
Counting and ordering periodic stationary solutions of lattice Nagumo equations

Hermen Jan Hupkesa, Leonardo Morellia, Petr Stehĺıkb,∗, Vladimı́r Šv́ıglerb
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Abstract

We study the rich structure of periodic stationary solutions of Nagumo reaction diffusion equation on lattices. By
exploring the relationship with Nagumo equations on cyclic graphs we are able to divide these periodic solutions
into equivalence classes that can be partially ordered and counted. In order to accomplish this, we use combinatorial
concepts such as necklaces, bracelets and Lyndon words.
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1. Introduction

In this paper we explore the structure of periodic stationary solutions of the lattice Nagumo equation

u̇i(t) = d(ui−1(t)− 2ui(t) + ui+1(t)) + g(ui(t); a), i ∈ Z, t ∈ R. (LDE)

We assume d > 0 and consider the cubic bistable nonlinearity g(u; a) := u(1− u)(u− a), a ∈ (0, 1). This equation
has been extensively studied as the simplest model describing the competition between two stable states u = 0 and
u = 1 in a spatially discrete environment. One of its key features is the existence of nondecreasing travelling waves
uj(t) = Φ(j− ct), and the fact that these waves do not move (c = 0) for small values of d. This phenomenon (called
pinning) is caused by the existence of heterogeneous stationary solutions, which prevent the dominance of the two
stable homogeneous states u = 0 and u = 1. Our goal is to show that the periodic stationary solutions of (LDE),
which exist mainly inside the pinning region, form equivalence classes that can be partially ordered and counted.

Equation (LDE) is a discrete-space version of the famous Nagumo reaction-diffusion PDE ut = duxx + g(u; a),
with x ∈ R. The lattice counterpart (LDE) has a richer set of equilibria [11] which in turn implies more complex
behaviour of travelling and standing front solutions [12, 17]. Mallet-Paret [12] established that for each a ∈ [0, 1]
and d > 0 there exists a unique c = c(a, d) for which the wave Φ exists. However, if we fix a ∈ (0, 1) \ { 12}, Zinner
[17] showed that c(a, d) 6= 0 for d � 1 and Keener [9] proved that c(a, d) = 0 for 0 < d � 1. Moreover, for fixed
d > 0 the results in [5] suggest the existence of δ(d) > 0 so that c(a, d) = 0 whenever

∣∣a− 1
2

∣∣ ≤ δ(d). This above
mentioned pinning is typical for lattice equations [3, 4, 8]. Since the pinning region is dominated by heterogeneous
(periodic and aperiodic) stationary solutions, our paper contributes to the understanding of this important feature
(see Fig. 1 for a simple illustration).

A second important motivation for understanding the periodic stationary solutions of (LDE) is that this knowl-
edge aids us in the search for so-called multichromatic waves. These non-monotone traveling waves connect two or
more n-periodic stationary solutions of (LDE) (in contrast to standard monochromatic waves which are monotone).
In our companion papers [6, 7] we have shown that these waves exist mainly inside the pinning region, appearing
and disappearing as d increases. The waves that exist outside of the pinning region can be combined to form
complex collision waves that involve direction changes.

In this paper we name, partially order and count the equivalence classes of periodic stationary solutions of
(LDE) based on the connection between (LDE) and the Nagumo equation posed on cyclic graphs. For an arbitrary
undirected graph G = (V,E) with the set of vertices V = {1, 2, 3, . . . , n} and a set of edges E, the Nagumo equation
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Figure 1: Existence regions Ωn of stable n-perioidic stationary solutions of (LDE). The left panel depicts even periods, the right one
odd periods. The hatched regions Ωmono correspond to parameter values for which the monochromatic waves of (LDE) travel.

on a graph G is1

u̇i(t) = d
∑

j∈N (i)

(
uj(t)− ui(t)

)
+ g(ui(t); a), i ∈ V, t ∈ R, (GDE)

where N (i) denotes the 1-neighbourhood of vertex i ∈ V .
In §2 we establish the connection between the stationary solutions of (GDE) and the periodic stationary solutions

of (LDE). In §3 we use this connection and the implicit function theorem to build a naming scheme for periodic
stationary solutions of (LDE). In §4 we discuss their symmetries, which allows us to define and count their
equivalence classes in §5. This is achieved by establishing a link with combinatorial concepts such as necklaces,
bracelets and Lyndon words. Our main result is formulated in Theorem 4 and illustrated by simple examples.

