ BC0((−∞, ξ + 1],R) that has [Λfv](ξ′) = 0 for all ξ′ ≤ ξ must satisfy evξv ∈
P̂f (ξ)⊕Bf (ξ).

(v) Any v ∈ BC0([ξ − 1,∞),R) that has [Λfv](ξ′) = 0 for all ξ′ ≥ ξ must satisfy evξv ∈ Q̂f (ξ)⊕
Bf (ξ).
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Recalling the one-dimensional subspaces Γf ⊂ X and Γb ⊂ X defined in §3 and noticing that
span{ev0q

′
f} = Bf (0) and span{ev0q

′
b} = Bb(0), we may refine the splitting (3.7) and obtain

X = Bf (0)⊕ P̂f (0)⊕ Q̂f (0)⊕ Γf = Bb(0)⊕ P̂b(0)⊕ Q̂b(0)⊕ Γb. (5.40)

We will write ΠBf (0), Π bPf (0) and Π bQf (0) together with ΠBb(0), Π bPb(0) and Π bQb(0) for the projections
that are associated with this splittings.

As a final preparation, we need to consider perturbations to Λf and Λb. Let us therefore consider
a parameter dependent operator Λf (ξ0, µ) : W 1,∞(R,R)→ L∞(R,R) that is given by

[Λf (ξ0, µ)v](ξ) = c∗v
′(ξ)− α[v(ξ + 1) + v(ξ − 1)− 2v(ξ)]−A(ξ0 + ξ, µ)v(ξ), (5.41)

in which the parameters ξ0 and µ are taken from an open neighborhood of 0 ∈ R and A(ξ, 0) =
g′
(
qf (ξ)

)
. We will assume that the map (ξ0, µ) 7→ Λf (ξ0, µ) is Ck-smooth. With this requirement

out of the way, we will subsequently drop the dependence on ξ0 and simply write Λf (µ) = Λf (0, µ).
The theory developed in [27§3] shows that the homogeneous system Λf (µ)v = h can be solved on
half-lines.

Lemma 5.7 For any sufficiently small µ and any η ∈ [−η∗, η∗], there exist operators

Λinv
f,−(µ) : BCη((−∞, 0],R)→ BCη((−∞, 1],R),

Λinv
f,+(µ) : BCη([0,∞),R)→ BCη([−1,∞),R), (5.42)

that depend Ck-smoothly on µ and satisfy the following two properties.

(i) For any h ∈ BCη((−∞, 0],R), the function v = Λinv
f,−(µ)h satisfies

[Λf (µ)v](ξ) = h(ξ) (5.43)

for all ξ ≤ 0.

(ii) For any h ∈ BCη([0,∞),R), the function v = Λinv
f,+(µ)h satisfies

[Λf (µ)v](ξ) = h(ξ) (5.44)

for all ξ ≥ 0.

The following result was obtained in [27§5] and establishes the existence of exponential di-
chotomies on the half-lines R± for the homogeneous system Λf (µ)v = 0.

Lemma 5.8 For every sufficiently small µ, there exist a family of closed subspaces Qf (ξ, µ) ⊂ X
and Sf (ξ, µ) ⊂ X parametrized by ξ ≥ 0, together with two constants α > 0 and K > 0, such that
the following properties are satisfied.

(i) For every ξ ≥ 0, we have the splitting

X = Qf (ξ, µ)⊕ Sf (ξ, µ) (5.45)

with accompanying projections ΠQf (ξ,µ) : X → Qf (ξ, µ) and ΠSf (ξ,µ) : X → Sf (ξ, µ).

(ii) Consider any φ ∈ Qf (ξ, µ). There exists a function v = Ẽφ ∈ C([ξ − 1,∞),R) with evξv = φ
that has [Λ(µ)v](ξ′) = 0 for all ξ′ ≥ ξ.

(iii) Consider any φ ∈ Sf (ξ, µ). There exists a function v = Ẽφ ∈ C([−1, ξ + 1],R) with evξv = φ
that has [Λ(µ)v](ξ′) = 0 for all 0 ≤ ξ′ ≤ ξ.
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(iv) For any integer 0 ≤ ` ≤ k we have the estimates∥∥∥D`evξ′ẼΠQf (ξ,µ)

∥∥∥ ≤ Ke−α|ξ
′−ξ| for every ξ′ ≥ ξ,∥∥∥D`evξ′ẼΠSf (ξ,µ)

∥∥∥ ≤ Ke−α|ξ
′−ξ| for every 0 ≤ ξ′ ≤ ξ,

(5.46)

in which the differentiation operator D acts with respect to the parameter µ.

Our final result shows how these parameter-dependent subspaces at ξ = 0 or ξ ≈ ∞ can be
written as graphs over Q̂f (0)⊕Bf (0) and P fb

R (0). For a proof, we again refer to [27§5].

Lemma 5.9 For any sufficiently small µ, there exist a linear map EQf (µ) : Q̂f (0) ⊕ Bf (0) →
C([−1,∞),R) that depends Ck-smoothly on µ and satisfies the following properties.

(i) We have Qf (0, µ) = Range
(
ev0EQf (µ)

)
and EQf (µ) = Ẽev0EQf (µ).

(ii) We have Π bQf (0) ⊕ΠBf (0)ev0EQf (µ) = I and [ev0EQf (µ)− I] = O(|µ|) as µ→ 0.

(iii) The map µ 7→ ev0EQf (µ) is Ck-smooth.

In addition, for any sufficiently small µ and any sufficiently large ξ there exists a linear map
ESf (ξ, µ) : P fb

R (0)→ C([−1, ξ + 1],R), such that the following properties hold.

(iv) We have Sf (ξ, µ) = Range
(
evξESf (ξ, µ)

)
and ESf (ξ, µ) = ẼevξESf (ξ, µ).

(v) We have ΠP fb
R (0)evξESf (ξ, µ) = I and [evξESf (µ)− I] = O(|µ|+ e−η∗ξ) as (µ, ξ)→ (0,∞).

(vi) The map (ξ, µ) 7→ evξESf (ξ, µ) is Ck-smooth.

Very similar results can be obtained for the family of splittings X = Qb(ξ, µ) ⊕ Sb(ξ, µ) with
ξ ≥ 0. In addition, for every ξ ≤ 0, we have the splitting

X = Pb(ξ, µ)⊕Rb(ξ, µ) (5.47)

that is accompanied by linear maps EPb(µ) : P̂b(0) ⊕ Bb(0) → C((−∞, 1],R) and ERb(ξ, µ) :
Qfb
R (w∗)→ C([ξ − 1, 1],R) in such a way that analogous versions of Lemmas 5.8 and 5.9 hold.

5.3 Construction of quasi-fronts

We set out to prove Proposition 3.4. Our approach is to choose a large constant ξ0 > 0 and split the
real line into the three intervals (−∞, 0], [0, ξ0] and [ξ0,∞) that we each consider separately. To aid
us in this scheme, we introduce the families of function spaces

BC	α = {(v, θ) ∈ C((−∞, 1],R)× C((−∞, 0],R) for which
‖(v, θ)‖BC	α := supξ≤1 e−α|ξ| |v(ξ)|+ supξ≤0 e−α|ξ| |θ(ξ)| <∞},

BC� = {(v, θ) ∈ C([−1, ξ0 + 1],R)× C([0, ξ0],R) for which
‖(v, θ)‖BC� := sup−1≤ξ≤ξ0+1 |v(ξ)|+ sup0≤ξ≤ξ0 |θ(ξ)| <∞},

BC⊕α = {(v, θ) ∈ C([ξ0 − 1,∞),R)× C([ξ0 − 1,∞),R) for which
‖(v, θ)‖BC⊕α := supξ≥ξ0−1 e−α|ξ−ξ0|

(
|v(ξ)|+ |θ(ξ)|

)
<∞},

(5.48)

parametrized by α > 0, together with the families

BC−α = {g = (g1, g2) ∈ C((−∞, 0],R)× C((−∞, 0],R) for which
‖g‖BC−α := supξ≤0 e−α|ξ|

(
|g1(ξ)|+ |g2(ξ)|

)
<∞},

BC� = {(g1, g2) ∈ C([0, ξ0],R)× C([0, ξ0],R) for which
‖g‖BC� := sup0≤ξ≤ξ0 |g1(ξ)|+ ξ0 |g2(ξ)| <∞},

BC+
α = {(g1, g2) ∈ C([ξ0,∞),R)× C([ξ0,∞),R) for which

‖g‖BC+
α

:= supξ≥ξ0 e−α|ξ−ξ0|
(
|g1(ξ)|+ |g2(ξ)|

)
<∞}.

(5.49)
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Notice the additional factor ξ0 that appears in the second component of the norm defined on BC�.
We recall the constant η∗ > 0 appearing in §3. Our goal is to find ϑ+ ∈ [wmin, wmax] together

with pairs (v−, θ−) ∈ BC	−η∗ , (v�, θ�) ∈ BC� and (v+, θ+) ∈ BC⊕−η∗ , such that the choice

wf (ξ) =

 θ−(ξ) for ξ ≤ 0,
θ�(ξ) for 0 ≤ ξ ≤ ξ0,
Θfs
R(ϑ+, c, ε)(ξ) + θ+(ξ) for ξ ≥ ξ0,

(5.50)

in combination with u−f (ξ) = qf (ξ) + v−(ξ) for ξ ≤ 1 and

u+
f (ξ) =

{
qf (ξ) + v�(ξ) for − 1 ≤ ξ ≤ ξ0,
sR(wf (ξ), c, ε) + v+(ξ) for ξ ≥ ξ0,

(5.51)

satisfies the conditions of Proposition 3.6.
Recalling the computations in the previous part of this section, we find that the pair (v−, θ−)

must satisfy the equation

Λ−(v−, θ−) = (−θ−, 0) +N−(θ−, v−, c, ε), (5.52)

in which Λ− : BC	−η∗ → BC−−η∗ is given by Λ−(v−, θ−) = (Λ−1 v
−,Λ−2 θ

−), with

[Λ−1 v](ξ) = c∗v
′(ξ)− L

(
qf (ξ)

)
evξv,

[Λ−2 θ](ξ) = c∗θ
′(ξ),

(5.53)

for ξ ≤ 0, while N− = (N−1 ,N
−
2 ) is given by

N−1 (θ, v, c, ε)(ξ) = Rf (θ, v, c, ε)(ξ),
N−2 (θ, v, c, ε)(ξ) = εSf (θ, v, c, ε)(ξ),

(5.54)

again for ξ ≤ 0. Similarly, we write

Λ�(v�, θ�) = (−θ�, 0) +N �(v�, θ�, c, ε), (5.55)

for the equation that the pair (v�, θ�) must satisfy, noting that the operators Λ� : BC� → BC� and
N � differ only from Λ− and N− by the interval on which the relevant functions are defined.

