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Abstract

We study initial value problems for functional differential (algebraic) equations of mixed type posed on

Hilbert spaces. We develop key tools such as exponential dichotomies and Wiener-Hopf factorizations for

such systems that allow us to characterize in what sense such problems are well-posed. The key mathematical

issue is that the natural technical state space for such systems is bigger than the appropriate space containing

the initial conditions.

We illustrate our techniques by studying an optimal control problem with time delays posed on an integer

lattice, which can be used to weigh the costs and benefits of utilizing polluting chemicals to enhance crop

yields. The conditions defining Nash equilibria can be explicitly analyzed in our framework, allowing us to

give conditions under which such optimal strategies exist.

Key words: functional differential equations, exponential dichotomies, advanced and retarded arguments,

indeterminacy, initial value problems, spatial lattices.

1 Introduction

In this paper we consider a class of initial value problems that includes the prototypes

Ix′(ξ) = Ax(ξ) + B
∫ 1

−1
x(ξ + σ) dσ + f

(
x(ξ)

)
for all ξ ≥ 0,

x(ξ) → 0 as ξ →∞,
(1.1)

at times coupled with an initial condition

x(ϑ) = φ(ϑ) for all − 1 ≤ ϑ ≤ 0. (1.2)

Here x takes values in a Hilbert space H, while A,B ∈ L(H;H) are bounded linear maps and the
nonlinearity f is assumed to have f(0) = Df(0) = 0. We require the solution x to be continuous for
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all ξ > 0, but we will allow it to have a single discontinuity at ξ = 0. More precisely, the right-hand
limit x(0+) = limξ↓0 x(ξ) must exist but may satisfy x(0+) 6= φ(0).

For now, the operator I should be thought of as being either the identity on H or the zero
operator. In the former case, we refer to (1.1) as a functional differential equation of mixed type
(MFDE), in which the term mixed refers to the fact that the system features both delayed and
advanced arguments. In the latter case, we impose the additional constraint that the system under
consideration can be turned into a differential equation after a finite number of differentiations. For
example, if f = 0 and A is invertible this is true for (1.1), in which case we refer to this system as
a functional differential-algebraic equation of mixed type (MFDAE).

In a broad sense, our goal is to classify which initial conditions φ and jumps x(0+) − φ(0) lead
to solutions of (1.1)-(1.2) and whether such solutions are unique. This paper hence continues the
program in [4, 10, 11], where it was always the case that H = R

n. The extra ingredient in this paper
is that H is allowed to be a Hilbert space. Indeed, we are especially interested in situations where
H = `2(R;Zn) and the operators A and B are convolution operators, allowing us to make effective
use of Fourier transforms.

Our earlier results for H = R
n relied heavily upon the framework developed in [20] by Mallet-

Paret and Verduyn Lunel. These authors exploited the classic Ascoli-Arzela theorem to obtain
exponential dichotomies and Wiener-Hopf factorizations for MFDEs. In addition, certain important
restriction operators were shown to be Fredholm. As we will explain in §1.2-§1.3, one cannot expect
these properties to hold in infinite-dimensional settings such as H = `2(R;Zn). We refer the casual
reader to the results stated in §3.4 and the worked out example in §4 to gain an appreciation of
what can still be expected in this situation.

1.1 Application to optimization problems

It is well-known that the solutions to optimal control problems often satisfy ill-posed equations, even
if the dynamics of the state and control variables themselves are well-posed. For example, minimizing
a convex cost functional over the path of a controlled heat equation leads to a backward heat equation
for the adjoint variable [26] that is coupled to the original system. In a similar spirit, a result due
to Hughes [8] shows that MFDEs arise as the Euler-Lagrange conditions when studying optimal
control problems that involve time delays [9, 25]. In both cases, the resulting equations are ill-posed
in the sense that initial conditions cannot always be continuated either in forward or backward time.
Research in this area has traditionally focussed on approximation techniques and abstract existence
theorems for optimal paths, whereas our approach here directly tackles the structure of the ill-posed
system.

Pollution and crop yields For concreteness, let us consider a toy model that describes the
interaction between a grid of farmers that each use fertilizers to enhance their crop yields, but who
all suffer from the environmental damage caused by the polluting chemicals spreading through the
ground water. Indexing the farms by j ∈ Z, we use pj(t) to indicate the amount of pollutant used
at farm j at time t and write

p(t) = {pj(t)}j∈Z ∈ `∞(Z;R). (1.3)

The goal of each farmer individually is to maximize the functional

Jj(p) =
∫ ∞

0

(
2
√
pj(t)−

1
2
cj [p](t)2

)
e−ρt dt (1.4)

by appropriately choosing his own fertilizer use

pj(t) ∈ L∞([0,∞);R) ∩ C([0,∞),R). (1.5)
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The parameter ρ > 0 is a temporal discount factor and the function 2
√
pj(t) encodes the private

economic benefits of pollutant use. The concavity of this function models the decreasing marginal
benefits associated to increased fertilizer usage. On the other hand, the function cj [p](t) is given by

cj [p](t) =
∑
k∈Z

hj−k

∫ t

t−1

pk(σ) dσ (1.6)

and reflects the volume of chemicals accumulated at site j, crudely taking into account leakages from
neighbouring farms and time delays caused by the finite spreading speed. This is a highly simplified
version of a so-caled lumped parameter model [21–23], originally developed to describe the spread
of tracers through ground water. The square in (1.4) reflects the increasing marginal costs caused
by the extra pollution and the associated cleanup costs.

As a consequence of the delay in (1.6), we need to fix an initial condition

pj(ϑ) = φj(ϑ) (1.7)

for all −1 ≤ ϑ ≤ 0 and j ∈ Z, with

φ = {φj}j∈Z ∈ C
(
[−1, 0]; `∞(Z;R)

)
. (1.8)

This initial condition can be viewed in some sense as the current environmental state, based upon
which each farmer needs to make decisions in order to attain his maximal pollution-adjusted welfare.

Naturally, the optimal choice for farmer j depends on φ and the functions {pk}k 6=j associated to
the other farmers. In §4 we search for a so-called Nash equilibrium [24], which is a choice for p that
ensures that all the individual functionals (1.4) cannot be increased by modifying only pj . We show
that such a simultaneous optimum must satisfy

1√
pj(t)

= h0

∑
k∈Z

hj−k

∫ 1

0

∫ 0

−1

pk(t+ σ + σ′)e−ρσ dσ′ dσ, (1.9)

which is an algebraic equation covered by the theory in this paper. Under some technical conditions
on h, it is not hard to see that there exists a spatially and temporally homogeneous simultaneous
optimum

φj(ϑ) = p∗, pj(t) = p∗, j ∈ Z (1.10)

for ϑ ∈ [−1, 0] and t ≥ 0.
The main question for models such as these is whether it is still possible to find a bounded Nash

equilibrium for initial conditions φ that are sufficiently close to p∗. Using the theory developed in this
paper this question can be answered affirmatively, provided one interprets closeness in an `2-sense,
i.e.

sup
−1≤ϑ≤0

‖φ(ϑ)− p∗‖`2(Z;R) � 1 (1.11)

and also allows for discontinuities

pj(0+) 6= pj(0−) = φ(0). (1.12)

Our main results can be split into three main themes, which we each briefly discuss below.

1.2 Exponential dichotomies

Linearizing (1.1) around the equilibrium x = 0, we arrive at the autonomous MFDE

x′(ξ) = Ax(ξ) + B
∫ 1

−1
x(ξ + σ) dσ. (1.13)
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A typical analysis of (1.13) hinges upon an understanding of the characteristic function, which is
given by

∆(z) = z −A− B
∫ 1

−1

ezσ dσ. (1.14)

Notice that any solution pair (z, v) ∈ C×H\{0} to ∆(z)v = 0 yields a non-trivial solution x(ξ) = ezξv
to (1.13).

In the finite dimensional case H = R
n, one can hence study the characteristic equation

det ∆(z) = 0, z ∈ C (1.15)

which typically has an infinite number of roots on both sides of the imaginary axis. This corresponds
to the fact that (1.13) is typically ill-posed on its mathematical state space C([−1, 1];Rn). In par-
ticular, one cannot expect it to be possible to extend arbitrary initial conditions φ ∈ C([−1, 1];Rn)
to solutions of (1.13) on the half-lines [0,∞) or (−∞, 0].

When studying such ill-posed problems, exponential dichotomies become the methods of choice.
For the finite dimensional caseH = R

n, it was established in [6, 20] that if the hyperbolicity condition

0 /∈ det ∆(iR) (1.16)

holds, one has an exponential splitting

C([−1, 1];Rn) = P ⊕Q. (1.17)

Here Q contains all initial conditions φ ∈ C([−1, 1];H) for which a bounded continuous function
x = x[φ] : [−1,∞) → H exists that satisfies (1.13) for ξ ≥ 0 and has x(ϑ) = φ(ϑ) for −1 ≤ ϑ ≤ 1.
Such solutions satisfy the estimate

‖x[φ](ξ)‖H ≤ Ce
−εξ ‖φ‖C([−1,1];H) (1.18)

for some C > 0 and ε > 0. Similarly, P contains all initial conditions that can be extended to
bounded solutions on (−∞, 0].

These exponential dichotomies, together with their generalizations for non-autonomous systems,
have played a critical role in the analysis of MFDEs during the past decade. For example, they have
been used to construct travelling pulses for discrete FitzHugh-Nagumo equations [12], to analyze
the nonlinear stability of these pulses [13], to investigate Lax shocks in discrete conservation laws
[2] and to study the scattering of wave-fronts from obstacles in discrete planar systems [7].

In this paper we generalize the splitting (1.17) of the mathematical state space to settings where
H is an infinite-dimensional Hilbert space. The main obstacle that needs to be overcome is that H is
no longer locally compact, which prevents the use of the Ascoli-Arzela theorem that plays a crucial
role in the abstract existence results of [20]. Our novel ingredient is that we explicitly characterize
the spaces P and Q as the solution of two fixed point problems involving integral expressions related
to the inverse Laplace transform. This explicit approach allows us obtain detailed estimates of the
form

‖x[φ](ξ)‖H ≤ Ce
−εξ[ ‖φ(0)‖H + ‖φ‖L2([−1,1];H)

]
. (1.19)

This should be contrasted to estimates of the form (1.18) that can be obtained from a more abstract
approach. It also allows us, in some settings, to replace H by a Banach space. Both these ingredients
are crucial to allow us to perform the Fourier decompositions discussed in the sequel in a transparent
fashion.

We remark that our use of inverse Laplace transforms is the sole reason that we restrict our
attention to the Hilbert space setting. In particular, we are confident that our results are also valid
for intermediate UMD-spaces [15], but we do not pursue this here.
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1.3 Restriction operators

Here we discuss the linear homogeneous initial value problem

x′(ξ) = Ax(ξ) + B
∫ 1

−1
x(ξ + σ) dσ for all ξ ≥ 0,

x(ξ) → 0 as ξ →∞,
(1.20)

coupled with an initial condition

x(ϑ) = φ(ϑ) for all − 1 ≤ ϑ ≤ 0, (1.21)

for some φ ∈ C([−1, 0];H). This prototype system differs from the traditional initial value problems
that one typically encounters when studying ODEs or delay equations. Indeed, the initial condi-
tion φ does not provide sufficient information to calculate x′(0). As discussed in §1.2, the natural
mathematical state space for (1.20) is given by C([−1, 1];H), which of course differs from the space
C([−1, 0];H) that φ belongs to. One of the interesting consequences of this discrepancy is that even
after fixing φ, the problem (1.20)-(1.21) can still have multiple solutions rather than just a unique
solution or none at all.

Indeterminacy The potential for (1.20)-(1.21) to have multiple solutions ties directly into a well-
known problem in the area of macro-economic modelling. In particular, it is known that societies with
seemingly similar economic structures and initial conditions can nevertheless experience remarkably
distinct growth trajectories. For example, the expectations of market participants often play a major
role in the evolution of markets, allowing several different sequences of self-fulfilling expectations to
exist simultaneously [18]. The term indeterminacy is widely used to refer to models that reproduce
this uncertainty in some fashion; see [3] for an informative survey.

State space(s) The key mathematical question is how the exponential dichotomy that splits
C([−1, 1];H) projects down onto the modelling space C([−1, 0];H). More precisely, let us define the
restriction operator

π− : C([−1, 1];H)→ C([−1, 0];H), ψ 7→ ψ|[−1,0] (1.22)

and recall the space Q introduced in §1.2. Our goal now is to understand the space

π−(Q) ⊂ C([−1, 0];H) (1.23)

containing all modelling initial conditions for which (1.20)-(1.21) has a solution, together with the
space

Ker
(
π−|Q
)
⊂ C([−1, 1];H), (1.24)

which characterizes the uniqueness of such extensions.
In the scalar case H = R, the key tool [20] to understand this restriction operator π−|Q is the

existence of a Wiener-Hopf factorization

z∆(z) = ∆del(z)∆adv(z), (1.25)

in which ∆del is the characteristic equation of a (typically unknown) delay differential equation
with state space C([−1, 0];C) and ∆adv corresponds similarly to a (typically unknown) advanced
differential equation posed on C([0, 1];C). Once such a splitting is obtained, one can compute an
integer n] by counting the roots of the characteristic equations ∆del(z) = 0 and ∆adv(z) = 0 that
lie on the ‘wrong’ side of the imaginary axis. With this integer n] in hand, one can easily determine
the codimension of π−(Q) and the dimension of Ker

(
π−|Q
)
, which are both finite. In particular, the

restriction operator π−|Q is Fredholm.
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Unfortunately, explicit factorizations (1.25) are usually extremely hard to find. Motivated by this
complication, we developed continuation techniques in [4, 10] that allow us to track the integer n]

through carefully constructed homotopies that lead to systems for which factorizations are explicitly
available. In addition, we generalized the well-posedness results above to include certain differential-
algebraic systems and to allow for the possibility of a single jump at ξ = 0. A small part of our
contribution here centers on streamlining these results by introducing an invariant similar to n] for
differential-algebraic systems.

In the non-scalar but finite dimensional setting H = R
n with n > 1, it is still the case that

the restriction operator π−|Q is Fredholm and that Wiener-Hopf factorizations are available, but the
codimension of π−(Q) and the dimension of Ker

(
π−|Q
)

can at present [1] only be given in ranges in-
volving n]. Indeed, possible linear dependencies between eigenvectors that are hard to track through
continuations prevent the use of simple counting arguments.

Our main contribution in this regime is to give a description of the range π−(Q) and kernel
Ker

(
π−|Q
)

of the restriction operator in terms of the Hale inner product, which naturally couples the
linear system (1.13) with its formal adjoint. In the future this description might help to develop a
practical tool for understanding the well-posedness of (1.20)-(1.21). In the present paper however,
we need this description to show how the range and kernel of π−|Q vary after parameters (such as
Fourier frequencies) are introduced to the linear system (1.13).

1.4 Fourier decompositions

We here fix H = `2(Z;Rn) for n ≥ 1 and assume that the operators A and B are convolution
operators. In particular, we pick a ∈ `1(Z;Rn×n) and b ∈ `1(Z;Rn×n) and study the system

x′j(ξ) =
∑
k∈Z aj−kxk(ξ) +

∑
k∈Z bj−k

∫ 1

−1
xk(ξ + σ) dσ,

‖x(ξ)‖`2(Z;Rn) → 0 as ξ →∞,
(1.26)

together with the initial condition

xj(ϑ) = φj(ϑ) for all − 1 ≤ ϑ ≤ 0 and j ∈ Z, (1.27)

for some φ ∈ C
(
[−1, 0]; `2(Z;Rn)

)
. Formally taking Fourier transforms

x(ω, ξ) =
∑
j∈Z

e−ijωxj(ξ), a(ω) =
∑
j∈Z

e−ijωaj , b(ω) =
∑
j∈Z

e−ijωbj , (1.28)

the first line of (1.26) decouples as

∂ξx(ω, ξ) = a(ω)x(ω, ξ) + b(ω)
∫ 1

−1

x(ω, ξ + σ) dσ. (1.29)

For each ω ∈ [−π, π] this is hence a system of the form (1.13) posed on H = R
n. Assuming that the

characteristic functions

∆ω(z) = z − a(ω)− b(ω)
∫ 1

−1

ezσ dσ (1.30)

satisfy 0 /∈ det ∆ω(iR) for all ω ∈ [−π, π], the discussion in §1.2 shows that we have decompositions

C([−1, 1];Rn) = Pω ⊕Qω (1.31)

together with

C
(
[−1, 1]; `2(Z;Rn)

)
= P ⊕Q. (1.32)
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In the final part of this paper we show how information concerning the set of restriction op-
erators π−|Qω associated to the Fourier frequencies can be used to study the properties of the full
restriction operator π−|Q. Special care here is required because in contrast to the setting of §1.3, the
latter restriction operator is not Fredholm when not invertible. Indeed, the dimension of the kernel
Ker

(
π−|Q
)

and the codimension of the range π−(Q) will either be zero or infinite dimensional. This
follows directly from the translation invariance of (1.26), as kernel elements or functions missing
from the range can be arbitrarily shifted in the j-direction.

A second factor that requires delicate attention is the interplay between the Fourier transform
and the spaces of continuous functions on which the restriction operators are defined. Indeed, for
x(ξ) ∈ `2(Z;Rn), the Fourier components (1.28) need not be defined for all ω ∈ [−π, π]. This can
be alleviated by demanding x(ξ) ∈ `1(Z;Rn), which is why part of the efforts described above in
§1.2 focus on Banach spaces. In addition, to exploit the power of the Plancherel theorem we need
to focus on L2-based norms instead of supremum norms, which accounts for the discussion in §1.2
above concerning the detailed estimates (1.19) for the exponential splittings.

1.5 Organization

This paper is organized as follows. In §2 and §3 we state our main results, focussing on exponential
dichotomies in §2 and on the restriction operators in §3. We illustrate our results in §4 by analyzing
the model discussed above in §1.1. The remainder of the paper is devoted to the proof of the main
results. We set up two fixed point problems in §5 in order to establish the existence of exponential
splittings. We move on in §6 to discuss restriction operators for the finite dimensional case H =
R
n. Differential-algebraic problems are analyzed in §7 and we conclude in §8 by studying Fourier

decompositions.

Acknowledgments Hupkes acknowledges support from the Netherlands Organization for Scien-
tific Research (NWO).

2 Exponential Splittings

Fix a Hilbert space H. In this section we are interested in bounded linear operators

L : C([rmin, rmax];H)→ H, (2.1)

in which we include the special case L ∈ L(H;H) by imposing the notation

C([0, 0];H) = H (2.2)

throughout the entire paper. Most of our results will require the following form condition to be
satisfied.

(HF)L We have rmin ≤ 0 ≤ rmax. There exists an integer N ≥ 0 together with real numbers

rmin = r0 < r1 < . . . < rN = rmax, rmin ≤ s−j ≤ s
+
j ≤ rmax, (2.3)

operators

Aj ∈ L(H;H), 0 ≤ j ≤ N (2.4)

and functions

Bj ∈ C
(
[s−j , s

+
j ];L(H;H)

)
, 0 ≤ j ≤ N, (2.5)
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so that

Lφ =
N∑
j=0

[
Ajφ(rj) +

∫ s+j

s−j

Bj(σ)φ(σ) dσ
]
. (2.6)

We remark that the integrals in (2.6) are well-defined both as Riemann and Bochner integrals, since
the integrands are continuous functions on compact intervals.

Fix ξ ∈ R. For any H-valued function x that is continuous on the interval [ξ+ rmin, ξ+ rmax], we
introduce the notation

evξ x ∈ C([rmin, rmax];H) (2.7)

to refer to the function that has

[evξx](σ) = x(ξ + σ) for all rmin ≤ σ ≤ rmax. (2.8)

Our goal here is to characterize which functions φ ∈ C([rmin, rmax];H) can be extended to
solutions to the homogeneous problem

x′(ξ) = L evξ x (2.9)

that are defined on half-lines and bounded by prescribed exponentials. For any η ∈ R and any
interval I ⊂ R, we therefore introduce the function space

BCη(I;H) = {x ∈ C(I;H) : ‖x‖η := supξ∈I e−ηξ ‖x(ξ)‖H <∞}. (2.10)

This allows us to define the two families

BC	η (H) = BCη
(
(−∞, rmax];H

)
,

BC⊕η (H) = BCη
(
[rmin,∞);H

)
,

(2.11)

together with the solution spaces

PL(η) =
{
x ∈ BC	η (H) : x′(ξ) = L evξ x for all ξ ≤ 0

}
,

QL(η) =
{
y ∈ BC⊕η (H) : y′(ξ) = L evξ y for all ξ ≥ 0

}
.

(2.12)

The initial segments of these solutions are contained in the spaces

PL(η) =
{
φ ∈ C([rmin, rmax];H) : φ = ev0 x for some x ∈ PL(η)

}
,

QL(η) =
{
φ ∈ C([rmin, rmax];H) : φ = ev0 y for some y ∈ QL(η)

}
.

(2.13)

As a final preparation, we introduce the characteristic function

∆L : C 7→ L
(
H;H

)
(2.14)

defined by

∆L(z) = z − Lez· (2.15)

for any z ∈ C. Here we are implicitly assuming that H has been complexified if necessary. If (HF)L
is satisfied, then we may write

∆L(z) = z −
N∑
j=0

[
Aje

zrj +
∫ s+j

s−j

Bj(σ)ezσ dσ
]
. (2.16)

Our first main result states that (2.9) admits exponential dichotomies, hence generalizing [20, Thm.
3.2] to the current infinite dimensional setting.
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Theorem 2.1 (see §5). Fix a Hilbert space H and consider a linear operator L : C([rmin, rmax];H)→
H that satisfies (HF)L. If the linear operators ∆L(z) ∈ L(H;H) are invertible for all z ∈ C that
have Re z = η, then the spaces PL(η) and QL(η) are both closed and we have the splitting

C
(
[rmin, rmax];H

)
= PL(η)⊕QL(η). (2.17)

In order to allow solutions of (2.9) to have a jump discontinuity at ξ = 0, we introduce the
shorthands

BC−η (H) = BCη((−∞, 0];H),

BC+
η (H) = BCη([0,∞);H), (2.18)

together with the two families of function spaces

B̂C
⊕
η (H) = C([rmin, 0];H)×BC+

η (H),

B̂C
	
η (H) = BC−η (H)× C([0, rmax];H),

(2.19)

all parametrized by η ∈ R.
For ŷ ∈ B̂C

⊕
η (H), we will simply write ŷ(ξ) to refer to the approriate function value, using the

notation ŷ(0+) and ŷ(0−) to resolve the ambiguity at ξ = 0 whenever necessary. For any 0 ≤ ξ ≤
−rmin and ŷ ∈ BC⊕η , we introduce the notation

êvξ ŷ = (φl, φr) ∈ C
(
[rmin,−ξ];H

)
× C

(
[−ξ, rmax];H

)
(2.20)

to refer to the pair of functions that have

φl(σ) =

{
ŷ(ξ + σ) rmin ≤ σ < −ξ,

ŷ(0−) σ = −ξ,

φr(σ) =

{
ŷ(ξ + σ) −ξ < σ ≤ rmax,

ŷ(0+) σ = −ξ.

(2.21)

We then write

L̂+ êvξ ŷ =
∑
rj=−ξ Ajφ

r(rj) +
∑
rj>−ξ Ajφ

r(rj) +
∑
rj<−ξ Ajφ

l(rj)

+
∑N
j=0

[ ∫min{−ξ,s+j }
min{s−j ,−ξ}

Bj(σ)φl(σ) dσ +
∫max{−ξ,s+j }

max{−ξ,s−j }
Bj(σ)φr(σ) dσ

]
=

∑N
j=0

[
Aj ŷ

(
(ξ + rj)+

)
+
∫ s+j
s−j

Bj(σ)ŷ(ξ + σ) dσ
]
.