2. Periodic solutions and solutions of graph Nagumo equation

We here consider G = Cn, where Cn is a cycle graph on n vertices. The equation (GDE) can now be written as
u̇(t) = G(u(t); a, d), where G : Rn → Rn is given by

G(u; a, d) :=


d(un − 2u1 + u2) + g

(
u1; a

)
d(u1 − 2u2 + u3) + g

(
u2; a

)
...

d(un−1 − 2un + u1) + g
(
un; a

)
 . (1)

Our key results are based on the correspondence of stationary solutions of (GDE) on G = Cn and periodic stationary
solutions of (LDE)2. We say that a double sequence u = (ui)i∈Z is a periodic extension of a vector u ∈ Rn if
ui = umod(i,n) (we assume that the modulo operator takes values mod(i, n) ∈ {1, . . . , n}). We remark that (LDE) is
well-posed as an evolution equation on the space `∞(Z;R). However, we caution the reader that lattice equations
do not necessarily have unique solutions if one drops this boundedness condition, even in the linear case [2, 14].

Lemma 1. Let G = Cn, n ≥ 3, be a cycle graph on n vertices. The vector u = (u1,u2, . . . ,un) is a stationary
solution of (GDE) on G = Cn if and only if its periodic extension u is an n-periodic stationary solution of (LDE).
Moreover, u is an asymptotically stable solution of (GDE) if and only if u is an asymptotically stable solution of
(LDE) with respect to the `∞-norm.

Proof. A short inspection readily yields the desired equivalence between solutions of (LDE) and (GDE)3. Turning

1We use italic letters for double sequences (e.g., u for solutions of (LDE)) and roman ones for vectors (e.g., u for solutions of (GDE)).
2Additionally, it is well-known that the problem of finding stationary solutions of graph differential equations on cycles G = Cn is

actually equivalent to periodic discrete boundary value problems [15, 16].
3We omit the case of n = 2. In this case, a slightly modified version of Lem. 1 holds. The reduced version of (1) for n = 2

G(u; a, d) :=

(
d(u2 − 2u1 + u2) + g

(
u1; a

)
d(u1 − 2u2 + u1) + g

(
u2; a

)) =

(
2d(u2 − u1) + g

(
u1; a

)
2d(u1 − u2) + g

(
u2; a

)) .

implies that solutions of (LDE) and (GDE) are equivalent if one considers the double value of d in (LDE).
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to their stability, let us assume that u∗ = (u∗1,u
∗
2, . . . ,u

∗
n) is an asymptotically stable solution of (GDE). There

hence exists γ > 0 such that for each u0 ∈ Rn with ‖u0 − u∗‖ < γ we have

lim
t→∞

u(t, u0) = u∗,

in which u(t,u0) denotes the solution of (GDE) with the initial condition u0. Consequently, there exists δ > 0 so
that the vectors w0, z0 ∈ Rn defined by

(w0)i = u∗i + δ, (z0)i = u∗i − δ for all i = 1, 2, . . . , n,

satisfy limt→∞ w(t,w0) = u∗, limt→∞ z(t, z0) = u∗.
Let us now consider the periodic extensions u∗, w0 and z0 of the vectors u∗, w0 and z0. Then the corresponding

solutions w(t, w0), z(t, w0) of (LDE) satisfy

wi(t, w0) = wmod(i,n)(t,w0), zi(t, w0) = zmod(i,n)(t, z0),

for each t ≥ 0, which implies

lim
t→∞

w(t, w0) = u∗, lim
t→∞

z(t, z0) = u∗.