Finally, the pair (v+, θ+) must satisfy

Λ+(ϑ+, c, ε)(v+, θ+) = N+(θ+, v+, ϑ+, c, ε), (5.56)

in which Λ+(ϑ+, c, ε) : BC⊕−α → BC+
−α is given by Λ+(ϑ+, c, ε)(v+, θ+) = (Λ+

1 (ϑ+, c, ε)v+,Λ+
2 (c)θ+)

with

[Λ+
1 (ϑ+, c, ε)v](ξ) = [Λfb

R (ϑ+, c, ε)v](ξ),
[Λ+

2 (c)θ](ξ) = cθ′(ξ),
(5.57)

while N+ = (N+
1 ,N

+
2 ) is given by

N+
1 (θ, v, ϑ+, c, ε)(ξ) = Rfb

R (θ, v, ϑ+, c, ε)(ξ),
N+

2 (θ, v, ϑ+, c, ε)(ξ) = εS fb
R (θ, v, ϑ+, c, ε)(ξ),

(5.58)

after slightly modifying Rfb
R and S fb

R to account for the fact that v+ and θ+ are defined on [ξ0−1,∞)
instead of [−1,∞).

For ease of notation, we introduce the family of function spaces

H◦ζ = BC	−η∗ ×BC
� ×BC⊕−η∗+ζ , (5.59)
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parametrized by ζ ≥ 0. When ζ = 0, we will also use the shorthand H◦ = H◦0. In addition, we write

Hζ = BC−−η∗ ×BC
� ×BC+

−η∗+ζ , (5.60)

again with H = H0. For any h = (v−, θ−, v�, θ�, v+, θ+) ∈ H◦, we write πv−h = v− and define the
projections πv� , πv+ , πθ� and πθ± in a similar fashion.

Let us combine the parameters appearing in the equations above into a single quantity p =
(ϑ+, c, ε). Choosing a set of small constants δϑ > 0, δc > 0 and δε > 0, we write

Dp = Dp(δϑ, δc, δε) = [−δϑ, δϑ]× [c∗ − δc, c∗ + δc]× [0, δε] (5.61)

for the parameter space we are interested in. We also choose a large constant ξ∗ > 0 and again
write a ≤∗ b to express the fact that there exists a C > 0 that does not depend on ξ0 ≥ ξ∗,
any of the cut-offs appearing in (5.61) or the cut-off δv that will be introduced in the sequel,
such that a ≤ Cb for all quantities a and b that depend on these constants. In addition, for any
h ∈ H◦ and p ∈ Dp, we will use the shorthand N−(h, p) = N−(πv−h, πθ−h, ϑ+, c, ε), together with
analogous definitions for N �(h, p) and N+(h, p). Finally, we use the notation N (h, p) to denote the
set
(
N−(h, p),N �(h, p),N+(h, p)

)
∈ H.

The first step in the proof of Proposition 3.4 is to consider the linearized equations that the
quasi-fronts must solve. Note that the quantity ϑ+ is a free parameter in this step, but we do impose
the shape conditions from Definition 3.3(iii)-(iv).

Lemma 5.10 Fix a sufficiently large constant ξ∗ and sufficiently small δc > 0, δϑ > 0 and δε > 0.
Choose any ξ0 ≥ ξ∗. Then for any g = (g−, g�, g+) ∈ H, any boundary condition φ ∈ X and any
p = (ϑ+, c, ε) ∈ Dp(δϑ, δc, δε), there exists a unique

h = (v−, θ−, v�, θ�, v+, θ+) ∈ H◦ (5.62)

that satisfies the following properties.

(i) The linear systems

Λ−(v−, θ−) = (−θ−, 0) + g−,
Λ�(v�, θ�) = (−θ�, 0) + g�,
Λ+(p)(v+, θ+) = g+

(5.63)

are all satisfied.

(ii) The identity θ�(0) = θ−(0) holds.

(iii) We have the inclusions

ev0v
− ∈ P̂f (0)⊕ Q̂f (0)⊕ Γf ,

ev0v
� ∈ P̂f (0)⊕ Q̂f (0)⊕ Γf .

(5.64)

(iv) The gap between v− and v� at zero satisfies ev0[v− − v�] ∈ Γf .

(v) Upon writing ṽ+
θ (ξ) = D1sR

(
Θfs
R(p)(ξ)

)
θ+(ξ), the following boundary condition is satisfied,

evξ0 [v� − ṽ+
θ − v+] = φ. (5.65)

The function h ∈ H◦ described above will be denoted by

h = L1(p)(g, φ). (5.66)
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Recalling the integer r appearing in (H1), there exists a constant N1 > 0 such that for any integer
0 ≤ ` ≤ r + 2 and any ζ > `δεN1, the map p 7→ L1(p) is C`-smooth when considered as a map

L1 : Dp → L
(
H×X,H◦ζ

)
, (5.67)

with derivatives that can be bounded independently of ξ0 ≥ ξ∗. Finally, consider any d ∈ K∗f . Then
the following identity holds for the gap at zero,

〈ev0d, ev0[v− − v�]〉 =
∫ 0

−∞ d(ξ′)∗g−1 (ξ′) dξ′ +
∫ ξ0

0
d(ξ′)g�1(ξ′) dξ′

− 1
c∗

∫ 0

−∞ d(ξ′)
∫ ξ′
−∞ g−2 (ξ′′) dξ′′ dξ′

− 1
c∗

∫ ξ0
0
d(ξ′)[

∫ 0

−∞ g−2 (ξ′′) dξ′′ +
∫ ξ′

0
g�2(ξ′′) dξ′′] dξ′

−〈evξ0d, evξ0v
�〉.

(5.68)

Proof. First of all, we can use Lemma 5.3 to define an operator

[Λ+
1 (p)]−1 : BC−η∗([ξ0,∞),R)→ BC−η∗([ξ0 − 1,∞),R) (5.69)

and Lemma 5.7 to define linear operators

[Λ−1 ]−1 : BC−η∗((−∞, 0],R)→ BC−η∗((−∞, 1],R),
[Λ�1]−1 : BC0([0, ξ0],R)→ BC0([−1, ξ0 + 1],R), (5.70)

such that the choice h0 = (v−0 , θ
−, v�0 , θ

�, v+
0 , θ

+) with

θ−(ξ) = 1
c∗

∫ ξ
−∞ g−2 (ξ′) dξ′, v−0 = [Λ−1 ]−1[g−1 − θ−],

θ�(ξ) = θ−(0) + 1
c∗

∫ ξ
0
g�2(ξ′) dξ′, v�0 = [Λ�1]−1[g�1 − θ�],

θ+(ξ) = 1
c

∫ ξ
∞ g+

2 (ξ′) dξ′, v+
0 = [Λ+

1 (p)]−1g+
1 ,

(5.71)

satisfies items (i) and (ii).
We note here that the exponents −1 above are used suggestively, since the relevant homogeneous

equations have non-zero solutions. We shall use this freedom to ensure that the remaining properties
(iii) - (v) are also satisfied. In particular, we will modify v−0 , v�0 and v+

0 by choosing ψB� ∈ Bf (0),
ψB− ∈ Bf (0), ψ bP− ∈ P̂f (0), ψ bQ� ∈ Q̂f (0), ψS� ∈ P fb

R,0 and ψQ+ ∈ Qfb
R,0 and writing

v− = v−0 + EP−(ψB− + ψ
bP−),

v� = v�0 + EQ�(ψB� + ψ
bQ�) + ES�ψS�,

v+ = v+
0 + EQ+(p)ψQ+,

(5.72)

in which the extension operators EP−, EQ� and ES� are relabelled versions of those defined in
Lemma 5.9, while EQ+ is constructed from the operator Efb

R,0 appearing in Lemma 5.5.
In terms of these new variables, the boundary condition in (v) can be written as

φP = ψS� + ΠP fb
R,0

evξ0E
Q�(ψB� + ψ

bQ�)−ΠP fb
R,0

evξ0E
Q+(p)ψQ+,

φQ = ψQ+ −ΠQfb
R,0

evξ0E
Q�(ψB� + ψ

bQ�),
(5.73)

in which

φP = ΠP fb
R,0
φ−ΠP fb

R,0
evξ0v

�
0 + ΠP fb

R,0
evξ0 [ṽ+

θ + v+
0 ],

φQ = −ΠQfb
R,0
φ+ ΠQfb

R,0
evξ0v

�
0 −ΠQfb

R,0
evξ0 [ṽ+

θ + v+
0 ].

(5.74)
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Conditions (iii) and (iv) are equivalent to the system

−ΠBf (0)ev0v
−
0 = ψB−,

−ΠBf (0)ev0v
�
0 = ψB� + ΠBf (0)ev0E

S�ψS�,

−Π bPf (0)ev0

(
v−0 − v�0

)
= ψ

bP− −Π bPf (0)ev0E
S�ψS�,

Π bQf (0)ev0

(
v−0 − v�0

)
= ψ

bQ� + Π bQf (0)ev0E
S�ψS�.

(5.75)

Inspection of the system (5.73)-(5.75) readily shows that for sufficiently large ξ∗ and sufficiently
small δc, δϑ and δε, the right hand side is close to the identity matrix. This allows the linear system
to be solved, yielding the desired set h = L1(p)(g, φ) ∈ H◦. To complete the proof, observe that the
integral expression (5.68) follows from (3.5), while the smoothness of the map p 7→ L1(p) follows
from Lemmas 5.3 and 5.5.

