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Abstract. We survey some of our recent results on traveling waves
and pattern formation in spatially discrete bistable reaction-diffusion
equations. We start by recalling several classic results concerning the
existence, uniqueness and stability of travelling wave solutions to the
discrete Nagumo equation with nearest-neighbour interactions, together
with the Fredholm theory behind some of the proofs. We subsequently
discuss extensions involving wave connections between periodic equilib-
ria, long-range interactions and planar lattices. We show how some of
the results can be extended to the two-component discrete FitzHugh-
Nagumo equation, which can be analyzed using singular perturbation
theory. We conclude by studying the behaviour of the Nagumo equation
when discretization schemes are used that involve both space and time,
or that are non-uniform but adaptive in space.

1 Introduction

The purpose of this article is to survey recent results concerning the pattern
forming properties of spatially discrete reaction diffusion equations. Our guiding
example will be the Nagumo lattice differential equation (LDE)

u̇j(t) = d
[
uj−1(t) + uj+1(t)− 2uj(t)

]
+ g
(
uj(t); a

)
(1)
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posed on j ∈ Z, with the bistable cubic nonlinearity

g(u; a) = u(1− u)(u− a), a ∈ (0, 1). (2)

However, we also consider variants of this LDE that involve planar lattices, inho-
mogeneous diffusion coefficients, long-range interactions and additional compo-
nents. Furthermore, we discuss the consequences of replacing the time-derivative
in (1) by appropriate discretizations, which leads to difference equations in both
space and time.

The recurring theme throughout this paper is that the discrete nature of the
model (1) allows it to exhibit a much richer class of behaviour than its continuous
counterpart, the Nagumo PDE

ut = uxx + g
(
u; a
)
. (3)

Indeed, we will explore the profound effects that different discretization choices
for the Laplacian can have on the dynamical behaviour of the underlying systems.
In fact, important differences already appear at the level of the equilibrium
solutions.

Bistable systems The pair of stable equilibria for the nonlinearity g can be used
to represent material phases or biological species that compete for dominance in
a spatial domain [5]. The high frequency oscillations caused by this bistability
are damped by the diffusion term in (3), which leads to interesting pattern
forming behaviour. In particular, solutions generally develop interface layers that
separate the spatial domain into regions governed by the two stable phases [3,
113]. The evolution of these interfaces can be seen as a desingularized version of
the mean curvature flow [2, 67].

The PDE (3) has served as a prototype system for the understanding of many
basic concepts at the heart of dynamical systems theory. An important role is
reserved for travelling wave solutions, which can be written as

u(x, t) = Φ(x+ ct), Φ(−∞) = 0, Φ(+∞) = 1 (4)

and hence provide a mechanism by which one of the two stable phases can invade
the spatial domain. Such pairs (c, Φ) must satisfy the travelling wave ODE

cΦ′ = Φ′′ + g
(
Φ; a

)
, (5)

which admits the explicit solutions

Φ(ξ) =
1

2
+

1

2
tanh

[1
4

√
2ξ
]
, c(a) =

1

2

√
2(1− 2a). (6)

These special solutions play a key role in the dynamics of the full PDE (3).
Indeed, the classical work by Fife and McLeod [73] shows that these waves are
stable under a broad range of perturbations that need not be small.
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These pairs (c, Φ) can also be interpreted as solutions to the planar Nagumo
PDE

ut = uxx + uyy + g
(
u; a
)

(7)

by writing
u(x, y, t) = Φ(x cos ζ + y sin ζ + ct). (8)

This is a direct consequence of the isotropy of the Laplacian, which causes ζ to
drop out from the resulting wave equation.

These planar waves are also stable [17, 112], but the underlying analysis is
much more subtle as deformations of the wave interface decay at an algebraic
rate; see §4. The seminal work by Weinberger [6] uses these planar waves as
building blocks to study the speed at which sufficiently large but compact sets
of the favourable species spread throughout the domain.

Spatially discrete systems For many physical phenomena such as crystal growth
in materials [26], the formation of fractures in elastic bodies [147] and the motion
of dislocations [33] and domain walls [53] through crystals, the discreteness and
the topology of the underlying spatial domain both have a major impact on
the dynamical behaviour. For example, the spreading of auxin through plant
leaves depends crucially on the active PIN-induced transport through the cell-
membranes [130]. Peierls-Nabarro barriers typically prevent small defects from
spreading through discrete media, but can be eliminated by carefully tuning
system parameters [47]. Recent experiments show that even light waves can be
trapped inside well-designed photonic lattices [132, 157].

Motivated by these considerations, LDEs have been used to describe a wide
range of propagation phenomena in spatially discrete systems. Examples include
the propagation of electrical signals through transmission lines [64] and myeli-
nated term fibres [116], the formation of compression waves through Hertzian
chains of elastic beads [145], the occurrence of denaturation bubbles in strands
of DNA [48] and the self-trapping of wave packets in coupled optical waveguides
[122].

Bistable discrete reaction-diffusion systems such as (1) have been used to
describe action potentials in myelinated nerve fibers [116], phase transitions in
Ising models [12] and predator-prey interactions in patchy enviroments [146].
They were even implemented on circuit boards in order to develop fast pattern
recognition algorithms in image processing [42, 43].

The non-local diffusion in (1) introduces a natural length scale into applica-
tions and breaks the continuous translational symmetry of R. The coupling with
the bistable nonlinearity leads to a wide range of interesting behaviour that we
explore in this paper. On the other hand, (1) still admits a comparison principle,
which in some cases allows global effects to be captured rigorously. For these rea-
sons, (1) has served as a prototype system to explore the effects of non-locality
and spatial discreteness.

Spatially discrete travelling waves Substituting the travelling wave ansatz

uj(t) = Φ(j + ct) (9)
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into the LDE (1), one arrives at the system

cΦ′(ξ) = d
[
Φ(ξ − 1) + Φ(ξ + 1)− 2Φ(ξ)

]
+ g
(
Φ(ξ); a

)
. (10)

Our main interest here is in connections between the two stable equilibria of g,
which leads to the boundary conditions

Φ(−∞) = 0, Φ(+∞) = 1. (11)

No explicit solutions are known to exist for this wave equation. However, this
changes if the cubic g is replaced by suitable specially constructed nonlinearities
[1] or if the nonlinear term in the LDE (1) is allowed to involve the values of u
at multiple lattice sites [9, 54, 77, 117, 149]. For example, the LDE

u̇j = uj−1 + uj+1 − 2uj +
1

2
uj(uj+1 + uj−1 − 2a)(1− uj) (12)

admits the explicit solutions

uj(t) =
1

2
+

1

2
tanh

(
arcsinh(

1

4

√
2)(j + ct)

)
, c(a) =

(1− 2a)

4 arcsinh(1
4

√
2)
. (13)

A useful procedure that has been widely used to gain insight into the be-
haviour of system such as (10) is to replace the cubic g by the discontinuous
piecewise linear ‘caricature’

gpl(u; a) =

{
u for u < a,

u− 1 for u ≥ a.
(14)

This allows linear techniques such as the Fourier transform to be applied. The
resulting expressions for Φ involve explicit Fourier sums that allow interesting
conclusions to be extracted. These results have often helped to guide the explo-
ration of systems with smooth nonlinearities. In §3.3 we discuss an analysis of
this type for a version of (1) that includes next-to-nearest-neighbour couplings.
Earlier results of this type can be found in [28, 57, 58, 63, 68, 92, 152, 153, 154].

Returning to (10), we refer the reader to §2.2 for an overview of the different
types of techniques that can be used to obtain the existence of travelling waves.
For now, we simply note that the comparison principle can be used [36, 127]
to show that c is uniquely determined by the detuning parameter a. However,
the character of (10) depends crucially on whether c vanishes or not. Indeed,
the continuous translational symmetry of R is broken by the transition R→ Z,
causing the wavespeed c to act in (10) as a singular parameter. It is therefore
natural to discuss the two cases c = 0 and c 6= 0 separately.

Pinned waves For c = 0 one can restrict the spatial variable in (10) to the
integers and look for solutions Φ : Z → R. In fact, the travelling wave system
(10) reduces to the difference equation

(rj+1, sj+1) =
(
sj , 2sj − rj − d−1g(sj ; a)

)
(15)
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upon writing
(
Φj , Φj+1

)
= (rj , sj). The fixed points of this system are (0, 0),

(a, a) and (1, 1). In particular, the boundary conditions (11) mean that for any
j ∈ Z, the pair (Φj , Φj+1) lies in the intersection of the stable manifold Ws(1, 1)
and the unstable manifold Wu(0, 0) associated to (15).

The symmetry of the cubic at a = 1
2 allows us to apply a result by Qin and

Xiao [135, Thm. 2.7] and conclude that (10)-(11) admits (at least) two solutions

Φ(s) : Z→ R, Φ(b) : Z→ R. (16)

These solutions are referred to as site-centered and bond-centered, since they
are point symmetric around (0, 12 ) respectively ( 1

2 ,
1
2 ). In particular, the inter-

sectionWs(1, 1)∩Wu(0, 0) is non-empty and contains (at least) the two families

(Φ
(s)
j , Φ

(s)
j+1) and (Φ

(u)
j , Φ

(u)
j+1).

If these intersections are transverse, both solutions Φ(s) and Φ(b) will persist
as pinned waves for a ≈ 1

2 . It is then natural to expect that these branches
coalesce and terminate in a saddle–node bifurcation at a = a±; see panels (i)
and (ii) in Figure 1. In particular, this would mean that c(a) = 0 for a in the
nontrivial interval [a−, a+].

This phenomena is referred to as propagation failure and has been observed
among a wide class of discrete systems. In fact, Hoffman and Mallet-Paret show
[89] that it is ‘generic’ in a suitable sense by establishing a Melnikov condition on
the nonlinearity in (1) that is sufficient to guarantee its occurrence. For the cubic
nonlinearity that we consider here, early results by Keener [115] guarantee that
(1) admits propagation failure when d > 0 is sufficiently small. For general d > 0
the problem is still open, but the results in [18, 72] suggest that the width of
the pinning interval [a−, a+] decreases exponentially with d > 0. Further results
confirming this phenomenon can be found in [1, 28, 62, 66, 68, 128].

Let us emphasize that these issues depend very subtly on the nonlinearity.
For example, the explicit solutions (13) clearly indicate that (12) does not suffer
from propagation failure. In this case, the two solutions Φ(s) and Φ(b) are part of
a continuous one-parameter family of standing waves; see panel (iii) in Figure 1.
In such settings the intuition developed above fails and more subtle bifurcation
scenarios can arise [99]. Similar observations can already be found in early work
by Elmer [55]. Indeed, after replacing g by a piecewise linear zigzag nonlinearity,
propagation failure can be excluded for a countable set of diffusion coefficients
d.

Returning to (1), we illustrate the consequences of this behaviour on the pairs
(c, Φ) in Figure 2. These numerical results confirm that wave profiles lose their
smoothness as the pinning region is approached, while the derivative ∂ac blows
up. This latter fact appears to be related to the discreteness of the LDE (1) rather
than its non-locality. Indeed, pinning phenomena have also been investigated in
nonlocal problems featuring smooth convolution kernels [4, 141]. In certain cases
the behaviour of c near the pinning boundary can be described by power laws
with various exponents.

Functional differential equations When c 6= 0, the travelling wave equation (10)
is referred to as a functional differential equation of mixed type (MFDE), since
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Fig. 1. The stable and unstable manifolds Ws(1, 1) and Wu(−1,−1) associated to
the discrete system (10) with c = 0 can intersect in several ways. Left: the generic
situation expected at a = 1

2
. Middle: the saddle-node bifurcation at a = a±. Right: the

degenerate situation at a = 1
2

corresponding to the multi-site discretization (13).

it involves delayed terms and advanced terms simultaneously. Such equations are
generally not well-posed as initial value problems. This can be seen by looking
at the linear equation [138]

v′(ξ) = v(ξ + 1) + v(ξ − 1), v(θ) = 1 for − 1 ≤ θ ≤ 1, (17)

which only has discontinuous solutions.

When studying such ill-posed infinite-dimensional problems, exponential di-
chotomies, Fredholm theory and dimension reduction techniques become the
methods of choice. Initiated by the pioneering work of Rustichini [138, 139],
research in this area features spectral flow results to compute the Fredholm
index for operators with finite range shifts [126], infinite-range shifts [69] or
neutral terms [120], various state-space decompositions based on exponential
dichotomies [83, 94, 109, 129], techniques to construct local [71, 107, 108] and
global [100] center manifolds and extensions of geometric singular perturbation
theory [101].

Several of these results are discussed in §2.1 and §5.1. We emphasize that
this theory is useful not only for establishing the existence of travelling wave
solutions, but also for the analysis of their stability.

Planar travelling waves The two-dimensional analogue of (1) is given by the
planar Nagumo LDE

u̇ij = d[ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij ] + g
(
uij ; a

)
, (18)

where we take (i, j) ∈ Z2. Planar travelling wave solutions propagating at an
angle ζ relative to the horizontal can be written in the form

uij(t) = Φ(i cos ζ + j sin ζ + ct), (19)
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Fig. 2. Numerical simulations for the Nagumo LDEs (1) and (18) with d = 0.1. Left:
the behaviour of the waveprofiles as a is increased towards a = 0.5. The zero-speed
profiles for a ∈ {0.46, 0.5} are discontinuous step functions. Center: the behaviour of
c(a) near the critical value a− where pinning sets in. Right: Polar plots of the speed cζ
as a function of the propagation angle ζ for different values of a. The curves have been
rescaled by a factor ra for comparison purposes, so that every curve can be written as
cζra

(
cos(ζ), sin(ζ)

)
for 0 ≤ ζ ≤ π/2.

where we again impose the boundary condition (11). Substitution into the LDE
(18) now yields the travelling wave MFDE

cΦ′(ξ) = d
[
Φ(ξ + cos ζ) + Φ(ξ + sin ζ) + Φ(ξ − cos ζ) + Φ(ξ − sin ζ)− 4Φ(ξ)

]
+g
(
Φ(ξ); a

)
.

(20)
The broken rotational invariance in the R2 → Z2 transition is manifested by the
explicit presence of the propagation direction in (20).