Using the comparison principle (e.g., Chen et al. [2, Lemma 1]) we can hence conclude that all solutions u of (LDE)
with an initial condition u0 that satisfies ‖u0 − u∗‖∞ < δ indeed have limt→∞ u(t, u0) = u∗, since

u∗ ← z(t, z0) ≤ u(t, u0) ≤ w(t, w0)→ u∗.

The opposite implication can be proved similarly.

3. Naming scheme for stationary periodic solutions

The equivalence between n-periodic solutions of (LDE) and solutions of (GDE) on G = Cn (see Lem. 1) allows us
to focus on the latter in order to establish our naming scheme for the former solutions. First, let us observe that
G(u; a, 0) = 0 for any a ∈ (0, 1) and u ∈ {0, a, 1}n. Moreover, the fact that

D1G(u; a, 0) = diag
(
g′(u1; a

)
, . . . , g′

(
un; a

))
(2)

has non-zero entries allows us to employ the implicit function theorem to conclude that there are 3n solution
branches emanating out of the roots {0, a, 1}n for d small. These branches can be tracked up until the first collision
with another branch. This justifies the use of the following naming scheme for n-periodic stationary solutions.

We introduce an alphabet A = {0, a, 1} and call uw ∈ [0, 1]n a stationary solution of type w ∈ An = {0, a, 1}n
if it satisfies G(uw; a, d) = 0 and lies on the branch emanating from the root wa at d = 0, where wa : {0, a, 1}n →
{0, a, 1}n is defined by

(wa)i =

 0 if wi = 0,
a if wi = a,
1 if wi = 1.

Using this definition we introduce connected sets

Ωw = {(a, d) ∈ H : the system G(· ; a, d) = 0 admits an equilibrium of type w}, (3)

which are open in the half-strip H = [0, 1] × [0,∞). While a full analysis of the sets Ωw can be very tricky (for a
fixed a ∈ (0, 1), solutions of type w can disappear and then reappear, see [7]), we are only interested in small values
of d here in this paper.

Lemma 2. Let a ∈ (0, 1) and d > 0 be small enough. Then (LDE) has 3n stationary n-periodic solutions. These
solutions are asymptotically stable if and only if they belong to the 2n solutions of type w ∈ {0, 1}n.

Proof. The existence of 3n stationary n-periodic solutions follows from Lemma 1 and the 3n solution branches
for (GDE) supplied by the implicit function theorem. The stability properties follow from (2) and the fact that
g′(0; a) = −a < 0, g′(1; a) = a− 1 < 0 and g′(a; a) = a(1− a) > 0.

Moreover, pairs of stable solutions can be ordered if the corresponding words are ordered.

Lemma 3. Let a ∈ (0, 1) and d > 0 be small enough and consider a distinct pair wA,wB ∈ {0, a, 1}n with
(wA)i ≤ (wB)i for all i. Suppose furthermore that at least one of these two words is contained in {0, 1}n. Then the
solutions uwA

, uwB
of (LDE) satisfy the strict component-wise inequality (uwA

)i < (uwB
)i, for all i ∈ Z.

Proof. The proof follows from [7, Lemma 5.2] and Lemma 1.
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Figure 2: Regions Ωw defined in (3) corresponding
to asymptotically stable spatially heterogeneous 4-
periodic solutions of (LDE): u0001, u0011, u01, u0111.
The hatched regions Ωmono correspond to pairs (a, d)
for which the monochromatic waves of (LDE) travel.

Figure 3: Lyndon representatives of 5 ordered classes
of asymptotically stable stationary 4-periodic solutions
of (LDE): - u0, - u0001, - u0011, - u0111, -
u1 (the values are slightly modified for better visuali-
sation).

4. Symmetries of stationary periodic solutions

The naming scheme introduced above allows us to study two key symmetries among the 3n stationary solutions of
(GDE) and the corresponding n-periodic stationary solutions of (LDE).