As a second step towards establishing Proposition 3.4, we will need to study the nonlinear fixed
point problem

h = F(h, p) := L1(p)
(
N (h, p),Φ(h, p)

)
, (5.76)

in which

Φ(h, p) = evξ0
[
sR(Θfs

R(p) + θ+, p)−D1sR(Θfs
R(p), p)θ+ − sR(Θfs

R(p), p)
]

+evξ0 [sR(Θfs
R(p), p)− qf ]. (5.77)

Let us introduce the set B◦δv = {h ∈ H◦ | ‖h‖H◦ ≤ δv}. It is not hard to see that for all h ∈ H◦δv and
p ∈ Dp, we have

‖Φ(h, p)‖ ≤∗ δ2
v + δϑ + δc + δε + e−η∗ξ0 . (5.78)

In addition, for a pair h1, h2 ∈ B◦δv and p ∈ Dp we have the Lipschitz estimate

‖Φ(h1, p)− Φ(h2, p)‖ ≤∗ δv ‖h1 − h2‖H◦ . (5.79)

Combining this estimate with (5.16) and inspecting (5.29), we find the estimates

‖F(h, p)‖H◦ ≤∗ δ2
v + δϑ + δc + δεξ0 + e−η∗ξ0 ,

‖F(h1, p)−F(h2, p)‖H◦ ≤∗ (δv + δc + δεξ0) ‖h1 − h2‖H◦ ,
(5.80)

which hold for all p ∈ Dp and h, h1, h2 ∈ B◦δv . After writing

δϑ = δ
3/2
v , δc = δ2

v , δε = δ2
v/ξ0 (5.81)

and choosing δv to be sufficiently small, we hence see that F(·, p) is a contraction mapping on the
set B◦δv for all p ∈ Dp. This shows that the fixed point problem (5.76) has a solution h = h∗(p) that
is unique in the set Hδv .

Before we can proceed further, we need to obtain estimates on the derivative Dph
∗. This can be

done by writing Dph
∗(p) = h(1) and noting that h(1) must satisfy the linear fixed point problem

h(1) = DpL1(p)
(
N (h∗(p), p),Φ(h∗(p), p)

)
+L1(p)

(
DhN (h∗(p), p), DhΦ(h∗(p), p)

)
h(1)

+L1(p)
(
DpN (h∗(p), p), DpΦ(h∗(p), p)

)
,

(5.82)

posed on the space Hζ for some δεN1 < ζ < η∗. To see that this well-defined, we observe that L1(p)
can also be treated as a map from Hζ ×X into H◦ζ . We have the estimate

‖DhN (h, p)‖L(H◦ζ ,Hζ) ≤∗ δv + δc + δεξ0 (5.83)
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for any h ∈ Hδv and p ∈ Dp. In addition, for such h and p we have

‖DpN−(h, p)‖BC−−η∗ + ‖DpN+(h, p)‖BC+
−η∗+ζ

≤∗ 1, (5.84)

together with

‖DεN �(h, p)‖BC� ≤∗ ξ0,
‖DcN �(h, p)‖BC� + ‖Dϑ+N �(h, p)‖BC� ≤∗ 1. (5.85)

After these preparations, it is clear that the fixed point problem (5.82) has a unique solution h(1) =
h∗(1)(p) for all p ∈ Dp. In addition, we find

‖Dεh
∗(p)‖H◦ζ ≤∗ ξ0,

‖Dch
∗(p)‖H◦ζ + ‖Dϑ+h∗(p)‖H◦ζ ≤∗ 1. (5.86)

Inspection of (5.71) shows that both πθ�L1(p) and πθ+L1(p) do not depend on ϑ+. We may therefore
compute

Dϑ+πθ�h
∗(p) = πθ�L1(p)

((
0, DhN−2 (h∗(p), p)

)
,
(
0, DhN �2 (h∗(p), p)

)
,(

0, DhN+
2 (h∗(p), p)

)
, 0
)
Dϑ+h∗(p)

+πθ�L1(p)
(

0, 0,
(
0, Dϑ+N+

2 (h∗(p), p)
)
, 0
)
.

(5.87)

A similar computation can be performed forDϑ+πθ+h∗(p). Upon using (5.86), we may hence conclude

‖Dϑ+πθ�h
∗(p)‖−η∗+ζ + ‖Dϑ�πθ�h

∗(p)‖0 ≤∗ δεξ0. (5.88)

We have now gathered all the ingredients we need in order to find ϑ+ as a function of c and ε.
Indeed, the requirement that the function wf constructed in (5.50) is continuous at ξ0 leads to the
fixed point problem

ϑ+ = F2(ϑ+, c, ε) := [πθ�h∗(ϑ+, c, ε)](ξ0)− [πθ+h∗(ϑ+, c, ε)](ξ0). (5.89)

In view of the scalings (5.81), it is not hard to see that |F2(p)| ≤∗ δ2
v , for all p ∈ Dp, which implies

that, possibly after decreasing δv > 0, the operator F2(·, c, ε) maps the interval [−δϑ, δϑ] into itself.
In addition, (5.88) implies that F2(·, c, ε) is a contraction mapping, which implies that we can find
a solution ϑ+ = ϑ+(c, ε) to the fixed point problem (5.89) for all c ∈ [c∗ − δc, c∗ + δc] and ε ∈ [0, δε].
In addition, for such c and ε we find the bounds

|Dcϑ
+(c, ε)| ≤∗ 1,

|Dεϑ
+(c, ε)| ≤∗ ξ0.

(5.90)

Finally, we set out to establish the Melnikov inequalities (3.9). Let us therefore fix a d ∈ K∗ that
is normalized to have d(0) > 0 and ‖d‖∞ = 1. We study the map M : Dp → R that is given by

M : p 7→ 〈ev0d, ev0πv−h
∗(p)− ev0πv�h

∗(p)〉. (5.91)

Using the identity (5.68), we may write

M(p) =
∫ 0

−∞ d(ξ′)N−1 (h∗(p), p)(ξ′) dξ′ +
∫ ξ0

0
d(ξ′)N �1 (h∗(p), p)(ξ′) dξ′

− 1
c∗

∫ 0

−∞ d(ξ′)
∫ ξ′
−∞N

−
2 (h∗(p), p)(ξ′′) dξ′′ dξ′

− 1
c∗

∫ ξ0
0
d(ξ′)[

∫ 0

−∞N
−
2 (h∗(p), p)(ξ′′) dξ′′ +

∫ ξ′
0
N �2 (h∗(p), p)(ξ′′) dξ′′] dξ′

−〈evξ0d, evξ0πv�h
∗(p)〉.

(5.92)
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Let us now write M̃ : [c∗ − δc, c∗ + δc]× [0, δε]→ R for the operator M̃(c, ε) = M(ϑ+(c, ε), c, ε). Let
us write p0 = (0, c∗, 0). Observe first that DhN−(h∗(p0), p0) = 0 and DhN �(h∗(p0), p0) = 0. Using
the estimates (5.86) and (5.90), we may hence compute

DcM̃(c∗, 0) =
∫ 0

−∞ d(ξ′)DcN−1 (0, p0)(ξ′) dξ′

+
∫ ξ0

0
d(ξ′)DcN �1 (0, p0)(ξ′) dξ′ +O(e−η∗ξ0)

= −
∫ ξ0
−∞ d(ξ′)q′f (ξ′) dξ′ +O(e−η∗ξ0)

DεM̃(c∗, 0) = − 1
c∗

∫ 0

−∞ d(ξ′)
∫ ξ′
−∞DεN−2 (0, p0)(ξ′′) dξ′′ dξ′

− 1
c∗

∫ ξ0
0
d(ξ′)[

∫ 0

−∞DεN−2 (0, p0)(ξ′′) +
∫ ξ′

0
DεN �2 (0, p0)(ξ′′)] dξ′′ dξ′

+O(ξ0e−η∗ξ0)
= − 1

c∗

∫ ξ0
−∞ d(ξ′)

∫ ξ′
−∞ qf (ξ′′) dξ′′ dξ′ +O(ξ0e−η∗ξ0)

(5.93)

The inequalities (3.9) now follow from Lemma 3.2.

Proof of Proposition 3.4 We fix δϑ > 0, δc > 0 and δε > 0 as in (5.81), for some sufficiently
small δv > 0. Let us choose any pair (c, ε) ∈ [c∗ − δc, c∗ + δc], write

(v−, θ−, v�, θ�, v+, θ+) = h∗(ϑ+(c, ε), c, ε) (5.94)

and define u±f (c, ε) and wf (c, ε) as in (5.50)-(5.51). In addition, write

ϑf (c, ε) = Θsl
R(ϑ+(c, ε), c, ε)(−ξ0). (5.95)

The properties required in Definition 3.3 and in (ii) are satisfied as immediate consequences of the
construction above. The smoothness properties in (iii) can be established using arguments analogous
to those used above to establish the C1-smoothness of h∗. It remains to show that the functions thus
constructed are locally unique. Let us therefore assume for some pair (c, ε) the existence of a second
quasi-front solution to (3.1). In view of the uniqueness claim in Lemma 5.10 and the uniqueness of
solutions to fixed point equations, it suffices to show that the first two estimates in Definition 2.2(iv)
hold with respect to an exponentially weighted norm and not merely with respect to the supremum
norm. This can be established as in the proof of [43, Claim 3.7].

5.4 Construction of quasi-backs

We now set out to proof Proposition 3.6. The ideas and techniques are very similar to those used
previously to establish Proposition 3.4, so we will focus mainly on the differences needed here. Since
the quasi-backs need to follow bothMR andML, we will split the real line into four separate parts
instead of three. In particular, we will study (3.1) on the four intervals (−∞,−ξ0], [−ξ0, 0], [0, ξ0]
and [ξ0,∞).