(2.22)

The plus sign hence stands for the fact that every reference to ŷ(0) is interpreted as ŷ(0+). For
ξ > −rmin we simply write

[êvξ ŷ](σ) = ŷ(ξ + σ), rmin ≤ σ ≤ rmax (2.23)

as there is no cause for confusion.
For x̂ ∈ B̂C

	
η (H) and −rmax ≤ ξ ≤ 0, we again write êvξ x̂ = (φl, φr) with (φl, φr) defined as in

(2.21) with ŷ replaced by x̂. We then write

L̂− êvξ x̂ =
∑
rj=−ξ Ajφ

l(rj) +
∑
rj>−ξ Ajφ

r(rj) +
∑
rj<−ξ Ajφ

l(rj)

+
∑N
j=0

[ ∫min{−ξ,s+j }
min{s−j ,−ξ}

Bj(σ)φl(σ) dσ +
∫max{−ξ,s+j }

max{−ξ,s−j }
Bj(σ)φr(σ) dσ

]
=

∑N
j=0

[
Aj x̂

(
(ξ + rj)−

)
+
∫ s+j
s−j

Bj(σ)x̂(ξ + σ) dσ
]
.

(2.24)
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For convenience, we introduce the set

R = {0} ∪ {−rj}Nj=0. (2.25)

We note that any discontinuities in the functions and ξ 7→ L̂+ êvξ ŷ and ξ 7→ L̂− êvξ x̂ will arise for
values of ξ ∈ R. In fact, for ξ /∈ R there is no ambiguity between the two definitions (2.22) and
(2.24) and we simply use the notation L̂ in this case.

Proposition 2.2 (see §5). Fix a Hilbert space H and consider a bounded linear operator L :
C([rmin, rmax];H)→ H that satisfies (HF)L. If the linear operators ∆L(z) ∈ L(H;H) are invertible
for all z ∈ C that have Re z = η, then there exists a function

ĜL(η) =
(
G−L (η), G+

L(η)
)
∈ C

(
(−∞, 0];L(H;H)

)
× C

(
[0,∞);L(H;H)

)
(2.26)

that satisfies the following properties.

(i) For every ξ ∈ R \ R, the function ĜL(η) satisfies the differential equation

[ĜL(η)]′(ξ) = L̂ êvξ [ĜL](η). (2.27)

(ii) There exist constants K > 0 and κ > 0 such that∣∣∣e−ηξ[ĜL(η)](ξ)
∣∣∣ ≤ Ke−κ|ξ|, ξ ∈ R. (2.28)

(iii) Writing I for the identity on H, we have

[G+
L(η)](0)− [G−L (η)](0) = I. (2.29)

We are now ready to introduce the solution spaces

P̂L(η) =
{
x̂ ∈ B̂C

	
η (H) : x̂′(ξ) = L̂ êvξ x̂ for all ξ ∈ (−∞, 0) \ R

}
,

Q̂L(η) =
{
ŷ ∈ B̂C

⊕
η (H) : ŷ′(ξ) = L̂ êvξ ŷ for all ξ ∈ (0,∞) \ R

}
,

(2.30)

together with the associated initial segment spaces

P̂L(η) =
{
φ̂ ∈ C([rmin, 0];H)× C([0, rmax];H) : φ̂ = êv0 x̂ for some x̂ ∈ P̂L(η)

}
,

Q̂L(η) =
{
φ̂ ∈ C([rmin, 0];H)× C([0, rmax];H) : φ̂ = êv0 ŷ for some ŷ ∈ Q̂L(η)

}
.

(2.31)

Our second main result shows that the Green’s function described in Proposition 2.2 acts as a bridge
between solution spaces that do and do not permit jumps at ξ = 0.

Theorem 2.3 (see §5). Fix a Hilbert space H and consider a linear map L : C([rmin, rmax];H)→
H that satisfies (HF)L. If the linear operators ∆L(z) ∈ L(H;H) are invertible for all z ∈ C that
have Re z = η, then we have the relations

P̂L(η) = PL(η)⊕ spanH{êv0ĜL(η)}, Q̂L(η) = QL(η)⊕ spanH{êv0ĜL(η)}, (2.32)

in which we have introduced the notation

spanH{êv0ĜL(η)} = {φ̂ ∈ C([rmin, 0];H)× C([0, rmax];H) :

φ̂ = êv0[ĜL(η)v] for some v ∈ H}.
(2.33)
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We now turn our attention to differential-algebraic equations. In particular, we fix a bounded
linear operator

M : C([rmin, rmax];H)→ H (2.34)

and consider equations of the form

Ix′(ξ) = M evξ x (2.35)

that satisfy the following structural condition.

(HS) We have H = `2(Z;Rn) or H = R
n for some n ≥ 1 and the n × n-matrix I is diagonal with

I2 = I. If H = `2(Z;Rn), then the matrix multiplication in (2.35) should be interpreted in a
pointwise fashion, e.g.

[Iv]j = Ivj for any v ∈ `2(Z;Rn). (2.36)

We are interested in systems that can be closely related to a differential system of the form (2.9).
In order to clarify this relationship, we introduce the characteristic operator

δI,M (z) = Iz −Mez· (2.37)

that is associated to (2.35). The restriction on the differential-algebraic structure of this system that
we need to impose can now be captured by the following condition on the characteristic function.

(HAlg)I,M There exists a linear operator

L ∈ L
(
C([rmin, rmax];H);H

)
(2.38)

together with a constant α ∈ C and a set of non-negative integers (`1, . . . , `n) ∈ Zn≥0 such that

Jα(z)δI,M (z) = ∆L(z), (2.39)

where Jα : C→ C
n×n denotes the diagonal matrix function

Jα(z) = diag
(
(z − α)`1 , . . . , (z − α)`n

)
. (2.40)

IfH = `2(Z;Rn), then the matrix multiplication in (2.39) should be interpreted in the pointwise
fashion described in (HS).

This condition roughly states that one arrives at a pure differential equation by differentiating
the i-th component of (2.35) `i times. We note that we do not require L above to satisfy (HF)L. In
addition, the demand I2 = I means that all entries of the diagonal matrix I are either zero or one.

Please note that the purely algebraic components of the system (2.35) are unaffected if the
corresponding components of M are multiplied by a non-zero factor. In particular, the corresponding
rows of δI,M can be rescaled without affecting the dynamics of (2.35). Adjusting M in such a manner
will typically be necessary in order to show that all the terms (z − α)` appearing in (2.40) have
coefficient one. Furthermore, we remark that a simple matching of asymptotics along the imaginary
axis shows that

Jα(α) = I, (2.41)

or alternatively, that `i = 0 if and only if Iii = 1.
We will be interested in the solution spaces

pI,M (η) =
{
x ∈ BC	η : Ix′(ξ) = M evξ x for all ξ ≤ 0

}
,

qI,M (η) =
{
y ∈ BC⊕η : Iy′(ξ) = M evξ y for all ξ ≥ 0

}
,

(2.42)
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together with their initial segments

pI,M (η) =
{
φ ∈ C([rmin, rmax];H) | φ = ev0 x for some x ∈ pI,M (η)

}
,

qI,M (η) =
{
φ ∈ C([rmin, rmax];H) | φ = ev0 y for some y ∈ qI,M (η)

}
,

(2.43)

which all describe solutions to (2.35) that do not admit a discontinuity at ξ = 0.
However, when considering functions that are allowed to be multi-valued at ξ = 0, care must be

taken to ensure that (2.35) is well-posed. The following result is important in this respect, as it shows
that the part of the right-hand side of (2.35) that corresponds to the purely algebraic equations is
continuous.

Lemma 2.4 (see §7). Consider the differential-algebraic system (2.35) and suppose that (HF)M ,

(HS) and (HAlg)I,M are all satisfied. Then for any ŷ ∈ B̂C
⊕
η , the function

ξ 7→ (I − I)M̂+ êvξ ŷ (2.44)

is continuous on [0,∞), while for any x̂ ∈ B̂C
	
η , the function

ξ 7→ (I − I)M̂− êvξ x̂ (2.45)

is continuous on (−∞, 0].

Recalling the set R defined in (2.25), this result motivates the introduction of the solution spaces

p̂I,M (η) =
{
x̂ ∈ B̂C

⊕
η : I x̂′(ξ) = I M̂− êvξ x̂ for all ξ ∈ (−∞, 0) \ R

and 0 = (I − I) M̂− êvξ x̂ for all ξ ≤ 0
}
.

q̂I,M (η) =
{
ŷ ∈ B̂C

⊕
η : I ŷ′(ξ) = I M̂+ êvξ ŷ for all ξ ∈ (0,∞) \ R

and 0 = (I − I) M̂+ êvξ ŷ for all ξ ≥ 0
}
,

(2.46)

together with their initial segments

p̂I,M (η) =
{
φ̂ ∈ C([rmin, 0];H)× C([0, rmax];H) : φ̂ = êv0 x̂ for some x̂ ∈ pI,M (η)

}
,

q̂I,M (η) =
{
φ̂ ∈ C([rmin, 0];H)× C([0, rmax];H) : φ̂ = êv0 ŷ for some ŷ ∈ qI,M (η)

}
.

(2.47)

Our final result in this section relates these spaces to their counterparts that were defined for the
differential equation (2.9). In particular, initial value problems for the differential-algebraic system
(2.35) can be studied by techniques similar to those that we will develop for (2.9).

Theorem 2.5 (see §7). Consider the differential-algebraic equation (2.35) and suppose that (HF)M ,
(HS) and (HAlg)I,M are all satisfied. Choose any η∗ ∈ R for which the characteristic operator
δI,M (z) is invertible for all Re z = η∗. Then there exists a bounded linear map L′ : C([rmin, rmax];H)→
H that satisfies (HF)L′ and for which

Jη∗(z)δI,M (z) = ∆L′(z) (2.48)

holds for all z ∈ C.
In addition, for every sufficiently small ε > 0 we have

qI,M (η∗) = QL′(η∗ − ε), q̂I,M (η∗) = Q̂L′(η∗ − ε), (2.49)
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together with

pI,M (η∗) = PL′(η∗ + ε), p̂I,M (η∗) = P̂L′(η∗ + ε). (2.50)

Alternatively, for every η < η∗ we have

qI,M (η) = QL′(η), q̂I,M (η) = Q̂L′(η), (2.51)

while for every η > η∗ we have

pI,M (η) = PL′(η), p̂I,M (η) = P̂L′(η). (2.52)

3 State Space Restrictions

In this section we state our main results concerning two pairs of restriction operators. The first pair

π− : C([rmin, 0];H)× C([0, rmax];H) → C([rmin, 0];H),

π+ : C([rmin, 0];H)× C([0, rmax];H) → C([0, rmax];H)
(3.1)

acts as

π−(φ−, φ+) = φ−, π+(φ−, φ+) = φ+, (3.2)

while the second augmented pair

π̂− : C([rmin, 0];H)× C([0, rmax];H) → C([rmin, 0];H)×H,

π̂+ : C([rmin, 0];H)× C([0, rmax];H) → H× C([0, rmax];H)
(3.3)

acts as

π̂−(φ−, φ+) =
(
φ−, φ+(0)

)
, π̂+(φ−, φ+) =

(
φ−(0), φ+

)
. (3.4)

We are specifically interested in the action of these base restriction operators on the initial segment
spaces related to the exponential splittings that were introduced in §2.

In particular, for any η ∈ R we introduce the shorthands

π+
PL(η) = [π+]|PL(η), π−QL(η) = [π−]|QL(η),

π+
bPL(η)

= [π+]| bPL(η), π−bQL(η)
= [π−]| bQL(η),

π̂+
bPL(η)

= [π̂+]| bPL(η), π̂−bQL(η)
= [π̂−]| bQL(η),

(3.5)

which are all associated to the differential system (2.9). In addition, we introduce the spaces

K+
PL(η) = Kerπ+

PL(η), R+
PL(η) = Rangeπ+

PL(η),

K+
bPL(η)

= Kerπ+
bPL(η)

, R+
bPL(η)

= Rangeπ+
bPL(η)

,

K̂+
bPL(η)

= Ker π̂+
bPL(η)

, R̂+
bPL(η)

= Range π̂+
bPL(η)

,

(3.6)

together with

K−QL(η) = Kerπ−QL(η), R−QL(η) = Rangeπ−QL(η),

K−bQL(η)
= Kerπ−bQL(η)

, R−bQL(η)
= Rangeπ−bQL(η)

,

K̂−bQL(η)
= Ker π̂−bQL(η)

, R̂−bQL(η)
= Range π̂−bQL(η)

.

(3.7)
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In order to conveniently formulate our results, we also introduce the collection of triplets

ΘL(η) =
{ (

π+
PL(η), PL(η), C([0, rmax];H)

)
,

(
π−QL(η), QL(η), C([rmin, 0];H)

)
,(

π+
bPL(η)

, P̂L(η), C([0, rmax];H)
)
,

(
π−bQL(η)

, Q̂L(η), C([rmin, 0];H)
)
,(

π̂+
bPL(η)

, P̂L(η),H× C([0, rmax];H)
)
,
(
π̂−bQL(η)

, Q̂L(η), C([rmin, 0];H)×H
)}
.

(3.8)

For any triplet θ = (πθ,Sθ, Tθ) ∈ ΘL(η), we will be interested in determining the properties of the
restriction operator

πθ : Sθ → Tθ. (3.9)

To accompany the differential-algebraic system (2.35), we write

π+
pI,M (η) = [π+]|pI,M (η), π−qI,M (η) = [π−]|qI,M (η),

π+
bpI,M (η) = [π+]|bpI,M (η), π−bqI,M (η) = [π−]|bqI,M (η),

π̂+
bpI,M (η) = [π̂+]|bpI,M (η), π̂−bqI,M (η) = [π̂−]|bqI,M (η).

(3.10)

As above, we also introduce the spaces

K+
pI,M (η) = Kerπ+

pI,M (η), R+
pI,M (η) = Rangeπ+

pI,M (η),

K+
bpI,M (η) = Kerπ+

bpI,M (η), R+
bpI,M (η) = Rangeπ+

bpI,M (η),

K̂+
bpI,M (η) = Ker π̂+

bpI,M (η), R̂+
bpI,M (η) = Range π̂+

bpI,M (η)

(3.11)

and

K−qI,M (η) = Kerπ−qI,M (η), R−qI,M (η) = Rangeπ−qI,M (η),

K−bqI,M (η) = Kerπ−bqI,M (η), R−bqI,M (η) = Rangeπ−bqI,M (η),

K̂−bqI,M (η) = Ker π̂−bqI,M (η), R̂−bqI,M (η) = Range π̂−bqI,M (η),

(3.12)

together with the collection of triplets

ΘI,M (η) =
{ (

π+
pI,M (η), pI,M (η), C([0, rmax];H)

)
,

(
π−qI,M (η), qI,M (η), C([rmin, 0];H)

)
,(

π+
bpI,M (η), p̂I,M (η), C([0, rmax];H)

)
,

(
π−bqI,M (η), q̂I,M (η), C([rmin, 0];H)

)
,(

π̂+
bpI,M (η), p̂I,M (η),H× C([0, rmax];H)

)
,
(
π̂−bqI,M (η), q̂I,M (η), C([rmin, 0];H)×H

)}
.

(3.13)

For any triplet θ = (πθ,Sθ, Tθ) ∈ ΘI,M (η), we will again be interested in understanding the restriction

πθ : Sθ → Tθ. (3.14)

In §3.1 we present our results for the general finite dimensional case H = R
n. In the scalar setting

H = R more detailed characterizations are possible, which we formulate for differential systems in
§3.2 and for differential-algebraic systems in §3.3. Finally, in §3.4 we discuss the infinite dimensional
case H = `2(Z;Rn).
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3.1 Finite dimensional systems

Our interest here is in the finite dimensional case H = R
n. Our first results state that the restriction

operators (3.5) and (3.10) are Fredholm provided that the relevant vertical line in the complex plane
is free of eigenvalues. This property can already be found in [20] for π+

PL(η) and π−QL(η), together
with the index formula (3.16). Our extensions are relatively minor, but we include them here for
completeness. In fact, we provide an alternative proof for these facts that is based upon the fixed
point setup developed in §5.

Proposition 3.1 (see §6). Write H = R
n for some integer n ≥ 1 and consider a linear operator

L : C([rmin, rmax];H)→ H that satisfies (HF)L. Choose η ∈ R in such a way that the characteristic
equation det ∆L(z) = 0 admits no roots with Re z = η. Then for every θ = (πθ,Sθ, Tθ) ∈ ΘL(η), the
restriction operator

πθ : Sθ → Tθ (3.15)

is a Fredholm operator. In addition, we have the index formula

ind(π+
PL(η)) + ind(π−QL(η)) = −n, (3.16)

together with the variants

ind(π+
PL(η)) + ind(π−bQL(η)

) = ind(π+
bPL(η)

) + ind(π−QL(η)) = 0,

ind(π+
bPL(η)

) + ind(π̂−bQL(η)
) = ind(π̂+

bPL(η)
) + ind(π−bQL(η)

) = 0.
(3.17)

Corollary 3.2. Consider the differential-algebraic equation (2.35) with H = R
n for some integer

n ≥ 1 and suppose that (HF)M and (HAlg)I,M are satisfied. Choose η ∈ R in such a way that
the characteristic equation det δI,M (z) = 0 admits no roots with Re z = η. Then for every ξ =
(πξ,Sξ, Tξ) ∈ ΞI,M (η), the restriction operator

πξ : Sξ → Tξ (3.18)

is a Fredholm operator.

Proof. This follows directly from Theorem 2.5 and Proposition 3.1.

Assuming the form condition (HF)L is satisfied for the system (2.9), we define the formal adjoint

L∗ : C
(
[−rmax,−rmin];Rn

)
→ R

n (3.19)

that acts as1

L∗ψ = −
∑N
j=0

[
A∗jψ(−rj) +

∫ s+j
s−j

Bj(σ)∗ψ(−σ) dσ
]

= −
∑N
j=0

[
A∗jψ(−rj) +

∫ −s−j
−s+j

Bj(−σ)∗ψ(σ) dσ
]
.

(3.20)

The coupling between L and L∗ is provided through the Hale inner product

〈·, ·〉L : C([−rmax,−rmin];Rn)× C([rmin, rmax];Rn)→ R
n, (3.21)

which acts as

〈ψ, φ〉L = ψ(0)∗φ(0)−
N∑
j=0

∫ rj

0

ψ(τ − rj)∗Ajφ(τ) dτ −
N∑
j=0

∫ s+j

s−j

∫ σ

0

ψ(τ − σ)∗Bj(σ)φ(τ) dτ dσ.

(3.22)

1For later use, we are deliberately using complex notation here, even though all terms are real-valued at present.
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Introducing the two bounded linear operators

L>0 : C([0, rmax];Rn) → R
n,

L<0 : C([rmin, 0];Rn) → R
n

(3.23)

that act as

L>0φ =
∑
rj>0Ajφ(rj) +

∑
s+j >0

∫ s+j
max{0,s−j }

Bj(σ)φ(σ) dσ,

L<0φ =
∑
rj<0Ajφ(rj) +

∑
s−j <0

∫min{0,s+j }
s−j

Bj(σ)φ(σ) dσ,
(3.24)

we note that the corresponding Hale inner products

〈·, ·〉L>0 : C([−rmax, 0];Rn)× C([0, rmax];Rn) → R
n,

〈·, ·〉L<0 : C([0,−rmin];Rn)× C([rmin, 0];Rn) → R
n

(3.25)

are given by

〈ψ, φ〉L>0 = ψ(0)∗φ(0)−
∑
rj>0

∫ rj
0
ψ(τ − rj)∗Ajφ(τ) dτ

−
∑
s+j >0

∫ s+j
max{0,s−j }

∫ σ
0
ψ(τ − σ)∗Bj(σ)φ(τ) dτ dσ,

(3.26)

together with

〈ψ, φ〉L<0 = ψ(0)∗φ(0)−
∑
rj<0

∫ rj
0
ψ(τ − rj)∗Ajφ(τ) dτ

−
∑
s−j <0

∫min{0,s+j }
s−j

∫ σ
0
ψ(τ − σ)∗Bj(σ)φ(τ) dτ dσ.

(3.27)

By construction, we have the identity

〈ψ, φ〉L = 〈π−ψ, π+φ〉L>0 + 〈π+ψ, π−φ〉L<0 − ψ(0)∗φ(0) (3.28)

for all φ ∈ C([rmin, rmax];Rn) and ψ ∈ C([−rmax,−rmin];Rn).
The remainder of our results in this subsection require the Hale inner product to be complete.

To ensure that this is the case, we need to impose the following non-degeneracy condition on the
linear operator L. It roughly states that for every non-zero u ∈ Rn, computation of the expression
〈u, Lφ〉Rn requires knowledge of φ on the entire interval [rmin, rmax].

(HRnk)L If rmax > 0, there exist s+ ≥ 0 and J+ ∈ Rn×n with detJ+ 6= 0 so that

∆L(z) = z−s+ezrmax
(
J+ + o(1)

)
as z →∞. (3.29)

In addition, if rmin < 0, there exist s− ≥ 0 and J− ∈ Rn×n with detJ− 6= 0 so that

∆L(z) = z−s−ezrmin
(
J− + o(1)

)
as z → −∞. (3.30)

Proposition 3.3 (see §6). Write H = R
n for some integer n ≥ 1 and consider a linear operator

L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HRnk)L. Then the Hale inner products
〈·, ·〉L, 〈·, ·〉L>0 and 〈·, ·〉L<0 are all non-degenerate in the sense that the following properties hold.

(i) Any φ ∈ C([rmin, rmax];Rn) for which

〈ψ, φ〉L = 0 (3.31)

holds for all ψ ∈ C([−rmax,−rmin];Rn) must satisfy φ = 0.
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(ii) Any φ ∈ C([rmin, 0];Rn) for which

〈ψ, φ〉L<0 = 0 (3.32)

holds for all ψ ∈ C([0,−rmin];Rn) must satisfy φ = 0.

(iii) Any φ ∈ C([0, rmax];Rn) for which

〈ψ, φ〉L>0 = 0 (3.33)

holds for all ψ ∈ C([−rmax, 0];Rn) must satisfy φ = 0.

To prepare for the next results, we need to extend the Hale inner product to functions with
discontinuities. To this end, fix any rmin ≤ α ≤ rmax and consider a pair of functions

ψ̂ ∈ C([−rmax,−α];Rn)× C([−α,−rmin];Rn), φ̂ ∈ C([rmin, α];Rn)× C([α, rmax];Rn) (3.34)

together with a pair v ∈ Rn and w ∈ Rn. We now introduce the notation〈
(ψ̂, w), (φ̂, v)

〉
L

= w∗v −
∑N
j=0

∫ rj
0
ψ̂(τ − rj)∗Aj φ̂(τ) dτ

−
∑N
j=0

∫ s+j
s−j

∫ σ
0
ψ̂(τ − σ)∗Bj(σ)φ̂(τ) dτ dσ,

(3.35)

where the integrals are now taken over piecewise continuous functions. This notation isolates the
possible ambiguity corresponding to the evaluations at zero. We also use the analogous expressions
for the operators L<0 and L>0.

The Hale inner product can be used to characterize the restriction operators (3.5) and the initial
segment spaces (2.13) and (2.31) in terms of their counterparts defined for the adjoint operator L∗.

Proposition 3.4 (see §6). Write H = R
n for some integer n ≥ 1 and consider a linear operator

L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HRnk)L. Pick η ∈ R in such a way that
det ∆L(z) = 0 has no roots with Re z = η. Then we have the representations

PL(η) = {φ ∈ C([rmin, rmax];Rn) : 〈ψ, φ〉L = 0 for all ψ ∈ PL∗(−η)}

= {φ ∈ C([rmin, rmax];Rn) :
〈(
ψ̂, ψ̂(0−)

)
,
(
φ, φ(0)

)〉
L

= 0 for all ψ̂ ∈ P̂L∗(−η)},

P̂L(η) = {φ̂ ∈ C([rmin, 0];Rn)× C([0, rmax];Rn) :〈(
ψ,ψ(0)

)
,
(
φ̂, φ̂(0−)

)〉
L

= 0 for all ψ ∈ PL∗(−η)}

= {φ̂ ∈ C([rmin, 0];Rn)× C([0, rmax];Rn) :〈(
ψ̂, ψ̂(0−)

)
,
(
φ̂, φ̂(0−)

)〉
L

= 0 for all ψ̂ ∈ P̂L∗(−η)},

(3.36)

together with

QL(η) = {φ ∈ C([rmin, rmax];Rn) : 〈ψ, φ〉L = 0 for all ψ ∈ QL∗(−η)}

= {φ ∈ C([rmin, rmax];Rn) :
〈(
ψ̂, ψ̂(0+)

)
,
(
φ, φ(0)

)〉
L

= 0 for all ψ̂ ∈ Q̂L∗(−η)},

Q̂L(η) = {φ̂ ∈ C([rmin, 0];Rn)× C([0, rmax];Rn) :〈(
ψ,ψ(0)

)
,
(
φ̂, φ̂(0+)

)〉
L

= 0 for all ψ ∈ QL∗(−η)}

= {φ̂ ∈ C([rmin, 0];Rn)× C([0, rmax];Rn) :〈(
ψ̂, ψ̂(0+)

)
,
(
φ̂, φ̂(0+)

)〉
L

= 0 for all ψ̂ ∈ Q̂L∗(−η)}.