Translation (rotation). If (ui) is an n-periodic stationary solution of (LDE) then this also holds for (ui+k). We
define the translation (rotation) operator on words (and more generally on any vectors of length n) by

(T`w)i := wmod(i+`,n).

Reflection. If (ui) is an n-periodic stationary solution of (LDE) then the same is true for (u1−i). We define the
reflection operator by

(Rw)i := wmod(1−i,n).

Trivially, if u is a solution of type w for G(u; a, d) = 0 then T`u is a solution of type T`w and Ru is a solution
of type Rw, which immediately implies that

Ωw = ΩT1w = . . . = ΩTn−1w = ΩRw.

Naturally, other symmetries can be considered as well. For example, in the case of a = 1/2, it makes sense to
consider symbol swapping 0↔ 1. However, the existence of solution of type w for a given pair (a, d) does not imply
the existence of solutions for the “swapped” word w̃ for general a 6= 1/2, see Fig. 1. Therefore, we only focus on
the simplest symmetries - translations T` and reflections R.

5. Counting equivalence classes of stationary periodic solutions

We can now define equivalence classes of n-periodic solutions to (LDE) by factoring out one or both of the symmetries
discussed above. If we consider translations T` and the word w = 00a1 we have the following equivalence class of
stationary 4-periodic solutions of (LDE):

[u00a1]T = {u00a1, T1u00a1, T2u00a1, T3u00a1} = {u00a1, u0a10, ua100, u100a}.
If we consider both translations T` and reflections R, we have for example Ru00a1 = u1a00 and thus

[u00a1]T R = {u00a1, u0a10, ua100, u100a, u1a00, u01a0, u001a, ua001}.
We always use the smallest word in the lexicographical sense (the so called Lyndon word) as a class representative. If
the word is not primitive (i.e., it is periodic itself), we take the primitive (aperiodic) subword, e.g., [01]T = [0101]T .

If one is simply interested in the periodic solutions themselves then it is reasonable to factor out both translation
and reflection symmetries and consider the full alphabet {0, a, 1}. However, in special circumstances (e.g., when
connecting these solutions via multichromatic waves [7]) it only makes sense to factor out the translation symmetries
and to consider the reduced alphabet {0, 1}.
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translation T translation T +refection R
Period All solutions All Primitive All Primitive
n kn Nk(n) Lk(n) Bk(n) BLk(n)

1 3(2) 3(2) 3(2) 3(2) 3(2)
2 9(4) 6(3) 3(1) 6(3) 3(1)
3 27(8) 11(4) 8(2) 10(4) 7(2)
4 81(16) 24(6) 18(3) 21(6) 15(3)
5 243(32) 51(8) 48(6) 39(8) 36(6)
6 729(64) 130(14) 116(9) 92(13) 79(8)

. . .

Table 1: Number of equivalence classes of n-periodic stationary solutions of (LDE). In each pair, the former number corresponds to all
equivalence classes and the latter number in the parentheses to the equivalence classes formed by asymptotically stable solutions.

We can now use the combinatorial theory of words [10, 13] to count the equivalence classes and to get the
number of qualitatively different n-periodic stationary solutions. To this end, we define the quantities

Nk(n) =
1

n

∑
d:d|n

ϕ(d)k
n
d , Lk(n) =

1

n

∑
d:d|n

µ(d)k
n
d , (4)

Bk(n) =

{
1
2

(
Nk(n) + k+1

2 kn/2
)

for n even,
1
2

(
Nk(n) + k(n+1)/2

)
for n odd,

(5)

BLk(n) =
∑
d:d|n

µ(d)Bk(n/d), (6)

where ϕ(d) is the Euler’s totient function and µ(d) is the Möbius function [1, Chapter 2]. We can use these quantities
to formulate our main result, which describes the number of equivalence classes of n-periodic stationary solutions.