In particular, the speed c = cζ of planar waves typically depends on the
angle ζ. This dependence can be very intricate when a ≈ 1

2 ; see panel (iii)
in Figure 2 and [28, 59, 106]. In fact, planar waves can fail to propagate in
certain directions that resonate with the lattice, whilst travelling freely in other
directions [28, 89, 128]. Several of the resulting peculiarities will be discussed in
detail in §4.

Equilibrium patterns Besides the pinned waves discussed above, we have so far
only considered equilibrium solutions to (1) that are spatially homogeneous.
However, the discrete nature of the problem allows this LDE to have a much
richer set of equilibria than the corresponding PDE (3). For example, in §3.1
we discuss solutions to the difference equation (15) that admit the periodicity
(rj+n, sj+n) = (rj , sj). Such solutions exist for small d > 0 and correspond with
equilibria for (1) that are spatially n-periodic. In fact, one can show [115] that
(15) admits a horseshoe for small d > 0, which implies the presence of chaos in
the set of equilibria for (1).

It is not hard to see that n-periodic equilibria for (1) can be seen as equilibria
for the Nagumo equation posed on the cyclic graph Cn. In [97] exact expressions
are given for the number of equivalence classes of such equilibria, after factoring
out the graph symmetries. It is natural to ask which other finite graphs can arise
in this fashion by studying regular lattices. A brief discussion can be found in
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[131, §1], where various colouring schemes are described for hexagonal lattices
that lead to the crown graph K3,3, the utility graph S0

4 and the complete graph
K4. In general however, full classifications are still unavailable. Results that can
be used to count the number of equilibria on several types of graphs can be
found in [150].

For the planar LDE (18), equilibrium patterns that are 2-periodic in both
horizontal and vertical directions again lead to the graphs C2 or C4, allowing
us to reuse the one-dimensional results discussed in §3.1. However, one can also
construct patterns that are 3× 2-periodic which lead to the ladder graph CL3,
or use five colours to arrive at the complete graph K5. In general, the study of
planar equilibrium patterns is still in its infancy. An illuminating discussion can
be found in [41, 125], where the periodicity and chaos present in the set of such
patterns is explored using simplified nonlinearities. A very recent project [22]
shows that the well-known snaking phenomenon also appears in the spatially
discrete setting.

Outline This paper is organized as follows. In §2 we outline the basic machinery
that has been developed for MFDEs and discuss a range of approaches that
can be used to establish the existence, uniqueness and stability of the travelling
waves (9). We move on in §3 to apply this theory to study the pattern forming
properties of several extensions to (1) that are all posed on the one-dimensional
lattice Z.

We subsequently consider the planar lattice Z2 in §4. A large part of this
section is concerned with the stability of the planar waves (19) under various
types of perturbations, which includes the removal of lattice points. However, we
also use these waves as building blocks to analyze more general types of solutions
such as corners and expanding interfaces.

In §5 we return to the one-dimensional lattice Z, but now consider discrete
FitzHugh-Nagumo equations. These are two-component LDEs that arise by cou-
pling a second variable to (1). Various types of singular perturbations are con-
sidered that allow us to reduce the complexity of the underlying problem by
invoking familiar results for the limiting subsystems.

We conclude in §6 by discussing discretization schemes for the Nagumo PDE
(3) that are relevant in the context of numerical analysis. In particular, we con-
struct fully-discrete travelling waves that solve (1) after discretizing the only
remaining derivative with a family of schemes referred to as backward differen-
tiation formula (BDF) methods. In addition, we explore the effects of using an
adaptive spatial grid to solve (3), instead of the standard spatially uniform grid
that leads to (1).

2 Background: tools and techniques

We here review the basics of some of the crucial techniques that have been
developed to analyze travelling waves in spatially discrete settings. For simplicity
and explicitness, we present all the main ideas in the context of the spatially
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homogeneous Nagumo LDE

u̇j(t) = d
[
uj−1(t) + uj+1(t)− 2uj(t)

]
+ g
(
uj(t); a

)
(21)

with d > 0 and the cubic nonlinearity g(u; a) = u(1 − u)(u − a). However, as
we will discuss in detail below, many of the tools can be extended to a diverse
range of more complicated systems.

In this case the travelling wave MFDE is given by

cΦ′(ξ) = d
[
Φ(ξ − 1) + Φ(ξ + 1)− 2Φ(ξ)

]
+ g
(
Φ(ξ); a

)
(22)

and we look for solutions that satisfy the limits

Φ(−∞) = 0, Φ(+∞) = 1. (23)

The linearization around any solution to this MFDE can be described by the
linear operator

Ltwv = −cv′ + d
[
v(ξ + 1) + v(ξ − 1)− 2v(ξ)

]
+ g′(Φ; a)v(ξ). (24)

We start in §2.1 by discussing several key aspects of the theory that has been
developed for operators such as Ltw that are associated to linear MFDEs. We
proceed in §2.2 by exploring several different approaches that can be used to
obtain the existence and uniqueness of solutions to (22) and to understand their
parameter-dependence. In §2.3 we subsequently investigate the nonlinear sta-
bility of these waves under the dynamics of (21). Finally, in §2.4 we discuss
numerical techniques that can be used to visualize the behaviour of (21) and
compute approximations for the speed and shape of the waves.

2.1 Linear theory

An important feature of the linear operator Ltw is that it reduces to a constant
coefficient operator in the limits ξ → ±∞. In particular, looking for solutions of
the form ezξ for these limiting systems, we readily see that the spatial eigenvalues
z are given by the roots of the characteristic functions

∆±(z) = −cz + d
[
ez + e−z − 2

]
+ g′

(
Φ(±∞); a

)
. (25)

For 0 < a < 1, the inequalities g′(0; a) < 0 and g′(1; a) < 0 imply that both

∆±(iν) 6= 0, for all ν ∈ R. (26)

On account of this fact, the linear operator Ltw is said to be asymptotically
hyperbolic. Several powerful results are available for such operators.
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Fredholm properties For c 6= 0, the results in [126, 138] show that Ltw is a
Fredholm operator from W 1,p into Lp for all 1 ≤ p ≤ ∞. In particular, we have
the inequalities

dim Ker(Ltw) <∞, codim Range(Ltw) <∞. (27)

In addition, upon writing

∆µ(z) = −cz + d
[
ez + e−z − 2

]
+ µg′

(
Φ(−∞); a

)
+ (1− µ)g′

(
Φ(+∞); a

)
= µ∆−(z) + (1− µ)∆+(z),

(28)
we see that ∆µ(iν) 6= 0 for all ν ∈ R and µ ∈ [0, 1]. In particular, one can
construct a homotopy between the limiting systems at ±∞ during which no
spatial eigenvalues cross the imaginary axis. The spectral flow result [126, Thm.
C] for the Fredholm index of Ltw then implies that

0 = ind(Ltw) = dim Ker(Ltw)− codim Range(Ltw)

= dim Ker(Ltw)− dim Ker(Ladj
tw ),

(29)

in which the adjoint linear operator Ladj
tw : W 1,p → Lp is given by

Ladj
tw w = cw′ + d

[
w(ξ + 1) + w(ξ − 1)− 2w(ξ)

]
+ g′(Φ; a)w(ξ). (30)

This terminology is motivated by the fact that

〈Ltwv, w〉L2 = 〈v,Ladj
tw w〉L2 (31)

holds for any pair of smooth functions v and w that decay sufficiently fast.
In [69] this Fredholm theory was extended to nonlocal linear operators that

involve infinite-range interactions and/or smooth convolution kernels. Such op-
erators arise frequently when studying neural field models [23, 70, 71]; see also
§5.3.

Kernel of Ltw In order to further exploit the identity (29), it is essential to gain
a thorough understanding of the kernel of Ltw. The translational invariance of
(22) immediately implies that LtwΦ

′ = 0, but the specific structure of this wave
equation must be used to rule out the presence of additional linearly independent
kernel elements.

Such an analysis is performed in [127], where one establishes

Ker(Ltw) = span{Φ′}, Ker(Ladj
tw ) = span{Ψ}. (32)

In addition, both Φ′ and Ψ are found to be strictly positive exponentially decay-
ing functions, which means that we can impose the normalization

〈Ψ, Φ′〉L2 = 1. (33)
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The key point in the analysis above is to obtain precise asymptotics for the
behaviour of Φ′ as ξ → ±∞. In particular, the spatial eigenvalue system ∆+(z) =
0 has a single real negative root z = −β+, which using contour integration [126,
Prop. 7.2] allows one to show that

Φ′(ξ) = C+e
−β+ξ +O(e−(β++ε)ξ), ξ →∞ (34)

for some ε > 0.

Using the comparison principle it is easy to show that Φ′ ≥ 0 and hence
C+ ≥ 0, but the delicate task is to sharpen this to C+ > 0. Assuming to the
contrary that C+ = 0, it is natural to expect the asymptotic behaviour of Φ to
be governed by the roots of ∆+(z) = 0 with <z < −β+. This possibility can
easily be excluded by the comparison principle, since the non-zero imaginary
parts of these roots all lead to forbidden oscillatory behaviour.

However, in this setting one also needs to exclude the case that Φ′ decays at
a rate that is faster than any exponential. This requires subtle estimates on (22)
involving differential inequalities. In a sense, these computations can be seen as
a non-autonomous counterpart to the completeness theory discussed in [52, 79].
This theory can be used to decide whether a given set of eigenfunctions for a
delay differential operator can be used as a basis for the underlying statespace.

By developing a graph-theoretic framework to keep track of the interactions
[104], it is possible to generalize this completeness result to multi-component
versions of (21). In this way, the characterization (32) can also be obtained for
multi-component systems such as those encountered in §3.

The resolvent of Ltw By applying the general Fredholm theory in [126] to the
identifications (32), we can identify the range of Ltw as the set

Range(Ltw) = {f ∈ Lp : 〈Ψ, f〉L2 = 0}. (35)

The normalization condition (33) hence implies that Φ′ /∈ Range(Ltw).

This fact can be reformulated as the statement that the algebraic multiplic-
ity of the zero eigenvalue of Ltw is equal to one. Indeed, a Lyapunov-Schmidt
decomposition can be used [144, Lem. 6.10] to obtain the meromorphic expansion

(λ− Ltw)−1f = λ−1Φ′〈Ψ, f〉L2 + B(λ)f, (36)

in which the map

λ 7→ B(λ) ∈ L(Lp;W 1,p) (37)

is analytic in a neighbourhood of λ = 0. As we will see in §2.3, such expansions
are very powerful tools when analyzing the stability of travelling waves. In the
continuous setting, Zumbrun and Howard [162] pioneered the use of such expan-
sions to obtain pointwise bounds on the Green’s functions associated to a wide
range of linear and nonlinear stability problems.
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Exponential dichotomies While the theory above focussed on the properties of
Ltw acting on functions that are defined on the full line, it is often very advan-
tageous to consider half-lines and compact intervals. In particular, we consider
the homogeneous equation

cv′(ξ) = d
[
v(ξ − 1) + v(ξ + 1)− 2v(ξ)

]
+ g′(Φ(ξ); a)v(ξ) (38)

and look for solutions in the space of bounded continuous functions

BC(I;R) = {v ∈ C(I;R) : ‖v‖∞ := supξ∈I |v(ξ)| <∞} (39)

defined on intervals I ⊂ R.
In order to consider the half-lines R− and R+, we now introduce the solution

spaces
P =

{
p ∈ BC((−∞, 1];R) : p satisfies (38) for all ξ ≤ 0

}
,

Q =
{
q ∈ BC([−1,∞);R) : q satisfies (38) for all ξ ≥ 0

} (40)

and look at their initial segments

P =
{
p ∈ C([−1, 1];R) : p = p|[−1,1] for some p ∈ P

}
,

Q =
{
q ∈ C([−1, 1];R) : q = q|[−1,1] for some q ∈ Q

}
.

(41)

Functions that are in both P and Q can be extended to solutions on the entire
real line, which means that

P ∩Q = Φ′|[−1,1]. (42)

In addition, the expansions in [126, Prop. 7.2] together with the hyperbolicity
condition (26) imply that functions in P and Q decay exponentially as ξ → −∞
respectively ξ → +∞.

The results in [129] show that the sum S = P +Q forms a set of codimension
one. More precisely, we have

S = {φ ∈ C([−1, 1];R) : 〈Ψ, φ〉Hale = 0}, (43)

in which the so-called Hale inner product is given by

〈ψ, φ〉Hale = cψ(0)φ(0) +

∫ 0

−1
ψ(ϑ+ 1)φ(ϑ) dϑ−

∫ 1

0

ψ(ϑ− 1)φ(ϑ) dϑ. (44)

Such a splitting of the space S is referred to as an exponential dichotomy on the
full line. Related results in a Hilbert space setting were obtained independently
by Härterich, Sandstede and Scheel [83].

It is also worthwhile to consider exponential dichotomies on half-lines, in
which case one introduces for L ≥ 0 the solution spaces

PL =
{
p ∈ BC([−L− 1, 1];R) : p satisfies (38) for all − L ≤ ξ ≤ 0

}
,

QL =
{
q ∈ BC([−1, L+ 1);R) : q satisfies (38) for all 0 ≤ ξ ≤ L

}
,

(45)
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together with their initial segments

PL =
{
p ∈ C([−1, 1];R) : p = p|[−1,1] for some p ∈ PL

}
,

QL =
{
q ∈ C([−1, 1];R) : q = q|[−1,1] for some q ∈ QL

}
.

(46)

In this case, the results in [109] show that the full space C([−1, 1];R) can be
decomposed as

C([−1, 1];R) = PL ⊕Q = P ⊕QL (47)

for any L ≥ 0.
In [109] we show how the characterization (35) can be exploited to construct

solutions to equations of the form Ltwv = f for functions f that are only defined
on half-lines. These solutions are by no means unique. Indeed, the power of the
exponential splittings above is that they correpond precisely to the freedom that
we have to solve such problems. This allows a general technique referred to as
Lin’s method [124] to be lifted from the finite dimensional world of ODEs to the
infinite dimensional setting of MFDEs.