To accommodate this, we introduce the family of function spaces

BC	α = {(v, θ) ∈ C((−∞,−ξ0 + 1],R)× C((−∞,−ξ0 + 1],R) for which
‖(v, θ)‖BC	α := supξ≤−ξ0+1 e−α|ξ+ξ0|(|v(ξ)|+ |θ(ξ)|) <∞},

BC�− = {(v, θ) ∈ C([−ξ0 − 1, 1],R)× C([−ξ0, 0],R) for which
‖(v, θ)‖BC�− := sup−ξ0−1≤ξ≤1 |v(ξ)|+ sup−ξ0≤ξ≤0 |θ(ξ)| <∞},

BC�+ = {(v, θ) ∈ C([−1, ξ0 + 1],R)× C([0, ξ0],R) for which
‖(v, θ)‖BC�+ := sup−1≤ξ≤ξ0+1 |v(ξ)|+ sup0≤ξ≤ξ0 |θ(ξ)| <∞},

BC⊕α = {(v, θ) ∈ C([ξ0 − 1,∞),R)× C([ξ0 − 1,∞),R) for which
‖(v, θ)‖BC⊕α := supξ≥ξ0−1 e−α|ξ−ξ0|(|v(ξ)|+ |θ(ξ)|) <∞},

(5.96)
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parametrized by α > 0, together with the family

BC−α = {g = (g1, g2) ∈ C((−∞,−ξ0],R)× C((−∞,−ξ0],R) for which
‖g‖BC−α := supξ≤0 e−α|ξ+ξ0|

(
|g1(ξ)|+ |g2(ξ)|

)
<∞},

BC�− = {(g1, g2) ∈ C([−ξ0, 0],R)× C([−ξ0, 0],R) for which
‖g‖BC�− := sup−ξ0≤ξ≤0 |g1(ξ)|+ ξ0 |g2(ξ)| <∞},

BC�+ = {(g1, g2) ∈ C([0, ξ0],R)× C([0, ξ0],R) for which
‖g‖BC�+ := sup0≤ξ≤ξ0 |g1(ξ)|+ ξ0 |g2(ξ)| <∞},

BC+
α = {(g1, g2) ∈ C([ξ0,∞),R)× C([ξ0,∞),R) for which

‖g‖BC+
α

:= supξ≥ξ0 e−α|ξ−ξ0|
(
|g1(ξ)|+ |g2(ξ)|

)
<∞}.

(5.97)

As before, notice the additional factor ξ0 that appears in the second component of the norms defined
on BC�±.

Our goal is to find ϑ−, ϑ+ ∈ [wmin, wmax] together with pairs (v−, θ−) ∈ BC	−η∗ , (v�−, θ�−) ∈
BC�−, (v�+, θ�+) ∈ BC�+ and (v+, θ+) ∈ BC⊕−η∗ , such that the choice

wb(ξ) =


Θfs
R(ϑ−, c, ε)(ξ) + θ−(ξ) for ξ ≤ −ξ0,

w∗ + θ�−(ξ) for − ξ0 ≤ ξ ≤ 0,
w∗ + θ�+(ξ) for 0 ≤ ξ ≤ ξ0,
Θfs
L(ϑ+, c, ε)(ξ) + θ+(ξ) for ξ ≥ ξ0,

(5.98)

in combination with

u−b (ξ) =
{
sR(wb(ξ), c, ε) + v−(ξ) for ξ ≤ −ξ0,
qb(ξ) + v�−(ξ) for − ξ0 ≤ ξ ≤ 1,

u+
b (ξ) =

{
qb(ξ) + v�+(ξ) for − 1 ≤ ξ ≤ ξ0,
sL(wb(ξ), c, ε) + v+(ξ) for ξ ≥ ξ0,

(5.99)

satisfies the conditions of Proposition 3.6.
We will write the equations that arise after inserting the ansatz (5.98)-(5.99) into (3.1) in the

following fashion,

Λ−(ϑ−, c, ε)(v−, θ−) = N−(v−, θ−, ϑ−, c, ε),
Λ�−(v�−, θ�−) = (−θ�−, 0) +N �−(v�−, θ�−, c, ε),
Λ�+(v�+, θ�+) = (−θ�+, 0) +N �+(v�+, θ�+, c, ε),
Λ+(ϑ+, c, ε, )(v+, θ+) = N+(v+, θ+, ϑ+, c, ε).

(5.100)

As before, we write

Λ±(ϑ±, c, ε)(v±, θ±) =
(

Λ±1 (ϑ±, c, ε)v±,Λ±2 (c)θ±
)
,

Λ�±(v�±, θ�±) =
(

Λ�±1 v±,Λ�±2 θ±
)
,

(5.101)

now with Λ−1 (ϑ−, c, ε) = Λfb
R (ϑ−, c, ε), Λ+

1 (ϑ+, c, ε) = Λfb
L (ϑ+, c, ε), Λ±2 (c) = cD and

[Λ�±1 v](ξ) = c∗v
′(ξ)− L

(
qb(ξ)

)
evξv,

[Λ�±2 θ](ξ) = c∗θ
′(ξ).

(5.102)

Up to obvious adjustments concerning the domain of definition, the nonlinearities N± are given by
N− =

(
Rfb
R , εS fb

R

)
and N+ =

(
Rfb
L , εS fb

L

)
, while N �± are given by N �± =

(
Rb, εSb

)
.

The families of function spaces that are relevant for the construction of the quasi-backs are given
by

H◦ζ = BC	−η∗+ζ ×BC
�− ×BC�+ ×BC⊕−η∗+ζ ,

Hζ = BC−−η∗+ζ ×BC
�− ×BC�+ ×BC+

−η∗+ζ ,
(5.103)
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both parametrized by ζ ≥ 0. As before, we employ the shorthands H◦ = H◦0 and H = H0. For
notational convenience, we now introduce the parameter vector p̃ = (ϑ−, ϑ+, c, ε), which we will take
from the space

D̃p(δϑ, δc, δε) = [w∗ − δϑ, w∗ + δϑ]2 × [c∗ − δc, c∗ + δc]× [0, δε]. (5.104)

We also use the augmented parameter vector p = (ϑ0, p̃) = (ϑ0, ϑ−, ϑ+, c, ε), which we will take from
the space

Dp(δϑ0 , δϑ, δc, δε) = [w∗ − δϑ0 , w∗ + δϑ0 ]× D̃p(δϑ, δc, δε). (5.105)

The equivalent of Lemma 5.10 now reads as follows.

Lemma 5.11 Fix a sufficiently large constant ξ∗ and sufficiently small δϑ > 0, δc > 0 and δε > 0.
Choose any ξ0 ≥ ξ∗. Then for every g = (g−, g�−, g�+, g+) ∈ H, any pair of boundary conditions
φR, φL ∈ X, any ϑ0 ∈ R and any p̃ = (ϑ−, ϑ+, c, ε) ∈ D̃p(δϑ, δc, δε), there exists a unique

h = (v−, θ−, v�−, θ�−, v�+, θ�+, v+, θ+) ∈ H◦ (5.106)

that satisfies the following properties.

(i) The linear systems

Λ±(p̃)(v±, θ±) = g±,
Λ�±(v�±, θ�±) = (−θ�±, 0) + g±

(5.107)

are all satisfied.

(ii) The identity θ�−(0) = θ�+(0) = ϑ0 − w∗ holds.

(iii) We have the inclusions

ev0v
�− ∈ P̂b(0)⊕ Q̂b(0)⊕ Γb,

ev0v
�+ ∈ P̂b(0)⊕ Q̂b(0)⊕ Γb.

(5.108)

(iv) The gap between v�− and v�+ at zero satisfies ev0[v�− − v�+] ∈ Γb.

(v) Upon writing ṽ−θ = D1sR(Θfs
R(ϑ−, c, ε), c, ε)θ− and ṽ+

θ = D1sL(Θfs
L(ϑ+, c, ε), c, ε)θ+, the follow-

ing boundary conditions are satisfied,

ev−ξ0 [v�− − v− − ṽ−θ ] = φR,
evξ0 [v�+ − v+ − ṽ+

θ ] = φL.
(5.109)

The element h ∈ H◦ given above will be denoted by

h = L2(p̃)(ϑ0, g, φR, φL). (5.110)

Recalling the integer r appearing in (H1), there exists a constant N1 > 0 such that for any integer
0 ≤ ` ≤ r + 2 and any ζ > `δεN1, the map p̃ 7→ L2(p̃) is C`-smooth when considered as a map

L2 : D̃p → L
(
R×H×X ×X,H◦ζ

)
, (5.111)

with derivatives that can be bounded independently of ξ0 ≥ ξ∗. Finally, consider any d ∈ K∗b . Then
the following identity holds for the gap at zero,

〈ev0d, ev0[v�− − v�+]〉 =
∫ 0

−ξ0 d(ξ′)g�−1 (ξ′) dξ′ +
∫ ξ0

0
d(ξ′)g�+1 (ξ′) dξ′

+
∫ 0

−ξ0 d(ξ′)[w∗ − ϑ0 − 1
c∗

∫ ξ′′
0
g�−2 (ξ′′) dξ′′] dξ′

+
∫ ξ0

0
d(ξ′)[w∗ − ϑ0 − 1

c∗

∫ ξ′
0
g�+2 (ξ′′) dξ′′] dξ′

−〈evξ0d, evξ0v
�+〉+ 〈ev−ξ0d, ev−ξ0v

�−〉.