(3.37)
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Theorem 3.5 (see §6). Write H = R
n for some integer n ≥ 1 and consider a linear operator

L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HRnk)L. Pick η ∈ R in such a way that
det ∆L(z) = 0 has no roots with Re z = η. Then we have the representations

Rangeπ+
PL(η) = {φ ∈ C([0, rmax];Rn) :

〈(
π−ψ̂, ψ̂(0−)

)
,
(
φ, φ(0)

)〉
L>0

= 0

for all ψ̂ ∈ Kerπ+
bPL∗ (−η)

},

Rangeπ+
bPL(η)

= {φ ∈ C([0, rmax];Rn) : 〈ψ, φ〉L>0 = 0 for all ψ ∈ Kerπ+
PL∗ (−η)}

= {φ ∈ C([0, rmax];Rn) :
〈(
π−ψ̂, 0

)
,
(
φ, φ(0)

)〉
L>0

= 0

for all ψ̂ ∈ Ker π̂+
bPL∗ (−η)

},

Range π̂+
bPL(η)

= {(v, φ) ∈ Rn × C([0, rmax];Rn) :
〈(
ψ̂−, ψ̂(0−)

)
,
(
φ, v
)〉

L>0

= 0

for all ψ̂ ∈ Kerπ+
bPL∗ (−η)

},

(3.38)

together with

Rangeπ−QL(η) = {φ ∈ C([rmin, 0];Rn) :
〈(
π+ψ̂, ψ̂(0+)

)
,
(
φ, φ(0)

)〉
L<0

= 0

for all ψ̂ ∈ Kerπ−bQL∗ (−η)
},

Rangeπ−bQL(η)
= {φ ∈ C([rmin, 0];Rn) : 〈ψ, φ〉L<0 = 0 for all ψ ∈ Kerπ−QL∗ (−η)}

= {φ ∈ C([rmin, 0];Rn) :
〈(
π+ψ̂, 0

)
,
(
φ, φ(0)

)〉
L<0

= 0

for all ψ̂ ∈ Ker π̂−bQL∗ (−η)
},

Range π̂−bQL(η)
= {(φ, v) ∈ C([rmin, 0];Rn)× Rn :

〈(
π+ψ̂, ψ̂(0+)

)
,
(
φ, v
)〉

L<0

= 0

for all ψ̂ ∈ Kerπ−bQL∗ (−η)
}.

(3.39)

3.2 Scalar differential equations

We now turn to the differential equation (2.9) in the well-studied scalar case H = R. We recall
a number of results from [10] and [20] which together allow for a detailed understanding of the
restriction operators (3.5). We emphasize that none of these results require the form condition
(HF)L to hold.

Proposition 3.6 (see [20, Thm. 5.2] and [10, Prop. 2.2]). Fix rmin ≤ 0 ≤ rmax and consider
a linear operator L : C([rmin, rmax];C) → C that satisfies (HRnk)L. Choose η ∈ R in such a way
that the characteristic equation ∆L(z) = 0 admits no roots with Re z = η. Then for any α ∈ C, there
exist linear operators

L− ∈ L
(
C([rmin, 0];C);C

)
, L+ ∈ L

(
C([0, rmax];C);C

)
, (3.40)

with associated characteristic matrices

∆L±(z) = zI − L±ez· I (3.41)

for which the splitting

(z − α)∆L(z) = ∆L−(z)∆L+(z) (3.42)

holds for all z ∈ C.
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The splitting (3.42) is referred to as a Wiener-Hopf factorization for the symbol ∆L and we will
call any such triplet (α,L−, L+) a Wiener-Hopf triplet for L. In general, such triplets need not be
unique, but it is possible to extract a quantity that does not depend on the chosen splitting (3.42).
Indeed, for any Wiener-Hopf triplet (α,L−, L+) for L and any η ∈ R \ {Reα}, we introduce the
integer

n]L(η) = n−L+
(η)− n+

L−(η) + n+
α (η) (3.43)

that is defined by

n+
L−

(η) = #{z ∈ C | ∆L−(z) = 0 and Re z > η},

n−L+
(η) = #{z ∈ C | ∆L+(z) = 0 and Re z < η},

n+
α (η) = {1 if Reα > η and 0 otherwise}.

(3.44)

Here all roots are counted with their multiplicity. This quantity n]L(η) is invariant in the following
sense.

Proposition 3.7 (see [20, Thm. 5.2] and [10, Prop. 2.3]). Fix rmin ≤ 0 ≤ rmax and consider
a linear operator L : C([rmin, rmax];C) → C that satisfies (HRnk)L. Fix any η ∈ R for which the
characteristic equation ∆L(z) = 0 admits no roots with Re z = η. Then the quantity n]L(η) is
invariant across all Wiener-Hopf triplets (α,L−, L+) for L that have Reα 6= η.

Unfortunately, it is often intractable to find Wiener-Hopf triplets for a prescribed operator L. The
following result can often be used to calculate n]L(η) in such settings. The only requirement is that a
Wiener-Hopf triplet is available for some reference system that can be continuously transformed into
the original system without violating the completeness condition (HRnk). Please note however that
the exponents s± appearing in this condition need not remain constant during this transformation.

Proposition 3.8 (see [10, Thm. 2.5]). Fix rmin ≤ 0 ≤ rmax, consider a continuous path

Γ : [0, 1]→ L
(
C([rmin, rmax];C);C

)
(3.45)

and suppose that (HRnk)Γ(µ) is satisfied for each 0 ≤ µ ≤ 1. Fix any η ∈ R and suppose that the
characteristic equation ∆Γ(µ)(z) = 0 admits roots with Re z = η for only finitely many values of
µ ∈ [0, 1] and that µ ∈ (0, 1) for all such µ. Then we have the identity

n]Γ(1)(η)− n]Γ(0)(η) = −cross(Γ, η), (3.46)

in which the crossing number cross(Γ, η) denotes the net number of roots of the characteristic equation
∆Γ(µ)(z) = 0, counted with multiplicity, that cross the line Re z = η from left to right as µ increases
from 0 to 1.

We conclude this short review by showing how the quantities n]L(η) can be used to characterize
the kernels and ranges of the Fredholm operators (3.5).

Proposition 3.9 (see [20, Thms. 6.1-6.2], [10, Prop. 2.4] and [4, Thm. 3.10]). Fix rmin ≤
0 ≤ rmax and consider a linear operator L : C([rmin, rmax];R)→ R that satisfies (HRnk)L. Fix any
η ∈ R for which the characteristic equation ∆L(z) = 0 admits no roots with Re z = η. Then we have
the identities

dimK+
PL(η) = max{−n]L(η), 0}, codimR+

PL(η) = max{n]L(η), 0},

dimK+
bPL(η)

= max{1− n]L(η), 0}, codimR+
bPL(η)

= max{n]L(η)− 1, 0},

dim K̂+
bPL(η)

= max{−n]L(η), 0}, codim R̂+
bPL(η)

= max{n]L(η), 0},
(3.47)
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together with

dimK−QL(η) = max{n]L(η)− 1, 0}, codimR−QL(η) = max{1− n]L(η), 0}.

dimK−bQL(η)
= max{n]L(η), 0}, codimR−bQL(η)

= max{−n]L(η), 0},

dim K̂−bQL(η)
= max{n]L(η)− 1, 0}, codim R̂−bQL(η)

= max{1− n]L(η), 0}.
(3.48)

3.3 Scalar algebraic equations

Our goal here is to show how the explicit techniques outlined in §3.2 can be transferred to the
differential-algebraic setting of (2.35). In particular, we pick a bounded linear operator

M : C([rmin, rmax];R)→ R (3.49)

and study the system

0 = Mevξx. (3.50)

The conditions (HS) and (HAlg)I,M can then be restated as the following assumption.

(HAlgSc)M There is a linear operator

L ∈ L
(
C([rmin, rmax];C);C

)
(3.51)

together with a constant α ∈ C and integer ` ≥ 1 so that

(z − α)`δ0,M (z) = ∆L(z) (3.52)

for all z ∈ C.

Our first task is to generalize the notation of a Wiener-Hopf factorization to the symbol

δ0,M (z) = −Mez·. (3.53)

Proposition 3.10 (see §7). Fix rmin ≤ 0 ≤ rmax and consider a bounded linear operator M :
C([rmin, rmax];C)→ C that satisfies both (HRnk)M and (HAlgSc)M . Then there exist linear operators

M− ∈ L
(
C([rmin, 0];C);C

)
, M+ ∈ L

(
C([0, rmax];C);C

)
, (3.54)

that satisfy (HAlgSc)M± and for which the splitting

δ0,M (z) = δ0,M−(z)δ0,M+(z) (3.55)

holds for all z ∈ C.

Writing `± ≥ 1 for the integers appearing in the conditions (HAlgSc)M± , we refer to any set
(M−, `−,M+, `+) that satisfies the statements in Proposition 3.10 as a Wiener-hopf set for M . We
note that any such set automatically satisfies the relation

`− + `+ = 1 + `, (3.56)

which can be seen by taking Im z →∞ in (3.55).
For any η ∈ R, we now define the integer

m]
M (η) = m−M+

(η)−m+
M−

(η) +
1
2

(`+ − `−) +
1
2
, (3.57)
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in which we have

m+
M−

(η) = #{z ∈ C : δM−(z) = 0 and Re z > η} (3.58)

together with

m−M+
(η) = #{z ∈ C : δM+(z) = 0 and Re z < η}. (3.59)

As usual, roots are counted according to their multiplicity in these definitions.

Proposition 3.11 (see §7). Fix rmin ≤ 0 ≤ rmax and consider a bounded linear operator M :
C([rmin, rmax];C) → C that satisfies both (HRnk)M and (HAlgSc)M . Fix any η ∈ R for which the
characteristic equation δ0,M (z) = 0 admits no roots with Re z = η. Then the quantity m]

M (η) is
invariant across all Wiener-Hopf sets (M−, `−,M+, `+) for M .

Our next step is to formulate a convenient tool to track the invariant m]
M (η) through homotopies.

To assist us, we define the quantity

cross(α0, α1; η) =

 1 α0 < η < α1,
−1 α1 < η < α0,
0 otherwise.

(3.60)

Proposition 3.12 (see §7). Fix rmin ≤ 0 ≤ rmax and consider two bounded linear operators

M0 : C([rmin, rmax];C)→ C, M1 : C([rmin, rmax];C)→ C. (3.61)

Consider a continuous path

Γ : [0, 1]→ L(C([rmin, rmax];C),C) (3.62)

for which we have the factorizations

δ0,M0(z) = (z − α0)−`∆Γ(0)(z), δ0,M1(z) = (z − α1)−`∆Γ(1)(z) (3.63)

and for which (HRnk)Γ(µ) is satisfied for each 0 ≤ µ ≤ 1. Pick η ∈ R in such a way that the two
characteristic equations

δ0,M0(z) = 0, δ0,M1(z) = 0 (3.64)

both have no roots with Re z = η. Then the following statements all hold.2

(i) If (α0 − η)(α1 − η) 6= 0, we have

m]
M1

(η)−m]
M0

(η) = −cross(Γ; η) + `cross(α0, α1; η). (3.65)

(ii) If min{α1, α2} ≥ η, then for all sufficiently small ε > 0 we have

m]
M1

(η)−m]
M0

(η) = −cross(Γ; η − ε). (3.66)

(iii) If max{α1, α2} ≤ η, then for all sufficiently small ε > 0 we have

m]
M1

(η)−m]
M0

(η) = −cross(Γ; η + ε). (3.67)

2Please note that these conditions are not mutually exclusive.
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Here again the crossing number cross(Γ, η) denotes the net number of roots of the characteristic
equation ∆Γ(µ)(z) = 0, counted with multiplicity, that cross the line Re z = η from left to right as µ
increases from 0 to 1.

In a fashion analogous to Proposition 3.9, the invariant m]
M (η) yields valuable information con-

cerning the restriction operators (3.10).

Proposition 3.13 (see §7). Write H = R and consider a linear operator M : C([rmin, rmax];H)→
H that satisfies (HF)M , (HAlgSc)M and (HRnk)M . Fix any η ∈ R for which the characteristic
equation δ0,M (z) = 0 admits no roots with Re z = η. Then we have the identities

dimK+
p0,M (η) = max{− 1

2`−m
]
M (η), 0}, codimR+

p0,M (η) = max{ 1
2`+m]

M (η), 0},

dimK+
bp0,M (η) = max{1− 1

2`−m
]
M (η), 0}, codimR+

bp0,M (η) = max{ 1
2`+m]

M (η)− 1, 0},

dim K̂+
bp0,M (η) = max{− 1

2`−m
]
M (η), 0}, codim R̂+

bp0,M (η) = max{ 1
2`+m]

M (η), 0},

(3.68)

together with

dimK−q0,M (η) = max{− 1
2`+m]

M (η)− 1, 0}, codimR−q0,M (η) = max{ 1
2`−m

]
M (η) + 1, 0}.

dimK−bq0,M (η) = max{− 1
2`+m]

M (η), 0}, codimR−bq0,M (η) = max{ 1
2`−m

]
M (η), 0},

dim K̂−bq0,M (η) = max{− 1
2`+m]

M (η)− 1, 0}, codim R̂−bq0,M (η) = max{ 1
2`−m

]
M (η) + 1, 0}.

(3.69)

3.4 Fourier decompositions

We now address the infinite-dimensional situation where H = `2(Z;Rn) and the operator

L : C
(
[rmin, rmax]; `2(Z;Rn)

)
→ `2(Z;Rn) (3.70)

is of convolution type. More precisely, we assume that (HF)L is satisfied and impose the following
extra condition.

(HFrr)L We have H = `2(Rn) for some integer n ≥ 1. Recalling the terminology of (HF)L, there exist
sequences aj ∈ `1

(
Z;Rn×n

)
together with functions

bj ∈ C
(

[s−j , s
+
j ]; `1

(
Z;Rn×n

))
, (3.71)

both defined for all 0 ≤ j ≤ N , so that for all such j we have

[Ajv]k =
∑
m∈Z

[aj ]k−mvm (3.72)

for all v ∈ `2(Z;Rn), together with

[Bj(σ)v]k =
∑
m∈Z

[bj(σ)]k−mvm (3.73)

for all σ ∈ [s−j , s
+
j ] and v ∈ `2(Z;Rn).

For any v ∈ `1(Z;Rm×n), we define the Fourier transform Fv ∈ C([−π, π];Rm×n) by

[Fv](ω) =
∑
l∈Z

vle
−ilω. (3.74)

22



In a standard fashion, this map can be extended to a map from `2(Z;Rm×n) into L2([−π, π];Rm×n)
that is bounded and invertible via

v = Finv[Fv], (3.75)

in which we have defined

[Finv w]l =
1

2π

∫ π

−π
eilωw(ω) dω (3.76)

for w ∈ L2([π, π];Rm×n).
In particular, for all 0 ≤ j ≤ N , all ω ∈ [−π, π] and σ ∈ [s−j , s

+
j ], we have the estimates

|[F(aj)](ω)|
Rn×n ≤ ‖aj‖`1(Z;Rn×n) ,

∣∣[F(bj(σ)
)
](ω)

∣∣
Rn×n

≤ ‖bj(σ)‖`1(Z;Rn×n) . (3.77)

In addition, the function

(σ, ω) 7→ [F
(
bj(σ)

)
](ω) (3.78)

is continuous as a map from [s−j , s
+
j ]× [−π, π] into Rn×n.

For any ω ∈ [−π, π], these observations allow us to define a linear operator L(ω) : C([rmin, rmax];Rn)→
R
n that acts as

L(ω)φ =
∑N
j=0[F(aj)](ω)φ(rj) +

∑N
j=0

∫ s+j
s−j

[F
(
bj(σ)

)
](ω)φ(σ) dσ (3.79)

and satisfies (HF)L(ω).
Pick any η ∈ R and recall the collection ΘL(η) defined in (3.8). For any triplet

θ = (πθ,Sθ, Tθ) ∈ ΘL(η), (3.80)

we now introduce the notation

θ(ω) = (πθ(ω),Sθ(ω), Tθ(ω)) ∈ ΘL(ω)(η) (3.81)

to refer to the same projections and spaces but with L replaced by L(ω) and H = `2(Z;Rn) replaced
by H(ω) = R

n. For example, if

θ =
(
π−QL(η), QL(η), C

(
[rmin, 0]; `2(Z;Rn)

))
, (3.82)

then we have

θ(ω) =
(
π−QL(ω)(η), QL(ω)(η), C([rmin, 0];Rn)

)
. (3.83)

Our main result gives conditions under which the kernel and range of the restriction operators
(3.5) are both closed, with a closed complement for the kernel. As explained in §1.4, this is the
closest one can hope to get to the Fredholm properties discussed in (3.1).

Theorem 3.14. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear oper-
ator L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HFrr)L. Suppose furthermore that
(HRnk)L(ω) is satisfied for all ω ∈ [−π, π].

Fix η ∈ R in such a way that

det ∆L(ω)(η + iν) 6= 0 (3.84)
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for all ν ∈ R and ω ∈ [−π, π] and choose a triplet

θ = (πθ,Sθ, Tθ) ∈ ΘL(η). (3.85)

Then Sθ is a closed subspace of C([rmin, 0];H) × C([0, rmax];H). In addition, if there exists an
integer J ≥ 0 so that

dim Kerπθ(ω) = J (3.86)

for all ω ∈ [−π, π], then the following properties hold true.

(i) The two spaces

Kθ = Kerπθ ⊂ Sθ,

Rθ = Rangeπθ ⊂ Tθ
(3.87)

are both closed.

(ii) There exists a closed subspace K⊥θ ⊂ Sθ so that we have the decomposition

Sθ = Kθ ⊕K⊥θ . (3.88)

(iii) If for all ω ∈ [−π, π] we have

Rangeπθ(ω) = Tθ(ω), (3.89)

then in fact Rθ = Tθ.

(iv) If for all ω ∈ [−π, π] we have

Kerπθ(ω) = {0} ⊂ Sθ(ω), (3.90)

then in fact

Kθ = {0} ⊂ Sθ, K⊥θ = Sθ. (3.91)

We note that items (i) and (ii) above imply that the restriction πθ : K⊥θ → Rθ is an invertible
bounded linear operator, which hence has a bounded inverse.

Corollary 3.15. Consider the setting of Theorem 3.14 with n = 1. Then the condition (3.86) is
automatically satisfied. In addition, if n]L(ω)(η) = 0 for all ω ∈ [−π, π], then the operators

π+
PL(η) : PL(η)→ C

(
[0, rmax]; `2(Z;R)

)
,

π̂+
bPL(η)

: P̂L(η)→ `2(Z;R)× C
(
[0, rmax]; `2(Z;R)

)
,

π−bQL(η)
: Q̂L(η)→ C

(
[rmin, 0]; `2(Z;R)

) (3.92)

are all invertible. On the other hand, if n]L(ω)(η) = 1 for all ω ∈ [−π, π], then the operators

π+
bPL(η)

: P̂L(η)→ C
(
[0, rmax]; `2(Z;R)

)
,

π−QL(η) : QL(η)→ C
(
[rmin, 0]; `2(Z;R)

)
,

π̂−bQL(η)
: Q̂L(η)→ C

(
[rmin, 0]; `2(Z;R)

)
× `2(Z;R)

(3.93)

are all invertible.
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Our final results concern the differential-algebraic system (2.35). If M satisfies (HF)M and
(HFrr)M , then the Fourier components

M(ω) : C([rmin, rmax];Rn)→ R
n (3.94)

can be defined in exactly the same fashion as L(ω) in (3.79).

Theorem 3.16. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider the differential-algebraic
system (2.35). Suppose that (HF)M , (HS), (HAlg)I,M and (HFrr)M are all satisfied and that (HRnk)M(ω)

holds for all ω ∈ [−π, π].
Fix η ∈ R in such a way that

det δI,M(ω)(η + iν) 6= 0 (3.95)

for all ν ∈ R and ω ∈ [−π, π] and choose a triplet

θ = (πθ,Sθ, Tθ) ∈ ΘI,M (η). (3.96)

Then Sθ is a closed subspace of C([rmin, 0];H) × C([0, rmax];H). In addition, if there exists an
integer J ≥ 0 so that

dim Kerπθ(ω) = J (3.97)

for all ω ∈ [−π, π], then the following properties hold true.

(i) The two spaces

Kθ = Kerπθ ⊂ Sθ,

Rθ = Rangeπθ ⊂ Tθ,
(3.98)

are both closed.

(ii) There exists a closed subspace K⊥θ ⊂ Sθ so that we have the decomposition

Sθ = Kθ ⊕K⊥θ . (3.99)

(iii) If for all ω ∈ [−π, π] we have

Rangeπθ(ω) = Tθ(ω), (3.100)

then in fact Rθ = Tθ

(iv) If for all ω ∈ [−π, π] we have

Kerπθ(ω) = {0} ⊂ Sθ(ω), (3.101)

then in fact

Kθ = {0} ⊂ Sθ, K⊥θ = Sθ. (3.102)

Corollary 3.17. Consider the setting of Theorem 3.16 with n = 1 and I = 0. Then the condition
(3.97) is automatically satisfied. In addition, writing ` = `1 for the integer defined in (HAlg)I,M ,
the following statements hold true.
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(i) If m]
0,M(ω)(η) = − 1

2` for all ω ∈ [−π, π], then the operators

π+
p0,M (η) : p0,M (η)→ C

(
[0, rmax]; `2(Z;R)

)
,

π̂+
bpM (η) : p̂0,M (η)→ `2(Z;R)× C

(
[0, rmax]; `2(Z;R)

) (3.103)

are both invertible.

(ii) If m]
0,M(ω) = 1− 1

2` for all ω ∈ [−π, π] the operator

π+
bp0,M (η) : p̂0,M (η)→ C

(
[0, rmax]; `2(Z;R)

)
(3.104)

is invertible.

(iii) If m]
0,M(ω) = 1

2` for all ω ∈ [−π, π], the operator

π−bq0,M (η) : q̂0,M (η)→ C
(
[rmin, 0]; `2(Z;R)

)
(3.105)

is invertible.

(iv) If m]
0,M(ω) = 1 + 1

2` for all ω ∈ [−π, π], the operators

π−q0,M (η) : q0,M (η)→ C
(
[rmin, 0]; `2(Z;R)

)
,

π̂−bq0,M (η) : q̂0,M (η)→ C
(
[rmin, 0]; `2(Z;R)

)
× `2(Z;R)

(3.106)

are both invertible.

4 The Model

In this section we analyze the toy pollution model that was introduced in §1.1. In particular, we
recall the functionals

Jj(p) =
∫ ∞

0

(
2
√
pj(t)−

1
2
cj [p](t)2

)
e−ρt dt (4.1)

together with the cost functions

cj [p](t) =
∑
k∈Z

hj−k

∫ t

t−1

pk(σ) dσ, (4.2)

both defined for j ∈ Z and

p ∈ C
(
[−1, 0]; `∞(Z;R)

)
×BC0

(
[0,∞); `∞(Z;R)

)
. (4.3)

Our modelling assumptions are summarized in the following condition.