For example, one can vary the parameters c and a in (22) and construct
so-called quasi-solutions, which are two-valued on [−1, 1] with a difference that
can be explicitly quantified by the Hale-inner product. By closing the gap one
can obtain information on the c(a) relation. Alternatively, these quasi-solutions
can be combined and used as building blocks to construct travelling waves to
more complicated problems; see §5.1.

2.2 Existence of waves

By now it is well-known that for each a ∈ [0, 1] there is a unique c = c(a)
for which the wave MFDE (22)-(23) admits a solution. When c(a) 6= 0, the
waveprofile Φ is unique up to translations and the pair (c, Φ) depends smoothly
on a.

In this subsection we discuss several different methods that can be used to
establish these properties. Each of these methods has its own strengths and
weaknesses, but together they form a powerful toolbox that can be applied in a
wide range of different settings.

Qualitative features As a preparation, we first discuss three important properties
of the c(a) relationship that can be deduced directly from (22) and the linear
theory discussed in §2.1. We remark that all the arguments here can be found
in [127].

First of all, we claim that in the boundary cases a ∈ {0, 1} one must have
c 6= 0. Indeed, assuming to the contrary that c = 0, one can integrate (22) and
use the identity∫ ∞

−∞

(
Φ(ξ)− Φ(ξ − 1)

)
dξ =

∫ ∞
−∞

(
Φ(ξ + 1)− Φ(ξ)

)
dξ (48)
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to conclude that

0 =

∫ ∞
−∞

g(Φ(ξ); a) dξ. (49)

Since we have the inequalities

g(u; 1) < 0 < g(u; 0) (50)

for all u ∈ (0, 1), this implies that Φ must be a constant function, contradicting
(23).

The second claim is that a solution (c, Φ) to (22)-(23) that has c 6= 0 extends
smoothly to a branch of solutions for nearby parameters (a, d). To see this, one
can rephrase (22) in the form

G(c, Φ, a, d) = 0 (51)

and compute the derivative

Dc,ΦG(c, Φ, a, d)[c̃, v] = −c̃Φ′ + Ltwv. (52)

This operator has full range on account of the characterization (35), which allows
the implicit function theorem to be applied.5

Under the assumption c 6= 0, this smoothness allows us to differentiate (22)
with respect to a, which yields

[∂ac]Φ
′ = Ltw[∂aΦ] + ∂ag(Φ; a). (53)

Applying (35) and recalling the normalization (33), we hence obtain the useful
monotonicity condition

∂ac = 〈Ψ, ∂ag(Φ; a)〉 = −〈Ψ,Φ(1− Φ)〉 < 0. (54)

Global homotopy The main idea in [127] is to establish the existence of travelling
waves by constructing a global homotopy between families of bistable MFDEs. In
particular, the collection of MFDEs (22) formed by taking a ∈ [0, 1] is connected
to the family

cφ′(ξ) = γ−1
(
φ(ξ − 1)− φ(ξ)

)
+ 4γg

(
φ(ξ); a

)(
1 + γ − 2γφ(ξ)

)−1
(55)

with γ = tanh 1. For a = 1
2 and c = −1, one can explicitly verify that this latter

MFDE has the solution

φ(ξ) =
1

2
(1 + tanh ξ). (56)

The monotonicity property (54) also holds in this case, which allows us to con-
clude that (55) has solutions with c < 0 for all a ∈ [ 12 , 1].

By using a similar continuation argument as above, these solutions can be
continued to the original family (22). The key issue is that the inequality c 6= 0

5 Actually, in order to ensure that the boundary conditions (23) are satisfied one needs
to consider perturbations v ∈W 1,p for 1 ≤ p <∞ while taking Φ ∈W 1,∞.
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must be maintained throughout this homotopy. This can be done uniformly for
all a ∈ [1 − ε, 1] by applying coercivity arguments similar to those described
above.

By exploiting the comparison principle, one can subsequently show that there
is a unique wavespeed c = c(a) for which (22)-(23) admits solutions. If c 6= 0,
then the waveprofile Φ is also unique up to translations. These arguments can
be readily generalized to general scalar equations of bistable type, but the use of
the specific reference system (55) prevents an easy generalization to the multi-
component case.

Spectral convergence In [11] the authors develop a perturbative technique to
construct solutions to (22)-(23) near the continuum regime. In particular, they
pick d = h−2 � 1 and spatially rescale (22) to arrive at the MFDE

cΦ′ =
1

h2
[
Φ(ξ − h) + Φ(ξ + h)− 2Φ(ξ)

]
+ g
(
Φ(ξ); a

)
. (57)

The main goal is to construct solutions that can be written as

Φ = Φ0 + v, c = c0 + c̃ (58)

for small perturbations (c̃, v), in which the pair (c0, Φ0) satisfies the travelling
wave ODE

c0Φ
′
0 = Φ′′0 + g(Φ0; a) (59)

associated to the Nagumo PDE (3).
The crucial linear operator to understand in this respect is

[Lhv](ξ) = −c0v′(ξ) +
1

h2
[v(ξ − h) + v(ξ + h)− 2v(ξ)] + g′(Φ0(ξ); a)v(ξ), (60)

which arises upon linearizing the MFDE (57) around the PDE wave (c0, Φ0).
This operator is a singularly perturbed version of its PDE counterpart

[L0v](ξ) = −c0v′(ξ) + v′′(ξ) + g′(Φ0(ξ); a)v(ξ). (61)

The main contribution in [11] is that Fredholm properties of L0 are trans-
ferred to Lh. In particular, the authors fix a constant δ > 0 and use the in-
vertibility of L0 − δ to show that also Lh − δ is invertible for small h > 0. To
achieve this, they consider bounded weakly-converging sequences {vj} ⊂ H1 and
{wj} ⊂ L2 with (Lh − δ)vj = wj and set out to find a lower bound for wj that
is uniform in δ and h.

The strategy is to show that such a lower bound can be found even if wj
is restricted to a large but compact interval K. Indeed, one can then extract a
subsequence of {vj} that converges strongly in L2(K) and use properties of the
limiting operator L0 to obtain the desired bounds.

Special care must therefore be taken to rule out the limitless transfer of energy
into oscillatory or tail modes, which are not visible in this strong limit. Spectral
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properties of the (discrete) Laplacian together with the bistable structure of the
nonlinearity g provide the control on {vj} that is necessary for this.

The power of this approach is that it does not use the comparison principle
and is not limited to finite range interactions. In particular, the results in [11]
also hold for general LDEs of the form

u̇j =
1

h2

∑
k>0

αk
[
uj−k + uj+k − 2uj

]
+ g
(
uj ; a

)
, (62)

provided that the coefficients {αk} satisfy the second-moment constraints∑
k>0

αkk
2 = 1,

∑
k>0

|αk|k2 <∞, (63)

together with the spectral bounds∑
k>0

αk
(
1− cos(kz)

)
≥ 0 for all z ∈ [0, 2π]. (64)

Together, these properties ensure that several key properties of the Laplacian
carry over to the discretization (62).

Recently, we generalized this approach to multi-component systems such as
the FitzHugh-Nagumo LDE [143, 144]; see §5.2 and §5.3. In addition, we con-
sidered situations where the discrete Laplacian includes a (localized) spatial
dependence or where the Nagumo PDE is fully discretized; see §6.1.

Monotonic iteration The approach taken by Chen, Guo and Wu in [36] is to
recast (22) as an integral equation that can be interpreted as a fixed point
problem. In particular, for any ν > 0 and c 6= 0 the authors introduce the linear
operator

[TcΦ](ξ) =
∫ 0

−∞ eνt
[
νΦ(ξ − ct) + g

(
Φ(ξ − ct); a

)
+d
[
Φ(ξ − ct+ 1) + Φ(ξ − ct− 1)− 2Φ(ξ − ct)

]]
dt.

(65)

Using exp[−νξ/c] as an integrating factor, the travelling wave MFDE (22) can
be integrated to yield

Φ = TcΦ. (66)

It turns out to be worthwhile to attack (66) indirectly by first restricting the
problem to finite intervals [−m,m]. To this end, let us introduce the truncation
operator Pm that acts as

[PmΦ](ξ) =

0 if ξ < −m,
Φ(ξ) if−m ≤ ξ ≤ m,
1 if ξ > m.

(67)

By choosing ν � 1 to be sufficiently large, one can ensure that the integrand
in (65) increasing monotonically with respect to the arguments Φ(·) and Φ(·±1).
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In particular, if ΦA ≤ ΦB holds in a pointwise fashion, then also PmTcΦA ≤
PmTcΦB .

In order to exploit this, the authors develop a monotonic iteration scheme
by writing

Φ−0 ≡ 0, Φ+
0 ≡ 1 (68)

and subsequently

Φ−j = PmTcΦ
−
j−1, Φ+

j = PmTcΦ
+
j−1. (69)

Indeed, the ordering properties above imply that

0 ≤ Φ−j−1 ≤ Φ
−
j ≤ Φ

+
j ≤ Φ

+
j+1 ≤ 1, (70)

which allows us to take the j →∞ limit and obtain two limiting functions that
we denote by Φ−(m,c) and Φ+

(m,c).

Naturally, one now wishes to take the limit m → ∞ in order to obtain a
solution to (22). The hard part in this procedure is to show that the limiting
waveprofile is not constant and indeed satisfies the boundary conditions (23).

For finite m, the truncation Pm helps in this respect as one can readily see
that

0 < Φ−(m,c)(ξ) ≤ Φ
+
(m,c)(ξ) < 1, ξ ∈ (−m,m). (71)

When c 6= 0, one can actually show that Φ−(m,c) = Φ+
(m,c). In addition, whenever

c1 < c2 we have

Φ+
(m,c1)

(ξ) < Φ−(m,c2)(ξ), ξ ∈ (−m,m). (72)

Suppose now that lim infm→∞ Φ+
(m,0) ≤

1
2 . This allows us to define a sequence

cl > 0, ml > l for which

Φ±(ml,cl)
(0) =

1

2
+ l−1. (73)

By taking the limitm→∞ we obtain a non-trivial solution to the travelling wave
problem (22)-(23). A similar procedure works when lim supm→∞ Φ−(m,0) ≥

1
2 , but

more delicate arguments are needed if both these conditions fail.
This procedure can be readily generalized to multi-component versions of

(21). In fact, the results in [36] are formulated for (21) with a diffusion coeffi-
cient d = dj that depends periodically on j. Besides the existence of travelling
wave solutions, the authors also establish the uniqueness and stability of these
solutions by exploiting the comparison principle.

Topological methods The techniques developed in [7, 8] aim to exploit the varia-
tional structure present in the wave MFDE (22). Indeed, upon picking a primitive
G that has G′(·; a) = g(·; a), the authors introduce the energy functional

HA(Φ)(ξ) =
d

2

(
Φ(ξ − 1) + Φ(ξ + 1)− 2Φ(ξ)

)
Φ(ξ) +G

(
Φ(ξ); a

)
, (74)



18 H.J. Hupkes et al.

together with a boundary term

HB(Φ)(ξ) =
1

2

∫ ξ+1

ξ

(
Φ(ξ − 1)Φ′(ξ)− Φ′(ξ − 1)Φ(ξ)

)
dξ. (75)

A short computation shows that any solution to (22) must also satisfy the iden-
tity

d

dξ

[
HA(Φ) +HB(Φ)

]
(ξ) = cΦ′(ξ)2, (76)

which means that HA +HB can be used as a spatial Lyapunov function.
Exploiting this observation, one can construct a global Conley-Floer homol-

ogy that encodes information concerning the travelling wave connections between
the three equilibria of g. Such connections satisfy (22) but not necessarily (23).
This homology is invariant under a large class of perturbations of g. In partic-
ular, this allows the authors to reduce the problem to the much simpler case
where g(u) = u3, which only admits a single equilibrium. The Conley-Floer ho-
mology can be explicitly computed in this case, which subsequently allows one
to formulate a forcing theorem to conclude that the travelling wave MFDE ad-
mits a solution for each c 6= 0. However, this theorem (at present) provides no
information concerning the possible limiting values of the waveprofile Φ.

This technique can be generalized to multi-component versions of (21) as
long as the nonlinearity has the structure of a gradient. However, there is no
need for the discretization of the Laplacian to have only positive off-diagonal
coefficients. In addition, it is also possible to consider models that have infinite
range interactions or that involve smooth non-local convolution kernels.

Spatial regularization The main feature of this indirect approach is that it re-
places (21) by the spatially smoothened system

ut = γuxx + d
[
u(x− 1) + u(x+ 1)− 2u(x)

]
+ g(u; a). (77)

The first step is to show that this regularized system with γ > 0 admits travelling
wave solutions. By taking the limit γ ↓ 0 and considering an appropriate sub-
sequence, one can subsequently recover a solution to the original wave problem
(22)-(23).

The travelling waves for (77) can be obtained by studying the time-evolution
of the initial condition

u(x, 0) =
1

2

(
1 + tanh(x)

)
. (78)

In particular, one can show that the corresponding solution u(x, t) converges to
a travelling wave for t → ∞. To accomplish this, one first proves that u(·, t) is
strictly increasing for all t > 0 and that is satisfies the limits u(−∞, t) = 0 and
u(+∞, t) = 1. This allows us to define quantities ξ−(t) and ξ+(t) by demanding

u(ξ−(t), t) = δ, u(ξ+(t), t) = 1− δ. (79)
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The key technical step is to obtain time uniform bounds

ξ+(t)− ξ−(t) ≤ m(δ), (80)

which can be seen as an a-priori steepness result for the interface.
One can subsequently use the comparison principle to build a sequence of

shifts {ξj} and times {tj} → ∞ so that we have the convergence

u(· − ξj , tj)→ Φ (81)

in the space of bounded continuous functions. The uniform bounds (80) allow
us to conclude that the limiting function satisfies Φ′ > 0 and has the limits
(23). After some manipulations this limiting function turns out to be the desired
waveprofile. These arguments were first introduced by Chen [35] in the context
of general nonlocal PDEs. In [104] we generalized this procedure to spatially
regularized multi-component versions of (21).