(5.112)
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Proof. As in the proof of Lemma 5.10, we can use Lemma 5.3 to define linear operators

[Λ−1 (p̃)]−1 : BC−η∗((−∞, ξ0],R)→ BC−η∗((−∞, ξ0 + 1],R),
[Λ+

1 (p̃)]−1 : BC−η∗([ξ0,∞),R)→ BC−η∗([ξ0 − 1,∞),R)
(5.113)

and Lemma 5.7 to define

[Λ�−1 ]−1 : BC0([−ξ0, 0],R)→ BC0([−ξ0 − 1, 1],R),
[Λ�+1 ]−1 : BC0([0, ξ0],R)→ BC0([−1, ξ0 + 1],R),

(5.114)

such that the choice h0 = (v−0 , θ
−, v�−0 , θ�−, v�+0 , θ�+, v+

0 , θ
+) with

θ−(ξ) = 1
c

∫ ξ
−∞ g−2 (ξ′) dξ′, v−0 = [Λ−1 (p̃)]−1g−1 ,

θ�−(ξ) = ϑ0 − w∗ + 1
c∗

∫ ξ
0
g�−2 (ξ′) dξ′, v�−0 = [Λ�−1 ]−1[g�−1 − θ�−],

θ�+(ξ) = ϑ0 − w∗ + 1
c∗

∫ ξ
0
g�+2 (ξ′) dξ′, v�+0 = [Λ�+1 ]−1[g�+1 − θ�+],

θ+(ξ) = 1
c

∫ ξ
∞ g+

2 (ξ′) dξ′, v+
0 = [Λ+

1 (p̃)]−1g+
1 ,

(5.115)

satisfies items (i) and (ii).
As before, we will need to modify v±0 and v�±0 to ensure that the remaining properties (iii) - (v) are

satisfied. In particular, we will choose ψB�± ∈ Bb(0), ψ bP�− ∈ P̂b(0), ψ bQ�+ ∈ Q̂b(0), ψR�− ∈ Qfb
R,w∗

,
ψP− ∈ P fb

R,w∗
, ψS�+ ∈ P fb

L,w∗
, ψQ+ ∈ Qfb

L,w∗
and write

v− = v−0 + EP−(p̃)ψP−

v�− = v�−0 + EP�−(ψB�− + ψP�−) + ER�−ψR�−,
v�+ = v�+0 + EQ�+(ψB�+ + ψQ�+) + ES�+ψS�+,
v+ = v+

0 + EQ+(p̃)ψQ+,

(5.116)

in which ER�−, EP�−, EQ�+ and ES�+ are relabelled versions of those defined in Lemma 5.9, while
EP− and EQ+ are constructed from the operators Efb

R,w∗
and Efb

L,w∗
appearing in Lemma 5.5. To

complete the proof, a linear system analogous to (5.73)-(5.75) can be constructed and solved.

Proof of Proposition 3.6 Similarly as before, one can choose the constants δ0
ϑ > 0, δϑ > 0, δc > 0,

δε > 0 and δv > 0 in such a way that the fixed point problem

h = L2(p̃)
(
ϑ0,N (h, p),ΦL(h, p),ΦR(h, p)

)
(5.117)

has a solution h = h∗(p) for each p = (ϑ0, p̃) ∈ Dp that is unique in the set B◦δv . Here the boundary
operators ΦL and ΦR are defined in a fashion that is analogous to (5.77). In addition, one can define
ϑ±(ϑ0, c, ε) in such a way that the function wb defined in (5.98) is continuous.

Let us now fix d ∈ K∗b and consider the map

M : p 7→ 〈ev0d, ev0πv�−h
∗(p)− ev0πv�+h

∗(p)〉. (5.118)

Using (5.112) we may write

M(p) =
∫ 0

−ξ0 d(ξ′)[w∗ − ϑ0 +N �−1 (h∗(p), p)(ξ′)] dξ′ +
∫ ξ0

0
d(ξ′)[w∗ − ϑ0 +N �+1 (h∗(p), p)(ξ′)] dξ′

− 1
c∗

∫ 0

−ξ0 d(ξ′)
∫ ξ′

0
N �−2 (h∗(p), p)(ξ′′) dξ′′ dξ′

− 1
c∗

∫ ξ0
0
d(ξ′)

∫ ξ′
0
N �+2 (h∗(p), p)(ξ′′)dξ′′ dξ′

−〈evξ0d, evξ0πv�+h
∗(p)〉+ 〈ev−ξ0d, ev−ξ0πv�−h

∗(p)〉.
(5.119)

Let us now write M̃ : [w∗ − δϑ0 , w∗ + δϑ0 ]× [c∗ − δc, c∗ + δc]× [0, δε]→ R for the operator

M̃(ϑ0, c, ε) = M(ϑ0, ϑ−(ϑ0, c, ε), ϑ+(ϑ0, c, ε), c, ε). (5.120)
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A short computation now yields

Dϑ0M̃(w∗, c∗, 0) = −
∫ ξ0
−ξ0 d(ξ′) dξ′ +O(e−η∗ξ0),

DcM̃(w∗, c∗, 0) = −
∫ ξ0
−ξ0 d(ξ′)q′b(ξ

′) dξ′ +O(e−η∗ξ0).
(5.121)

The remaining part of the proof is identical to that of Proposition 3.4.

6 The Exchange Lemma

In this section we set out to establish Proposition 3.8. First of all, we note that we will write T̃
throughout this section to denote the variable T that appears in the statement of this proposition.
After fixing a suitable large constant ξ0 > 0, we will use the variable T here to denote the quantity
T = 1

2 T̃ − ξ0.
We will need to use the T -dependent families of function spaces

BC⊕f,α = {(v, θ) ∈ C([ξ0 − 1, ξ0 + T + 1],R)× C([ξ0, ξ0 + T ],R) for which
‖(v, θ)‖BC⊕f,α := supξ0−1≤ξ≤ξ0+T+1 e−α|ξ−ξ0| |v(ξ)|

+ supξ0≤ξ≤ξ0+T e−α|ξ−ξ0| |θ(ξ)| <∞},
BC	b,α = {(v, θ) ∈ C([−ξ0 − T − 1,−ξ0 + 1],R)× C([−ξ0 − T,−ξ0],R) for which

‖(v, θ)‖BC	b,α := sup−ξ0−T−1≤ξ≤−ξ0+1 e−α|ξ+ξ0| |v(ξ)|
+ sup−ξ0−T≤ξ≤−ξ0 e−α|ξ+ξ0| |θ(ξ)| <∞},

(6.1)

together with the families

BC+
f,α = {(v, θ) ∈ C([ξ0, ξ0 + T ],R)× C([ξ0, ξ0 + T ],R) for which

‖(v, θ)‖BC+
f,α

:= supξ0≤ξ≤ξ0+T e−α|ξ−ξ0|(|v(ξ)|+ |θ(ξ)|) <∞},
BC−b,α = {(v, θ) ∈ C([−ξ0 − T,−ξ0],R)× C([−ξ0 − T,−ξ0],R) for which

‖(v, θ)‖BC−b,α := sup−ξ0−T≤ξ≤−ξ0 e−α|ξ+ξ0|(|v(ξ)|+ |θ(ξ)|) <∞},

(6.2)

that are both parametrized by α ∈ R. In addition, we will reuse some of the function spaces
introduced in §5. In particular, we recall the function spaces defined in (5.48)-(5.49) and write
BC	f,α = BC	α , BC−f,α = BC−α , BC�f = BC� and BC�f = BC�. Similarly, we recall the func-
tion spaces defined in (5.96)-(5.97) and write BC�−b = BC�−, BC�+

b = BC�+, BC⊕b,α = BC⊕α ,
BC�−b = BC�−, BC�+b = BC�+ and BC+

b,α = BC+
α .

We also introduce the family of composite function spaces

H◦ζ = BC	f,−η∗ ×BC
�
f ×BC

⊕
f,η∗
×BC	b,η∗ ×BC

�−
b ×BC�+

b ×BC⊕b,−η∗+ζ , (6.3)

together with the family

Hζ = BC−f,−η∗ ×BC
�
f ×BC+

f,η∗
×BC−b,η∗ ×BC

�−
b ×BC

�+
b ×BC

+
b,−η∗+ζ , (6.4)

both parametrized by ζ ≥ 0. It is important to note that we are using positive weights in the function
spaces that describe the passage nearMR. This will allow us to establish the exponential estimates
in (3.13).

We recall the slow time T sl = εT and the set Ω = Ω(δc, δsl, T∗) consisting of triplets ω = (c, T sl, T )
that was defined in (3.11). For any ω ∈ Ω, our goal in this section is to find ϑ0 ∈ [wmin, wmax] and

h = (v−f , θ
−
f , v

�
f , θ
�
f , v

+
f , θ

+
f , v

−
b , θ

−
b , v

�−
b , θ�−b , v�+b , θ�+b , v+

b , θ
+
b ) ∈ H◦ (6.5)
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in such a way that the choice T̃ = 2ξ0 + 2T with

w(ξ) =



wf (c, ε)(ξ) + θ−f (ξ) for ξ ≤ 0,
wf (c, ε)(ξ) + θ�f (ξ) for 0 ≤ ξ ≤ ξ0,
wf (c, ε)(ξ) + θ+

f (ξ) for ξ0 ≤ ξ ≤ ξ0 + T,

wb(ϑ0, c, ε)(ξ − T̃ ) + θ−b (ξ − T̃ ) for ξ0 + T ≤ ξ ≤ ξ0 + 2T,
wb(ϑ0, c, ε)(ξ − T̃ ) + θ�−b (ξ − T̃ ) for ξ0 + 2T ≤ ξ ≤ T̃ ,
wb(ϑ0, c, ε)(ξ − T̃ ) + θ�+b (ξ − T̃ ) for T̃ ≤ ξ ≤ T̃ + ξ0,

wb(ϑ0, c, ε)(ξ − T̃ ) + θ+
b (ξ − T̃ ) for ξ ≥ T̃ + ξ0,

(6.6)

in combination with uf = u−f (c, ε) + v−f and

ub(ξ) =

{
u+
b (ϑ0, c, ε)(ξ − T̃ ) + v�+b (ξ − T̃ ) for T̃ − 1 ≤ ξ ≤ T̃ + ξ0,

u+
b (ϑ0, c, ε)(ξ − T̃ ) + v+

b (ξ − T̃ ) for ξ ≥ T̃ + ξ0,

uxc(ξ) =


u+
f (c, ε)(ξ) + v�f (ξ) for − 1 ≤ ξ ≤ ξ0,
u+
f (c, ε)(ξ) + v+

f (ξ) for ξ0 ≤ ξ ≤ ξ0 + T,

u−b (ϑ0, c, ε)(ξ − T̃ ) + v−b (ξ − T̃ ) for ξ0 + T ≤ ξ ≤ ξ0 + 2T,
u−b (ϑ0, c, ε)(ξ − T̃ ) + v�−b (ξ − T̃ ) for ξ0 + 2T ≤ ξ ≤ T̃

(6.7)

satisfies the conditions of Proposition 3.8.
We introduce the parameter vector p̃ = (ϑ0, c, T sl), which we will take from the space