(hMod) The discount rate satisfies ρ > 0 and the spatial kernel h satisfies h ∈ `1(Z;R) with

h0 > 0,
∑
j∈Z

hj > 0. (4.4)

In addition, the symmetry condition

h−j = hj , j ∈ Z (4.5)

holds, which implies that the Fourier transform of h is real-valued. In fact, the inequality

[Fh](ω) > 0 (4.6)

holds for all ω ∈ [−π, π].
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We now fix an integer j ∈ Z and attempt to find pj in such a way that the functional (4.1) is
maximized, under the initial condition

pj(ϑ) = φj(ϑ) (4.7)

for −1 ≤ ϑ ≤ 0. We do allow for pj to have a jump at zero, i.e. pj(0+) 6= pj(0−).
To separate out the functions that need to be considered as fixed, we write

q(t) = {qk(t)}k 6=j = {pk(t)}k 6=j (4.8)

for all t ≥ −1. In addition, we write

dj [q](t) =
∑

k∈Z\{j}

∫ t

t−1

hj−kqk(u)du (4.9)

for all t ≥ 0. Our goal is hence to find, for fixed q, the function pj that maximizes the expression

Jj(pj , q) =
∫ ∞

0

(
2
√
pj(t)−

1
2
[ ∫ t

t−1

h0pj(u) du+ dj [q](t)
]2)

e−ρtdt. (4.10)

In order to apply the method of variations, we now write

pj = pj + εpvar (4.11)

and assume that

pvar(ϑ) = 0, −1 ≤ ϑ ≤ 0 (4.12)

to account for the initial condition (4.7). We also write

cj [pj , q](t) =
∫ t

t−1

h0pj(u) du+ dj [q](t). (4.13)

We may now formally write

Jj(pj , q) = Jj(pj , q) + εQj(pj , q)[pvar] +O(ε2) (4.14)

in which

Q(pj , q)[pvar] =
∫ ∞

0

( 1√
pj(t)

pvar(t)− ci[pj , q](t)
∫ t

t−1

h0pvar(u) du
)
e−ρtdt. (4.15)

A short computation shows that

Q(pj , q)[pvar] =
∫∞

0
1√
pj(t)

pvar(t)e−ρt dt

−h0

∫ 0

u=−1

∫ u+1

t=0
cj [pj , q](t)e−ρtpvar(u) dt du

−h0

∫∞
u=0

∫ u+1

t=u
cj [pj , q](t)e−ρtpvar(u) dt du.

(4.16)

Exploiting (4.12), this can be rephrased as

Q(pj , q)[pvar] =
∫∞

0
1√
pj(t)

pvar(t)e−ρt dt

−h0

∫∞
u=0

∫ u+1

t=u
cj [pj , q](t)e−ρtpvar(u) dt du

=
∫∞

0
1√
pj(u)

pvar(u)e−ρu du

−h0

∫∞
u=0

∫ 1

σ=0
cj [pj , q](u+ σ)e−ρσe−ρupvar(u) dσ du,

(4.17)
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which gives the optimality condition

1√
pj(u)

= h0

∫ 1

σ=0

cj [pj , q](u+ σ)e−ρσdσ (4.18)

for all u ≥ 0.
We now look for a so-called simultaneous optimum p = {pj}j∈Z, for which we must have

1√
pj(u)

= h0

∫ 1

σ=0

cj [pj , p](u+ σ)e−ρσdσ (4.19)

for all j ∈ Z. Substituting (4.13), we find that such an optimum must satisfy

1√
pj(u)

= h0

∑
k∈Z

hj−k

∫ 1

σ=0

∫ 0

σ′=−1

pk(u+ σ + σ′)dσ′e−ρσdσ (4.20)

for all j ∈ Z and u ≥ 0. Upon introducing the expression

ν(σ) =
1
2
e
ρ
2σ

{ ∫ 2+σ

−σ e−
ρ
2 (σ+σ′)dσ′ for σ ≤ 0,∫ 2−σ

σ
e−

ρ
2 (σ+σ′)dσ′ for σ > 0,

(4.21)

the simultaneous optimum condition (4.20) can be rewritten in the convenient form

1√
pj(u)

= h0

∑
k∈Z

hj−k

∫ 1

−1

ν(σ)e−
ρ
2σpk(u+ σ) dσ, (4.22)

which must hold for all u ≥ 0.
We note that we have included the extra exponential factor e−

ρ
2σ in (4.22) for symmetry purposes.

Indeed, with this choice the function ν satisfies the following properties.

Lemma 4.1. Suppose that (hMod) is satisfied. Then we have ν(σ) = ν(−σ) for σ ∈ [−1, 1]. In
addition, we have

ν ∈ C([−1, 1];R) ∩ C1([−1, 0];R) ∩ C1([0, 1];R), (4.23)

with ν(−1) = ν(1) = 0 and ν(σ) > 0 for σ ∈ (−1, 1). For any z ∈ C we have the identity∫ 1

−1
ezσν(σ) dσ =

∫ 1

0
ezσe−

ρ
2σ dσ

∫ 0

−1
ezσe

ρ
2σ dσ, (4.24)

which for z /∈ {−ρ2 ,
ρ
2} can be evaluated as∫ 1

−1
ezσν(σ) dσ = e−

ρ
2 1
z− ρ2

1
z+ ρ

2

(
ez + e−z − e

ρ
2 − e−

ρ
2
)
. (4.25)

Finally, we have the identities ∫ 1

−1
e±

ρ
2σν(σ) dσ = ρ−1(1− e−ρ),∫ 1

−1
ν(σ) dσ = 4

ρ2 (1− e−
ρ
2 )2.

(4.26)

Proof. These statements follow directly from the explicit expressions

ν(σ) =

{
ρ−1e−

ρ
2σ[eρσ − e−ρ] for σ ≤ 0,

ρ−1e
ρ
2σ[e−ρσ − e−ρ] for σ > 0.

(4.27)
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For convenience, we now introduce the constant

κ = 2
[[∑

j∈Z

hj
]
ρ−1(1− e−ρ)

]−1

> 0. (4.28)

Any spatially and temporally homogeneous solution

pj(u) = p∗ (4.29)

to (4.22) must satisfy

1
√
p∗

= h0

[∑
j∈Z

hj
][ ∫ 1

σ=−1

e−
ρ
2σν(σ)dσ

]
p∗ = 2h0κ

−1p∗, (4.30)

which immediately gives

p∗ = [2h0]−2/3κ2/3. (4.31)

Our main goal in this section is to study solutions to (4.22) that are close to this homogeneous
state p∗. In particular, substituting the Ansatz

pj = p∗ + wj (4.32)

into (4.22), we find

− 1

2p
3/2
∗
wj(u) = h0

∫ 1

σ=−1

∑
k∈Z hj−kwk(u+ σ)e−

ρ
2σν(σ)dσ −N1

(
wj(u)

)
, (4.33)

in which we have introduced the nonlinear expression

N1(w) =
[

1√
p∗+w

− 1√
p∗

+ 1

2p
3/2
∗
w
]

= O(w2). (4.34)

Substituting (4.31), this can be written as

wj(u) = −κ
∑
k∈Z hj−k

∫ 1

−1
e−

ρ
2σν(σ)wk(u+ σ)dσ + κh−1

0 N1

(
wj(u)

)
. (4.35)

Introducing the bounded linear operator

M∗ : C
(
[−1, 1]; `2(Z;Rn)

)
→ `2(Z;Rn) (4.36)

that acts as

[M∗ψ]j = −ψj(0)− κ
∑
k∈Z

hj−k

∫ 1

−1

e−
ρ
2σν(σ)ψk(σ)dσ, (4.37)

the system (4.35) can be written as

−M∗evuw = κh−1
0 N1

(
w(u)

)
, (4.38)

which must hold for all u ≥ 0. Here N1 acts in a pointwise fashion.
In the remainder of this section we use the theory outlined in §2 and §3 to analyze the linear

part of (4.38). In particular, we establish the following well-posedness result.

Proposition 4.2 (see §4.1). Suppose that (hMod) holds. Then we have

Rangeπ−bq0,M∗ (0) = C
(
[−1, 0]; `2(Z;Rn)

)
(4.39)

together with

Kerπ−bq0,M∗ (0) = {0}. (4.40)
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Using the nonlinear techniques of [4, §3.4], this result shows that for every φ ∈ C
(
[−1, 0]; `2(Z;Rn)

)
with

sup
−1≤ϑ≤0

|φ(ϑ)− p∗|`2(Z;Rn) � 1, (4.41)

there exists a unique p with

p− p∗ ∈ C
(
[−1, 0]; `2(Z;Rn)

)
×BC0

(
[0,∞); `2(Z;Rn)

)
(4.42)

that solves (4.22) with the initial condition

pj(ϑ) = φj(ϑ) for − 1 ≤ ϑ ≤ 0. (4.43)

In particular, the jump p(0+)− p(0−) is determined uniquely by φ.

4.1 Preparations

In this subsection we set up the machinery that we will need to establish Proposition 4.2. In par-
ticular, we illustrate the steps which typically are necessary to apply the theory developed in this
paper to explicit models.

Lemma 4.3. Assume that (hMod) is satisfied. Then the linear operator M∗ defined in (4.37) sat-
isfies (HAlg)0,M∗

.

Proof. The result follows immediately by applying Proposition 7.5 with J = 1, exploiting the piece-
wise differentiability of ν. Alternatively and more directly, one can introduce the bounded linear
operator

L∗ : C
(
[−1, 1]; `2(Z;Rn)

)
→ `2(Z;Rn) (4.44)

that acts as

[L∗ψ]j =
ρ

2
ψj(0) + κ

∑
k∈Z

hj−k

∫ 1

−1

e−
ρ
2σν′(σ)ψk(σ) dσ. (4.45)

Exploiting the identities ν(0−) = ν(0+) and ν(−1) = ν(+1) = 0, we may then compute

[∆L∗(z)v]j =
[
[z − Lez·]v

]
j

= zvj − ρ
2vj − κ

∑
k∈Z hj−kvk

∫ 1

−1
e−

ρ
2σν′(σ)ezσ dσ

= (z − ρ
2 )vj + κ

∑
k∈Z hj−kvk(z − ρ

2 )
∫ 1

−1
e−

ρ
2σν(σ)ezσ dσ

(4.46)

for all v ∈ `2(Z;R) and j ∈ Z. In addition, we can compute

[−M∗ez·v]j = vj + κ
∑
k∈Z

hj−kvk

∫ 1

−1

e−
ρ
2σν(σ)ezσ dσ, (4.47)

which implies

(z − ρ

2
)δ0,M∗(z) = ∆L∗(z). (4.48)
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In order to efficiently exploit the symmetry properties in (4.1), we will study the exponentially
shifted operator

M : C
(
[−1, 1]; `2(Z;Rn)

)
→ `2(Z;Rn) (4.49)

that acts as

Mψ = M∗e
ρ
2 ·ψ(·). (4.50)

In particular, we have

[Mψ]j = −ψj(0)− κ
∑
k∈Z hj−k

∫ 1

−1
ν(σ)ψk(σ) dσ. (4.51)

The Fourier components

M(ω) : C([−1, 1];R)→ R (4.52)

act as

[M(ω)ψ](u) = −ψ(0)− κ[Fh](ω)
∫ 1

−1

ν(σ)ψ(σ) dσ. (4.53)

For convenience, we write

βω =
√
κ[Fh](ω) > 0, (4.54)

which is well-defined on account of (hMod). We note that

δ0,M(ω)(z) = 1 + β2
ω

∫ 1

−1

ν(σ)ezσ dσ, (4.55)

which in view of Lemma 4.1 implies that

δ0,Mω (z) = δ0,Mω (−z). (4.56)

In addition, upon introducing the functions

Sω(z) = (z − ρ

2
)(z +

ρ

2
)δ0,M(ω)(z), (4.57)

Lemma 4.1 implies

Sω(z) = z2 − ρ2

4
+ β2

ωe
− ρ2
(
ez + e−z − e

ρ
2 − e−

ρ
2
)
. (4.58)

We now show that δ0,Mω
(z) = 0 has no roots in the strip |Re z| ≤ ρ

2 . This will allow us to
conclude that q̂0,M∗(0) = q̂0,M (0).

Lemma 4.4. Suppose that (hMod) holds. Then for every ω ∈ [−π, π], the characteristic equation

δ0,Mω (z) = 0 (4.59)

has no roots with |Re z| ≤ ρ
2 .

Proof. For p ∈ R and q ∈ R we may compute

ReSω(p+ iq) = p2 − q2 − ρ2

4
+ β2

ωe
− ρ2
(
2 cosh(p) cos(q)− 2 cosh(

ρ

2
)
)
. (4.60)

In particular, for |p| ≤ ρ
2 we may estimate

ReSω(p+ iq) ≤ p2 − ρ2

4
− q2 ≤ −q2, (4.61)

while for p ∈ R we have δ0,Mω (p) ≥ 1.
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In §4.2 below we establish the following result concerning the invariants m]
0,M(ω)(0), which in

fact turn out to be independent of ω. This allows us to apply one of our main results and establish
Proposition 4.2.

Proposition 4.5 (see §4.2). Suppose that (hMod) holds. Then for every ω ∈ [−π, π] we have

m]
0,M(ω)(0) =

1
2
. (4.62)

Proof of Proposition 4.2. Corollary 3.17 and Proposition 4.5 imply that

Rangeπ−bq0,M∗ (0) = C
(
[−1, 0]; `2(Z;R)

)
,

Kerπ−bq0,M∗ (0) = {0},
(4.63)

while Lemma 4.4 yields the identities

Rangeπ−bq0,M (0) = Rangeπ−bq0,M∗ (0),

Kerπ−bq0,M (0) = Kerπ−bq0,M∗ (0).
(4.64)

4.2 Wiener-Hopf factorizations

Our goal here is to establish Proposition 4.5 by constructing a path of operators that connects
M(ω) to a reference operator M fct

ω for which a Wiener-Hopf factorization is available. Inspired by
the factorization (4.24) for ν, we define

M−ω φ = −φ(0)− βω
∫ 0

−1
e
ρ
2σφ(σ) dσ,

M+
ω φ = −φ(0)− βω

∫ 1

0
e−

ρ
2σφ(σ) dσ,

(4.65)

together with

M fct
ω φ = 2φ(0) +M(ω)φ+M−ω φ+M+

ω φ. (4.66)

The characteristic functions are given by

δ0,M−ω (z) = −M−ω ez·

= 1 + βω
∫ 0

−1
e
ρ
2σezσ dσ,

δ0,M+
ω

(z) = −M+
ω e

z·

= 1 + βω
∫ 1

0
e−

ρ
2σezσ dσ,

(4.67)

together with

δ0,M fct
ω

(z) = −2 + δ0,M(ω)(z) + δ0,M−ω (z) + δ0,M+
ω

(z)

= δ0,M−ω (z)δ0,M+
ω

(z).
(4.68)

Lemma 4.6. Suppose that (hMod) holds. Then for every ω ∈ [−π, π], we have the identity

m]
0,M fct

ω
(0) =

1
2
. (4.69)

32



Proof. We first verify that the conditions (HAlgSc)M±ω and (HAlgSc)M fct
ω

are satisfied. To see this,
one can either apply Proposition 7.5 with J = 1 or directly introduce the operators

Lω : C([−1, 1];R)→ R, L−ω : C([−1, 0];R)→ R, L+
ω : C([0, 1];R)→ R (4.70)

that act as

Lωψ = β2
ω

∫ 1

−1
ν′(σ)ψ(σ) dσ,

L−ωφ = −βω
[
φ(0)− e−

ρ
2 φ(−1)− ρ

2

∫ 0

−1
e
ρ
2σφ(σ) dσ

]
,

L+
ωφ = −βω

[
e−

ρ
2 φ(1)− φ(0)− ρ

2

∫ 1

0
e−

ρ
2σφ(σ) dσ

]
,

(4.71)

together with

Lfct
ω = Lω + L−ω + L+

ω . (4.72)

We can then compute

δ0,Lω (z) = −β2
ω

∫ 1

−1
ν′(σ)ezσ dσ

= zβ2
ω

∫ 1

−1
ν(σ)ezσ dσ

= z(δ0,M(ω)(z)− 1),

(4.73)

together with

δ0,L−ω (z) = βω
[
1− e−

ρ
2 e−z − ρ

2

∫ 0

−1
e
ρ
2σezσ dσ

]
= z(δ0,M−ω (z)− 1),

δ0,L+
ω

(z) = βω
[
e−

ρ
2 ez − 1− ρ

2

∫ 1

0
e−

ρ
2σezσ dσ

]
= z(δ0,M+

ω
(z)− 1),

(4.74)

showing that (HAlgSc)M±ω are satisfied. In addition, this allows us to write

∆Lfct
ω

(z) = z + δ0,Lω (z) + δ0,L−ω (z) + δ0,L+
ω

(z)

= zδ0,Mω (z) + z(δ0,M−ω (z)− 1) + z(δ0,M+
ω

(z)− 1)

= zδ0,M fct
ω

(z),

(4.75)

which establishes (HAlgSc)M fct
ω

.

To compute m]
0,M fct

ω
(0), we observe that

δ0,M+
ω (−z) = 1 + βω

∫ 1

0
e−

ρ
2σe−zσ dσ

= 1 + βω
∫ 0

−1
e
ρ
2σezσ dσ

= δ0,M−ω (z).

(4.76)

This implies that

m+

M−ω
(0) = m−

M+
ω

(0) (4.77)

and hence

m]
M fct
ω

(0) = m−
M+
ω

(0)−m+

M−ω
(0) +

1
2

(`+ − `−) +
1
2

=
1
2
, (4.78)

exploiting the identities `± = 1.
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We now define, for 0 ≤ µ ≤ 1, the bounded linear operators

γω(µ) : C([−1, 1];R)→ R, (4.79)

that act as

γω(µ) = M(ω)φ+ (1− µ)
[
M−ω φ+M+

ω φ+ 2φ(0)
]
. (4.80)

By construction, we have

γω(0) = M fct
ω , γω(1) = M(ω). (4.81)

Lemma 4.7. Suppose that (hMod) holds. Then for every ω ∈ [−π, π] and every 0 ≤ µ ≤ 1, we have

δ0,γω(µ)(iq) 6= 0 (4.82)

for all q ∈ R.

Proof. Observe that

δ0,γω(µ)(iq) = δ0,Mω (iq) + (1− µ)
[
δ0,M−ω (iq) + δ0,M+

ω
(iq)− 2

]
= δ0,Mω

(iq) + (1− µ)βω
[ ∫ 0

−1
e(iq+ ρ

2 )σ dσ +
∫ 1

0
e(iq− ρ2 )σ dσ

]
= δ0,Mω (iq) + (1− µ)βω

[ ∫ 0

−1
cos(qσ)e

ρ
2σ dσ +

∫ 1

0
cos(qσ)e−

ρ
2σ dσ

]
.

(4.83)

In particular, writing

Tω,µ(q) = (q2 +
ρ2

4
)δ0,γω(µ)(iq), (4.84)

we find that

Tω,µ(q) = −Sω(iq) + (1− µ)βω
[
ρ− e−

ρ
2 ρ cos(q) + 2e−

ρ
2 q sin(q)

]
= q2 + ρ2

4 − β
2
ωe
− ρ2
(
2 cos(q)− 2 cosh(ρ2 )

)
+(1− µ)βω

[
ρ− e−

ρ
2 ρ cos(q) + 2e−

ρ
2 q sin(q)

]
≥ q2 + ρ2

4 + 2e−
ρ
2 (1− µ)βωq sin(q).

(4.85)

Exploiting (4.28), we now observe that

β2
ω = κ[Fh](ω) ≤ 2

ρ

1− e−ρ
≤ 2(1 + ρ). (4.86)

This in turn implies that

2(1− µ)e−
ρ
2 βω ≤ 2

√
2e−

ρ
2
√

1 + ρ ≤ 3. (4.87)

Noting that

q2 ≥ −αq sin(q) (4.88)

holds for all 0 ≤ α ≤ 3 and q ∈ R, we hence see that Tω,µ(q) > 0.

Proof of Proposition 4.5. In order to apply Proposition 3.12, we construct a continuous map

[0, 1] 3 µ 7→ Γω(µ) ∈ L
(
C([−1, 1];R);R

)
(4.89)
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for which

∆Γω(µ)(z) = zδ0,γω(µ)(z) (4.90)

holds for all µ ∈ [0, 1]. The identity (4.62) then follows from Proposition 3.12 and Lemma 4.6, since
Lemma 4.7 implies that one can pick 0 < ε � 1 in such a way that no roots of the characteristic
equation ∆Γω(µ)(z) = 0 cross the lines Re z = ±ε as µ is increased from µ = 0 to µ = 1.

To construct the branch (4.89), one can either invoke Proposition 7.5 with J = 1 or directly
write

Γω(µ) = Lω + (1− µ)(L−ω + L+
ω ), (4.91)

in which we have reused the operators defined in the proof of Lemma 4.6. Indeed, a short computation
shows that

∆Γω(µ)(z) = z + δ0,Lω (z) + (1− µ)
(
δ0,L−ω (z) + δ0,L+

ω
(z)
)

= zδ0,Mω
(z) + z(1− µ)(δ0,M−ω (z)− 1) + z(1− µ)(δ0,M+

ω
(z)− 1)

= zδ0,γω(µ)(z).

(4.92)

5 Exponential splittings via fixed point problems

In this section we set out to prove the existence of exponential dichotomies by characterizing the
spaces PL(η) and QL(η) as solution spaces to two fixed point problems. In particular, we establish
Theorems 2.1 and 2.3 together with Proposition 2.2.

Most of our results here concern MFDEs posed on Banach-spaces. We therefore fix a Banach
space B and consider a bounded linear operator

L : C([rmin, rmax];B)→ B (5.1)

on which we impose the following condition.

(hF)L;B The form condition (HF)L holds with H replaced by B.

In addition, we introduce the spaces

P̂L;B(η) =
{
x̂ ∈ B̂C

	
η (B) : x̂′(ξ) = L̂ êvξ x̂ for all ξ ∈ (−∞, 0) \ R

}
,

Q̂L;B(η) =
{
ŷ ∈ B̂C

⊕
η (B) : ŷ′(ξ) = L̂ êvξ ŷ for all ξ ∈ (0,∞) \ R

}
,

(5.2)

which simply generalize the definitions (2.30) by replacing H with B.
Fix η ∈ R. For any function φ̂ ∈ C([rmin, 0];B) × C([0, rmax];B), any element v ∈ B and any

ξ ∈ R, we formally introduce the expression

TL;η[φ̂, v](ξ) =
1

2πi
lim

Ω→∞

∫ η+iΩ

η−iΩ
eξz∆L(z)−1

〈
(e−z

∗·, 1), (φ̂, v)
〉
L
dz. (5.3)

This expression is related to the inverse Laplace transform of (2.9) and hence plays a fundamental
role in this section. We first show in what sense TL;η is well-defined.
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Lemma 5.1 (see §5.1). Fix a Banach space B and consider a bounded linear operator L : C([rmin, rmax];B)→
B that satisfies (hF)L;B. Pick η ∈ R in such a way that the linear operators ∆L(z) are invertible for
all z ∈ C that have Re z = η.

Then for any φ̂ ∈ C([rmin, 0];B) × C([0, rmax];B) and any v ∈ B, the symbol TL;η[φ̂, v](ξ) intro-
duced in (5.3) is well-defined for ξ 6= 0. In addition, the functions

f−(ξ) = TL;η[φ̂, v](ξ) for ξ < 0,

f+(ξ) = TL;η[φ̂, v](ξ) for ξ > 0
(5.4)

can be extended at ξ = 0 to satisfy

f− ∈ BC−η (B), f+ ∈ BC+
η (B). (5.5)

In particular, the one-sided limits f−(0−) and f+(0+) both exist and the jump at zero is explicitly
given by

f+(0+)− f−(0−) = v. (5.6)

Finally, there exists a constant K ≥ 1 that does not depend on φ̂ and v such that∥∥∥TL;η[φ̂, v]
∥∥∥
BC−η (B)

+
∥∥∥TL;η[φ̂, v]

∥∥∥
BC+

η (B)
≤ K

[ ∥∥∥φ̂∥∥∥
C([rmin,0];B)×C([0,rmax];B)

+ ‖v‖B
]
. (5.7)

When B is finite dimensional, the map TL;η admits certain compactness properties that we
describe below. In §6 this result will allow us to establish Fredholm properties for the restriction
operators (3.5).

Lemma 5.2 (see §5.1). Fix a finite dimensional Banach space B and consider a bounded linear
operator L : C([rmin, rmax];B) → B that satisfies (hF)L;B. Pick η ∈ R in such a way that the linear
operators ∆L(z) are invertible for all z ∈ C that have Re z = η. Then the linear operator

êv0Tη : C([rmin, 0];B)× C([0, rmax];B)× B → C([rmin, 0];B)× C([0, rmax];B) (5.8)

is compact.