In order to construct a converging subsequence for the singular limit γ ↓ 0,
it suffices to obtain a uniform bound on the wavespeed c for small γ. The key
issue is to show that the limits (23) are maintained throughout this limiting
procedure. This can be achieved by establishing that the difference ξ+(t)−ξ−(t)
also remains bounded as γ ↓ 0. Arguments of this type can be found in [104, 106].

2.3 Stability of waves

Here we discuss several different methods that can be used to establish the
nonlinear stability of the travelling waves (22)-(23) in the case where c 6= 0. In
particular, one can show that there exists δ > 0 so that any solution to (21) with

sup
j∈Z
|uj(0)− Φ(j)| < δ (82)

must satisfy the limit

sup
j∈Z
|uj(t)− Φ(j + ct+ ϑ)| → 0 (83)

as t→∞ for some asymptotic phaseshift ϑ. In addition, the rate of convergence
is exponentially fast.

Wave squeezing This method builds upon the classic approach developed by Fife
and McLeod for the Nagumo PDE (3). In particular, one sets out to exploit the
comparison principle by constructing sub- and super-solutions of the form

u−j (t) = Φ
(
j + ct− Z(t)

)
− z(t), u+j (t) = Φ

(
j + ct+ Z(t)

)
+ z(t), (84)

with z decreasing from z0 to 0 and with Z increasing from 0 to Z∞. These
functions hence transform initial global additive perturbation of size z0 into
phaseshifts of size Z∞.
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To better understand the crucial relationship between the asymptotic phase-
shift Z∞ and the additive perturbation z, we note that the super-solution resid-
ual

J +
j = u̇+j − d

[
u+j−1 + u+j+1 − 2u+j

]
− g(uj ; a) (85)

is given by

J +
j (t) = Ż(t)Φ′

(
ξj(t)

)
+ ż(t) + g

(
Φ
(
ξj(t)

)
; a
)
− g
(
Φ
(
ξj(t)

)
+ z(t); a

)
, (86)

with ξj(t) = j + ct + Z(t). Close to the interface, the term g(Φ) − g(Φ + z) ∼
−g′(Φ)z is negative and must be dominated by the positive term ŻΦ′. This
requires that Ż dominate z and ż. On the other hand, close to the spatial limits
Φ → 0 and Φ → 1 we have g′(Φ; a) < 0, so this regime requires z to dominate
ż. These observations allow us to define z(t) as a slowly decaying exponential,
which gives the relation

Z∞ ∼
∫ ∞
0

z(t) dt ∼ z0 (87)

between the asymptotic phase shift and the size of the initial perturbation.
In [36, §5.4] the authors provide an elaborate argument to show how these

explicit sub- and super-solutions can be used to trap a broad class of pertur-
bations from Φ and steer them towards a phase-shifted version of this wave.
The key ingredient is a careful mechanism to track the position of the perturbed
wave by means of a phase condition. A variant of this method was used in [88] to
establish the existence of an entire solution to (21) in the presence of obstacles;
see §4.6.

Temporal Green’s function In the remainder of this subsection we refrain from
using the comparison principle, which widens the class of LDEs that can be
considered. In this case one can only expect to handle perturbations from Φ that
are small, since the linear behaviour of (21) can then be used to control the
nonlinear effects.

Looking for solutions to (21) of the form

uj(t) = Φ(j + ct) + vj(t), (88)

we find that v must satisfy the time-dependent LDE

v̇j(t) = d
[
vj−1(t) + vj+1(t)− 2vj(t)

]
+ g′

(
Φ(j + ct); a

)
vj(t) +Nj

(
t, v
)
, (89)

in which

Nj(t, v) = g
(
Φ(j + ct) + vj(t); a

)
− g
(
Φ(j + ct); a

)
− g′

(
Φ(j + ct); a

)
vj(t). (90)

This nonlinearity behaves as |Nj(t, v)| = O(‖v(t)‖2∞) for v → 0, uniformly for
t ∈ R.

This allows us to focus on the linear part

ẇj(t) = d
[
wj−1(t) + wj+1(t)− 2wj(t)

]
+ g′

(
Φ(j + ct); a

)
wj(t), (91)
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which for each pair (j0, t0) ∈ Z × R has a unique solution W t0j0 that satisfies
the initial condition

W t0j0
j (t0) = δjj0 . (92)

These special solutions can be used to define a Green’s function G(t, t0) ∈ L(`∞)
that acts as the convolution

G(t, t0)y =
∑
j0∈Z

W t0j0
j (t)yj0 . (93)

Indeed, for any pair t > t0 solutions to (91) can be found by writing

w(t) = G(t, t0)w(t0). (94)

In general, it is very hard to analyze non-autonomous evolution equations.
In this case we are aided by the special structure of wave solutions. Indeed, the
system (89) remains invariant under the replacements

(j, t) 7→
(
j − 1, t+ c−1

)
. (95)

In particular, upon introducing the right-shift operator S ∈ L(`∞) that acts as
(SU)j = Uj−1, we have the shift-periodicity

G(t+ c−1, t0 + c−1) = S−1G(t, t0)S. (96)

In a sense, this compactifies the set of time differences t − t0 that need to be
considered.

Shift-periodic Floquet theory A first approach to exploit the identity (96) was
developed by Chow, Mallet-Paret and Shen in [40]. In particular, they introduce
the operator

R = SG(c−1, 0), (97)

which can be seen as a shift-periodic version of the monodromy map that is
usually considered for periodic systems. By checking that vj(t) = Φ′(j + ct) is a
solution to (91), one readily sees that RΦ′ = Φ′. In particular, we have

1 ∈ σ(R) = {ζ ∈ C | R − ζ : `∞ → `∞ is not invertible}. (98)

If this unit eigenvalue is simple and the remainder of the spectrum satisfies
the inclusion

σ(R) \ {1} ⊂ {ζ : |ζ| < 1}, (99)

the general results in [40] show that the travelling wave is nonlinearly stable.
This was achieved by constructing a local `∞-coordinate system around the
travelling wave and analyzing the monodromy map in these new coordinates.
The arguments used to construct this coordinate system are very technical and it
is therefore not straightforward to generalize this approach to spectral scenarios
that are more complicated than (99).

For general problems the spectrum of R is hard to analyze in a direct fashion.
However, for our specific system (21) one can use the comparison principle to
show that (99) indeed holds.



22 H.J. Hupkes et al.

Spatial Green’s functions A second approach towards analyzing the temporal
Green’s function G was pioneered by Benzoni-Gavage and her coworkers [14, 15].
The main idea is sacrifice the discreteness of the spatial variable by passing to a
reference frame that moves along with the wave. In particular, one replaces the
non-autonomous linear system (91) by the autonomous non-local PDE

∂tw(t, ξ) = −c∂ξw(t, ξ) + d
[
w(t, ξ − 1) + w(t, ξ + 1)− 2w(t, ξ)

]
+g′
(
Φ(ξ); a

)
w(t, ξ).

=
[
Ltww(t, ·)

]
(ξ).

(100)

In order to solve this system by Laplace transform techniques, it is very useful
to understand the pointwise behaviour of the resolvents of Ltw. This is encoded
in the spatial Green’s functions Gλ, which solve the resolvent problem

(Ltw − λ)Gλ(·, ξ0) = δ(· − ξ0) (101)

in the sense of distributions.
The link between the temporal and spatial Green’s functions is provided by

the representation formula

Gjj0(t, t0) = − 1

2πi

∫ γ+iπc

γ−iπc
eλ(t−t0)Gλ(j + ct, j0 + ct0) dλ, (102)

which was established in [15, Thm. 4.2]. A-priori one must take γ � 1, but in
order to obtain useful decay rates on G one needs to shift the contour as far to
the left as possible.

In order to achieve this in the context of (21), one can exploit the meromor-
phic splitting (36) to write

Gλ(ξ, ξ0) = −λ−1Φ′(ξ)Ψ(ξ0) + G̃λ(ξ, ξ0), (103)

with a remainder term G̃λ(ξ, ξ0) that is analytic for small |λ|. This allows us to
shift the contour in (102) to the left of the imaginary axis, picking up a simple
pole in the process. For small β > 0 this yields the pointwise bound

Gjj0(t, t0) = Φ′(j + ct)Ψ(j0 + ct0) +O
(
e−β(t−t0)e−β|j+ct−j0−ct0|

)
. (104)

With this bound in hand, one can proceed to construct stable manifolds
for the family of travelling wave solutions uj(t) = Φ(j + ct + ϑ) to (21) ob-
tained by varying the phase ϑ ∈ R. Together these manifolds span the entire
`p-neighbourhood of the travelling wave solution, which leads to the nonlinear
stability result.

This procedure is explained in detail in [102]. Generalizations to problems
with infinite-range interactions can be found in [144]. On the other hand, prob-
lems with complicated spectral scenario’s involving curves of essential spectrum
that touch the origin were analyzed in [13].
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2.4 Numerical aspects

Since the travelling waves (22)-(23) are stable, they can in principle be observed
numerically by simulating the dynamics of the LDE (21) with an initial condition
that resembles the wave profile. In practice, the choice

uj(0) =
1

2

[
1 + tanh(j)

]
(105)

often suffices for the Nagumo (21), but other systems can require a more sub-
tle construction. Naturally, one must truncate the problem to a finite domain
j ∈ {−L, . . . , L} and enforce appropriate boundary conditions. The Dirichlet
conditions u−L = 0 and uL = 1 give reliable results, but more refined choices
also fit the leading order coefficients in the asymptotic expansions (34).

Naturally, simulations of (21) only allow travelling waves to be tracked for the
limited amount of time that their ‘core’ is contained in the domain under consid-
eration. In principle, this can be improved by using so-called freezing methods
[20], which introduce an extra phase variable to keep track of the position of
wave-like solutions. In a sense, this is the numerical equivalent of passing to a
reference frame that moves along with the wave.

An alternative - more direct - approach is to look for numerical solutions of
the travelling wave system (22)-(23). The early work by Chi, Bell and Hassard
[39] already contains computations of this nature. This numerical work was con-
tinued by Elmer and Van Vleck, who have performed extensive calculations on
MFDEs in [1, 56, 57, 58, 59].

To our knowledge, the most recent and versatile tools in this area are col-
location solvers that are able to solve MFDEs on finite intervals [1, 106]. In
particular, these codes solve n-dimensional problems of the form

τ(ξ)φ′(ξ) = f
(
φ(ξ), φ

(
ξ + σ1(ξ, φ(ξ))

)
, . . . , φ

(
ξ + σN (ξ, φ(ξ))

))
, (106)

for given functions f : Rn(N+1) → Rn, τ : R → Rn and shifts σi : R1+n → R.
This is achieved by subdividing the interval under consideration into M subin-
tervals [ti, ti+1] and representing φ(ξ) on each subinterval in terms of a standard
Runge-Kutta monomial basis. The representation is required to be continuous
at the boundary points between subintervals and in addition to satisfy (106) at
the Md collocation points ti+(ti+1− ti)cj , for i = 1 . . .M and j = 1 . . . d, where
0 < c1 < . . . < cd < 1 are the Gaussian collocation points of degree d for some
d ≥ 3. Using Newton iterations such a piecewise polynomial φ can be found,
provided that a sufficiently close initial estimate is available.

Various types of boundary conditions can be used to close the system (106).
Since the shifts σi may depend on the spatial variable ξ as well as on the function
value φ(ξ) itself, this allows us to compute periodic solutions to MFDEs even
when the period is unknown [93].

The occurrence of propagation failure presents serious difficulties for this nu-
merical scheme when solving (22)-(23), since solutions may lose their smoothness
in the singular limit c→ 0. This difficulty can be overcome by introducing a term
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−γΦ′′ to the left hand side of (22) and using numerical continuation techniques
to take the positive constant γ as small as possible. In [104, 106] this approach
is analyzed from a theoretical viewpoint. In particular, convergence results are
provided to show that this approximation still allows us to uncover the behaviour
that occurs at γ = 0.

3 Periodic patterns

The interplay between different interactions on different length scales in a spa-
tially discrete system often leads to the formation of periodic patterns. Examples
include twinning microstructures in shape memory alloys [21], domain-wall mi-
crostructures in dielectric crystals [151] and oscillations in neural networks [65].
The dynamics of these patterns is both interesting and relatively unexplored.

Early results in this area were obtained in the context of material science,
where spatially discrete equations have long been considered. The model of
Hillert [85] is a one-dimensional model to describe phase separation in binary
solids that allows for periodic patterns with no restriction on the amplitude of
oscillations. The three-dimensional counterpart in [44] allows for periodic pat-
terns with small amplitude. Subsequent work of Cahn and Novick-Cohen [29]
developed a quasi-continuum approach to the model by deriving formal limiting
PDEs that are able to capture the oscillatory behaviour; see also [142].

In [27] several spatially periodic structures were investigated for spatially
discrete Allen-Cahn and Cahn-Hilliard equations with ‘negative diffusion’ and
with both first and second neighbor couplings. It was noted in [28] that two-
periodic patterns could be smoothened out by rewriting the scalar LDE as a
vector LDE in order to split the odd and even numbered lattice sites. In [153]
a model for martensitic phase transformations was derived that resulted in a
bistable system with repelling first neighbor interactions.

In this section we focus on four recent projects related to this theme. The
first of these [96, 98] reconsiders the Nagumo LDE (21) but now looks at the ex-
istence of spatially periodic equilibria and the possibility of forming connections
between such patterns by multi-component travelling waves. In §3.2 we consider
repelling interactions by taking d < 0 in (21). We show how the system can be
reformulated as a vector equation and discuss results from [25] concerning the
existence and stability of bistable and monostable traveling waves for a large
range of parameter values. Co-existence of traveling solutions and propagation
failure are investigated as well. Finally, in §3.3 we add next-to-nearest neighbour
interactions to (21). Several results from [154, 156] are summarized to show how
the competition between the two types of interactions affects the patterns that
can be formed.