D̃p(δϑ0 , δc, δsl) = [w∗ − δϑ0 , w∗ + δϑ0 ]× [c∗ − δc, c∗ + δc]× [T sl
∗ − δsl, T sl

∗ + δsl] (6.8)

We also use the augmented parameter vector p = (p̃, T ), which we take from the space

Dp(δϑ0 , δc, δsl, T∗) = D̃p(δϑ0 , δc, δsl)× [T∗,∞). (6.9)

Substituting the ansatz (6.6)-(6.7) into (3.1), we arrive at a system of nonlinear equations that
we write as

Λ−f (c, ε)(v−f , θ
−
f ) = (−θ−f , 0) +M−f (v−f , θ

−
f , c, ε),

Λ�f (c, ε)(v�f , θ
�
f ) = (−θ�f , 0) +M�f (v�f , θ

�
f , c, ε),

Λ+
f (c, ε)(v+

f , θ
+
f ) = (−θ+

f , 0) +M+
f (v+

f , θ
+
f , c, ε),

Λ−b (ϑ0, c, ε)(v−b , θ
−
b ) = (−θ−b , 0) +M−b (v−b , θ

−
b , ϑ

0, c, ε),
Λ�−b (ϑ0, c, ε)(v�−b , θ�−b ) = (−θ�−b , 0) +M�−b (v�−b , θ�−b , ϑ0, c, ε),
Λ�+f (ϑ0, c, ε)(v�+b , θ�+b ) = (−θ�+b , 0) +M�+b (v�+b , θ�+b , ϑ0, c, ε),
Λ+
f (ϑ0, c, ε)(v+

b , θ
+
b ) = (−θ+

b , 0) +M+
b (v+

b , θ
+
b , ϑ

0, c, ε).

(6.10)

Here we have

Λ#
f (c, ε)(v#

f , θ
#
f ) = (Λ#

f,1(c, ε)v#
f , cDθ

#
f )

for # = −, �,+ and

Λ#
b (ϑ0, c, ε)(v#

b , θ
#
b ) = (Λ#

b,1(ϑ0, c, ε)v#
f , cDθ

#
b )

for # = −, �−, �+,+, in which

[Λ−f,1(c, ε)v](ξ) = cv′(ξ)− L
(
u−f (c, ε)(ξ)

)
evξv,

[Λ#
f,1(c, ε)v](ξ) = cv′(ξ)− L

(
u+
f (c, ε)(ξ)

)
evξv, for # = �,+,

[Λ#
b,1(ϑ0, c, ε)v](ξ) = cv′(ξ)− L

(
u±b (ϑ0, c, ε)(ξ)

)
evξv, for # = ±, � ± .

(6.11)
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The nonlinearities can be written as M#
f,2(v, θ) = ε[v − θ] for # = −, �,+ and M#

b,2(v, θ) = ε[v − θ]
for # = ±, �±, together with

M−f,1(v, θ, c, ε)(ξ) = g
(
u−f (c, ε)(ξ) + v(ξ)

)
− g′

(
u−f (c, ε)(ξ)

)
v(ξ)

−g
(
u−f (c, ε)(ξ)

)
,

M#
f,1(v, θ, c, ε)(ξ) = g

(
u+
f (c, ε)(ξ) + v(ξ)

)
− g′

(
u+
f (c, ε)(ξ)

)
v(ξ)

−g
(
u+
f (c, ε)(ξ)

)
for # = �,+,

M#
b,1(v, θ, ϑ0, c, ε)(ξ) = g

(
u±b (ϑ0, c, ε)(ξ) + v(ξ)

)
− g′

(
u±b (ϑ0, c, ε)(ξ)

)
v(ξ)

−g
(
u±b (ϑ0, c, ε)(ξ)

)
for # = ±, � ± .

(6.12)

We can combine these nonlinearities into a single entity

M : H◦ ×Dp → H, (6.13)

with the warning that H◦ and H both depend on T . For any δ > 0, we write

B◦δ = {h ∈ H◦ | ‖h‖H◦ ≤ δ}. (6.14)

We now pick a constant δv > 0. For any p ∈ Dp and h, h1, h2 ∈ B◦δve−η∗T , we have the bounds

‖M(h, p)‖H ≤∗ εξ0δve−η∗T + δ2
ve−η∗T ,

‖M(h1, p)−M(h2, p)‖H ≤∗ [εξ0 + δv] ‖h1 − h2‖H◦ .
(6.15)

In addition, let us pick an arbitrary small constant γ > 0 and recall the constant r appearing in (H1).
By picking T∗ to be sufficiently large, we can ensure that ε = T sl/T < γ for all p = (ϑ0, c, T sl, T ) ∈
Dp. For any integer 0 ≤ ` ≤ r and T ≥ T∗, we thus see that (h, p̃) 7→ M(h, p̃, T ) is C`-smooth when
considered as a map from H◦×D̃p into Hζ for any ζ > `γ. In addition, for any h ∈ B◦δve−η∗T , p ∈ Dp
and ζ > γ, we have the bound

‖DepM(h, p)‖Hζ ≤∗ eγT δ2
ve−η∗T . (6.16)

The first step in the proof of Proposition 3.8 is to consider the linearized equations that the quasi-
solutions must solve, imposing the constraints in Definition 3.7(iv)-(v) concerning the discontinuities
that arise when passing from uf to uxc and from uxc to ub.

Lemma 6.1 Fix a sufficiently large constant T∗ and sufficiently small constants δϑ0 > 0, δc > 0
and δsl > 0. Choose any T ≥ T∗. Then for every

g = (g−f , g
�
f , g

+
f , g

−
b , g

�−
b , g�+b , g+

b ) ∈ H, (6.17)

any boundary condition φhw ∈ X and any

p̃ = (ϑ0, c, T sl) ∈ D̃p = D̃p(δϑ0 , δc, δsl), (6.18)

there exists a unique

h = (v−f , θ
−
f , v

�
f , θ
�
f , v

+
f , θ

+
f , v

−
b , θ

−
b , v

�−
b , θ�−b , v�+b , θ�+b , v+

b , θ
+
b ) ∈ H◦ (6.19)

that satisfies the following properties.

(i) The linear system

Λ#
f (p)(v#

f , θ
#
f ) = (−θ#

f , 0) + g#
f (6.20)

is satisfied for # = −, �,+. In addition, the linear system

Λ#
b (p)(v#

b , θ
#
b ) = (−θ#

b , 0) + g#
b (6.21)

is satisfied for # = −, �−, �+,+.

42



(ii) We have the continuity conditions θ�f (0) = θ−f (0), θ�f (ξ0) = θ+
f (ξ0), together with θ�−b (−ξ0) =

θ−b (−ξ0), θ�+b (0) = θ�−b (0) and θ+
b (ξ0) = θ�+b (ξ0).

(iii) The following continuity conditions all hold,

evξ0v
�
f = evξ0v

+
f ,

ev−ξ0v
�−
b = ev−ξ0v

−
b ,

evξ0v
�+
b = evξ0v

+
b .

(6.22)

(iv) We have the inclusions

ev0v
−
f , ev0v

�
f ∈ P̂f (0)⊕ Q̂f (0)⊕ Γf ,

ev0v
�−
b , ev0v

�+
b ∈ P̂b(0)⊕ Q̂b(0)⊕ Γb,

(6.23)

(v) The gap between v−f and v�f at zero satisfies ev0[v−f − v�f ] ∈ Γf . In addition, the corresponding
gap between v�− and v�+ satisfies ev0[v�−b − v

�+
b ] ∈ Γb.

(vi) The following boundary condition holds,

ev−ξ0−T v
−
b − evξ0+T v

+
f = φhw. (6.24)

The element h ∈ H◦ described above will be denoted by

h = L4(p̃, T )(g, φhw), (6.25)

and we have the estimate

‖h‖H◦ ≤∗ ‖g‖H + e−η∗T ‖φhw‖ . (6.26)

Recalling the integer r appearing in (H1), there exists a small constant γ that tends to zero as
T∗ →∞, such that for any integer 0 ≤ ` ≤ r and any ζ > `γ, the map

p̃ 7→ L4(p̃, T ) ∈ L(H×X,H◦ζ) (6.27)

is C`-smooth with norm ∥∥D`
epL4(p)

∥∥ ≤∗ e`γT [‖g‖H + e−η∗T ‖φhw‖]. (6.28)

Proof. First of all, let us write p = (p̃, T ) and define

θ−f (ξ) = 1
c

∫ ξ
−∞ g−f,2(ξ′) dξ′ v−f,0 = [Λ−f,1(p)]−1[g−f,1 − θ

−
f ],

θ�f (ξ) = θ−f (0) + 1
c

∫ ξ
0
g�f,2(ξ′) dξ′ v�f,0 = [Λ�f,1(p)]−1[g�f,1 − θ�f ],

θ+
f (ξ) = θ�f (ξ0) + 1

c

∫ ξ
ξ0
g+
f,2(ξ′) dξ′ v+

f,0 = [Λ+
f,1(p)]−1[g+

f,1 − θ
+
f ],

θ+
b (ξ) = 1

c

∫ ξ
−∞ g+

b,2(ξ′) dξ′ v+
b,0 = [Λ+

b,1(p)]−1[g+
b,1 − θ

+
b ],

θ�+b (ξ) = θ+
b (ξ0) + 1

c

∫ ξ
ξ0
g�+b,2 (ξ′) dξ′ v�+b,0 = [Λ�+b,1(p)]−1[g�+b,1 − θ

�+
b ],

θ�−b (ξ) = θ�+b (0) + 1
c

∫ ξ
0
g�−b,2 (ξ′) dξ′ v�−b,0 = [Λ�−b,1(p)]−1[g�−b,1 − θ

�−
b ],

θ−b (ξ) = θ�−b (−ξ0) + 1
c

∫ ξ
−ξ0 g

−
b,2(ξ′) dξ′ v−b,0 = [Λ−b,1(p)]−1[g−b,1 − θ

−
b ],

(6.29)

in which we have used Lemmas 4.1 and 5.7 to construct the various inverses used above.
We recall the slow time T sl

∗ defined in (3.10) and write

Phw = P fb
R,whw

, Qhw = Qfb
R,whw

, (6.30)
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in which the half-way point whw is defined as whw = Θsl
R(0, c∗, 0)( 1