In the Hilbert space setting B = H, the map TL;η can be used to relate functions in P̂L(η) and
Q̂L(η) back to their initial segments. The almost-everywhere pointwise convergence of the inverse
Laplace transform lies at the basis of this result, which is why the restriction B = H is necessary.

Proposition 5.3 (see §5.2). Fix a Hilbert space H and consider a bounded linear operator L :
C([rmin, rmax];H) → H that satisfies (HF)L. Pick η ∈ R in such a way that the linear operators
∆L(z) are invertible for all z ∈ C that have Re z = η.

Then for any q̂ ∈ Q̂L(η) we have

q̂(ξ) = TL;η[êv0 q̂, q̂(0+)](ξ) (5.9)

for all ξ > 0, while for any p̂ ∈ P̂L(η) we have

p̂(ξ) = −TL;η[êv0 p̂, p̂(0−)](ξ) (5.10)

for all ξ < 0.

Pick η ∈ R in such a way that the linear operators ∆L(z) ∈ L(B;B) are invertible for all z ∈ C
that have Re z = η. Inspired by the identities (5.9) and (5.10), we now introduce the two operators

E bQL(η) : C([rmin, 0];B)× C([0, rmax];B)→ B̂C
⊕
η (B),

E bPL(η) : C([rmin, 0];B)× C([0, rmax];B)→ B̂C
	
η (B)

(5.11)
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that act as

[E bQL(η)φ̂](ξ) =

{
TL;η[φ̂, φ̂(0+)](ξ), ξ > 0 and ξ = 0+,

φ̂(ξ) + TL;η[φ̂, φ̂(0+)](ξ), rmin ≤ ξ < 0 and ξ = 0−,
(5.12)

together with

[E bPL(η)φ̂](ξ) =

{
−TL;η[φ̂, φ̂(0−)](ξ), ξ < 0 and ξ = 0−,

φ̂(ξ)− TL;η[φ̂, φ̂(0−)](ξ), 0 < ξ ≤ rmax and ξ = 0+.
(5.13)

A direct consequence of Proposition 5.3 is that in the Hilbert space setting B = H, all elements of
P̂L(η) and Q̂L(η) can be interpreted as solutions to a fixed point problem.

Corollary 5.4. Consider the setting of Proposition 5.3. Then for any φ̂ ∈ P̂L(η) we have

φ̂ = êv0E bPL(η)φ̂, (5.14)

while for any φ̂ ∈ Q̂L(η) we have

φ̂ = êv0E bQL(η)φ̂. (5.15)

The main technical result of this section can be interpreted as a converse to Corollary 5.4 that
also works in a Banach space setting. In addition, it provides detailed bounds for the operators
E bPL(η) and E bQL(η) that reference the L2-norm instead of the usual supremum norm.

Proposition 5.5 (see §5.3). Fix a Banach space B and consider a bounded linear operator L :
C([rmin, rmax];B) → B that satisfies (hF)L;B. Pick η ∈ R in such a way that the linear operators
∆L(z) are invertible in L(B;B) for all z ∈ C that have Re z = η.

Then for any φ̂ ∈ C([rmin, 0];B)× C([0, rmax];B), we have the inclusions

E bQL(η)φ̂ ∈ Q̂L;B(η),

E bPL(η)φ̂ ∈ P̂L;B(η).
(5.16)

In addition, there exist constants K ≥ 1 and ε > 0 that do not depend on φ̂ so that the estimates∥∥∥[E bQL(η)φ̂](ξ)
∥∥∥
B
≤ Ke(η−ε)ξ[ ∥∥∥φ̂(0+)

∥∥∥
B

+
∥∥∥φ̂∥∥∥

L2([rmin,rmax];B)

]
(5.17)

hold for all ξ > 0, while the estimates∥∥∥[E bPL(η)φ̂](ξ)
∥∥∥
B
≤ Ke(η+ε)ξ

[ ∥∥∥φ̂(0−)
∥∥∥
B

+
∥∥∥φ̂∥∥∥

L2([rmin,rmax];B)

]
(5.18)

hold for all ξ < 0.

As a consequence of (5.6), we note that we have the restrictions

E bPL(η)

(
C([rmin, rmax];B)

)
⊂ BC	η (B), E bQL(η)

(
C([rmin, rmax];B)

)
⊂ BC⊕η (B). (5.19)

This observation lies at the heart of our final result, which is more explicit than Theorem 2.1. In
particular, it shows how the operators E bPL(η) and E bQL(η) can be interpreted as the projections
associated to the desired exponential splitting of the state space C([rmin, rmax];H).
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Proposition 5.6 (see §5.3). Fix a Hilbert space H and consider a linear operator L : C([rmin, rmax];H)→
H that satisfies (HF)L. If the linear operators ∆L(z) ∈ L(H;H) are invertible for all z ∈ C that
have Re z = η, then the spaces PL(η) and QL(η) are both closed and we have the splitting

C
(
[rmin, rmax];H

)
= PL(η)⊕QL(η), (5.20)

which can be made explicit by writing

φ = ev0E bPL(η)φ⊕ ev0E bQL(η)φ (5.21)

for any φ ∈ C([rmin, rmax];H).

5.1 Decomposition of TL;η

In this subsection we set out to gain a detailed understanding of the formal expressions

TL;η[φ̂, v](ξ) = 1
2πi limΩ→∞

∫ η+iΩ

η−iΩ eξz∆L(z)−1
〈
(e−z

∗·, 1), (φ̂, v)
〉
L
,

d
dξTL;η[φ̂, v](ξ) = 1

2πi limΩ→∞
∫ η+iΩ

η−iΩ eξzz∆L(z)−1
〈
(e−z

∗·, 1), (φ̂, v)
〉
L
.

(5.22)

In particular, we will obtain an explicit description of the components in the integral representations
above that are not integrable with respect to z on the vertical line Re z = η.

Let us therefore pick a Banach space B and a bounded linear operator L : C([rmin, rmax];B)→ B.
In order to isolate the slowest decaying portion of ∆L(z)−1, we formally introduce the expression

RL;α(z) = ∆L(z)−1 − 1
z−αI −

Lez·−α
(z−α)2 . (5.23)

We note that RL;α(z) ∈ L(B;B) whenever ∆L(z) ∈ L(B;B) is invertible and z 6= α.

Lemma 5.7. Consider a bounded linear operator L : C([rmin, rmax];B) → B and suppose that
∆L(z) ∈ L(B;B) is invertible for all z ∈ C with Re z = η. Pick α ∈ R \ {η}. Then there exist
constants κ > 0 and K ≥ 1 so that

‖RL;α(z)‖L(B;B) ≤
K

1 + |z|3
(5.24)

for all z ∈ C with |Re z − η| ≤ κ.

Proof. For large |Im z|, the desired behaviour follows from the expansion

∆L(z)−1 =
[
z − α+ (α− Lez·)

]−1

= (z − α)−1
[
I + (z − α)−1(α− Lez·)

]−1

= (z − α)−1
[
I − (z − α)−1(α− Lez·) +O

(
(z − α)−2

)]
,

(5.25)

exploiting the fact that z 7→ Lez· is bounded in vertical strips of the complex plane.

To exploit the decomposition (5.23), we introduce, for any α ∈ R \ {η}, any v ∈ B and any
φ̂ ∈ C([rmin, 0];B)× C([0, rmax];B), the expressions

M1
α[v] = 1

2πi limΩ→∞
∫ η+iΩ

η−iΩ eξz
[

1
z−α + Lez·−α

(z−α)2

]
v,

R1
α[v](ξ) = 1

2πi

∫ η+i∞
η−i∞ eξzRL;α(z)v dz,

(5.26)
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together with

M2
α[φ̂](ξ) = 1

2πi limΩ→∞
∫ η+iΩ

η−iΩ eξz
[

1
z−α + Lez·−α

(z−α)2

]〈
(e−z

∗
, 0), (φ̂, 0)

〉
L
dz,

R2
α[φ̂](ξ) = 1

2πi

∫ η+i∞
η−i∞ eξzRL;α(z)

〈
(e−z

∗
, 0), (φ̂, 0)

〉
L
dz.

(5.27)

Observe that we have dropped the limit with respect to Ω in the expressions for R1
α and R2

α, which is
possible because Lemma 5.7 guarantees that the integrands are in L1. The expressions (5.26)-(5.27)
allow us to write

TL;η[φ̂, v](ξ) =M1
α[v](ξ) +M2

α[φ̂](ξ) +R1
α[v](ξ) +R2

α[φ̂](ξ). (5.28)

We now set out to derive explicit expressions for M1
α[v] and M2

α[φ̂]. For convenience, we define
the function

H(ξ) =

 1 ξ > 0,
1
2 ξ = 0,
0 ξ < 0

(5.29)

and evaluate several key integrals.

Lemma 5.8. For any α > η and ξ ∈ R we have

1
2πi limΩ→∞

∫ η+iΩ

η−iΩ eξz 1
z−α dz = −eαξH(−ξ), (5.30)

together with

1
2πi limΩ→∞

∫ η+iΩ

η−iΩ eξz 1
(z−α)2 dz = −ξeαξH(−ξ).

(5.31)

Proof. The expressions follow from standard computations using Jordan’s lemma and the residue
theorem.

For α > η, we hence have the explicit representation

M1
α[v](ξ) = −

[
eαξH(−ξ) + (L− α)evξ[ξ′ 7→ ξ′eαξ

′
H(−ξ′)]

]
v, (5.32)

in which we have introduced the shorthand (L− α)ψ = Lψ − αψ(0) for ψ ∈ C([rmin, rmax];B). The
following result summarizes some facts that can be read off directly from this representation.

Lemma 5.9. Consider a bounded linear operator L : C([rmin, rmax];B) → B that satisfies (hF)L;B
and pick α > η. Then for any sufficiently small ε > 0, the map3

B 3 v 7→ M1
α[v] ∈ BC−η+ε(B) ∩BC+

η−ε(B) (5.33)

is well-defined and bounded. Upon fixing v ∈ B, we have the jump discontinuity

M1
α[v](0+)−M1

α[v](0−) = v. (5.34)

In addition, M1
α[v] is continuously differentiable on R \ R with

M1
α[v]′(ξ) = αM1

α[v](ξ)− (L̂− α)êvξ[ξ′ 7→ eαξ
′
H(−ξ′)]v (5.35)

3Actually, the map (5.33) should be interpreted as two separate maps, one into BC−η+ε(B) and one into BC+
η−ε(B).

Throughout this section we will slightly abuse the symbol ∩ in this fashion.
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for ξ ∈ R \ R. In particular, for all 0 ≤ j ≤ N we have the jump

M1
α[v]′(−r+

j )−M1
α[v]′(−r−j ) = Ajv. (5.36)

Finally, upon writing

HM1
α

[v](ξ) =M1
α[v]′(ξ)− L̂ êvξM1

α[v] (5.37)

for all ξ ∈ R \ R, we have

HM1
α

[v](ξ) = (L− α)evξ
[
ξ′ 7→ (L− α)evξ′ [ξ′′ 7→ ξ′′eαξ

′′
H(−ξ′′)v]

]
(5.38)

for all such ξ.

We remark that the right-hand side of (5.38) is in fact a member of BCη(R;B). Formally however
one can say that the functions M1

α[v]′ and HM1
α

[v] both have a δ(ξ)v component at ξ = 0.
For any α ∈ R \ {η}, any φ̂ ∈ L2([rmin, rmax];B) and any ϑ ∈ [rmin, rmax], we now introduce the

two expressions

J (1)
α;ϑ[φ̂](ξ) = 1

2πi limΩ→∞
∫ η+iΩ

η−iΩ eξz 1
z−αe

zϑ
∫ 0

ϑ
e−zσφ̂(σ) dσ dz,

J (2)
α;ϑ[φ̂](ξ) = 1

2πi limΩ→∞
∫ η+iΩ

η−iΩ eξz 1
(z−α)2 e

zϑ
∫ 0

ϑ
e−zσφ̂(σ) dσ dz.

(5.39)

We remark that both expressions are identically zero if ϑ = 0. The other cases are studied in the
following result, in which we use the notation

sign(x) =

 1 x > 0,
0 x = 0,
−1 x < 0.

(5.40)

Lemma 5.10. Suppose that rmin ≤ 0 ≤ rmax and pick α > η and ϑ ∈ [rmin, rmax] \ {0}. Then for
all sufficiently small ε > 0, the maps

L2([rmin, rmax];B) 3 φ̂ 7→ J (1)
α;ϑ[φ̂] ∈ BCη(R;B) ∩BC−η+ε(B) ∩BC+

η−ε(B),

L2([rmin, rmax];B) 3 φ̂ 7→ J (2)
α;ϑ[φ̂] ∈ BCη(R;B) ∩BC−η+ε(B) ∩BC+

η−ε(B),

L2([rmin, rmax];B) 3 φ̂ 7→ J (2)
α;ϑ[φ̂]′ ∈ BCη(R;B) ∩BC−η+ε(B) ∩BC+

η−ε(B)

(5.41)

are all well-defined and bounded. Upon fixing φ̂ ∈ C([rmin, 0];B)×C([0, rmax];B), we have the explicit
identities

J (1)
α;ϑ[φ̂](ξ) = −eα(ξ+ϑ)

∫ 0

ϑ
H(σ − ξ − ϑ)e−ασφ̂(σ) dσ

= −eα(ξ+ϑ)
∫max{0,ξ+ϑ}

max{ϑ,ξ+ϑ} e
−ασφ̂(σ) dσ

(5.42)

together with

J (2)
α;ϑ[φ̂](ξ) = −eα(ξ+ϑ)

∫ 0

ϑ
(ξ + ϑ− σ)H(σ − ξ − ϑ)e−ασφ̂(σ) dσ

= −eα(ξ+ϑ)
∫max{0,ξ+ϑ}

max{ϑ,ξ+ϑ} (ξ + ϑ− σ)e−ασφ̂(σ) dσ,
(5.43)

which both hold for any ξ ∈ R.
In addition, for any ξ /∈ {0,−ϑ} we have

J (1)
α;ϑ[φ̂]′(ξ) = αJ (1)

α;ϑ[φ̂](ξ)− sign(ϑ)φ̂(ξ + ϑ)1min{−ϑ,0}<ξ<max{−ϑ,0}, (5.44)
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while for any ξ ∈ R we have

J (2)
α;ϑ[φ̂]′(ξ) = αJ (2)

α;ϑ[φ̂](ξ) + J (1)
α;ϑ[φ̂](ξ). (5.45)

In particular, if ϑ < 0, then we have

J (1)
α;ϑ[φ̂]′ ∈ BCη

(
(−∞, 0];B

)
∩ C([0,−ϑ];B) ∩BCη([−ϑ,∞);B) (5.46)

with jumps

J (1)
α;ϑ[φ̂]′(0+)− J (1)

α;ϑ[φ̂]′(0−) = φ̂(ϑ),

J (1)
α;ϑ[φ̂]′(−ϑ+)− J (1)

α;ϑ[φ̂]′(−ϑ−) = −φ̂(0−).
(5.47)

On the other hand, if ϑ > 0 then we have

J (1)
α;ϑ[φ̂]′ ∈ BCη

(
(−∞,−ϑ];B

)
∩ C([−ϑ, 0];B) ∩BCη([0,∞);B) (5.48)

with jumps

J (1)
α;ϑ[φ̂]′(−ϑ+)− J (1)

α;ϑ[φ̂]′(−ϑ−) = −φ̂(0+),

J (1)
α;ϑ[φ̂]′(0+)− J (1)

α;ϑ[φ̂]′(0−) = φ̂(ϑ).
(5.49)

Proof. Exploiting Fubini, we write

J (1)
α;ϑ[φ̂](ξ) = 1

2πi limΩ→∞
∫ 0

ϑ

∫ η+iΩ

η−iΩ ez(ξ+ϑ−σ) 1
z−α φ̂(σ) dz dσ. (5.50)

Applying the limits in Lemma 5.8, which hold uniformly for compact sets of ξ, we find

J (1)
α;ϑ[φ̂](ξ) = 1

2πi

∫ 0

ϑ
limΩ→∞

∫ η+iΩ

η−iΩ ez(ξ+ϑ−σ) 1
z−α φ̂(σ) dz dσ

= −
∫ 0

ϑ
H(σ − ξ − ϑ)eα(ξ+ϑ−σ)φ̂(σ) dσ

= −eα(ξ+ϑ)
∫ 0

ϑ
H(σ − ξ − ϑ)e−ασφ̂(σ) dσ.

(5.51)

We first fix ϑ < 0. For ξ + ϑ ≤ 0, we have

J (1)
α;ϑ[φ̂](ξ) = −eα(ξ+ϑ)

∫ 0

max{ϑ,ξ+ϑ} e
−ασφ̂(σ) dσ, (5.52)

while J (1)
α;ϑ[φ̂](ξ) = 0 for ξ+ϑ > 0. In both cases this matches the desired identity (5.42). In addition,

for 0 < ξ < −ϑ we have

J (1)
α;ϑ[φ̂]′(ξ) = αJ (1)

α;ϑ[φ̂](ξ) + φ̂(ξ + ϑ), (5.53)

while

J (1)
α;ϑ[φ̂]′(ξ) = αJ (1)

α;ϑ[φ̂](ξ) (5.54)

for ξ < 0 and ξ > −ϑ. Both identities agree with (5.44).
We now fix ϑ > 0. For ξ ≤ 0 we may compute

J (1)
α;ϑ[φ̂](ξ) = −eα(ξ+ϑ)

∫max{0,ξ+ϑ}
ϑ

e−ασφ̂(σ)dσ, (5.55)

while for ξ ≥ 0 we have J (1)
α;ϑ[φ̂](ξ) = 0, again matching (5.42). For −ϑ < ξ < 0 we have

J (1)
α;ϑ[φ̂]′(ξ) = αJ (1)

α;ϑ[φ̂](ξ)− φ̂(ξ + ϑ), (5.56)
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which matches (5.44).
In a similar fashion as above we may compute

J (2)
α;ϑ[φ̂](ξ) = −eα(ξ+ϑ)

∫ 0

ϑ
(ξ + ϑ− σ)H(σ − ξ − ϑ)e−ασφ̂(σ) dσ. (5.57)

We again fix ϑ < 0. For ξ + ϑ ≤ 0, we now see

J (2)
α;ϑ[φ̂](ξ) = −eα(ξ+ϑ)

∫ 0

max{ϑ,ξ+ϑ}(ξ + ϑ− σ)e−ασφ̂(σ) dσ, (5.58)

while J (2)
α;ϑ[φ̂](ξ) = 0 for ξ + ϑ > 0. Both expression agree with (5.43). In addition, for ξ + ϑ < 0 we

may compute

J (2)
α;ϑ[φ̂]′(ξ) = αJ (2)

α;ϑ[φ̂](ξ)− eα(ξ+ϑ)
∫ 0

max{ϑ,ξ+ϑ} e
−ασφ̂(σ) dσ, (5.59)

while J (2)
α;ϑ[φ̂]′(ξ) = 0 for ξ+ϑ > 0. Both expressions are equal at ξ+ϑ = 0, allowing us to conclude

that J (2)
α;ϑ[φ̂] is continuously differentiable on R.

Finally, fix ϑ > 0. For ξ ≤ 0 we have

J (2)
α;ϑ[φ̂](ξ) = −eα(ξ+ϑ)

∫max{0,ξ+ϑ}
ϑ

(ξ + ϑ− σ)e−ασφ̂(σ) dσ, (5.60)

while for ξ ≥ 0 we have J (2)
α;ϑ[φ̂](ξ) = 0, which both agree with (5.43). For ξ < 0 we may compute

J (2)
α;ϑ[φ̂]′(ξ) = αJ (2)

α;ϑ[φ̂](ξ)− eα(ξ+ϑ)
∫max{0,ξ+ϑ}
ϑ

e−ασφ̂(σ) dσ, (5.61)

while J (2)
α;ϑ[φ̂]′(ξ) = 0 for ξ > 0. As before, both expressions are equal at ξ = 0.

The remaining statements follow easily from inspection of the explicit expressions (5.42)-(5.45).

For any α > η, we can hence explicitly evaluate (5.27) as

M2
α[φ̂](ξ) =

∑N
j=0

[
AjJ (1)

α;rj [φ̂](ξ) +
∫ s+j
s−j

Bj(ϑ)J (1)
α;ϑ[φ̂](ξ) dϑ

]
+(L− α)evξ

[
ξ′ 7→

∑N
j=0

[
AjJ (2)

α,rj [φ̂](ξ′) +
∫ s+j
s−j

Bj(ϑ)J (2)
α;ϑ[φ̂](ξ′) dϑ

]]
.

(5.62)

In addition, a direct computation shows that

M2
α[φ̂]′(ξ) = αM2

α[φ̂](ξ)−
∑N
j=0Ajsign(rj)φ̂(ξ + rj)1min{−rj ,0}<ξ<max{−rj ,0}

−
∑N
j=0

∫ s+j
s−j

Bj(ϑ)sign(ϑ)φ̂(ξ + ϑ)1min{−ϑ,0}<ξ<max{−ϑ,0} dϑ

+(L− α)evξ
[
ξ′ 7→

∑N
j=0

[
AjJ (1)

α;rj [φ̂](ξ′) +
∫ s+j
s−j

Bj(ϑ)J (1)
α;ϑ[φ̂](ξ′) dϑ

]]
(5.63)

for ξ ∈ R \ R. Inspection of these identities readily yields the following result.

Lemma 5.11. Consider a bounded linear operator L : C([rmin, rmax];B)→ B that satisfies (hF)L;B
and pick α > η. Then for any sufficiently small ε > 0, the map

L2([rmin, rmax];B) 3 φ̂ 7→ M2
α[φ̂] ∈ BCη(R;B) ∩BC−η+ε(B) ∩BC+

η−ε(B) (5.64)

is well-defined and bounded.
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Upon fixing φ̂ ∈ C([rmin, 0];B)×C([0, rmax];B), the functionM2
α[φ̂] is continuously differentiable

on R \ R. For ξ ∈ (−∞, 0) \ R, we have

M2
α[φ̂]′(ξ) = αM2

α[φ̂](ξ)−
∑
rj>0Aj φ̂(ξ + rj)1−rj<ξ<0

−
∑
s+j >0

∫max{s+j ,−ξ}
max{s−j ,−ξ}

Bj(ϑ)φ̂(ξ + ϑ) dϑ

+(L− α)evξ
[
ξ′ 7→

∑N
j=0

[
AjJ (1)

α;rj [φ̂](ξ′) +
∫ s+j
s−j

Bj(ϑ)J (1)
α;ϑ[φ̂](ξ′) dϑ

]]
,

(5.65)

while for ξ ∈ (0,∞) \ R we have

M2
α[φ̂]′(ξ) = αM2

α[φ̂](ξ) +
∑
rj<0Aj φ̂(ξ + rj)10<ξ<−rj

+
∑
s−j <0

∫min{s+j ,−ξ}
min{s−j ,−ξ}

Bj(ϑ)φ̂(ξ + ϑ) dϑ

+(L− α)evξ
[
ξ′ 7→

∑N
j=0

[
AjJ (1)

α;rj [φ̂](ξ′) +
∫ s+j
s−j

Bj(ϑ)J (1)
α;ϑ[φ̂](ξ′) dϑ

]]
.

(5.66)

In particular, for rj < 0 we have the jump

[M2
α;φ]′(−r+

j )− [M2
α;φ]′(−r−j ) = −Aj φ̂(0−), (5.67)

while for rj > 0 we have

[M2
α;φ]′(−r+

j )− [M2
α;φ]′(−r−j ) = −Aj φ̂(0+). (5.68)

In addition, the discontinuity at ξ = 0 is given by

[M2
α;φ]′(0+)− [M2

α;φ]′(0−) =
∑
rj<0

Aj φ̂(rj) +
∑
rj>0

Aj φ̂(rj) +
N∑
j=0

∫ s+j

s−j

Bj(ϑ)φ̂(ϑ) dϑ. (5.69)

Finally, upon introducing the expression

HM2
α

[φ̂](ξ) =M2
α[φ̂]′(ξ)− L evξM2

α[φ̂] (5.70)

for ξ ∈ R \ R, we have

HM2
α

[φ̂](ξ) = −
∑N
j=0(L− α)evξ

[
ξ′ 7→ (L− α)evξ′ [ξ′′ 7→ AjJ (2)

α;rj [φ̂](ξ′′)]
]

−
∑N
j=0(L− α)evξ

[
ξ′ 7→ (L− α)evξ′ [ξ′′ 7→

∫ s+j
s−j

Bj(ϑ)J (2)
α;rj [φ̂](ξ′′)]

]
−
∑N
j=0Ajsign(rj)φ̂(ξ + rj)1min{−rj ,0}<ξ<max{−rj ,0}

−
∑N
j=0

∫ s+j
s−j

Bj(ϑ)sign(ϑ)φ̂(ξ + ϑ)1min{−ϑ,0}<ξ<max{−ϑ,0} dϑ

(5.71)

for all such ξ.