3.1 Multichromatic waves

We are here again interested in the Nagumo LDE

u̇j(t) = d
[
uj−1 + uj+1 − 2uj(t)

]
+ g
(
uj ; a

)
, (107)
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Fig. 3. The solid lines denote the upper boundary of the regions Ωw where roots of
type w ∈ {0001, 0011, 0111} are defined. The dashed lines denote the boundaries above
which the indicated wave connections have non-zero speed. Notice that regions exist
in which the 0→ 0001, 0001→ 1 and 0→ 1 waves all travel.

with d > 0. The discrete nature of this problem allows for a much richer class
of equilibrium solutions than its spatially continuous counterpart. For example,
one can search for n-periodic equilibria by writing

ui = umod(i,n) (108)

for some u ∈ Rn.
Upon introducing the nonlinear mapping G(·; a, d) : Rn → Rn that acts as6[

G(u; a, d)
]
i

= d(ui−1 − 2ui + ui+1) + g
(
ui; a

)
, (109)

such equilibria must satisfy G(u; a, d) = 0. Since the system decouples at d = 0,
we have G(wa; a, 0) = 0 for any wa ∈ {0, a, 1}n. Using the implicit function
theorem, these 3n simple roots can be locally continued for d > 0 until they
collide with another branch.

To formalize this procedure, we say that a solution to G(u; a, d) = 0 is an
equilibrium of type w ∈ {0, a, 1}n if there exists a path through [0, 1]n× (0, 1)×
[0,∞) of simple roots that connects (u; a, d) to (wa; a, 0). Here wa is obtained
from w by replacing {0, a, 1} by {0, a, 1}. We use this symbolic distinction to
emphasize the fact that the type w remains fixed, while the actual root u varies
as the parameters (a, d) are changed. Indeed, we can now define the parameter
set

Ωw = {(a, d) : the system G(· ; a, d) = 0 admits an equilibrium of type w};
(110)

6 Here we use modulo arithmetic on i.
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Fig. 4. This sequence of snapshots from a simulation of the Nagumo LDE (21) with
a = 0.63 and d = 0.0625 features a collision between a wave of type 0 → 0111 and a
counterpropagating wave of type 0111 → 1. The right part of the intermediate buffer
zone is first pulled towards one by the incoming wave on the right, but then gets pulled
towards zero by the final travelling monochromatic wave.

see Figure 3 for several examples.
We will be specially interested in the cases w ∈ {0, 1}n, since equilibria of

this type are stable solutions to (107). Indeed, the monotonic iteration theory
in [36] that was described in §2.2 can then be used to establish the existence of
wave solutions that connect ordered pairs of such stable equilibria.

For n = 2, the upper boundary of Ω01 can be written as a graph d = d01(a).
Writing u = u01(a, d) for the corresponding equilibrium (108), the wave solution
that connects the homogeneous equilibrium uj ≡ 0 to this two-periodic pattern
can be written as

uj(t) =

{
Φe(j − ct) j is even,
Φo(j − ct) j is odd.

(111)

Here we write c = c0→01(a, d) and impose the limits

lim
ξ→−∞

(
Φe(ξ), Φo(ξ)

)
= (0, 0), lim

ξ→+∞

(
Φe(ξ), Φo(ξ)

)
= u01(a, d). (112)

It is an interesting and delicate problem to decide whether these so-called
bichromatic waves can travel or whether they are pinned. For small d > 0 the
latter is the case, which allows us to consider the bichromatic pinning boundary

d0→01(a) = max{0 ≤ d ≤ d01(a) : c0→01(a, d) = 0}. (113)

The main result in [96] is that there exists a− ∈ (0, 12 ) so that

d0→01(a) < d01(a) (114)

holds for all a ∈ (a−, 1), which forces waves to travel for intermediate values of
d. This can be seen as a generalization of the coercivity results for the standard
monochromatic waves discussed in §2.2.

The cases n = 3 and n = 4 were analyzed numerically in [98]. In these cases
there exist (small) intervals of a in which the upper boundaries of the sets Ωw

can no longer be written as graphs d = dw(a); see the inset of the cusp in Fig. 3.
This is the reason that we must allow a to vary along the defining paths through
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the regions Ωw. As a consequence, for fixed a the number of n-periodic equilibria
does not decrease monotononically as the diffusion d is increased.

Upon writing d0→1(a) for the pinning boundary corresponding to the stan-
dard monochromatic waves (22) and generalizing the notation (113), the numer-
ical results indicate that the ordering

d01(a) < d0→0111(a) < d0→1 < d0111(a) (115)

holds for all a ∈ (0.63, 1). In particular, while bichromatic waves can only
exist for parameters (a, d) where monochromatic waves are pinned, travelling
quadrichromatic waves can co-exist with travelling monochromatic waves; see
Fig. 3. This allows several types of intricate collision processes to take place.
For example, a travelling 0→ 0111 wave can collide with a counter-propagating
0111 → 1 connection to form a travelling monochromatic 0 → 1 wave; see Fig.
4.

3.2 Negative diffusion

In [25], the existence and stability of traveling waves solutions with ‘negative
diffusion’ is investigated. In particular, let us consider the LDE

u̇j(t) = −d
[
uj−1 + uj+1 − 2uj(t)

]
+ g
(
uj ; a

)
, (116)

again with d > 0. This system has been used in [153] to describe martensitic
phase transitions in a chain of particles that features interactions between first
and second neighbours. The latter interactions are modelled by standard springs,
but the former are governed by a non-convex biquadratic potential representing
two elastic phases. After a suitable rescaling, (116) can be seen as the over-
damped limit of the resulting system.

Instead of flattening variations, the diffusion term in (116) now promotes
oscillatory behaviour. Unlike its PDE counterpart, this system is still well-posed
on account of the fact that the discrete Laplacian is simply a bounded linear
operator. In particular, the cubic g can keep the oscillations under control.

Of course, the comparison principle no longer holds for (116). It can be
recovered by introducing the new variables vj = (−1)juj , which satisfy the
spatially periodic system

v̇j = d
[
vj−1 + vj+1 + 2vj

]
+ hj

(
vj ; a) (117)

with alternating nonlinearities

hj(v; a) =

{
g(v; a) for even j,

−g(−v; a) for odd j.
(118)

In principle, this equation fits into the general spatially periodic framework of
[36]. The challenge is to identify and classify the equilibrium solutions to (117).
To this end, we look for stationary solutions of the form

vj =

{
ve for even j,

vo for odd j,
(119)
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which must hence satisfy the coupled system

2d(vo + ve) = −g(ve; a), 2d(vo + ve) = g(−vo; a). (120)

Eliminating vo from these equations, we must find the roots G(ve; a, d) = 0 of
the ninth-degree polynomial

G(ve; a, d) = g(ve; a) + g
(
ve +

g(ve; a)

2d

)
, (121)

which can be factored as

G(ve; a, d) = g(ve; a)G̃(ve; a, d) (122)

for some sixth-degree polynomial G̃(·; a, d). This polynomial can have between
zero and six real roots. Taking into account the three equilibria (0, 0), (a,−a)
and (1,−1) induced by the factor g, there are hence up to 81 potential connecting
orbits between two-periodic stationary patterns.

In [25], we give a detailed description of the roots of G and their dependence
on the parameters (a, d). This allows us us to study the existence, uniqueness
and stability of traveling wavefront solutions to the antidiffusion Nagumo LDE
(116). In particular, we uncover the different regions in the (a, d)-plane where
bistable and monostable dynamics occur.

We analyze the propagation failure phenomenon in the bistable region and
provided expressions for minimum wavespeeds in the monostable region. Our
computations show that there are values for the parameters (a, d) where bistable
and monostable connections co-exist.

3.3 Competing interactions

In order to explore the effects of interactions with different length scales, we ex-
tend (21) by including a diffusion term that involves next-to-nearest neighbours.
In particular, we introduce the discrete diffusions

(∆1u)j := uj−1 + uj+1 − 2uj , (∆2u)j := uj−2 + uj+2 − 2uj (123)

and consider the system

u̇j = d1(∆1u)j + d2(∆2u)j + g
(
uj ; a

)
(124)

on the one-dimensional lattice j ∈ Z. Motivated by our earlier work [153], we
focus much of our attention on the case where at least one of the interactions is
repulsive (d1 and/or d2 are negative). Note that this is certainly not a necessary
condition for pattern formation, as we have seen in §3.1.

The results in [154, 156] consider spatially p-periodic equilibrium solutions
to (124) and the potential for connecting them via travelling waves. The focus
is on p ∈ {1, 2, 4}, but larger periods, longer interaction lengths and higher
dimensional lattices can also be considered using similar techniques.
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In order to gain insight, we started in [154] by replacing the cubic g with its
piecewise linear caricature gpl defined in (14). As in §3.2, the first step was to
find the periodic equilibria and identify the range of parameters where these so-
lutions and their homogeneous counterparts are stable. We then took advantage
of the piecewise linear form of the nonlinearity gpl to apply Fourier transform
techniques and constructed explicit traveling wave solutions along the lines of
the approach in [28]. We conducted a detailed analysis of the solution in the
p = 2 case and considered some examples in the p = 3 and p = 4 cases. In
particular, we investigated the dependence of the detuning parameter a on the
wavespeed c and the parameters d1 and d2.

Fig. 5. Summary of results on existence of traveling wave solutions with spatially
periodic patterns in (d1, d2) parameter space. The results by Chen et al. [37] are directly
applicable to region A. When |(d1, d2)| � 1, the techniques by Bates et al. [11] can be
applied in regions A and B. In region C the computations in [156] can be used, which
for d2 < 0 require either |d1/d2| � 1 or |d2/d1| � 1. The line D was investigated in
[25].

In [156] we returned to (124) with the cubic nonlinearity and used techniques
similar to those in [11] to establish the existence of traveling wave solutions in
the presence of competing interactions. When d2 > 0 and d1 < 0, the variable
transformation vj = (−1)juj can again be used to recover the comparison prin-
ciple and apply the framework of [36]. However, when d2 < 0 one must resort to
perturbative techniques. Figure 5 summarizes the parameter regions where the
various approaches can be applied.

4 Nagumo equations on planar lattices

In this section we focus on bistable equations posed on two-dimensional lattices.
To set the stage, let us consider the Nagumo LDE

u̇ij = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij + g(uij ; a) (125)
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Fig. 6. Schematic representation of a planar wave (126) travelling in the horizontal
direction ζ = 0.

with (i, j) ∈ Z2. As in the continuous setting [6], we will see that planar travelling
waves (see Fig. 6) can be used as a skeleton to help uncover the global dynamics
of (125). Such waves can be written in the form

uij(t) = Φζ(i cos ζ + j sin ζ + cζt
)
, Φζ(−∞) = 0, Φζ(+∞) = 1, (126)

in which ζ denotes the angle of propagation. Substituting this expression into
(125) leads to the ζ-dependent MFDE

cζΦ
′
ζ(ξ) = Φζ(ξ + cos ζ) + Φζ(ξ + sin ζ) + Φζ(ξ − cos ζ) + Φζ(ξ − sin ζ)

−4Φζ(ξ) + g
(
Φζ(ξ); a

)
.

(127)

The global homotopy argument discussed in §2.2 can also be used to construct
solutions to this system [127]. In particular, after fixing a ∈ (0, 1), the wavespeed
cζ depends uniquely on ζ and the waveprofiles Φζ are unique up to translation
provided that cζ 6= 0.

It turns out to be a much more subtle question to decide upon the stability
of these planar waves. Early work in this direction for four-dimensional non-
local problems can be found in [10], but in two dimensions the relevant decay
rates associated to a brute-force linearization of (125) are simply too slow. One
encounters similar problems when analyzing the Nagumo PDE, but two main
approaches have been developed in recent years to overcome them [17, 112]. Both
these approaches build upon the realization that transverse deformations of the
wave interface are governed by a heat equation that can be analyzed separately
from the remainder of the perturbation.

In order to discuss these issues, it is convenient to introduce the new variables

n = i cos ζ + j sin ζ, l = j cos ζ − i sin ζ, (128)

which are parallel respectively tranverse to the direct of propagation of the wave.
We will write Λζ ⊂ R2 for the collection of all pairs (n, l) obtained by applying
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(128) to the original lattice (i, j) ∈ Z2. This set is dense when tan ζ /∈ Q. On
the other hand, when tan ζ is rational or infinite it is possible to find a δ > 0 so
that we have the inclusion

Λζ ⊂ δZ2. (129)

In this case, it is often convenient to extend the problem (by repetition) onto
the entire grid (n, l) ∈ δZ2.

For any ζ, the coordinates (128) transform the LDE (125) into

u̇nl = un+cos ζ,l−sin ζ + un+sin ζ,l+cos ζ + un−cos ζ,l+sin ζ + un−sin ζ,l−cos ζ

−4unl + g
(
unl; a

)
,

(130)

which now admits the planar wave solutions

unl(t) = Φζ
(
n+ cζt

)
. (131)

The refined splitting alluded to above is now given by

unl(t) = Φζ
(
n+ cζt+ θl(t)

)
+ vnl(t). (132)

In §4.1 we discuss the linearized equations for the pair (θ, v) and show how
to extend the one-dimensional Green’s functions from §2.3. We use this in §4.2
to generalize [112] and establish the local nonlinear stability of the planar waves
(131) using bootstrapping arguments. On the other hand, in §4.3 we obtain the
global stability of these waves by building on the arguments in [17], which are
based on the comparison-principle.

Moving on to solutions that are more general than travelling waves, we discuss
the expansion of compactly supported initial conditions in §4.4. The limiting
shapes often resemble polygons that can be predicted from the structure of the
ζ 7→ cζ function. This leads naturally to the study of travelling corners in §4.5.

The last part of this section is focused on versions of (125) with spatially-
varying diffusion coefficients, i.e.,

u̇ij = dij
[
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij

]
+ g(uij ; a). (133)

In §4.6 we allow the diffusion coefficient to be modified on a single lattice site,
which can be interpreted as an obstacle. We discuss the results in [88] that show
that planar waves can pass around such an obstacle and regain their shapes.

We conclude in §4.7 by allowing dij to vary periodically or become negative,
analogous to the one-dimensional setup in §3. In particular, we describe results
from [104] on the existence of travelling checkerboard patterns.