2T
sl
∗ ). We now choose variables

ψB−f ∈ Bf (0), ψ bP−f ∈ P̂f (0), ψB�f ∈ Bf (0), ψ
bQ�
f ∈ Q̂f (0), ψS�f ∈ P fb

R,0, ψQ+
f ∈ Qfb

R,0 and ψS+
f ∈ Phw,

together with ψQ−b ∈ Qhw, ψP−b ∈ P fb
R,w∗

, ψR�−b ∈ Qfb
R,w∗

, ψB�−b ∈ Bb(0), ψ bP�−b ∈ P̂b(0), ψB�+b ∈
Bb(0), ψ

bQ�+
b ∈ Q̂b(0), ψS�+b ∈ P fb

L,w∗
, ψQ+

b ∈ Qfb
L,w∗

and write

v−f = v−f,0 + EP−f (p)(ψB−f + ψ
bP−
f ),

v�f = v�f,0 + EQ�f (p)(ψB�f + ψ
bQ�
f ) + ES�f (p)ψS�f ,

v+
f = v+

f,0 + EQ+
f (p)ψQ+

f + ES+
f (p)ψS+

f ,

v−b = v−b,0 + EP−b (p)ψP−B + ER−b (p)ψR−b ,

v�−b = v�−b,0 + ER�−b (p)ψR�−b + EP�−b (p)(ψB�−b + ψ
bP�−
b ),

v�+b = v�+b,0 + ES�+b (p)ψS�+b + EQ�+b (p)(ψB�+b + ψ
bQ�+
b ),

v+
b = v+

b,0 + EQ+
b (p)ψQ+

b ,

(6.31)

in which the various extension operators E#
f,b can be constructed from Lemmas 5.5 and 5.9 much as

before. In view of the desired exponential estimate (6.26), it will turn out to be fruitful to choose a
constant δψ > 0 and work with the rescaled variables

ψS+
f = δψeη∗T ψ̃S+

f ,

ψR−b = δψeη∗T ψ̃R−b .
(6.32)

In order to satisfy the boundary condition (vi), we must have

−φPhw = δψeη∗T ψ̃S+
f − δψeη∗TΠPhwev−ξ0−TE

R−
b (p)ψ̃R−b

+ΠPhwevξ0+TE
Q+
f (p)ψQ+

f −ΠPhwev−ξ0−TE
P−
b (p)ψP−b ,

φQhw = δψeη∗T ψ̃R−b − δψeη∗TΠQhwevξ0+TE
S+
f (p)ψ̃S+

f

+ΠQhwev−ξ0−TE
P−
b ψP−b −ΠQhwevξ0+TE

Q+
f ψQ+

f ,

(6.33)

in which

φPhw = ΠPhw [φhw − ev−ξ0−T v
−
b,0 + evξ0+T v

+
f,0],

φQhw = ΠQhw [φhw − ev−ξ0−T v
−
b,0 + evξ0+T v

+
f,0].

(6.34)

The inclusions in (iv) yield the conditions

−ΠBf (0)ev0v
−
f,0 = ψB−f ,

−ΠBf (0)ev0v
�
f,0 = ψB�f + ΠBf (0)ev0E

S�
f (p)ψS�f ,

−ΠBb(0)ev0v
�−
b,0 = ψB�−b + ΠBb(0)ev0E

R�−
b (p)ψR�−b ,

−ΠBb(0)ev0v
�+
b,0 = ψB�+b + ΠBb(0)ev0E

S�+
b (p)ψS�+b ,

(6.35)

while the jump condition (v) yields

−Π bPf (0)ev0[v−f,0 − v�f,0] = ψ
bP−
f −Π bPf (0)ev0[EQ�f (p)(ψB�f + ψ

bQ�
f ) + ES�f (p)ψS�f ],

Π bQf (0)ev0[v−f,0 − v�f,0] = ψ
bQ�
f −Π bQf (0)ev0[EP−f (p)(ψB−f + ψ

bP−
f )− ES�f (p)ψS�f ],

−Π bPb(0)ev0[v�−b,0 − v
�+
b,0 ] = ψ

bP�−
b −Π bPb(0)ev0

[
EQ�+b (p)(ψB�+b + ψ

bQ�+
b )

+ES�+b (p)ψS�+b − ER�−b (p)ψR�−b

]
,

Π bQb(0)ev0[v�−b,0 − v
�+
b,0 ] = ψ

bQ�+
b −Π bQb(0)ev0

[
EP�−b (p)(ψB�−b + ψ

bP�−
b )

−ES�+b (p)ψS�+b + ER�−b (p)ψR�−b

]
.

(6.36)

44



The continuity conditions in (iii) for the variables associated with the front can be translated as

−ΠP fb
R,0

evξ0 [v�f,0 − v
+
f,0] = ψS�f + ΠP fb

R,0
evξ0E

Q�
f (p)(ψB�f + ψ

bQ�
f )

−ΠP fb
R,0

evξ0 [EQ+
f (p)ψQ+

f + δψeη∗TES+
f (p)ψ̃S+

f ],

ΠQfb
R,0

evξ0 [v�f,0 − v
+
f,0] = ψQ+

f −ΠQfb
R,0

evξ0E
Q�
f (p)(ψB�f + ψ

bQ�
f )

+ΠQfb
R,0

evξ0 [δψeη∗TES+
f (p)ψ̃S+

f − ES�f (p)ψS�f ],

(6.37)

while the conditions in (iii) for the variables associated with the back yield

−ΠP fb
L,w∗

evξ0 [v�+b,0 − v
+
b,0] = ψS�+b + ΠP fb

L,w∗
evξ0E

Q�+
b (p)(ψB�+b + ψ

bQ�+
b )

−ΠP fb
L,w∗

evξ0E
Q+
b (p)ψQ+

b ,

ΠQfb
L,w∗

evξ0 [v�+b,0 − v
+
b,0] = ψQ+

b −ΠQfb
L,w∗

evξ0E
Q�+
b (p)(ψB�+b + ψ

bQ�+
b )

−ΠQfb
L,w∗

evξ0E
S�+
b (p)ψS�+b ,

−ΠQfb
R,w∗

ev−ξ0 [v�−b,0 − v
−
b,0] = ψR�−b + ΠQfb

R,w∗
ev−ξ0E

P�−
b (p)(ψB�−b + ψ

bP�−
b )

−ΠQfb
R,w∗

ev−ξ0 [EP−b (p)ψP−b + δψeη∗TER−b (p)ψ̃R−b ],

ΠP fb
R,w∗

ev−ξ0 [v�−b,0 − v
−
b,0] = ψP−b −ΠP fb

R,w∗
ev−ξ0E

P�−
b (p)(ψB�−b + ψ

bP�−
b )

+ΠP fb
R,w∗

ev−ξ0 [δψeη∗TER−b (p)ψ̃R−b − ER�−b (p)ψR�−b ].

(6.38)

Putting these equations together, we arrive at a 16 × 16 linear system that can be solved for all
p ∈ Dp, provided that δψ, δc, δsl and δϑ0 are chosen to be sufficiently small and T∗ is chosen to be
sufficiently large. The bound (6.26) is a direct consequence of the scaling (6.32). The bound (6.28)
on the derivatives can be obtained by using Lemma 4.1 and a modified version of Lemma 5.5 and
noting that the embedding BC⊕f,α1

⊂ BC⊕f,α2
for α1 > α2 has norm e(α1−α2)T , together with a

similar embedding for the family BC	b .

We are now ready to move on to the nonlinear system by considering the fixed point equation

h = F4(h, p, φhw) := L4(p)(M(h, p), φhw) (6.39)

posed on the space H◦, in which we take p = (p̃, T ) ∈ Dp and consider all sufficiently small φhw. Let
us pick a constant Cφ > 0 and write δφ = δv/Cφ and

Bδφ = {φhw ∈ X | ‖φhw‖ ≤ δφ}. (6.40)

In addition, consider for any φhw ∈ Bδφ the space

Bφhw(p) = {h ∈ H◦ | ‖h‖H◦ ≤ Cφ ‖φhw‖ e−η∗T }. (6.41)

For any φhw ∈ Bδφ , p ∈ Dp and h ∈ Bφhw(p), we have the estimate

‖F4(h, p, φhw)‖H◦ ≤∗ εξ0Cφ ‖φhw‖ e−η∗T + ‖φhw‖ e−η∗T + e−η∗TC2
φ ‖φhw‖2 (6.42)

Hence, after choosing Cφ to be sufficiently large and possibly decreasing the size of Dp, we can ensure
that F4(h, p) maps Bφhw(p) into itself for all p ∈ Dp and φhw ∈ Bδφ . In addition, it is straightforward
to show that F4(·, p, φhw) is a contraction mapping on Bφhw(p) for all such p and φhw. We hence
obtain a solution map

h∗ : Dp ×Bδφ → Bφhw(p) ⊂ H◦ (6.43)

for the fixed point problem (6.39).
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Differentiating (6.39), we find

Dφhwh
∗(p, φhw) = L4(p)

(
DhM

(
h∗(p, φhw)

)
, 0
)
Dφhwh

∗(p, φhw) + L4(p)(0, I). (6.44)

Combining this with the bounds in Lemma 6.1, we conclude ‖Dφhwh
∗(p, φhw)‖ ≤∗ e−η∗T . Substitut-

ing this back into (6.44), we obtain

Dφhwπθ+
f
⊕ πθ−b h

∗(p, φhw) ≤∗ εe−η∗T . (6.45)

In addition, we may write

Deph
∗(p) = DepL4(p)

(
M(h∗(p), p), φhw

)
+L4(p)

(
DhM(h∗(p), p), 0

)
Deph

∗(p)
+L4(p)

(
DepM(h∗(p), p), 0

)
,

(6.46)

which leads to the estimate

‖Deph∗(p, φhw)‖H◦ζ ≤∗ eγT e−η∗T ‖φhw‖ (6.47)

for some ζ > γ.
For ease of notation, we will need to reparametrize the variable ϑ0. To this end, we will take

variables

p = (ϑ0
∆, ω) = (ϑ0

∆, c, T
sl, T ) (6.48)

from the new parameter space

Dp = Dp(δϑ0 , δc, δsl, T∗) = [−δϑ0 , δϑ0 ]× Ω(δc, δsl, T∗). (6.49)