Observe that the right-hand side of (5.71) admits the same jump discontinuities asM2
α[φ̂]′, which

are described in (5.67)-(5.69).

Lemma 5.12. Consider a bounded linear operator L : C([rmin, rmax];B)→ B that satisfies (hF)L;B,
suppose that ∆L(z) ∈ L(B;B) is invertible for all z ∈ C with Re z = η and pick α > η. Then for any
sufficiently small ε > 0, the maps

B 3 v 7→ R1
α[v] ∈ BCη(R;B) ∩BC−η+ε(B) ∩BC+

η−ε(B),

B 3 v 7→ R1
α[v]′ ∈ BCη(R;B) ∩BC−η+ε(B) ∩BC+

η−ε(B)
(5.72)
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together with

L2([rmin, rmax];B) 3 φ̂ 7→ R2
α[φ̂] ∈ BCη(R;B) ∩BC−η+ε(B) ∩BC+

η−ε(B),

L2([rmin, rmax];B) 3 φ̂ 7→ R2
α[φ̂]′ ∈ BCη(R;B) ∩BC−η+ε(B) ∩BC+

η−ε(B)
(5.73)

are all well-defined and bounded.
Upon fixing φ̂ ∈ C([rmin, 0];B)× C([0, rmax];B) together with v ∈ B and writing

HR1
α

[v](ξ) = R1
α[v]′(ξ)− L evξR1

α[v],

HR2
α

[φ̂](ξ) = R2
α[φ̂]′(ξ)− L evξR2

α[φ̂]
(5.74)

for any ξ ∈ R, we have the identity

HR1
α

[v](ξ) = −(L− α)evξ
[
ξ′ 7→ (L− α)evξ′ [ξ′′ 7→ ξ′′eαξ

′′
H(−ξ′′)v]

]
(5.75)

together with

HR2
α

[φ̂](ξ) =
∑N
j=0(L− α)evξ

[
ξ′ 7→ (L− α)evξ′ [ξ′′ 7→ AjJ (2)

α;rj [φ̂](ξ′′)]
]

+
∑N
j=0(L− α)evξ

[
ξ′ 7→ (L− α)evξ′ [ξ′′ 7→

∫ s+j
s−j

Bj(ϑ)J (2)
α;ϑ[φ̂](ξ′′) dϑ]

]
(5.76)

for all ξ ∈ R.

Proof. As a consequence of Cauchy-Schwartz, we can find ε > 0 and K ≥ 1 so that∥∥∥〈(e−z∗ , 0), (φ̂, 0)
〉
L

∥∥∥
B
≤ K

∥∥∥φ̂∥∥∥
L2([rmin,rmax];B)

(5.77)

holds for all z ∈ C with |Re z − η| < ε. On account of Lemma 5.7, we see that the function

z 7→ (1 + |z|) ‖RL;α(z)‖L(B;B) (5.78)

is in both L1(η + iR) and L1(η ± ε + iR). The estimates in Lemma 5.7 also allow us to shift the
integration path from Re z = η to Re z = η ± ε, which guarantees the inclusions (5.72) and (5.73).
The identities (5.75) and (5.76) now follow from the computation

∆L(z)RL;α(z) = I − z−Lez·
z−α − (z−Lez·)(Lez·−α)

(z−α)2

= (Lez·−α)2

(z−α)2 .
(5.79)

We have now studied all of the terms in (5.28) in considerable detail. Combining these results,
we arrive at the following characterization of the operator TL;η.

Proposition 5.13. Consider a bounded linear operator L : C([rmin, rmax];B) → B that satisfies
(hF)L;B and suppose that ∆L(z) ∈ L(B;B) is invertible for all z ∈ C with Re z = η. Then for any
sufficiently small ε > 0, the map

L2([rmin, rmax];B)× B 3 (φ̂, v) 7→ TL;η[φ̂, v] ∈ BC−η+ε(B) ∩BC+
η−ε(B) (5.80)

is well-defined and bounded.
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Upon fixing φ̂ ∈ C([rmin, 0];B)× C([0, rmax];B) and v ∈ B, we have the jump discontinuity

TL;η[φ̂, v](0+)− TL;η[φ̂, v](0−) = v. (5.81)

In addition, TL;η[φ̂, v] is continuously differentiable on R\R. For rj < 0, the derivative has the jump

T ′L;η[φ̂, v](−r+
j )− T ′L;η[φ̂, v](−r−j ) = Ajv −Aj φ̂(0−), (5.82)

while for rj > 0 we have

T ′L;η[φ̂, v](−r+
j )− T ′L;η[φ̂, v](−r−j ) = Ajv −Aj φ̂(0+). (5.83)

On the other hand, we have

T ′L;η[φ̂, v](0+)− T ′L;η[φ̂, v](0−) =
∑
rj<0Aj φ̂(rj) +

∑
rj>0Aj φ̂(rj) +

∑
rj=0Ajv

+
∑N
j=0

∫ s+j
s−j

Bj(ϑ)φ̂(ϑ) dϑ.
(5.84)

Finally, consider for any ξ ∈ R \ R the expression

HTL;η [φ̂, v](ξ) = TL;η[φ̂, v]′(ξ)− L̂ êvξ TL;η[φ̂, v]. (5.85)

Then for any ξ ∈ (−∞, 0) \ R we have

HTL;η [φ̂, v](ξ) = −
∑
rj>0Aj φ̂(ξ + rj)1−rj<ξ<0

−
∑
s+j >0

∫max{s+j ,−ξ}
max{s−j ,−ξ}

Bj(ϑ)φ̂(ξ + ϑ) dϑ,
(5.86)

while for any ξ ∈ (0,∞) \ R we have

HTL;η [φ̂, v](ξ) = +
∑
rj<0Aj φ̂(ξ + rj)10<ξ<−rj

+
∑
s−j <0

∫min{s+j ,−ξ}
min{s−j ,−ξ}

Bj(ϑ)φ̂(ξ + ϑ) dϑ.
(5.87)

In particular, for rj < 0 we have the jump

HTL;η [φ̂, v](−r+
j )−HTL;η [φ̂, v](−r−j ) = −Aj φ̂(0−), (5.88)

while for rj > 0 we have the jump

HTL;η [φ̂, v](−r+
j )−HTL;η [φ̂, v](−r−j ) = −Aj φ̂(0+). (5.89)

In addition, at ξ = 0 we have the discontinuity

HTL;η [φ̂, v](0+)−HTL;η [φ̂, v](0−) =
∑
rj<0

Aj φ̂(rj) +
∑
rj>0

Aj φ̂(rj) +
N∑
j=0

∫ s+j

s−j

Bj(ϑ)φ̂(ϑ) dϑ. (5.90)

Proof. For all ξ ∈ R \ R we can compute

HTL;η [φ̂, v](ξ) = −
∑N
j=0Ajsign(rj)φ̂(ξ + rj)1min(−rj ,0)<ξ<max(−rj ,0)

−
∑N
j=0

∫ s+j
s−j

Bj(ϑ)sign(ϑ)φ̂(ξ + ϑ)1min(−ϑ,0)<ξ<max(−ϑ,0) dϑ.
(5.91)
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For ξ ∈ (0,∞) \ R this reduces to

HTL;η [φ̂, v](ξ) =
∑
rj<0Aj φ̂(ξ + rj)10<ξ<−rj

+
∑
s−j <0

∫ s+j
s−j

Bj(ϑ)φ̂(ξ + ϑ)10<ξ<−ϑ dϑ,
(5.92)

while for ξ ∈ (−∞, 0) \ R we obtain

HTL;η [φ̂, v](ξ) = −
∑
rj>0Aj φ̂(ξ + rj)1−rj<ξ<0

−
∑
s+j >0

∫ s+j
s−j

Bj(ϑ)φ̂(ξ + ϑ)1−ϑ<ξ<0 dϑ.
(5.93)

Further inspection of the integral terms leads to (5.86) and (5.87).

Formally one can say that the functions TL;η[φ̂, v]′ and HTL;η [φ̂, v] inherit the δ(ξ)v component at
ξ = 0 from the functions M1

α[v]′ and HM1
α

[v].

Proof of Lemma 5.1. The statements follow immediately from Proposition 5.13.

Proof of Lemma 5.2. Since H is finite-dimensional, the Ascoli-Arzela theorem can be used to obtain
the desired compactness properties, exploiting the explicit expressions forM2

α[φ̂] obtained in Lemma
5.11 together with the observation that

φ̂ 7→ ev0R2
α[φ̂]′ (5.94)

is a bounded map.

Proof of Proposition 2.2. The Green’s function ĜL(η) can be defined by writing

ĜL(η)v =M1
α[v] +R1

α[v] = TL;η[0, v]. (5.95)

The desired properties all follow directly from Proposition 5.13.

5.2 Laplace transform

Our goal here is to use the Laplace transform to prove the representations in Proposition 5.3 for
functions in P̂L(η) and Q̂L(η). For any ŷ ∈ B̂C

⊕
(η) and any z ∈ C with Re z > η, we therefore

introduce the Laplace transform

ỹ+(z) =
∫ ∞

0

e−zξ ŷ(ξ) dξ. (5.96)

In addition, for any x̂ ∈ B̂C
	
η and any z ∈ C with Re z < η we write

x̃−(z) =
∫ −∞

0

e−zξx̂(ξ) dξ. (5.97)

Lemma 5.14. Fix η ∈ R together with a Hilbert space H. Then for any ŷ ∈ B̂C
⊕
η (H) and γ+ > η,

we have

ŷ(ξ) =
1

2πi
lim

Ω→∞

∫ γ++iΩ

γ+−iΩ
eξz ỹ+(z) dz (5.98)
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for almost all ξ > 0. In addition, if ŷ′ is continuous on (0,∞) \ R, then∫ ∞
0

e−zξ ŷ′(ξ) = zỹ+(z)− ŷ(0+) (5.99)

for all Re z > η.
On the other hand, for any x̂ ∈ B̂C

	
η (H) and γ− < η we have

x̂(ξ) = − 1
2πi

lim
Ω→∞

∫ γ−+iΩ

γ−−iΩ
eξzx̃−(z) dz (5.100)

for almost all ξ < 0. In addition, if x̂′ is continuous on (−∞, 0) \ R, then∫ −∞
0

e−zξx̂′(ξ) = zx̃−(z)− x̂(0−) (5.101)

for all Re z < η.

Proof. The statements for ŷ follow from the pointwise almost-everywhere convergence of inverse
Fourier transforms for functions in L2(R;H); see e.g. [15]. To verify the statements for x̂, assume
without loss that rmin = −rmax and write

ŵ(ξ) = x̂(−ξ). (5.102)

Note that ŵ ∈ B̂C
⊕
−η, with

w̃+(z) =
∫∞

0
e−ξzŵ(ξ) dξ

=
∫∞

0
e−ξzx̂(−ξ) dξ

= −
∫ −∞

0
eξ
′zx̂(ξ′) dξ′

= −x̃−(−z)

(5.103)

after substituting ξ′ = −ξ. Picking γ+ > −η, we find that

x̂(ξ) = w(−ξ)

= 1
2πi limΩ→∞

∫ γ++iΩ

γ+−iΩ e−ξzw̃+(z) dz

= − 1
2πi limΩ→∞

∫ γ++iΩ

γ+−iΩ e−ξzx̃−(−z) dz

= 1
2πi limΩ→∞

∫ −γ+−iΩ
−γ++iΩ

eξz
′
x̃−(z′) dz′

= − 1
2πi limΩ→∞

∫ γ−+iΩ

γ−−iΩ eξz
′
x̃−(z′) dz′

(5.104)

for almost all ξ < 0, in which we have used z′ = −z and γ− = −γ+ < η.
The expressions (5.99) and (5.101) follow in a standard fashion upon integrating by parts on the

intervals where x̂′ and ŷ′ are continuous.

Let us now consider two functions q̂ ∈ Q̂L(η) and p̂ ∈ P̂L(η). Taking the appropriate Laplace
transforms, we find

zq̃+(z)− q̂(0+) =
∑N
j=0

[
Aj
∫∞

0
e−zξ q̂(ξ + rj) dξ +

∫ s+j
s−j

Bj(σ)
∫∞

0
e−zξ q̂(ξ + σ) dξ dσ

]
=

∑N
j=0Aje

zrj
(
q̃+(z) +

∫ 0

rj
e−zτ q̂(τ) dτ

)
+
∑N
j=0

∫ s+j
s−j

Bj(σ)ezσ
(
q̃+(z) +

∫ 0

σ
e−zτ q̂(τ) dτ

)
dσ,

(5.105)
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together with

zp̃−(z)− p̂(0−) =
∑N
j=0

[
Aj
∫ −∞

0
e−zξp̂(ξ + rj) dξ +

∫ s+j
s−j

Bj(σ)
∫ −∞

0
e−zξp̂(ξ + σ) dξ dσ

]
=

∑N
j=0Aje

zrj
(
p̃−(z) +

∫ 0

rj
e−zτ p̂(τ) dτ

)
+
∑N
j=0

∫ s+j
s−j

Bj(σ)ezσ
(
p̃−(z) +

∫ 0

σ
e−zτ p̂(τ) dτ

)
dσ.

(5.106)

Rearranging, we obtain

∆L(z)q̃+(z) = q̂(0+) +
∑N
j=0

[
Aje

zrj
∫ 0

rj
e−zτ q̂(τ) dτ +

∫ s+j
s−j

Bj(σ)ezσ
∫ 0

σ
e−zτ q̂(τ) dτ dσ

]
=

〈(
e−z

∗·, 1
)
,
(
êv0 q̂, q̂(0+)

)〉
L
,

(5.107)

together with

∆L(z)p̃−(z) = p̂(0−) +
∑N
j=0

[
Aje

zrj
∫ 0

rj
e−zτ p̂(τ) dτ +

∫ s+j
s−j

Bj(σ)ezσ
∫ 0

σ
e−zτ p̂(τ) dτ dσ

]
=

〈(
e−z

∗·, 1
)
,
(
êv0 p̂, p̂(0−)

)〉
L
.

(5.108)

Proof of Proposition 5.3. First of all, we note that ∆L(z) = z + O(1) as Im z → ∞, uniformly in
vertical strips of the complex plane. In particular, there is ε > 0 so that ∆L(z) is invertible for all z
in the vertical strip |Re z − η| < 2ε.

Possibly excluding a set ξ ∈ E of measure zero, the identities (5.9) and (5.10) with TL;η replaced
by TL;η+ε respectively TL;η−ε now follow from Lemma 5.14 and the identities (5.107) and (5.108) for
q̃+(z) and p̃−(z).

To show that E = ∅, we can invoke Lemma 5.1 to argue that the left and right hand sides of
(5.9) and (5.10) are both continuous. In addition, the bound∥∥∆L(z)−1

∥∥
L(H;H)

= O(|z|−1) as Im z →∞, (5.109)

which holds uniformly in vertical strips of the complex plane, implies that the integration paths in
(5.98) and (5.100) can both be shifted to the line Re z = η.

5.3 Projection operators

The preparations in §5.1 and §5.2 allow us to establish the remaining technical results of this section.
In particular, we can use the explicit form of the extension operators E bQL(η) and E bPL(η) to show
that they play a dual role as the projection operators associated to the desired exponential splitting
of the state space C([rmin, rmax];H).

Proof of Proposition 5.5. Fix a φ̂ ∈ C([rmin, 0];B)× C([0, rmax];B) and write

H bQL(η)(ξ) = [E bQL(η)φ̂]′(ξ)− L̂ êvξE bQL(η) (5.110)

for ξ ∈ (0,∞) \ R, together with

H bPL(η)(ξ) = [E bPL(η)φ̂]′(ξ)− L̂ êvξE bPL(η) (5.111)
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for ξ ∈ (−∞, 0) \ R. Inspection of the identities (5.12) and (5.87) shows that for all ξ ∈ (0,∞) \ R
we have

H bQL(η)(ξ) = HTL;η [φ̂, φ̂(0+)](ξ)

−
∑
rj<0Aj φ̂(ξ + rj)10<ξ<−rj −

∑
s−j <0

∫ s+j
s−j

Bj(ϑ)φ̂(ξ + ϑ)10<ξ<−ϑ dϑ

= 0,
(5.112)

which together with the bounds in Proposition 5.13 yields the inclusion E bQL(η)φ̂ ∈ Q̂L;B(η) and the
bounds (5.17). In addition, inspection of (5.13) and (5.86) shows that

H bPL(η)(ξ) = −HTη [φ̂, φ̂(0−)](ξ)

−
∑
rj>0Aj φ̂(ξ + rj)1−rj<ξ<0 −

∑
s+j >0

∫ s+j
s−j

Bj(ϑ)φ̂(ξ + ϑ)1−ϑ<ξ<0 dϑ

= 0,
(5.113)

which now guarantees the inclusion E bPL(η)φ̂ ∈ P̂L;B(η) together with the bounds (5.18).

Proof of Proposition 5.6. Combining Corollary 5.4 and Proposition 5.5, we have the characteriza-
tions

PL(η) = {φ ∈ C([rmin, rmax];H) : φ = ev0E bPL(η)φ},

QL(η) = {φ ∈ C([rmin, rmax];H) : φ = ev0E bQL(η)φ}.
(5.114)

This immediately implies that PL(η) and QL(η) are closed.
In addition, we can inspect (5.12) and (5.13) to find that for any φ ∈ C([rmin, rmax];H) we have

φ(ξ) = ev0E bQL(η)φ+ ev0E bPL(η)φ. (5.115)

This shows that PL(η) +QL(η) = C([rmin, rmax];H). In addition, if φ ∈ PL(η)∩QL(η), this identity
gives φ = 2φ which is only possible if φ = 0.

Proof of Theorem 2.1. The statements are a subset of those in Proposition 5.6.

Proof of Theorem 2.3. The statements follow directly from the fact that for any v ∈ H, we have
ĜL(η) ∈ Q̂L(η) and ĜL(η) ∈ P̂L(η). In particular, for any q̂ ∈ Q̂L(η) we have that

q̂ − êv0 ĜL[q̂(0+)− q̂(0−)] ∈ QL(η). (5.116)

6 Finite dimensional MFDEs

In this section we set out to prove the results in §3.1 concerning the restriction operators (3.5) in the
finite dimensional case H = R

n. In §6.1 we establish Proposition 3.1, developing a technique that
exploits our explicit representation of the symbol TL;η introduced in §5. This provides an alternative
for the more abstract arguments employed in [20]. In §6.2 we investigate the non-degeneracy of
the Hale inner product and use it to establish the characterizations of QL(η) and PL(η) stated in
Proposition 3.4. We also prove Theorem 3.5, up to an index formula that mixes L with its formal
adjoint L∗. This formula is derived in §6.3, where we exploit the ideas introduced in [20] for non-
autonomous MFDEs.
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6.1 Fredholm properties

It turns out that the desired Fredholm properties for the restriction operators (3.5) all follow easily
from the corresponding properties for

π̂−bQL(η)
: Q̂L(η)→ C([rmin, 0];Rn)× Rn, π̂+

bPL(η)
: P̂L(η)→ R

n × C([0, rmax];Rn). (6.1)

We hence focus on these two operators here. For convenience, we recall the definitions

R̂−bQL(η)
= Range

(
π̂−bQL

(η)
)
⊂ C([rmin, 0];Rn)× Rn,

K̂−bQL(η)
= Ker

(
π̂−bQL

(η)
)
⊂ Q̂L(η)

(6.2)

together with

R̂+
bPL(η)

= Range
(
π̂+
bPL

(η)
)
⊂ Rn × C([0, rmax];Rn),

K̂+
bPL(η)

= Ker
(
π̂+
bPL

(η)
)
⊂ P̂L(η).

(6.3)

Lemma 6.1. Write H = R
n for some integer n ≥ 1 and consider a bounded linear operator L :

C([rmin, rmax];H) → H that satisfies (HF)L. Choose η ∈ R in such a way that the characteristic
equation det ∆L(z) = 0 admits no roots with Re z = η. Then the kernels K̂+

bPL(η)
and K̂−bQL(η)

are both

finite dimensional and the ranges R̂+
bPL(η)

and R̂−bQL(η)
are both closed.

Proof. We focus here on π̂−bQL(η)
, noting that the statements for π̂+

bPL(η)
follow analogously. For con-

venience, we introduce the notation

ev−0 = π−êv0, ev+
0 = π+êv0, (6.4)

together with φ̂ = (φ−, φ+) for φ̂ ∈ C([rmin, 0];Rn)× C([0, rmax];Rn) and

φ− = ev−0 φ̂ ∈ C([rmin, 0];Rn), φ+ = ev+
0 φ̂ ∈ C([0, rmax];Rn). (6.5)

In such cases we often replace the expression TL;η[φ̂, v] defined in (5.3) by TL;η[φ−, φ+, v] for explic-
itness.

Inspection of (5.12) shows that q̂ = (q−, q+) ∈ Q̂L(η) if and only if

q− = q− + ev−0 TL;η[q−, q+, q+(0)] (6.6)

holds, together with

q+ = ev+
0 TL;η[q−, q+, q+(0)]. (6.7)

Observe that (6.7) is equivalent to[
I − ev+

0 TL;η[0, ·, 0]
]
(q+) = ev+

0 TL;η[q−, 0, q+(0)]. (6.8)

Since ev+
0 TL;η is a compact operator by Lemma 5.2, we see that the bounded linear map[

I − ev+
0 TL;η[0, ·, 0]

]
: C([0, rmax];Rn)→ C([0, rmax];Rn) (6.9)

is Fredholm. In particular, for some integer d ≥ 0 there exist compact bounded linear operators

L1 : C([rmin, 0];Rn)× Rn → C([0, rmax];Rn), L2 : Rd → C([0, rmax];Rn) (6.10)
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so that a pair q̂ = (q−, q+) ∈ C([rmin, 0];Rn)× C([0, rmax];Rn) satisfies (6.7) if and only if

q+ = L1

(
q−, q+(0)

)
+ L2κ (6.11)

holds for some κ ∈ Rd.
In summary, we see that q̂ = (q−, q+) ∈ Q̂L(η) if and only if there exists κ ∈ Rd so that

q+ = L1

(
q−, q+(0)

)
+ L2κ,

0 = ev−0 TL;η[q−, L1

(
q−, q+(0)

)
+ L2κ, q

+(0)]
(6.12)

both hold.
We now introduce the bounded linear operator L3 : Rd → C([rmin, 0];Rn)× Rn that acts as

L3κ =
(

ev−0 TL;η[0, L2κ, 0], [L2κ](0)
)
. (6.13)

Write KL3 = Ker
(
L3

)
and pick a subspace K⊥L3

⊂ Rd so that

R
d = KL3 ⊕K⊥L3

. (6.14)

By inspection we readily obtain the characterization

K̂−bQL(η)
= Ker(π̂−bQL(η)

) =
(
0, L2(KL3)

)
. (6.15)

In addition, for any (φ−, v) ∈ C([rmin, 0];Rn)× Rn we see that (φ−, v) ∈ R̂−bQL(η)
if and only if

ev−0 TL;η[φ−, L1(φ−, v) + L2κ
⊥, v] = 0,[

L1(φ−, v) + L2κ
⊥](0) = v

(6.16)

both hold for some κ⊥ ∈ K⊥L3
. In particular, we then have

(φ−, v) = π̂− q̂ (6.17)

with

q̂ =
(
φ−, L1(q−, v) + L2κ

⊥) ∈ Q̂L(η). (6.18)

Suppose now that (6.16) holds for κ⊥ = κ⊥1 ∈ K⊥L3
and also κ⊥ = κ⊥2 ∈ K⊥L3

. Inspecting (6.13) we
then see L3(κ⊥1 ) = L3(κ⊥2 ), which implies that κ⊥1 − κ⊥2 ∈ KL3 and hence κ⊥1 = κ⊥2 . In particular, if
it exists, κ⊥ ∈ K⊥L3

in (6.16) depends uniquely and linearly on (φ−, v).
We now claim that this dependence is also bounded. To see this, consider a sequence {φ−j , vj , κ⊥j }

of solutions to (6.16) with φ−j ∈ C([rmin, 0];Rn), vj ∈ Rn and κ⊥j ∈ K⊥L3
. Suppose also that

∥∥φ−j ∥∥+
|vj | = 1. It now suffices to show that κ⊥j is bounded. Supposing to the contrary that

∣∣κ⊥j ∣∣ → ∞,

there exists a non-zero κ∗ ∈ K⊥L3
so that a subsequence of the bounded set {

∣∣κ⊥j ∣∣−1
κ⊥j } ⊂ K⊥L3

converges to κ∗ ∈ K⊥L3
, while (0, 0, κ∗) is a solution to (6.16). This contradicts the uniqueness claim

above, as (0, 0, 0) also satisfies (6.16).
To see that R̂−bQL(η)

is closed, consider a sequence {(φj , vj)} ∈ R̂−bQL(η)
for which

(φj , vj)→ (φ∗, v∗) ∈ C([rmin, 0];Rn)× Rn. (6.19)

The discussion above allows us to pick a bounded sequence {κ⊥j }∞j=1 ⊂ K⊥L3
in such a way that

(φj , vj , κ⊥j ) satisfies (6.16). After passing to a subsequence, we have the convergence κ⊥j → κ⊥∗ , which
by continuity implies that (φ∗, v∗, κ⊥∗ ) also satisfies (6.16). This shows that (φ∗, v∗) ∈ R̂−bQL(η)

.
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The result above implies that we can find spaces

T̂+
bPL(η)

⊂ P̂L(η), T̂−bQL(η)
⊂ Q̂L(η) (6.20)

so that we have the decompositions

P̂L(η) = K̂+
bPL(η)

⊕ T̂+
bPL(η)

, Q̂L(η) = K̂−bQL(η)
⊕ T̂−bQL(η)

. (6.21)

The maps

π̂+
bPL(η)

: T̂+
bPL(η)

→ R̂+
bPL(η)

, π̂−bQL(η)
: T̂−bQL(η)

→ R̂−bQL(η)
(6.22)

are now invertible with bounded inverses.