4.1 Linear theory

A key ingredient towards analyzing the behaviour of (125) in the neighbour-
hood of the planar waves (126) is to linearize the LDE around these waves. The
anistropy of the lattice plays an important role here, as the resulting structure
of the linear equations depends heavily on the direction of propagation ζ.
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Lattice directions Performing this linearization for the horizontal direction ζ = 0,
we arrive at the system

v̇ij(t) = vi+1,j(t) + vi,j+1(t) + vi−1,j(t) + vi,j−1(t)− 4vij(t)

+g′
(
Φ0(i+ c0t); a

)
vij(t),

(134)

which as in the one-dimensional case discussed in §2.3 is temporally non-autonomous.
The j-direction however is unaffected by this issue, which allows us to take a
discrete Fourier transform in this direction. This readily leads to the decoupled
family of systems

d
dt [v̂ω]i(t) = [v̂ω]i+1(t) + eiω[v̂ω]i(t) + [v̂ω]i−1(t) + e−iω[v̂ω]i(t)− 4[v̂ω]i(t)

+g′(Φ(i+ ct); a
)
[v̂ω]i(t)

(135)
for ω ∈ [−π, π].

Using the procedure outlined in §2.3, it is possible to construct Green’s func-
tions for each of these spatially one-dimensional systems. The relevant linear
operators can be found by searching for solutions of the form

[v̂ω]i(t) = eλtwω(i+ ct), (136)

which leads to the eigenvalue problem

L(ζ=0)
iω wω = λwω (137)

for the linear operator

[L(0)
z p](ξ) = −cp′(ξ) + 2 cosh(z)p(ξ) + p(ξ + 1) + p(ξ − 1)− 4p(ξ)

+g′
(
Φ(ξ); a

)
p(ξ).

(138)

Upon writing λz = 2(cosh(z)− 1), we have

L(0)
z Φ′ = λzΦ

′. (139)

To find the evolution of perturbations of the form

vij(t) = θj(t)Φ
′(i+ ct) (140)

under (134), it now suffices to solve the discrete heat equation

θ̇j = θj+1 + θj−1 − 2θj . (141)

Indeed, taking the discrete Fourier transform of this system yields d
dt θ̂ω = λiω θ̂ω.

These perturbations are important because they correspond at the linear level
with transverse deformations of the planar wave interface. We remark that the
situation here closely resembles that encountered for the Nagumo PDE in [112].
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General directions For general angles ζ, the relevant linear system can be written
as

v̇nl(t) = vn+cos ζ,l−sin ζ(t) + vn+sin ζ,l+cos ζ(t)

+vn−cos ζ,l+sin ζ(t) + vn−sin ζ,l−cos ζ(t)− 4vnl(t)

+g′
(
Φζ(n+ cζt); a

)
vnl(t).

(142)

The corresponding operator is given by

[L(ζ)
z v](ξ) = −cζv′(ξ) + e−z sin ζv(ξ + cos ζ) + ez cos ζv(ξ + sin ζ)

+ez sin ζv(ξ − cos ζ) + e−z cos ζv(ξ − sin ζ)− 4v(ξ)

+g′
(
Φζ(ξ); a

)
v(ξ).

(143)

In particular, the dependence on z is now non-trivial. This means that one can
no longer hope to find an exact solution similar to (140).

On the other hand, for small values of |z| it is possible to find ζ-dependent
branches z 7→ (λ(z), φz) of the eigenvalue problem

λ(z)φz = L(ζ)
z φz. (144)

Upon introducing the quantities

αν = 〈Ψ, Φ′(·+ ν)〉L2 , βν = 〈Ψ, [∂zφz]z=0(·+ ν)〉L2 , (145)

it is not hard to compute [95]

λ′(0) = cos ζ
[
αsin ζ − α− sin ζ

]
+ sin ζ

[
α− cos ζ − αcos ζ

]
,

λ′′(0) = sin2 ζ
[
αcos ζ + α− cos ζ

]
+ cos2 ζ

[
αsin ζ + α− sin ζ

]
+2 cos ζ

[
βsin ζ − β− sin ζ

]
+ 2 sin ζ

[
β− cos ζ − βcos ζ

]
.

(146)

For ζ ∈ 1
4πZ we have λ′(0) = 0 and λ′′(0) > 0. We have numerical evidence to

show that the second inequality persists for all angles ζ, but the first identity is
typically violated. In fact, making the dependence on ζ explicit, we have

λ′ζ(0) = ∂ζcζ (147)

and this quantity is typically referred to as the group velocity. However, we do
remark here that the function ζ 7→ cζ can behave rather wildly in the critical
regime where a ≈ 1

2 , allowing the group velocity to vanish at specific values for
a even if ζ /∈ π

4Z.
Since the group velocity is a real number, we have

<λiω ∼ −λ′′(0)ω2 (148)

for ω ≈ 0, which means that we can still expect linear decay estimates similar
to those of the discrete heat equation.
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Let us now assume that tan ζ is rational and recall the inclusion (129). Ex-
tending our solution to the entire grid (n, l) ∈ δZ2 and imposing the decompo-
sition

vnl(t) = θl(t)Φ
′(n+ ct) + wnl(t), (149)

we normalize w by demanding∑
n∈δZ

Φ′(n+ ct)wnl(t) = 0 (150)

for all t ≥ 0 and l ∈ δZ. Formally writing the coupled system for (v, θ) as(
θ̇, v̇
)

= Bζ [θ, v], (151)

we can combine the Green’s function techniques from §2.3 with the Fourier
decomposition above to obtain a full two-dimensional Green’s function Gζ for
(151); see [87, §4]. The decay rates for θ correspond to those for the discrete
heat equation, while v decays at rates that are t−1/2 faster. In the diagonal
direction ζ = π

4 this factor increases to t−1, while in the horizontal direction
ζ = 0 the v component even decays exponentially rather than algebraically.

4.2 Local stability

Our first approach [87] to establish the stability of planar waves only considers
small perturbations from the wave and hence avoids using the comparison prin-
ciple. In particular, this technique can be applied to a wide range of problems,
as long as several standard spectral conditions can be verified. It is based on a
surprisingly recent result due to Kapitula [112], who used semigroup methods
and fixed-point arguments to obtain the corresponding result for the Nagumo
PDE.

In particular, we pick an angle ζ for which cζ 6= 0 and for which tan ζ is
rational. Based on the intuition obtained in §4.1, we consider the evolution under
the LDE (125) of patterns of the form

uij(t) = Φ
(
n+ ct+ θl(t)

)
+ vnl(t), (152)

with (n, l) given by (128). We assume that the initial perturbation from the
travelling wave is small in the sense that∑

l∈δZ
|θl(0)|+ sup

n∈δZ

∑
l∈δZ
|vnl(0)| < δ. (153)

In order to fix the coordinate system in such a way that the variables θl(t)
represent genuine phaseshifts, we impose the normalization condition∑

n∈δZ
Ψ(n+ ct)vnl(t) = 0. (154)
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After some algebra, the resulting system for (θ, v) can be written in the
abstract form (

v̇, θ̇
)
(t) = Bζ(t)

[
v, θ
]

+
(
N (v)
ζ (t; v, θ),N (θ)

ζ (t; v, θ)
)
, (155)

in which the linear operator Bζ(t) was introduced in (151). Using the Green’s
function for this latter system, one can use Duhamel’s principle to recast (155)
into the mild form(

v, θ
)
(t) = Gζ(t, 0)[v(0), θ(0)]

+
∫ t
0
Gζ(t, s)

[
N (v)
ζ

(
s; v(s), θ(s)

)
,N (θ)

ζ

(
s; v(s), θ(s)

)]
ds.

(156)

Based on the linear theory in §4.1, the choice for `1-based norms in the
transverse direction implies that θ can be expected to decay as t−1/4 in `2.
However, the decay rate for v depends on the angle ζ.

We now explore the effect of the nonlinear terms Nζ , which also depend
crucially on ζ. As a preparation, we introduce the first differences

θ�l =
(
θl+sin ζ − θl, θl−cos ζ − θl, θl−sin ζ − θl, θl+cos ζ − θl

)
. (157)

together with the second differences

θ�� =
(
θ�
)�
. (158)

The linear theory predicts the decay rates

‖θ�‖`2 ∼ t
−3/4, ‖θ��‖`2 ∼ t

−5/4 (159)

for these expressions.

Horizontal and diagonal directions For ζ ∈ π
4Z the nonlinear term for v satisfies

the pointwise bounds

N (v)
ζ (t; v, θ) = O(|v|2) +O(|vθ|) +O

(
|θ�|2

)
+O

(
|θθ��|

)
, (160)

with similar behaviour for N (θ)
ζ . In particular, the standard Cauchy-Schwarz

bound ‖ab‖`1 ≤ ‖a‖`2 ‖b‖`2 together with the linear behaviour

sup
n∈δZ

∑
l∈δZ
|vnl(t)|2 ∼ t−5/4 (161)

show that in the norm (153) we can expect (N (v),N (θ)) to decay as t−3/2. This is
very similar to the corresponding bounds obtained in [112] for the PDE setting.
In particular, setting up a variation-of-constants argument using the Green’s
function Gζ defined in §4.1 allows us to conclude that the expected linear decay
bounds carry over to the nonlinear setting.
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General directions For general rational directions ζ the geometry of the lattice
affects both the linear and nonlinear terms in our problem. Indeed, we have seen
in §4.1 that the expected linear decay in v slows down to

sup
n∈δZ

∑
l∈δZ
|vnl(t)|2 ∼ t−3/4. (162)

In addition, the lack of symmetry weakens the pointwise bounds for N (v)
ζ to

Nζ(t; v, θ) = O(|v|2) +O(|vθ|) +O
(
|θ�|2

)
+O

(
|θθ�|

)
. (163)

In particular, the terms of order |vθ| and |θθ�| now cause complications, since
they can only be expected to decay as t−1 in `1. Indeed, the crude estimate∫ t

0

(1 + t− s)−1/4(1 + s)−1ds ∼ log(1 + t)(1 + t)−1/4 (164)

shows that the t−1/4 decay for ‖θ‖`2 cannot be recovered from a simple applica-
tion of the Duhamel formula.

In order to refine this estimate, it is essential to consider the explicit structure
of the problematic terms. Consider for example the simple, yet crucial, identity

θl(θl+1 − θl) =
1

2
[θ2l+1 − θ2l − (θl+1 − θl)2]. (165)

The square of the first difference can be expected to behave as t−3/2, which does
not pose a problem. The difference of the squares though only decays like t−1.
However, using a summation by parts procedure the difference operator can be
transferred to the Green’s function. The bad estimate (164) can now be replaced
by the good estimate∫ t

0

(1 + t− s)−3/4(1 + s)−1/2ds ∼ (1 + t)−1/4. (166)

A careful analysis of the troublesome nonlinear terms shows that they can
all be treated by tricks of this kind, allowing us to close the nonlinear stability
argument. We remark that the identity (165) can be regarded as a discrete
form of uux =

(
1
2u

2
)
x
, which plays a crucial role when studying the stability of

travelling waves for PDEs with a conservation law structure [161].

4.3 Global stability

The approach in [88] leverages the comparison principle to show that the planar
waves (126) are stable under a much larger class of initial perturbations. This
generalizes the techniques developed in the landmark paper [17], where the au-
thors constructed explicit super and sub-solutions to the Nagumo PDE (3) that
trap perturbations that can be arbitrarily large (but localized).
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These sub-solutions can be seen as two-dimensional refinements of (84). In-
deed, they take the form

u−(x, y, t) = Φ
(
x+ ct− θ(y, t)− Z(t)

)
− z(t), (167)

with global functions

z(t) = εe−ηt, Z(t) =

∫ t

0

z(s) ds (168)

for small ε > 0 and η > 0 that turn small additive perturbations into a phaseshift.
The function θ is used to control transverse perturbations and is given by

θ(y, t) = β(t+ 1)−2γ
−1

e−y
2/
(
4γ(t+1)

)
. (169)

Here γ = γ(β) � β and β � 1 can be chosen to be arbitrarily large, allowing
localized perturbations of any size to be controlled. In particular, the function θ
can be seen as a modified heat-kernel where the diffusion is sped up by a factor
γ and the decay rate at the center y = 0 is slowed down to (t+ 1)−2γ

−1

.
In [16] this idea was generalized to the LDE (125) for waves travelling in the

horizontal direction ζ = 0. This was achieved by replacing the Gaussian in (169)
by the corresponding kernel for the discrete heat equation (141). This kernel can
be expressed in the form of modified Bessel functions of the first kind.

This procedure relies on a specific factorization similar to (140) that fails to
hold for general directions ζ. In order to fully account for all the slowly decaying
resonances spawned by the anisotropy of the lattice, the sub-solution (167) needs
to be adjusted significantly. In particular, for suitably chosen functions

P � : R→ R1×4, P �� : R→ R1×16, Q�� : R→ R4×4, (170)

it is possible [88] to use

u−ij(t) = Φ
(
n+ ct− θl(t)− Z(t)

)
+ P �

(
n+ ct− θl(t)− Z(t)

)
θ�l (t)

+P ��
(
n+ ct− θl(t)− Z(t)

)
θ��l (t)

+θ�l (t)TQ��
(
n+ ct− θl(t)− Z(t)

)
θ�l (t)− z(t).

(171)

Here we interpret the first and second difference θ�l and θ��l defined in (157)-
(158) as vectors in R4×1 and R16×1 respectively. In addition, the decay of the
function z needs to be slowed down to z(t) ∼ t−3/2 for t � 1 and the function
θ needs to be modified to

θl(t) = βt−
1
4γ

−1

√
2π

λ′′(0)
exp
[
− (l + λ′(0)t)2

2λ′′(0)γt

]
. (172)

Notice that the group velocity (146) appears here as an extra convective term.
One can use normal form techniques to find the specific form of the functions

(170). Indeed, their purpose is to neutralize any terms in the sub-solution resid-
ual that decay at rates that cannot be integrated uniformly in γ. Since we are
artificially slowing down the decay of θ, this means that we need to pay special
consideration to terms of order θ�� and (θ�)2, which could be neglected in §4.2.
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Fig. 7. The left panel depicts three of the perpendicular lines `ζ that play a role in the
Wulff construction. The boundary of the Wulff shape is displayed in the right panel
and resembles a slightly rounded polygon.