The relation between p and p = (ϑ0
∆, ω) is given by

p = (ϑ0
∞(ω) + ϑ0

∆, ω). (6.50)

Let us write

Θhw(ϑ0, c, ε, T ) = w+
f (c, ε)(ξ0 + T )− w−b (ϑ0, c, ε)(−ξ0 − T ),

Φhw(ϑ0, c, ε, T ) = evξ0+Tu
+
f (c, ε)− ev−ξ0−Tu

−
b (ϑ0, c, ε)

(6.51)

for the gaps in the w and u variables that needs to be closed. Writing h∗f for the solution of the fixed
point problem (5.76) and h∗b for the solution of (5.76), we note that we can represent Θhw as follows,

Θhw(p) = Θsl
R

(
ϑ+
f (ω), ω

)
(T sl)−Θsl

R

(
ϑ−b (ϑ0

∞(ω) + ϑ0
∆, ω), ω

)
(−T sl)

+πθ+h∗f
(
ϑ+
f (ω), ω

)
(ξ0 + T )

−πθ−h∗b
(
ϑ0
∞(ω) + ϑ0

∆, ϑ
+
b (ϑ0

∞(ω) + ϑ0
∆, ω), ϑ−b (ϑ0

∞(ω) + ϑ0
∆, ω), ω

)
(−ξ0 − T ).

(6.52)

Using this representation and the estimates (5.86), it is not hard to see that for all p ∈ Dp we have

‖Θhw(p)‖ ≤∗
∣∣ϑ0

∆

∣∣+ e−η∗T ,
‖DωΘhw(p)‖ ≤∗

∣∣ϑ0
∆

∣∣+ eγT e−η∗T ,∥∥∥Dϑ0
∆

Θhw(p)
∥∥∥ ≤∗ 1.

(6.53)

We may obtain a similar representation for Φhw as a function of p, allowing us to obtain the bounds

‖Φhw(p)‖ ≤∗
∣∣ϑ0

∆

∣∣+ e−η∗T

‖DωΦhw(p)‖ ≤∗
∣∣ϑ0

∆

∣∣+ eγT e−η∗T∥∥∥Dϑ0
∆

Φhw(p)
∥∥∥ ≤∗ 1.

(6.54)
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We note that the choice φhw = Φhw(p) suffices to ensure that uxc as defined in (6.6) is a continuous
function. However, in order to make sure that the function w defined in (6.6) is also continuous, we
must find an appropriate ϑ0

∆ for each ω = (c, T sl, T ) ∈ Ω. In particular, we need solve the equation

Θhw(ϑ0
∆, ω) = θxc(ϑ0

∆, ω), (6.55)

in which θxc is given by

θxc(p) = πθ−b
h∗
(
ϑ0
∞(ω) + ϑ0

∆, ω,Φhw(p)
)
(−ξ0 − T )− πθ+

f
h∗
(
ϑ0
∞(ω) + ϑ0

∆, ω,Φhw(p)
)
(ξ0 + T ).

(6.56)

The observation

|θxc(p)| ≤∗
∣∣ϑ0

∆

∣∣+ e−η∗T ,∣∣∣Dϑ0
∆
θxc(p)

∣∣∣ ≤∗ eγT [
∣∣ϑ0

∆

∣∣+ e−η∗T ] + ε,
(6.57)

allows (6.55) to be solved. In particular, we find a function ϑ0
∆ : Ω→ R that admits the bounds∣∣ϑ0

∆(ω)
∣∣ ≤∗ e−η∗T ,∣∣Dcϑ

0
∆

∣∣+
∣∣DT slϑ0

∆(ω)
∣∣ ≤∗ eγT e−η∗T , (6.58)

for all ω ∈ Ω. Finally, writing

H∗ : ω 7→ h∗
(
ϑ0
∞(ω) + ϑ0

∆(ω), ω,Φhw(ϑ0
∆(ω), ω)

)
, (6.59)

this means that

‖DcH
∗(ω)‖H◦ζ + ‖DT slH∗(ω)‖H◦ζ ≤∗ eγT e−2η∗T , (6.60)

as desired.
The issue that now remains is smoothness with respect to the variable T . We proceed as in [27]

and pick a T > T . We reconsider the setting of Lemma 6.1 by considering g ∈ H and looking for
h ∈ H◦ instead of g ∈ H and h ∈ H◦, in which H◦ and H are defined as in (6.3) and (6.4), after
replacing each occurrence of T by T . We still require the properties (i) and (v) to hold in terms of
the original T . The construction in the proof of this lemma remains valid if we adapt the operator
ES+
f to map into C([ξ0 − 1, ξ0 + T + 1],R), by providing an appropriate extension on the interval

[ξ0 + T + 1, ξ0 + T + 1], together with a similar adaption for ER−b . For the purposes of solving the
linear system (6.33) through (6.38), the parameter T can now be treated on the same footing as c.
However, a complication arises when constructing v+

f and v−b according to (6.31). Indeed ES+
f (p)ψS+

f

is only C0-smooth on the interval [ξ0 + T, ξ0 + T + 1], but calculating DTE
S+
f (p) involves taking a

derivative on this interval. This issue can be resolved by studying the action of ΠPhw and ΠQhw on
the function space

X(1) = {φ ∈ C([−1, 1],R) | φ|[−1,0] ∈ C1([−1, 0],R) and φ|[0,1] ∈ C1([0, 1],R)}. (6.61)

It is not hard to see that ΠP and ΠQ map X(1) into X(1). This allows us to define

ES+
f (p) : ΠPhw(X(1))→W 1,∞([ξ0 − 1, ξ0 + T + 1],R), (6.62)

which now does allow taking a derivative with respect to ξ, with the remark that the resulting
function may have a jump at ξ = ξ0 + T . By noting that in fact Φhw(p) ∈ X(1) and taking ψS+

f ∈
ΠPhw(X(1)) and ψR−b ∈ ΠQhw(X(1)), we can argue that the gap functions ξf and ξb are also C1-
smooth with respect to T , and that the desired exponential bounds hold. Higher order smoothness
with respect to T can be obtained in a similar fashion.
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Proof of Proposition 3.8 We fix the parameter space Ω as above. For any ω ∈ Ω, we write
ϑ0(ω) = ϑ0

∞(ω) + ϑ0
∆(ω), together with

(v−f , θ
−
f , v

�
f , θ
�
f , v

+
f , θ

+
f , v

−
b , θ

−
b , v

�−
b , θ�−b , v�+b , θ�+b , v+

b , θ
+
b ) = H∗(ω) (6.63)

and define w, uxc, uf and ub according to (6.6) and (6.7). The properties required in Definition 3.7
follow immediately from the construction above. The exponents γ that appear in the estimates
throughout this section can be eliminated by slightly decreasing η∗. The smoothness properties and
bounds in (ii) and (iii) have been established for ` = 1 and can be extended to 1 < ` ≤ r using similar
arguments. As in the proof of Proposition 3.4, the local uniqueness properties can be established
using the proof of [43, Claim 3.7].

7 Discussion

In this paper, we showed that the discrete FitzHugh–Nagumo equation

u̇i(t) = α[ui+1(t) + ui−1(t)− 2ui(t)] + ui(t)(1− ui(t))(ui(t)− a)− wi(t), (7.1)
ẇi(t) = ε

(
ui(t)− γwi(t)

)
with i ∈ Z supports travelling pulses

(ui, wi)(t) = (u∗, w∗)(i+ ct) (7.2)

for some wave speed c > 0 provided 0 < ε� 1 and a ∈ (0, 1
2 ) is such that the discrete Nagumo equa-

tion supports travelling fronts. To establish this result, we extended various concepts from geometric
singular perturbation theory from the more standard ODE setting to the functional differential equa-
tion

cu′∗(ξ) = α[u∗(ξ + 1) + u∗(ξ − 1)− 2u∗(ξ)] + g
(
u∗(ξ)

)
− w∗(ξ), (7.3)

cw′∗(ξ) = ε
(
u∗(ξ)− γw∗(ξ)

)
that the travelling wave profiles (u∗, w∗)(ξ) have to satisfy, in which g(u) = u(1− u)(u− a). Specif-
ically, we proved the persistence of slow manifolds and their stable and unstable foliations, and
established an Exchange Lemma that can be used to track solutions that pass near hyperbolic slow
manifolds. The main difficulty in proving these results is the fact the initial-value problem associated
with the MFDE (7.3) is ill-posed: we overcame this difficulty by utilizing exponential dichotomies
for linear MFDEs with slowly varying coefficients. In particular, we relied heavily on previous work
by Sakamoto and various works by us and our coworkers. While the proofs given here are techni-
cally involved, they are inspired by the same geometric intuition, illustrated in Figure 1, that led
to the ODE proofs of the existence of fast waves. As we already pointed out in the introduction,
the techniques we developed here should be general enough to apply to a broader class of singularly
perturbed functional differential equations.

We did not consider the stability of the travelling-pulse solutions (7.2) with respect to the un-
derlying lattice dynamical system (7.1). The results in [3, 12] imply that spectral stability of the
operator

L∗ : L2(R,R2) −→ L2(R,R2),(
u
w

)
7−→

(
cu′(ξ)− α[u(ξ + 1) + u(ξ − 1)− 2u(ξ)]− g′

(
u∗(ξ)

)
u(ξ)− w(ξ)

cw′(ξ)− ε(u(ξ)− γw(ξ))

)
with domain H1(R,R2) implies nonlinear stability of the underlying pulse with respect to (7.1).
The eigenvalue problem associated with the operator L∗ is again singularly perturbed. It should
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therefore be possible to use the techniques outlined in this paper to study the spectrum of L∗ and
to assess the stability of the fast waves we constructed here: this is work in progress. In line with
the results for the spatially continuous FitzHugh–Nagumo system in [30, 46] and with the numerical
simulations of the spatially discrete FitzHugh–Nagumo system in [9], we expect that the fast pulses
are stable.
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