Lemma 6.2. Write H = R
n for some integer n ≥ 1 and consider a bounded linear operator L :

C([rmin, rmax];H) → H that satisfies (HF)L. Choose η ∈ R in such a way that the characteristic
equation det ∆L(z) = 0 admits no roots with Re z = η. Then the operators

π−[π̂+
bPL(η)

]−1 : R̂+
bPL(η)

→ C([rmin, 0];Rn),

π+[π̂−bQL(η)
]−1 : R̂−bQL(η)

→ C([0, rmax];Rn)
(6.23)

are both compact.

Proof. The result follows by inspection of (6.17)-(6.18), recalling from the proof of Lemma 6.1 that
κ⊥ is a bounded linear function of (q−, v) and that L1 and L2 are compact operators.

Lemma 6.3. Suppose that X , Y and Z are three Banach spaces and that A : X → Y and B : Y → Z
are Fredholm operators. Then BA : X → Z is also Fredholm with

ind(BA) = ind(A) + ind(B). (6.24)

In particular, if X ⊂ Y is a closed subspace of finite codimension, then the restriction B|X : X → Z
is Fredholm with

ind(B|X ) = ind(B)− codimY(X ). (6.25)

Proof. See [20, Eq. (3.10)].

In order to obtain information concerning the codimensions of R̂+
bPL(η)

and R̂−bQL(η)
, we adapt a

technique developed by Mallet-Paret and Verduyn-Lunel in the proof of [20, Thm. 3.4].

Lemma 6.4. Write H = R
n for some integer n ≥ 1 and consider a bounded linear operator L :

C([rmin, rmax];H) → H that satisfies (HF)L. Choose η ∈ R in such a way that the characteristic
equation det ∆L(z) = 0 admits no roots with Re z = η. Then the inclusions

R̂+
bPL(η)

⊂ Rn × C([0, rmax];Rn), R̂−bQL(η)
⊂ C([rmin, 0];Rn)× Rn (6.26)

both have finite codimension, which means that the two operators in (6.1) are both Fredholm. In
addition, we have the identity

ind(π̂−bQL(η)
) + ind(π̂+

bPL(η)
) = −n. (6.27)
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Proof. Consider the Banach space

X = C([rmin, rmax];Rn)× Rn × Rn (6.28)

together with the bounded linear map

J∗ : Q̂L(η)⊕ P̂L(η)→ X (6.29)

that acts as

J∗(q̂, 0) =
(
q̂ − ĜL(η)[q̂(0+)− q̂(0−)], [q̂(0+)− q̂(0−)], 0

)
,

J∗(0, p̂) =
(
p̂− ĜL(η)[p̂(0+)− p̂(0−)], 0, [p̂(0+)− p̂(0−)]

)
.

(6.30)

Exploiting the fact that PL(η)⊕QL(η) = C([rmin, rmax];Rn), the representations (2.32) imply that
J∗ is a bijection.

We now introduce the bounded linear map

T : R̂−bQL(η)
× R̂+

bPL(η)
→ X (6.31)

that acts as

T
(
(φ−, v), (w, φ+)

)
= J∗

(
[π̂−bQL(η)

]−1(φ−, v), [π̂+
bPL(η)

]−1(w, φ+)
)
. (6.32)

We see that T is injective because J∗ and the inverses [π̂−bQL(η)
]−1 and [π̂+

bPL(η)
]−1 are all injective. In

particular, the Fredholm index of T is

ind(T ) = −codim Range(T ) = −dim K̂−bQL(η)
− dim K̂+

bPL(η)
. (6.33)

Introducing the Banach space

Y = C([rmin, 0];Rn)× C([0, rmax];Rn)× Rn × Rn (6.34)

together with the operators

I1 : X → Y, I2 : X → Y (6.35)

that act as

I1(φ, v, w) =
(

ev−0 φ, ev+
0 φ, v, w

)
,

I2(φ, v, w) = I1(φ, v, w) +
([

ev−0 ĜL(η)
]
(v + w),

[
ev+

0 ĜL(η)
]
(v + w), 0, 0

)
,

(6.36)

we see that I2 − I1 is compact and that

I2(φ, v, w) =
(

ev−0 φ+
[
ev−0 ĜL(η)

]
(v + w), ev+

0 φ+
[
ev+

0 ĜL(η)
]
(v + w), v, w

)
. (6.37)

In particular, since I1 is injective and I1(X ) has codimension n in Y, we see that

ind
(
I2

)
= ind

(
I1

)
= −n. (6.38)

Notice that

I2J∗(q̂, 0) =
(

ev−0 q̂, ev+
0 q̂,

(
q̂(0+)− q̂(0−)

)
, 0
)
,

I2J∗(0, p̂) =
(

ev−0 p̂, ev+
0 p̂, 0,

(
p̂(0+)− p̂(0−)

))
,

(6.39)
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which yields

I2T
(

(φ−, v), (w, φ+)
)

=
(
φ− + π−[π̂+

bPL(η)
]−1(w, φ+), φ+ + π+[π̂−bQL(η)

]−1(φ−, v),

v − φ−(0), φ+(0)− w
)
.

(6.40)

Let us rewrite this as

I2T
(

(φ−, v), (w, φ+)
)

= L4[(φ−, v), (w, φ+)] + L5[(φ−, v), (w, φ+)] (6.41)

for two operators

L4 : R̂ bQL(η) × R̂ bPL(η) → Y, L5 : R̂ bQL(η) × R̂ bPL(η) → Y, (6.42)

in which L4 acts as

L4[(φ−, v), (w, φ+)] =
(
φ−, φ+, v, w

)
. (6.43)

Inspecting (6.40) and applying Lemma 6.2, we see that L5 is a compact operator. In addition, it
follows from (6.43) that L4 is injective with Fredholm index

ind(L4) = −codim R̂−bQL(η)
− codim R̂+

bPL(η)
. (6.44)

In particular, we may compute

ind(T )− n = ind
(
I2T

)
= ind(L4) = −codim R̂−bQL(η)

− codim R̂+
bPL(η)

. (6.45)

Comparing (6.33) with (6.45), we find

dim K̂−bQL(η)
+ dim K̂+

bPL(η)
= −ind(T ) = −n+ codim R̂−bQL(η)

+ codim R̂+
bPL(η)

(6.46)

and so

ind
(
π̂−bQL(η)

)
+ ind

(
π̂+
bPL(η)

)
= −n. (6.47)

Lemma 6.5. Write H = R
n for some integer n ≥ 1 and consider a bounded linear operator L :

C([rmin, rmax];H) → H that satisfies (HF)L. Choose η ∈ R in such a way that the characteristic
equation det ∆L(z) = 0 admits no roots with Re z = η. Then the operators

π−bQL(η)
: Q̂L(η) → C([rmin, 0];Rn),

π−QL(η) : QL(η) → C([rmin, 0];Rn)
(6.48)

and

π+
bPL(η)

: P̂L(η) → C([0, rmax];Rn),

π+
PL(η) : PL(η) → C([0, rmax];Rn)

(6.49)

are all Fredholm. In addition, we have the identities

ind(π−QL(η)) = ind(π−bQL(η)
)− n = ind(π̂−bQL(η)

), (6.50)

together with

ind(π+
PL(η)) = ind(π+

bPL(η)
)− n = ind(π̂+

bPL(η)
). (6.51)
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Proof. Note first that the projection

π1 : C([rmin, 0];Rn)× Rn → C([rmin, 0];Rn), (φ, v) 7→ φ (6.52)

is Fredholm with index n. Since π−bQL(η)
= π1π̂

−
bQL(η)

, Lemma 6.3 implies that π−bQL(η)
is Fredholm

with index

ind(π−bQL(η)
) = n+ ind(π̂−bQL(η)

). (6.53)

In addition, since the inclusion QL(η) ⊂ Q̂L(η) has codimension n, we can again use Lemma 6.3 to
conclude that

π−QL(η) = [π−bQL(η)
]|QL(η) (6.54)

is Fredholm with index

ind(π−QL(η)) = ind(π−bQL(η)
)− n. (6.55)

The statements concerning PL(η) and P̂L(η) follow in a similar fashion.

Proof of Proposition 3.1. The statements follow directly from Lemma’s 6.4 and 6.5.

6.2 The Hale inner product

Our first focus here is the non-degeneracy of the Hale inner product. We cannot directly follow the
approach in [20, §5] because (HRnk)L is weaker then the atomicity condition employed there. As a
preparation, we need to rule out non-zero elements of PL(η) and QL(η) that decay at a rate faster
than any exponential.

Lemma 6.6. Write H = R
n for some integer n ≥ 1 and consider a bounded linear operator L :

C([rmin, rmax];H)→ H that satisfies both (HF)L and (HRnk)L. Then we have the trivial intersections⋂
η∈R

PL(η) = {0},
⋂
η∈R

QL(η) = {0}. (6.56)

Proof. Consider any q ∈
⋂
η∈RQL(η). By uniqueness of extensions there is a

yq ∈
⋂
η∈R

BC⊕η (Rn) (6.57)

for which y′q(ξ) = Levξ yq holds for all ξ ≥ 0. In particular, we have limξ→∞ eηξyq(ξ) = 0 for all
η ∈ R. The proof of [20, Lem 5.6] can be repeated to show that one must have yq = 0. Indeed,
this proposition uses an atomicity condition that is stricter than (HRnk)L. However, this stricter
condition [20, Eq. (2.3)] is only used to verify the conditions associated with a Phragmén-Lindelöf
theorem [17, Thm. I.21]. This theorem asserts that entire functions that grow at most exponentially
on C and polynomially on the real and imaginary axes, are in fact polynomials. Allowing s± > 0 in
(3.29)-(3.30) does not destroy these required growth estimates.

Our explicit characterization of PL(η) and QL(η) in §5 is the key that allows us to exploit the
result above to obtain the non-degeneracy of the Hale inner product.

Lemma 6.7. Write H = R
n for some integer n ≥ 1 and consider a bounded linear operator L :

C([rmin, rmax];H) → H that both satisfies (HF)L and (HRnk)L. Then the Hale inner product is
nondegenerate, in the sense that φ = 0 is the only φ ∈ C([rmin, rmax];Rn) for which

〈ψ, φ〉L = 0 (6.58)

holds for all ψ ∈ C([−rmax,−rmin];Rn).
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Proof. For any φ ∈ C([rmin, rmax];Rn) that satisfies the conditions in the statement, we see that

〈e−z
∗·, φ〉 =

〈(
e−z

∗·, 1
)
,
(
φ, φ(0−)

)〉
L

=
〈(
e−z

∗·, 1
)
,
(
φ, φ(0+)

)〉
L

= 0 (6.59)

for every z ∈ C. In particular, if the characteristic equation det ∆L(z) = 0 admits no roots with
Re z = η, then we have TL;η[φ, φ(0)] = 0. In view of Proposition 5.5, this means that

ev0E bQL(η)φ = (ev−0 φ, 0) ∈ QL(η), ev0E bPL(η)φ = (0, ev+
0 φ) ∈ PL(η) (6.60)

for all such η. When η1 < η2 we naturally have the inclusions

QL(η1) ⊂ QL(η2), PL(η2) ⊂ PL(η1), (6.61)

which means that (6.60) in fact holds for all η ∈ R. In particular, we see that

(ev−0 φ, 0) ∈
⋂
η∈R

QL(η), (0, ev+
0 φ) ∈

⋂
η∈R

PL(η), (6.62)

which in view of Lemma 6.6 implies that φ = 0.

Proof of Proposition 3.3. The statements follow by applying Lemma 6.7 to the operators L, L>0

and L<0.

The following technical result clarifies the relation between L and L∗ induced by the Hale inner
product. For convenience, we introduce the notation êv∗ξ to refer to the evaluation operator that
arises by making the substitutions rmin 7→ −rmax and rmax 7→ −rmin in the definition (2.21). This
accounts for the fact that the natural statespace for L∗ is C([−rmax,−rmin];Rn).

Lemma 6.8. Write H = R
n for some integer n ≥ 1 and consider a bounded linear operator L :

C([rmin, rmax];H)→ H that satisfies (HF)L. Consider two functions

ŷ ∈ C([rmin, 0];Rn)× C
(
[0,∞);Rn

)
, ẑ ∈ C([−rmax, 0];Rn)× C

(
[0,∞);Rn

)
(6.63)

and write Hby,bz : [0,∞)→ R for the function defined by

Hby,bz(ξ) =
〈(

êv∗ξ ẑ, ẑ(ξ
+)
)
,
(
êvξ ŷ, ŷ(ξ+)

)〉
L
. (6.64)

Then Hby,bz is continuous on [0,∞). In addition, if ŷ and ẑ are also in C1
(
(0,∞) \ R;Rn

)
, then

in fact Hby,bz is differentiable whenever ξ ∈ (0,∞) \ R. For any such ξ, we have

H ′by,bz(ξ) = ẑ(ξ)∗[ŷ′(ξ)− L̂ êvξ ŷ] + [ẑ′(ξ)− L̂∗ êv∗ξ ẑ]
∗ŷ(ξ). (6.65)

Proof. We note that for ξ ≥ 0 we have

Hby,bz(ξ) = ẑ(ξ+)∗ŷ(ξ+)−
∑N
j=0

∫ ξ+rj
ξ

ẑ(τ − rj)∗Aj ŷ(τ) dτ

−
∑N
j=0

∫ s+j
s−j

∫ ξ+σ
ξ

ẑ(τ − σ)∗Bj(σ)ŷ(τ) dτ dσ,
(6.66)

which implies that Hby,bz is indeed continuous on [0,∞). In addition, for very ξ ∈ (0,∞) \R we may
compute

H ′by,bz(ξ) = ẑ′(ξ)∗ŷ(ξ) + ẑ(ξ)∗ŷ′(ξ)

−
∑N
j=0

[
ẑ(ξ)∗Aj ŷ(ξ + rj)− ẑ(ξ − rj)∗Aj ŷ(ξ)

]
−
∑N
j=0

∫ s+j
s−j

(
ẑ(ξ)∗Bj(σ)ŷ(ξ + σ)− ẑ(ξ − σ)∗Bj(σ)ŷ(ξ)

)
dσ,

(6.67)

which reduces to the desired expression.
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Using the non-degeneracy of the Hale inner product, we can establish the representations (3.36)-
(3.37) in Proposition 3.4. In order to appreciate the exponents −η appearing in these expressions,
we note that

∆L∗(z) = z +
∑N
j=0A

∗
je
−zrj +

∫ −rmin

−rmax
B(−σ)∗ezσdσ

= z +
∑N
j=0A

∗
je
−zrj +

∫ rmax

rmin
B(σ)∗e−zσdσ

=
[
z∗ +

∑N
j=0Aje

−z∗rj +
∫ rmax

rmin
B(σ)e−z

∗σdσ
]∗

= −∆L(−z∗)∗.

(6.68)

Proof of Proposition 3.4. Applying Lemma 6.8 with ẑ = E bQL∗ (−η)ψ̂ and ŷ = E bQL(η)φ̂ shows that
(3.37) holds if one replaces the equality signs by the left inclusion ⊂. In order to show the identities
for QL(η) in (3.37), it hence suffices to show that the inclusions

S1 ⊂ S2 ⊂ QL(η) (6.69)

hold for the sets

S1 = {φ ∈ C([rmin, rmax];Rn) :
〈(
ψ̂, ψ̂(0+)

)
,
(
φ, φ(0)

)〉
L

= 0 for all ψ̂ ∈ Q̂L∗(−η)},

S2 = {φ ∈ C([rmin, rmax];Rn) : 〈ψ, φ〉L = 0 for all ψ ∈ QL∗(−η)}.
(6.70)

The first inclusion is a consequence of QL∗(−η) ⊂ Q̂L∗(−η). For any φ ∈ S2, we may write φ = p+ q
with p ∈ PL(η) and q ∈ QL(η). By the remarks above for (3.37) we know that QL(η) ⊂ S2, which
implies by linearity that also p = φ−q ∈ S2. The same remarks but now applied to PL(η) and (3.36)
show that 〈p, ψ〉L = 0 for all ψ ∈ PL∗(−η). Since QL∗(−η)⊕ PL∗(−η) = C([−rmax,−rmin];Rn), the
non-degeneracy of the Hale inner product implies that we must have p = 0, which gives φ ∈ QL(η).

Turning to the identities for Q̂L(η) in (3.37), it suffices to show that the inclusions

Ŝ1 ⊂ Ŝ2 ⊂ Q̂L(η) (6.71)

hold for the sets

Ŝ1 = {φ̂ ∈ C([rmin, 0];Rn)× C([0, rmax];Rn) :〈(
ψ̂, ψ̂(0+)

)
,
(
φ̂, φ̂(0+)

)〉
L

= 0 for all ψ̂ ∈ Q̂L∗(−η)},

Ŝ2 = {φ̂ ∈ C([rmin, 0];Rn)× C([0, rmax];Rn) :〈(
ψ,ψ(0)

)
,
(
φ̂, φ̂(0+)

)〉
L

= 0 for all ψ ∈ QL∗(−η)}.

(6.72)

The first inclusion again follows from QL∗(−η) ⊂ Q̂L∗(−η). Any φ̂ ∈ S2 can be decomposed as
φ̂ = p + q̂ with p ∈ PL(η) and q̂ ∈ Q̂L(η). Since Q̂L(η) ⊂ Ŝ2, we see that also p = φ̂ − q̂ ∈ Ŝ2. As
above, we have 〈p, ψ〉L = 0 for all ψ ∈ PL∗(−η), which again allows us to conclude p = 0 and hence
φ̂ ∈ Q̂L(η). The identities (3.36) can be obtained in a similar fashion.

We now turn our attention to Theorem 3.5, which we prove up to the index formula stated in
Proposition 6.10 below. As a reminder, we recall the shorthands

R−bQL(η)
= Range

(
π−bQL

(η)
)
⊂ C([rmin, 0];Rn),

K−bQL(η)
= Ker

(
π−bQL

(η)
)
⊂ Q̂L(η),

(6.73)

together with

R−QL(η) = Range
(
π−QL(η)

)
⊂ C([rmin, 0];Rn),

K−QL(η) = Ker
(
π−QL(η)

)
⊂ QL(η).

(6.74)
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Lemma 6.9. Write H = R
n for some integer n ≥ 1 and consider a bounded linear operator L :

C([rmin, rmax];H) → H that both satisfies (HF)L and (HRnk)L. Choose η ∈ R in such a way that
the characteristic equation det ∆L(z) = 0 admits no roots with Re z = η. We then have the inclusion

R−QL(η) ⊂ {φ ∈ C([rmin, 0];Rn) : 〈π+ψ̂, φ〉L<0 = 0 for all ψ̂ ∈ K−bQL∗ (−η)
}, (6.75)

together with

R−bQL(η)
⊂ {φ ∈ C([rmin, 0];Rn) : 〈π+ψ, φ〉L<0 = 0 for all ψ ∈ K−QL∗ (−η)}

= {φ ∈ C([rmin, 0];Rn) :
〈(
π+ψ̂, 0

)
,
(
φ, φ(0)

)〉
L<0

= 0 for all ψ̂ ∈ K̂−bQL∗ (−η)
}

(6.76)

and finally

R̂−bQL(η)
⊂ {(φ, v) ∈ C([rmin, 0];Rn)× Rn :〈(

π+ψ̂, ψ̂(0+)
)
,
(
φ, v
)〉

L<0

= 0 for all ψ̂ ∈ K−bQL∗ (−η)
}.

(6.77)

Proof. To see (6.75), pick any φ ∈ R−QL(η) and choose an arbitrary y ∈ QL(η) that has ev−0 y = φ.

For any ψ̂ = (ψ−, ψ+) ∈ K−bQL∗ (−η)
we have

0 =
〈(
ψ̂, ψ+(0)

)
,
(
ev0 y, y(0)

)〉
L

=
〈
ψ+, φ

〉
L<0

, (6.78)

where the first identity follows from Proposition 3.4 and the second identity follows from the fact
that ψ− = 0.

To see (6.76), first observe that K̂−bQL∗ (−η)
= K−QL∗ (−η), which allows us to focus on the first line.

Let us therefore pick any φ ∈ R−bQL(η)
and choose an arbitrary ŷ ∈ Q̂L(η) that has ev−0 ŷ = φ. For

any ψ = (ψ−, ψ+) ∈ KQL∗
(−η), Proposition 3.4 together with ψ− = 0 and ψ+(0) = 0 implies that

0 =
〈(
ψ,ψ+(0)

)
,
(
ev0 ŷ, ŷ(0+)

)〉
L

= 〈ψ+, φ〉L<0 . (6.79)

Finally, to establish (6.77), pick any (φ, v) ∈ R̂−bQL(η)
and an accompanying ŷ ∈ Q̂L(η) with

ev−0 ŷ = φ and ŷ(0+) = v. For any ψ̂ = (ψ−, ψ+) ∈ K bQL∗ (−η), we see that

0 =
〈(
ψ̂, ψ̂(0+)

)
,
(
êv0 ŷ, ŷ(0+)

)〉
L

=
〈(
ψ+, ψ+(0)

)
,
(
φ, v
)〉

L<0

, (6.80)

in which the first identity follows from Proposition 3.4 and the second identity follows from the fact
that ψ− = 0.

Proposition 6.10 (see §6.3). Write H = R
n for some integer n ≥ 1 and consider a bounded

linear operator L : C([rmin, rmax];H)→ H that satisfies both (HF)L and (HRnk)L. Choose η ∈ R in
such a way that the characteristic equation det ∆L(z) = 0 admits no roots with Re z = η. Then we
have the identities

0 = ind(π−bQL(η)
) + ind(π−QL∗ (−η)),

0 = ind(π̂−bQL(η)
) + ind(π−bQL∗ (−η)

).
(6.81)

Proof of Theorem 3.5. The inclusion (6.76) together with the non-degeneracy of 〈, 〉L<0 , yields the
inequality

codimR bQL(η) ≥ dimKQL∗ (−η). (6.82)
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On the other hand, applying (6.75) to L∗ yields

codimRQL∗ (−η) ≥ dimK bQL(η). (6.83)

In particular, we see that

ind
(
π−bQL(η)

)
= dimK bQL(η) − codimR bQL(η)

≤ codimRQL∗ (−η) − dimKQL∗ (−η)

= −ind
(
π−QL∗ (−η)

)
.