4.4 Spreading phenomena

Let us here assume that cζ > 0 for all angles ζ and consider the compactly
supported initial condition

uij(0) =

1 for i2 + j2 ≤ R2,

0 for i2 + j2 > R2 (173)

for some sufficiently large R > 0. In the PDE setting, a classic result [6, Thm.
5.3] obtained by Weinberger states that such regions containing the energetically
favourable state will spread throughout the space with a radial speed equal to
the speed of the planar travelling waves. The proof of this result uses radially
expanding sub- and super-solutions that can be constructed by glueing together
planar travelling waves travelling in different directions.

In [88] a weak version of this expansion result was established for the LDE
(125) with (173). However, the underlying sub- and super-solutions expand at
the speeds min0≤ζ≤2π cζ and max0≤ζ≤2π cζ respectively, which generally differ
from each other. This still leaves a considerable hole in our knowledge of the
expansion process.

The numerical results in [155] provide strong evidence that the limiting shape
formed by the evolution of (173) can be found by applying the Wulff construction
[137] to the polar plot of the ζ 7→ cζ relation. In particular, for each ζ ∈ [0, 2π]
one considers the line

`ζ = cζ(cos ζ, sin ζ) + R(sin ζ,− cos ζ), (174)

which is tangent to the circle of radius cζ at the angle ζ. The set that is enclosed
by the collection of these lines is referred to as the Wulff shape; see Fig. 7. For
a large subset of parameters a this limiting shape resembles a polygon.

Let us mention here that the Wulff shape plays an important role in the
field of crystallography, where it is used to predict the limiting shape of growing
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Fig. 8. Schematic representation of a corner travelling in the horizontal direction.

crystals [159]. In such applications it is usually constructed from a polar plot of
a free energy functional.

4.5 Travelling corners

The main motivation behind [95] is to take a step towards understanding the
polygonal expansion process described in §4.4 by looking at the evolution of a
single corner. Indeed, when the expanding blob is sufficiently large, it would
seem to be very reasonable to assume that the corners of the polygon behave in
an almost independent fashion.

A natural starting point is to look at so-called travelling corner solutions,
which arise from the regular planar travelling waves by ‘bending’ the level sets
of the waves. More specifically, the level sets are transformed from straight lines
| perpendicular to the direction of propagation into shapes resembling a > or <
sign; see Fig. 8.

For technical reasons the results in [95] only apply to propagation directions
for which the group velocity vanishes. Recalling (147), this means that

λ′ζ(0) = ∂ζcζ = 0. (175)

Although the group velocity can always be transformed away in the PDE setting
by a simple change of variables, the discreteness prevents us from doing this
for LDEs. In particular, (175) is a genuine restriction. On the other hand, an
important role in the Wulff construction is reserved for the directions where the
wavespeed is minimal and these are all obviously covered.

The admissable bending angles are determined by the directional dispersion

dζ(ϕ) =
cζ+ϕ
cos ζ

, (176)

which measures the speed at which the level-sets of the planar wave travelling
in the direction ζ + ϕ move along the vector (cos ζ, sin ζ). In view of (175) we
have dζ(0) = cζ and d′ζ(0) = 0.
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Assuming that d′′(0) > 0, we hence see that for all c̃ > cζ sufficiently close
to cζ , there exist two small angles ϕ− < 0 < ϕ+ for which

dζ(ϕ±) = c̃ (177)

holds. The main result in [95] now states that there exist a sequence of phaseshifts
{θl}l∈δZ that satisfies the limits

δ−1(θl+δ − θl)→ tan(ϕ±), l→ ±∞, (178)

together with a sequence of perturbations {vl}l∈δZ ⊂ H1 so that the function

uij(t) = Φ(n+ c̃t+ θl) + vl(n+ c̃t) (179)

is a solution to (125). In particular, the level sets are bent away from the vector
(cos ζ, sin ζ) to form a > shape. When d′′(0) < 0 this orientation is reversed and
one must take c̃ < cζ .

The main idea behind the proof of this result was inspired by the series
of papers written by Scheel and Haragus [80, 81, 82] for the planar Nagumo
PDE, where they used a two-dimensional global center manifold to capture the
corner solutions. The key feature of this approach is that the phaseshifts θ can be
factored out from the analysis due to the translational symmetry of the problem.
However, the loss of regularity in the discrete case causes severe complications
and forces one to analyze the full coupled system for v and θ along the lines of
[100].

In any case, the delicate behaviour of the cζ map for the Nagumo LDE
(125) leads to a rich class of behaviour. For example, the second derivative d′′(0)
can have both signs, while in the spatially homogeneous case one always has
d′′(0) > 0. In addition, it is possible to find so-called bichromatic corners, which
connect spatially homogeneous equilibria to checkerboard patterns.

4.6 Obstacles

In many situations it is desirable to understand the impact that localized spatial
impurities have on the dynamical behaviour of systems. In the context of (133),
this can be modelled by choosing diffusion coefficients that are homogeneous
everywhere except at (0, 0), i.e., dij = d + βδi0δj0 with d > 0 and β > −d.
Alternatively, one can consider the system on the punctured grid Z2 \ {(0, 0)},
replacing the nearest-neighbour discrete Laplacian by the graph Laplacian. In
particular, the equation for u1,0 is modified to

u̇1,0 = u2,0 + u1,1 + u1,−1 − 3u1,0 + g
(
u1,0; a

)
(180)

with similar modifications for u0,±1 and u−1,0.
In both cases, one can study the existence of entire solutions that resemble

a planar travelling wave as t→ ±∞ but have large transients in between caused
by the impurity. In [88] we show how the subsolutions (171) can be adapted to



Spatially Discrete Bistable Reaction-Diffusion Equations 41

control these large transients. In essence, we allow the global term z(t) to grow
instead of decay during the time that the steep part of the waveprofile is in the
vicinity of the obstacle. In particular, the results show that planar waves can
pass around large compact obstacles and still eventually recover their shape.

Our techniques are a variant of those developed fairly recently in [17] for the
Nagumo PDE. However, we do need to require that cζ 6= 0 for all ζ ∈ [0, 2π]
in order to utilize the spreading result discussed in §4.4. It is an interesting
open problem to determine the behaviour of the large transients when certain
directions are pinned.

4.7 Travelling checkerboards

In [104], we focussed on (133) with coefficients that are allowed to vary periodi-
cally, e.g. dij = do > 0 whenever i+ j is odd and dij = de > 0 whenever i+ j is
even. Following the approach in §3.1, we look for solutions that can be written
in the form of travelling checkerboards

uij(t) =

{
Φe(i cos ζ + j sin ζ + ct), i+ j is even,
Φo(i cos ζ + j sin ζ + ct), i+ j is odd,

(181)

in which we impose the spatially homogeneous limiting values

lim
ξ→−∞

(
Φe(ξ), Φo(ξ)

)
= (0, 0), lim

ξ→+∞

(
Φe(ξ), Φo(ξ)

)
= (1, 1). (182)

These waves must satisfy the coupled system

cΦ′e(ξ) = de
[
Φo(ξ + cos ζ) + Φo(ξ + sin ζ)

+Φo(ξ − cos ζ) + Φo(ξ − sin ζ)− 4Φe(ξ)
]

+ g
(
Φe(ξ); a

)
,

cΦ′o(ξ) = do
[
Φe(ξ + cos ζ) + Φe(ξ + sin ζ)

+Φe(ξ − cos ζ) + Φe(ξ − sin ζ)− 4Φo(ξ)
]

+ g
(
Φo(ξ); a

)
.

(183)
In this multi-component case it is no longer clear how the global homotopy

argument described in §2.2 can be extended. In addition, the potential irrational-
ity of the shifts prevents a direct application of the results from [36]. In [104]
we generalized the ideas in [35] to the present multi-component setting, which
allowed us to develop a spatial regularization method to obtain the existence
and uniqueness of travelling waves. We also extended the Fredholm theory for
the linearized operator Ltw, which for c 6= 0 allows us to conclude that these
checkerboards are nonlinearly stable and depend smoothly on the parameters
(a, ζ, do, de).

These techniques can also be applied to (133) with homogeneous negative
diffusion coefficients dij = d < 0. As before, one can introduce new variables
vij = (−1)i+juij to transform the problem into a two-component system that
admits a comparison principle. Under certain restrictions on the nonlinearity,
we were able to again obtain travelling checkerboards. However, in this case the
limiting rest states are typically not spatially homogeneous.
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5 Discrete FitzHugh-Nagumo Equations

In this section we focus on several versions of the discrete FitzHugh-Nagumo
equation, which can be used to describe the propagation of signal through myeli-
nated nerve fibres [114]. In its simplest form, this system can be written as

v̇j(t) = vj−1(t) + vj+1(t)− 2vj(t) + g
(
vj(t) ; a

)
− wj(t),

ẇj(t) = ε
(
vj(t)− wj(t)

)
.

(184)

For each lattice point j ∈ Z, the variable vj encodes the on-site action potential
while wj acts as a generic recovery component. The parameter ε > 0 is related to
the speed of this recovery, which is relatively slow compared to the firing process.
The cubic g models the local ionic interactions. Notice that (184) reduces to the
Nagumo LDE for ε = 0 and w = 0.

The discrete nature of the problem is a direct consequence of the properties
of the myeline coating. This coating is essential to ensure that electrical pulses
travel at adequate speed, but leads to rapid signal degradation. In order to
repair this, the coating admits regularly spaced gaps at the so-called nodes of
Ranvier [136]. Through a process called saltatory conduction, the electrical spikes
effectively jump from one node to the next [123].

By restricting the size of ε > 0 in (184) one effectively creates a two-timescale
problem that fits into the general framework of singular perturbation theory. In
§5.1 we discuss how several important techniques from this area can be general-
ized to the discrete setting. This allows the existence and stability of travelling
pulse solutions for (184) to be established.

In §5.2 we setup a bifurcation argument that allows these pulses to be ex-
tended to versions of (184) where the diffusion coefficient alternates between
small and large values. Finally, in §5.3 we replace the finite-range discrete Lapla-
cian in (184) by a class of counterparts that feature infinite-range interactions.

5.1 Singular perturbation theory

The LDE (184) can be seen as the nearest-neighbour discretization of the FitzHugh-
Nagumo PDE

vt = vxx + g(v; a)− w

wt = ε(v − w),
(185)

which was originally proposed [74, 75] as a simplification of the Hodgkin-Huxley
equations [86] to describe the propagation of signals through the nerve fibres
of giant squids. Early numerical experiments by FitzHugh [76] provided clear
evidence that (185) supports travelling pulse solutions, but a rigorous analysis of
these solutions turned out to be quite delicate. By now, existence and nonlinear
stability results for these pulses have been obtained in various settings using
a wide range of techniques such as geometric singular perturbation theory [30,
84, 110, 111], Lin’s method [31, 32, 119], the variational principle [34] and the
Maslov index [45, 46].
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Fig. 9. The left panel describes the manifolds ML and MR and contains the singular
orbit Γ0. The right panel despicts a quasi-solution to (187), which has two jumps that
can be captured in the one-dimensional spaces Γf and Γb.

Returning to the LDE (184), substitution of the travelling wave ansatz

(vj , wj)(t) = (φ, ψ)(j + ct) (186)

leads naturally to the two-component MFDE

cφ′(ξ) = φ(ξ − 1) + φ(ξ + 1)− 2φ(ξ) + g
(
φ(ξ); a

)
− ψ,

cψ′(ξ) = ε
[
φ(ξ)− ψ(ξ)

]
.

(187)

For certain specially tailored nonlinearities g, several ad-hoc techniques involv-
ing asymptotic expansions and Fourier transforms have been used to construct
pulse solutions [38, 63, 152]. However, in order to handle the cubic and other
general bistable nonlinearities, it turned out to be worthwhile to adapt sev-
eral key constructions from the field of geometric singular perturbation to the
infinite-dimensional setting considered here [101, 102].

To set the stage, we note that in the limiting case ε = 0 all equilibria of (193)
lie on the graphM =

(
φ, g(φ; a)

)
. Choosing manifoldsML andMR as in Fig. 9,

one can use the travelling wave solutions of the Nagumo LDE discussed in §2.2
to construct front and back connections (φf , 0) and (φb, w∗) between ML and
MR that both travel at the same wave speed c∗ that we assume to be positive.
These connections can be combined with segments of ML and MR to form the
(fast) singular orbit Γ0 depicted on the left in Fig. 9.

The main goal is to show that that this singular orbit can be continued into
a branch of regular orbits Γ (ε) for small ε > 0. In the PDE case, a typical
proof proceeds by showing that the unstable manifold of (0, 0) intersects the
stable manifold ofML in a transverse fashion, using the Exchange Lemma [111]
to study the passage of these manifolds near MR. Such an analysis relies on
the Hadamard graph transform and the Fenichel normal form to describe the
dynamics nearML andMR. Unfortunately, these tools are not readily available
in infinite dimensional settings.

The main contribution in [101] is that analytical constructions are used to
underpin the geometric intuition behind the ideas described above. Building on
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earlier work by Sakamoto [140], we used the exponential dichotomies discussed
in §2.1 to construct a branch of global invariant manifolds forML andMR that
persist for small ε > 0. The analytic proof of the exchange lemma developed
by Krupa, Sandstede and Szmolyan in [119] could subsequently be combined
with the Lin’s method machinery discussed in §2.1 to construct quasi-solutions
to (187). These solutions have two discontinuities that can both be captured in
one-dimensional spaces and quantified by means of the Hale-inner product (44);
see the right panel in Fig. 9.

All that remains to construct the pulse solutions for (187) is to close these
two gaps. This can be done by analyzing the associated two-component nonlinear
bifurcation problem. Interestingly enough, the same setup can be used to reduce
the spectral characterization of these pulses to a related two-dimensional problem
involving the spectral parameter λ; see [102].

The structure of these bifurcation equations is almost identical to their coun-
terparts for the PDE (185). In particular, this allows the existence and nonlinear
stability of travelling pulse solutions for the LDE (184) to be obtained.