Theorem 4. Pick an integer n ≥ 2 and a parameter a ∈ (0, 1). Then for d > 0 small enough (LDE) has exactly
1. 3n n-periodic stationary solutions which form

(a) N3(n) equivalence classes with respect to translations T`. Moreover, L3(n) of these equivalence classes
are formed by primitive periodic solutions.

(b) B3(n) equivalence classes with respect to translations T` and reflections R. Moreover, BL3(n) of these
equivalence classes are formed by primitive periodic solutions.

2. 2n asymptotically stable n-periodic stationary solutions which form
(a) N2(n) equivalence classes with respect to translations T`. Moreover, L2(n) of these equivalence classes

are formed by primitive periodic solutions.
(b) B2(n) equivalence classes with respect to translations T` and reflections R. Moreover, BL2(n) of these

equivalence classes are formed by primitive periodic solutions.

Proof. A k-ary necklace of length n is an equivalence class of words of length n formed by k letters which are
equivalent with respect to translations (rotations) T`. There are Nk(n) different necklaces [13, Eq. (2.1)]. There
are Lk(n) distinct primitive (aperiodic) necklaces – Lyndon words [13, Eq. (2.2)].

A k-ary bracelet of length n is an equivalence class of words of length n formed by k letters which are equivalent
with respect to translations (rotations) T` and refection R. There are Bk(n) different bracelets [13, Eq. (2.4)].
A primitive (aperiodic) bracelet is called a Lyndon bracelet. There are BLk(n) distinct Lyndon bracelets, which
can be proved by the direct application of the Möbius inversion formula (e.g., [1, Theorem 2.9]). The result for
n-periodic stationary solutions of (LDE) then follows directly from Lemma 2.

Table 1 provides a summary of these results for small periods. As an example, we give a detailed description of
the equivalence classes for n = 3 and n = 4.

Example 5. There are 27 distinct 3-periodic stationary solutions of (LDE). Considering translations T`, they form
11 equivalence classes:

[u0]T = {u0}, [ua]T = {ua}, [u1]T = {u1};
[u00a]T = {u00a, u0a0, ua00}, [u001]T = {u001, u010, u100}, [u0aa]T = {u0aa, uaa0, ua0a}, [u0a1]T = {u0a1, ua10, u10a},
[u01a]T = {u01a, u1a0, ua01}, [u011]T = {u011, u110, u101}, [uaa1]T = {uaa1, ua1a, u1aa}, [ua11]T = {ua11, u11a, u1a1}.
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The former 3 classes correspond to constant solutions and are thus not primitive 3-periodic solutions, while the
remaining 8 classes correspond to primitive stationary 3-periodic solutions. Upon taking reflections R into consid-
eration, there are only 10 equivalence classes and 7 corresponding to primitive periodic solutions, since [u0a1]T and
[u01a]T form one equivalence class

[u0a1]T R = {u0a1, ua10, u10a, u1a0, u01a, ua01}.
The 8 asymptotically stable solutions form 4 equivalence classes with respect to translations and 2 are primitive -
[u001]T and [u011]T . These classes are not affected by the reflection R and can be ordered as

[u0]T / [u001]T / [u011]T / [u1]T .

where [uwA
] / [uwB

] means that the Lyndon representatives satisfy uwA
< uwB

.
The ordering of asymptotically stable n-periodic solutions is only partial for periods with n > 3. For example,

Lemma 3 implies that 6 equivalence classes of 4-periodic solutions can be partially ordered in the following way.

The existence regions of the four spatially heterogeneous equivalence classes are depicted in Fig. 2 and the respective
Lyndon representatives of five classes corresponding to the “upper path” in this diagram are sketched in Fig. 3.

Remark 6. Finally, let us note that analyzing the sums in (4)-(6) we arrive to the asymptotic estimates

Nk(n) ∼ Lk(n) ∼ kn

n
, and Bk(n) ∼ BLk(n) ∼ kn

2n
as n→∞.
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