5.2 Periodic diffusion

Recent developments in optical nanoscopy clearly show [50, 51, 160] that certain
proteins in the cytoskeleton of nerve fibres are organized periodically. This pe-
riodicity turns out to be a universal feature of all nerve systems, not just those
which are insulated with a myeline coating. Since it also manifests itself at the
nodes of Ranvier, it is natural to allow the parameters in (184) to vary in a
periodic fashion.

In particular, let us consider the LDE

v̇j = dj
[
vj−1 + vj+1 − 2vj

]
+ g(vj ; a)− wj ,

ẇj = ρ[vj − wj ]
(188)

with 2-periodic diffusion coefficients

dj =

{
ε−2 for odd j,

1 for even j.
(189)

Note that we are now using ρ > 0 for the recovery speed variable in order to
emphasize that the relevant scale separation is now contained in the diffusion
coefficients.

Searching for solutions of the form

(v, w)j(t) =

(φo, ψo)(j + ct), for odd j,

(φe, ψe)(j + ct), for even j,
(190)
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we obtain the travelling wave system

cφ′o(ξ) = 1
ε2

[
φe(ξ − 1) + φe(ξ + 1)− 2φo(ξ)

]
+ g
(
φo(ξ); a

)
− ψo,

cψ′o(ξ) = ρ
[
φo(ξ)− ψo(ξ)

]
,

cφ′e(ξ) = φo(ξ − 1) + φo(ξ + 1)− 2φe(ξ) + g
(
φe(ξ); a

)
− ψe,

cψ′e(ξ) = ρ
[
φe(ξ)− ψe(ξ)

]
.

(191)

Multiplying the first line of (191) by ε2 and taking the limit ε ↓ 0, we obtain
the formal relation

φo(ξ) = 1
2

(
φe(ξ − 1) + φe(ξ + 1)

)
(192)

between the singular waveprofiles φo and φe. The limiting even subsystem hence
decouples from the odd system and formally satisfies

cφ
′
e(ξ) = φe(ξ − 2) + φe(ξ + 2)− 2φe(ξ) + g

(
φe(ξ); a

)
− ψe,

cψ
′
e(ξ) = ρ

[
φe(ξ)− ψe(ξ)

]
.

(193)

This is simply a spatially rescaled version of the travelling wave equation for the
FitzHugh-Nagumo LDE (184) with constant diffusion. In particular, the results
in §5.1 guarantee that this even limiting system has pulse solutions that are
spectrally stable for small ρ > 0.

The main results in [143] state that any spectrally stable solution to the
limiting system (193) can be extended to a branch of nonlinearly stable travelling
wave solutions (190) to the full 2-periodic system (188) for small values of ε > 0.
This is hence another singular perturbation result, but the underlying bifurcation
at ε = 0 is of a completely different nature than in §5.1.

The key ingredient behind the proof of this result is the realization that the
spirit of the spectral convergence technique discussed in §2.2 can be used to
study a wide range of singular limits for families of differential operators. The
main technical complication that needs to be overcome in the current context is
that the four components of (191) and their derivatives need to be rescaled with
various powers of ε before taking the appropriate limits.

5.3 Infinite-range interactions

Recently, an active interest has arisen in non-local equations that feature infinite-
range interactions. Neural field models for example aim to describe the dy-
namics of large networks of neurons, which interact with each other by ex-
changing signals across long distances through their interconnecting nerve ax-
ons [23, 24, 134, 148]. One model that has been proposed [23, Eq. (3.31)] to
describe these complex interactions features a FitzHugh-Nagumo type system
with infinite-range interactions.
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Motivated by the above, the results in [70, 144] consider a class of infinite-
range FitzHugh-Nagumo LDEs that includes the prototype

v̇j = 1
h2

∑
k>0

e−k
2

[vj−k + vj+k − 2vj ] + g(vj ; a)− wj ,

ẇj = ρ[vj − wj ],
(194)

in which h > 0 represents the grid-spacing. By replacing the phase-space ap-
proach in §5.1 with Fredholm-based functional-analytic considerations, Faye and
Scheel were able [70] to obtain the existence of travelling pulses to (194) for ar-
bitrary h > 0, provided that ρ > 0 is sufficiently small.

In [144] the nonlinear stability of these pulses was established in the con-
tinuum regime where h > 0 is sufficiently small. On the other hand, the only
requirement on ρ > 0 is that a spectrally stable travelling pulse exists for the
FitzHugh-Nagumo PDE that arises as the formal h ↓ 0 limit of (194). In partic-
ular, the two main insights obtained in [144] are that the spectral convergence
method discussed in §2.2 can be generalized to multi-component systems and
that it can also be used to study the spectral properties of the constructed
solutions.

The latter point turns out to be rather subtle. To see this, let us write L(h)
tw for

the linearization of (194) around the pulse solution corresponding to the grid size
h > 0. For a fixed λ 6= 0 with <λ ≥ 0, the spectral convergence method can be

used to show that the operator L(h)
tw −λ is invertible for small h > 0. However, for

a spectral stability argument one must consider all such λ simultaneously for a
fixed small h > 0. This requires careful control on all the parameter dependencies
appearing in the problem.

6 Applications to Numerical Analysis

The primary motivation behind the papers discussed in this section is to con-
tribute to the on-going systematic approach to understand the impact of dis-
cretization schemes on the dynamics that they are designed to capture. Of course,
there is a tremendous amount of literature concerning the accuracy of numerical
schemes, but these studies typically focus on finite time error bounds [118, 121].
Our concern here is more related to the persistence of structures that exist for all
time. Interesting pioneering work on this topic can be found in [19, 78], where the
authors discuss the impact of discretization on attractors for ODEs and PDEs.

We take one step further here and study in what sense individual stable
travelling structures such as waves survive common discretization techniques.
Building on previous work in [60, 61, 62], we study full spatial-temporal dis-
cretizations of the Nagumo PDE in §6.1, restricting our attention to grids that
are fixed in space and time. We loosen this restriction in §6.2, where we allow
the spatial grid to adjust itself to the shape of the solution.
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6.1 Spatial-temporal discretizations

In [105] we revisited the spatially-discrete Nagumo LDE (21) and set out to
replace the remaining temporal derivative by an appropriate discretized opera-
tor. We considered the family of six Backward Differentiation Formula (BDF)
methods, which are multistep methods that admit good numerical stability prop-
erties for parabolic equations. They are referred to as regular methods, which
means that they don’t create or destroy equilibrium solutions. For our purposes
here they are relatively easy to analyze, since they do not involve any of the
intermediate stage values that are required by many popular one-step methods.
Related results for the standard forward Euler scheme can be found in [40], but
the smaller stability region severely limits the time-steps that can be used.

The first order BDF method coincides with the backward Euler scheme.
Applying this to the LDE (21) with d = 1 and time-step ∆t, we arrive at the
fully discretized system

1
∆t

[
Uj
(
n∆t

)
− Uj

(
(n− 1)∆t

)]
= Uj−1(n∆t) + Uj+1(n∆t)− 2Uj(n∆t)

+g
(
Uj(n∆t); a

)
.

(195)

Systems of this type are often referred to as coupled map lattices (CMLs). They
are of independent interest and have been used for a wide range of purposes,
including the construction of hash functions [158] and the study of population
dynamics [49].

The main contribution in [105] is the construction of fully discretized travel-
ling wave solutions

Uj(n∆t) = Φ(j + nc∆t), Φ(−∞) = 0, Φ(+∞) = 1 (196)

to (195). Such fronts must satisfy the difference equation

1
∆t

[
Φ(ξ)− Φ(ξ − c∆t)

]
= Φ(ξ − 1) + Φ(ξ + 1)− 2Φ(ξ) + g

(
Φ(ξ); a

)
. (197)

By a peculiar coincidence, this equation fits into the global homotopy framework
of [127] that we discussed in §2.2, after adding an artificial term c̃Φ′(ξ) to the
left hand side. Indeed, solutions to (197) live inside the parameter region of this
artificially enhanced system where c̃ = 0. As we have seen, such pinning regions
generically encompass an open set of detuning parameters a.

As a consequence, it is natural to conjecture that the a(c) relation for (197)
can be multi-valued even for c 6= 0. This is confirmed by the numerical results
in Figure 6.1, which shows the upper and lower bounds a±(c) of the detuning
parameter a for which (196)-(197) admits a solution Φ. For comparison, the
curve a0(c) gives the corresponding a(c) relation for the semi-discrete problem
(22) with d = 1. We note that monostable KPP systems [133] in the presence of
inhomogeneities have been found to exhibit similar behaviour.

Let us write (c, Φ) for the solution to the semi-discrete travelling wave MFDE
(22) with d = 1. The key technical ingredient in our construction of solutions to
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Fig. 10. Range of a for which fully discrete traveling wave solutions exist for BDF
methods of first and second order, compared to the corresponding curve a0(c) for the
spatially discrete problem. For these computations we used ∆t = 2 and we replaced g
by the nonlinearity 121

12
u(1− u)(u− a); see [105].

(196)-(197) is the understanding of the fully discrete operator

[Lfdv](ξ) = − 1

∆t
[v(ξ)−v(ξ−c∆t)]+v(ξ−1)+v(ξ+1)−2v(ξ)+g′(Φ(ξ); a)v(ξ),

(198)
for ξ in an appropriate subset of R. This operator is associated to the lineariza-
tion of (195) around the pair (c, Φ). The main question is whether this operator
inherits properties from its semi-discrete counterpart Ltw defined in (24). This
highly singular transition can be analyzed by a variant of the spectral conver-
gence technique described in §2.2. The main complication in this setting is that
the natural domain for ξ varies from the whole line to a subset of the line, which
required the use of a delicate interpolation procedure.

6.2 Adaptive grids

Most efficient modern solvers concentrate their meshpoints in areas where the
solution under consideration fluctuates the most. This often leads to a significant
increase in performance compared to fixed-grid algorithms. In order to explore
this, let us write {xj(t)} for the positions of the grid points and introduce the
approximants

Uj(t) ≈ u(xj(t), t). (199)

Instead of approximating the second derivative in (3) by the standard second
difference

uxx(x) ≈ 1

h2
(
u(x− h) + u(x− h)− 2u(x)

)
(200)

we can now apply the non-uniform discretization

uxx(xj) ≈
2

xj+1 − xj−1

(
Uj−1 − Uj
xj − xj−1

+
Uj+1 − Uj
xj+1 − xj

)
. (201)
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In particular, by differentiating (199) and inspecting (3), we arrive at the LDE

U̇j =

[
Uj+1 − Uj−1
xj+1 − xj−1

]
ẋj +

2

xj+1 − xj−1

(
Uj−1 − Uj
xj − xj−1

+
Uj+1 − Uj
xj+1 − xj

)
+ g(Uj ; a).

(202)
In order to close this system, we need to specify a rule for computing the

gridpoint velocity ẋj(t). This is usually achieved by formulating an elliptic or
parabolic equation that incorporates the local behaviour of the solution U . The
approach taken in many codes to solve two point boundary value problems is
to distribute a suitable prediction for the numerical error equally along each
mesh-interval. Indeed, for accuracy and efficiency a fine mesh is desired where
the solution changes rapidly and a course mesh is sufficient where the solution
is relatively constant.

In [103] we considered moving mesh equations that aim to equidistribute the
arclength of the numerical solution. In particular, we use the MMPDE5 [91] grid
update scheme, which can be written as

τ ẋj =
√

(xj+1 − xj)2 + (Uj+1 − Uj)2 −
√

(xj−1 − xj)2 + (Uj−1 − Uj)2 (203)

for some tunable coefficient τ ≥ 0 that determines the speed of the gridpoints.
We studied the limiting case τ = 0, which means that the mesh instantaneously
adjusts itself to equalize the arclength of the solution U between neighbouring
gridpoints. This allows us to pick a constant h > 0 for which

h2 = (xj+1 − xj)2 + (Uj+1 − Uj)2 (204)

holds for all j ∈ Z and t ≥ 0. The boundary condition xj(t) → jh as j → −∞
subsequently fixes the mesh in a unique fashion. The quantity h > 0 can hence
be seen as the ‘background’ grid size that is observed in regions where U is flat.

The main results in [103] state that for each sufficiently small h > 0, the
resulting coupled system admits a travelling wave solution

Uj(t) = φ(xj(t) + ct), φ(−∞) = 0, φ(∞) = 1 (205)

that is unique up to translation. Upon introducing the wave variable ξ = xj(t)+
ct, we note that the grid spacing can be recovered from such wave solutions by
writing

xj+1(t)− xj(t) = h+[ξ;φ], xj(t)− xj−1(t) = h−[ξ;φ] (206)

for a pair of suitably chosen functions h±. The second difference (201) for this
wave can now be written as

2

h+[ξ;ϕ] + h−[ξ;ϕ]

(
φ(ξ − h−[ξ;φ])− φ(ξ)

h−[ξ;φ]
+
φ(ξ − h+[ξ;φ])− φ(ξ)

h+[ξ;φ]

)
. (207)

The full wave equation for the pair (c, φ) will hence become an MFDE with
state-dependent advances and shifts, for which hardly any theory is available.
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Fortunately, this issue can be avoided by using the computational coordinates
τ = jh + ct instead of the physical coordinates ξ. However, it is a delicate and
cumbersome task to switch between the two points of view. An interesting conse-
quence is that the correct linear operator that needs to be understood for h = 0
is not the standard linearization (61), but rather a spatially stretched version
that takes into account the arclength equidistribution of the PDE waveprofile.

We are specially interested to uncover if and why the size of the pinning
interval is smaller here when compared to stationary grids. In particular, this will
give additional insight into the theoretical benefits of adaptive grids compared to
the practical benefits of increased performance. Preliminary results pertaining
to this issue can be found in [90].
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and Non-Existence of Fisher-KPP Transition Fronts. Arch. Ration. Mech.
Anal. 203(1), 217–246.

[134] D. J. Pinto and G. B. Ermentrout (2001), Spatially structured activity
in synaptically coupled neuronal networks: 1. Traveling fronts and pulses.
SIAM J. of Appl. Math. 62, 206–225.

[135] W.-X. Qin and X. Xiao (2007), Homoclinic Orbits and Localized Solutions
in Nonlinear Schrödinger Lattices. Nonlinearity 20, 2305–2317.
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