(6.84)

On account of Proposition 6.10 we see that all inequalities above are in fact equalities. Applying the
same argument to L∗, we may conclude that the inclusions in (6.75) and (6.76) are in fact identities.

In a similar fashion, we can use (6.76) and (6.77) to obtain

ind
(
π̂−bQL(η)

)
= dim K̂ bQL(η) − codim R̂ bQL(η)

≤ codimR bQL∗ (−η) − dimK bQL∗ (−η)

= −ind
(
π−bQL∗ (−η)

)
.

(6.85)

On account of Proposition 6.10 we again see that the inequality above is in fact an equality, which
in turn shows that (6.76) and (6.77) are in fact identities.

6.3 Index equations

Here we set out to establish Proposition 6.10. In order to further explore the relation between L and
L∗, we introduce two operators

L+
mx : C([rmin, rmax];Rn)→ R

n, L−mx : C([rmin, rmax];Rn)→ R
n, (6.86)

that act as

L+
mxφ =

∑N
j=0

[
Ajφ(rj) +

∫ s+j
s−j

Bj(σ)φ(σ) dσ
]
,

L−mxφ =
∑N
j=0

[
A∗jφ(rj) +

∫ s+j
s−j

B∗j (σ)φ(σ) dσ
]
.

(6.87)

Writing

L∞η (R;Rn) = {x ∈ L1
loc(R;Rn) : e−η·x(·) ∈ L∞(R;Rn)},

W 1,∞
η (R;Rn) = {x ∈ L∞η (R;Rn) : x′ ∈ L∞η (R;Rn)},

(6.88)

with norms

‖x‖L∞η =
∥∥e−η·x(·)

∥∥
∞ , ‖x‖W 1,∞

η
= ‖x‖L∞η + ‖x′‖L∞η , (6.89)

we now combine the two operators (6.87) into a single non-autonomous mixed operator

Lmx : W 1,∞
η (R;Rn)→ L∞η (R;Rn) (6.90)

that acts as

[Lmxv](ξ) = v′(ξ)− L−mx evξv (6.91)

whenever ξ < 0 and

[Lmxv](ξ) = v′(ξ)− L+
mx evξv (6.92)
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for ξ > 0. In addition, we introduce the solution spaces

Pmx(η) =
{
x ∈ BC	η (Rn) : x′(ξ) = L−mx evξ x for all ξ ≤ 0

}
,

Qmx(η) =
{
y ∈ BC⊕η (Rn) : y′(ξ) = L+

mx evξ y for all ξ ≥ 0
}
,

Bmx(η) =
{
b ∈W 1,∞

η (R;Rn) : [Lmxb](ξ) = 0 for all ξ ∈ R \ {0}},

(6.93)

together with the initial segment spaces

Pmx(η) =
{
φ ∈ C([rmin, rmax];Rn) : φ = ev0 x for some x ∈ Pmx(η)

}
,

Qmx(η) =
{
φ ∈ C([rmin, rmax];Rn) : φ = ev0 y for some y ∈ Qmx(η)

}
,

Bmx(η) =
{
φ ∈ C([rmin, rmax];Rn) : φ = ev0 b for some b ∈ Bmx(η)

}
.

(6.94)

Finally, for any interval I ⊂ R and any function x : I → R
n, we write[

Rev(x)
]
(ξ) = x(−ξ) (6.95)

for all ξ ∈ −I.

Lemma 6.11. Consider the setting of Proposition 6.10. Then Lmx is Fredholm as a map from
W 1,∞
η (R;Rn) into L∞η (R;Rn), with

ind(Lmx) = 0. (6.96)

In addition, we have the identifications

QL∗(−η) = Rev
(
Pmx(η)

)
, QL(η) = Qmx(η). (6.97)

Proof. Seeking to employ a spectral flow argument, we introduce the expression

∆µ(z) = z −
∑N
j=0(µAj + (1− µ)A∗j )e

zrj

−
∑N
j=0

∫ s+j
s−j

(
µBj(σ) + (1− µ)B∗j (σ)

)
ezσdσ

(6.98)

for 0 ≤ µ ≤ 1 and z ∈ C. Note that

∆0(z) = ∆L−mx
(z), ∆1(z) = ∆L+

mx
(z), (6.99)

while also

∆1−µ(z∗) = ∆µ(z)∗. (6.100)

In particular, the net number of roots of det ∆µ(z) = 0 that crosses the line Re z = η as µ is increased
from zero to one is precisely zero. The spectral flow formula [19, Thm. C] hence yields (6.96).

The second identity in (6.97) is immediate as L+
mx = L. To see the first identity, pick any

v ∈ Q̂L∗(−η) and write w = Rev(v). We then see that w ∈ BC	η (Rn). In addition, for any ξ < 0 we
may compute

w′(ξ) = −v′(−ξ)

=
∑N
j=0

[
A∗jv(−ξ − rj) +

∫ s+j
s−j

Bj(σ)∗v(−ξ − σ) dσ
]

=
∑N
j=0

[
A∗jw(ξ + rj) +

∫ s+j
s−j

Bj(σ)∗w(ξ + σ) dσ
]
,

(6.101)

which shows that w ∈ Pmx(η).
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In order to account for the possibility that the space Bmx(η) = Qmx(η) ∩ Pmx(η) is non-trivial,
we need to introduce the normalized spaces

Pmx;⊥(η) =
{
x ∈ Pmx(η) :

∫ 0

−∞ e−2ηξb(ξ)∗x(ξ)dξ = 0 for all b ∈ Bmx(η)
}
,

Qmx;⊥(η) =
{
y ∈ Qmx(η) :

∫∞
0
e−2ηξb(ξ)∗y(ξ)dξ = 0 for all b ∈ Bmx(η)

}
,

(6.102)

together with the initial segment spaces

Pmx;⊥(η) =
{
φ ∈ C([rmin, rmax];Rn) : φ = ev0 x for some x ∈ Pmx;⊥(η)

}
,

Qmx;⊥(η) =
{
φ ∈ C([rmin, rmax];Rn) : φ = ev0 y for some y ∈ Qmx;⊥(η)

}
.

(6.103)

Our goal here is to mimic the non-autonomous theory developed in [20, §4] and apply it to the
operator Lmx. As before, special care needs to be taken here because our non-degeneracy condition
(HRnk)L is weaker than its counterpart in [20].

Proposition 6.12. Consider the setting of Proposition 6.10. Then the spaces Pmx;⊥(η), Qmx;⊥(η)
and Bmx(η) are all closed subsets of C([rmin, rmax];Rn) and the direct sum

Smx(η) = Pmx;⊥(η)⊕Qmx;⊥(η)⊕Bmx(η) (6.104)

is well-defined. In addition, Smx(η) is a closed subset of C([rmin, rmax];Rn), with

codimSmx(η) = dimBmx(η). (6.105)

Finally, we have the identities

Pmx(η) = Pmx;⊥(η)⊕Bmx(η), Qmx(η) = Qmx;⊥(η)⊕Bmx(η) (6.106)

and the index formula

ind(π+
Pmx(η)) + ind(π−Qmx(η)) = −n. (6.107)

Proof. The idea is to apply the results from [20, §4] that lead up to [20, Cor. 4.7]. In our setting we
note that the Hale inner product associated to Lmx at ξ = 0 is given by

〈ψ, φ〉mx = ψ(0)∗φ(0)−
∑
rj>0

∫ rj
0
ψ(τ − rj)∗Ajφ(τ) dτ −

∑
rj<0

∫ rj
0
ψ(τ − rj)∗A∗jφ(τ) dτ

−
∑
s+j >0

∫ s+j
max{0,s−j }

∫ σ
0
ψ(τ − rj)∗Bj(σ)φ(τ) dτ dσ,

−
∑
s−j <0

∫min{0,s+j }
s−j

∫ σ
0
ψ(τ − rj)∗B∗j (σ)φ(τ) dτ dσ,

(6.108)

for ψ ∈ C([−rmax,−rmin];Rn) and φ ∈ C([rmin, rmax];Rn). In particular, this can be written as
〈ψ, φ〉eL for a suitably chosen L̃ that satisfies (HF)eL and (HRnk)eL. This implies that the Hale inner
product 〈·, ·〉mx is non-degenerate in the sense of Proposition 3.3, which gives the analogue of [20,
Prop 4.16].

We now claim that there are no non-zero functions x ∈ Bmx(η) that vanish on an interval of the
form [ξ0 + rmin, ξ0 + rmax] for some ξ0 ∈ R. To see this, note first that if ξ0 ≥ 0, the function x that
has

x(ξ) =


x(ξ), ξ ≤ ξ0 + rmin,

0, ξ0 + rmin ≤ ξ ≤ ξ0 + rmax + T

x(ξ − T ), ξ ≥ ξ0 + rmax + T

(6.109)
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is also an element of Bmx(η) for arbitrary T ≥ 0. The finite dimensionality of Bmx(η) now implies
that in fact x(ξ) = 0 for all ξ ≥ ξ0. In case ξ0 ≤ 0, the same reasoning can be used to show that
x(ξ) = 0 for all ξ ≤ ξ0.

Furthermore, we note that the identifications (6.97) together with Lemma 6.6 imply that⋂
η∈R

Pmx(η) = {0},
⋂
η∈R

Qmx(η) = {0}. (6.110)

In particular, we see that if ξ0 ≥ 0, the function x must vanish on [rmin,∞), which allows us to take
ξ0 = 0. Similarly, if ξ0 ≤ 0, the function x must vanish on (−∞, rmax], which again allows us to take
ξ0 = 0. In particular, we obtain the contradiction x = 0. This gives the analogue of [20, Prop 4.9].

With these obstacles removed, the relevant theory developed in [20, §4] can be generalized to
our setting, which readily yields the desired properties. In the codimension formula (6.105) and the
index formula (6.107), we exploit the fact that ind(Lmx) = 0.

Proof of Proposition 6.10. Using Lemma 6.11 we see that

ind
(
π−QL∗ (−η)

)
= ind

(
π+
Pmx(η)

)
, ind

(
π−QL(η)

)
= ind

(
π−Qmx(η)

)
. (6.111)

In particular, (6.107) gives

ind(π−QL∗ (−η)) + ind(π−QL(η)) = −n. (6.112)

The desired expressions now follow directly from Lemma 6.5.

7 Algebraic Systems

In this section we study the differential-algebraic system (2.35), allowing both H = R
n and H =

`2(Z;Rn). We start by studying the associated characteristic functions in §7.1, focussing on explicit
techniques to divide and multiply such functions by factors of (z−α). As can be seen from §4, these
results are useful by their own right.

In §7.2 however we exploit these root extraction techniques to establish the exponential splittings
for (2.35) described in Theorem 2.5, slightly generalizing the approach in [4]. Finally, in §7.3 we study
scalar algebraic equations and show how the Wiener-Hopf factorizations for differential systems can
be coupled to the techniques from §7.1, allowing us to establish the results stated in §3.3.

7.1 Characteristic equations

Throughout this section we fix two Hilbert spaces H1 and H2. We are interested in bounded linear
operators

L : C([rmin, rmax];H1)→ H2 (7.1)

that satisfy one of the two conditions below.

(hF)L;H1,H2
We have rmin ≤ 0 ≤ rmax. There exists an integer N ≥ 0 together with real numbers

rmin = r0 < r1 < . . . < rN = rmax, rmin ≤ s−j ≤ s
+
j ≤ rmax (7.2)

and operators

AL;j ∈ L(H1;H2), BL;j ∈ C
(
[s−j , s

+
j ];L(H1;H2)

)
, (7.3)

defined for 0 ≤ j ≤ N , so that

Lφ =
N∑
j=0

[
AL;jφ(rj) +

∫ s+j

s−j

BL;j(σ)φ(σ) dσ
]
. (7.4)
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(hFin)H1,H2 We have rmin ≤ 0 ≤ rmax and there exist integers m > 0 and n > 0 so that H1 = R
n and

H2 = R
m.

Let us recall the set NBV([rmin, rmin];Rm×n) that consists of all Rm×n-valued functions ζ that
are right-continuous on (rmin, rmax), are normalized to have ζ(rmin) = 0 and have bounded variation
on [rmin, rmax]; see [5, App. I]. If (HFin)H1,H2

is satisfied, there exists a unique

ζL ∈ NBV([rmin, rmax];Rm×n) (7.5)

so that

Lφ =
∫ rmax

rmin

dζL(σ)φ(σ). (7.6)

We start out with three preparatory results concerning the expression Lφ, which discuss how two
frequently occurring transformations on φ can be transferred to the linear operator L. In particular,
for any α ∈ R we introduce the bounded linear operators

Lα : C([rmin, rmax];H1)→ H2, IL;α : C([rmin, rmax];H1)→ H2 (7.7)

that act as

Lαφ = Leα·φ, (7.8)

together with

IL;αφ = L
[
σ 7→ eασ

∫ σ

rmin

e−ασ
′
φ(σ′) dσ′

]
. (7.9)

We discuss the exponentially shifted operator Lα in Lemma 7.1 and the integrated operator IL;α in
Lemma’s 7.2 and 7.3.

Lemma 7.1. Consider a bounded linear operator L : C([rmin, rmax];H1) → H2 and suppose that
(HFin)H1,H2

is satisfied. We then have

ζLα(σ) = eασζL(σ)− α
∫ σ

rmin

eασ
′
ζL(σ′) dσ′. (7.10)

In particular, we have

ζLα(rmax) = Leα·. (7.11)

Proof. A direct computation yields∫ rmax

rmin
dζLα(σ)φ(σ) =

∫ rmax

rmin

[
αeασζL(σ)− αeασζL(σ)

]
φ(σ) dσ

+
∫ rmax

rmin
dζL(σ)eασφ(σ)

=
∫ rmax

rmin
dζL(σ)eασφ(σ)

= Leα·φ(·).

(7.12)

The final statement ζLα(rmax) = Leα· follows after substituting φ = 1 and noting ζLα(0) = ζL(0) =
0.

Lemma 7.2. Consider a bounded linear operator L : C([rmin, rmax];H1) → H2 and suppose that
(HFin)H1,H2

is satisfied. Then we have the representation

ζIL;α(σ) =
∫ σ

rmin

[ζLα(rmax)− ζLα(σ′)]e−ασ
′
dσ′. (7.13)
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Proof. We compute∫ rmax

rmin
dζIL;α(σ)φ(σ) =

∫ rmax

rmin
[ζLα(rmax)− ζLα(σ)]e−ασφ(σ) dσ

= [ζLα(rmax)− ζLα(rmax)]
∫ rmax

rmin
e−ασ

′
φ(σ′) dσ′

+
∫ rmax

rmin
dζLα(σ)

∫ σ
rmin

e−ασ
′
φ(σ′) dσ′

= Lα
[
σ 7→

∫ σ
rmin

e−ασ
′
φ(σ′) dσ′

]
= L

[
σ 7→ eασ

∫ σ
rmin

e−ασ
′
φ(σ′) dσ′

]
(7.14)

as desired.

Lemma 7.3. Consider a bounded linear operator L : C([rmin, rmax];H1) → H2 and suppose that
(hF)L;H1,H2

is satisfied. Then we have the representation

IL;αφ =
∑N
j=0

∫ rj
rmin

AL;je
α(rj−σ)φ(σ) dσ

+
∑N
j=0

∫ s−j
rmin

[ ∫ s+j
s−j

eασ
′
BL;j(σ′) dσ′

]
e−ασφ(σ) dσ

+
∑N
j=0

∫ s+j
s−j

[ ∫ s+j
σ

eασ
′
BL;j(σ′) dσ′

]
e−ασφ(σ) dσ.

(7.15)

In particular, we see that (hF)IL;α;H1,H2
is satisfied.

Proof. A direct computation yields

IL;αφ =
∑N
j=0AL;je

αrj
∫ rj
rmin

e−ασφ(σ) dσ

+
∑N
j=0

∫ s+j
s−j

BL;j(σ)eασ
∫ σ
rmin

e−ασ
′
φ(σ′) dσ′ dσ

=
∑N
j=0

∫ rj
rmin

AL;je
α(rj−σ)φ(σ) dσ

+
∑N
j=0

∫ s+j
rmin

[ ∫ s+j
max{σ,s−j }

eασ
′
BL;j(σ′) dσ′

]
e−ασφ(σ) dσ

=
∑N
j=0

∫ rj
rmin

AL;je
α(rj−σ)φ(σ) dσ

+
∑N
j=0

∫ s−j
rmin

[ ∫ s+j
s−j

eασ
′
BL;j(σ′) dσ′

]
e−ασφ(σ) dσ

+
∑N
j=0

∫ s+j
s−j

[ ∫ s+j
σ

eασ
′
BL;j(σ′) dσ′

]
e−ασφ(σ) dσ,

(7.16)

as desired.

In Propositions 7.4-7.6 we show how and when factors of (z − α) can be divided out and fac-
tored into the characteristic functions associated to differential operators L respectively differential-
algebraic operators M . We frequently use the fact that L and M are uniquely determined by their
representations z 7→ Lez· and z 7→Mez·. This is a consequence of the fact that sums of exponential
functions are dense in C([rmin, rmax];R).

Proposition 7.4. Consider a bounded linear operator L : C([rmin, rmax];H1) → H2, suppose that
either (hF)L;H1,H2

or (HFin)H1,H2
is satisfied and pick J ∈ L(H1;H2).

Then if Leα· = αJ , there is a unique bounded linear operator M : C([rmin, rmax];H1)→ H2 such
that

−(z − α)Mez· = Jz − Lez· (7.17)
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holds for all z ∈ C. This operator is given by

Mφ = −Jφ(0)− Jα
∫ 0

rmin
e−ασφ(σ) dσ + IL;αφ

= −Jφ(0) + L
[
σ 7→ eασ

∫ σ
0
e−ασ

′
φ(σ′)dσ′

]
.

(7.18)

Proof. A short computation exploiting Leα· = Jα shows that the two identities for M are equal. In
addition, for z 6= α we may compute

Mez· = −J − αJ
∫ 0

rmin
e(z−α)σdσ

+L
[
σ 7→ eασ

∫ σ
rmin

e(z−α)σ′dσ′
]

= −J − αJ(z − α)−1[1− e(z−α)rmin ]

+L
[
σ 7→ (z − α)−1eασ[e(z−α)σ − e(z−α)rmin ]

]
= (z − α)−1

[
− J(z − α)− αJ [1− e(z−α)rmin ]

]
+(z − α)−1

[
Lez· − e(z−α)rminLeα·

]
= (z − α)−1

[
Lez· − Jz − e(z−α)rmin [Leα· − αJ ]

]
,

(7.19)

as desired.

If (hF)L;H1,H2
is satisfied in the result above, then Lemma 7.3 guarantees that also (hF)M ;H1,H2

is
satisfied for the operator (7.18).

Proposition 7.5. Consider a bounded linear operator M : C([rmin, rmax];H1) → H2 and suppose
that (hF)M ;H1,H2

is satisfied. In addition, assume that M can be represented in such a way that the
following three properties hold.

(a) We have r0 = 0 and AM ;0 = −J for some J ∈ L(H1;H2).

(b) For all 1 ≤ j ≤ N we have AM ;j = 0.

(c) For all 0 ≤ j ≤ N we have

BM ;j ∈ C1
(
[s−j , s

+
j ];L(H1;H2)

)
. (7.20)

Then for any α ∈ R, there is a unique bounded linear operator

L : C([rmin, rmax];H1)→ H2 (7.21)

for which

−(z − α)Mez· = Jz − Lez· (7.22)

holds for all z ∈ C. This operator acts as

Lφ = αJφ(0)−
∑N
j=0

[
BM ;j(s−j )φ(s−j )−BM ;j(s+

j )φ(s+
j )
]

−
∑N
j=0

∫ s+j
s−j

[BM ;j(·)eα·]′(σ)e−ασφ(σ) dσ,
(7.23)

which means that (hF)L;H1,H2
is satisfied.
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Proof. Using the explicit expression for L, we simply verify

Lez· = αJ −
∑N
j=0

[
−BM ;j(s+

j )ezs
+
j +BM ;j(s−j )ezs

−
j +

∫ s+j
s−j

[BM ;j(·)eα·]′(σ)e(z−α)σ dσ
]

= αJ −
∑N
j=0

[
−BM ;j(s+

j )ezs
+
j +BM ;j(s−j )ezs

−
j

+BM ;j(s+
j )eαs

+
j e(z−α)s+j −BM ;j(s−j )eαs

−
j e(z−α)s−j

−(z − α)
∫ s+j
s−j

BM ;j(σ)eασe(z−α)σ dσ
]

= αJ −
∑N
j=0

[
− (z − α)

∫ s+j
s−j

BM ;j(σ)ezσ dσ
]

= αJ + (z − α)[Mez· + J ]

= (z − α)Mez· + zJ.

(7.24)

Proposition 7.6. Consider a bounded linear operator M : C([rmin, rmax];H1) → H2 and suppose
that (HFin)H1,H2

is satisfied. In addition, assume that M can be represented in such a way that the
following two properties hold.

(a) There exists J ∈ L(H1;H2) so that

ζM + JH(·) ∈W 1,1
loc

(
[rmin, rmax];L(H1;H2)

)
, (7.25)

in which H is the Heaviside function defined in (5.29).

(b) There exists ν ∈ NBV
(
[rmin, rmax];L(H1;H2)

)
so that

[ζM + JH(·)]′(σ) = ν(σ) (7.26)

for almost all σ ∈ [rmin, rmax].

Then for any α ∈ R there is a unique bounded linear operator

L : C([rmin, rmax];H1)→ H2 (7.27)

for which

−(z − α)Mez· = Jz − Lez· (7.28)

holds for all z ∈ C. Normalizing4 ν so that ν(rmax) = 0, the operator L is then given by

Lφ = αJφ(0) +
∫ rmax

rmin

dζ(σ)φ(σ) (7.29)

in which the NBV function ζ is given by

ζ(σ) = −
[
ν(σ) + α

∫ σ

rmin

ν(σ′) dσ′
]
. (7.30)

4This is possible because the right hand point of an NBV function can be modified at will without destroying the
NBV property.
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Proof. Considering the operator L defined in (7.29), we write L̃φ = Lφ− αJφ(0) and note that

ζeL = ζ. (7.31)

In particular, comparing the definition (7.30) with the expression (7.10), we see that

ζeLα = −eα·ν(·). (7.32)

This allows us to compute

Lez· = αJ + L̃ez·

= αJ + L̃αe
(z−α)·

= αJ −
∫ rmax

rmin
d[eα·ν(·)](σ)e(z−α)σ

= αJ −
∫ rmax

rmin
[αeασν(σ)]e(z−α)σ dσ −

∫ rmax

rmin
eασdν(σ)e(z−α)σ.

(7.33)

Integrating by parts, we obtain

Lez· = αJ − α
∫ rmax

rmin
[ζM (·) + JH(·)]′(σ)ezσ dσ

−ν(rmax)ezrmax + ν(rmin)ezrmin + z
∫ rmax

rmin
ν(σ)ezσ dσ

= −α
∫ rmax

rmin
dζM (σ)ezσ

−ν(rmax)ezrmax + ν(rmin)ezrmin + z
∫ rmax

rmin
[ζM (·) + JH(·)]′(σ)ezσ dσ

= −α
∫ rmax

rmin
dζM (σ)ezσ

−ν(rmax)ezrmax + ν(rmin)ezrmin + zJ + z
∫ rmax

rmin
dζM (σ)ezσ

= −αMez· + zJ + zMez·

(7.34)

as desired. In the last step we have exploited the normalizations ν(rmin) = ν(rmax) = 0.

Our final results here explore some useful relations between L and M that we exploit in §7.2.
The proofs are based heavily on the explicit factorizations obtained above.

Corollary 7.7. Consider three bounded linear operators

L : C([rmin, rmax];H1)→ H2, M : C([rmin, rmax];H1)→ H2, J : H1 → H2 (7.35)

for which

−(z − α)Mez· = Jz − Lez· (7.36)

holds for all z ∈ C. Suppose furthermore that either (HFin)H1,H2
holds or that (hF)L;H1,H2

and
(hF)M ;H1,H2

both hold.
Then for any pair τ1 ≤ τ2 and any function x ∈ C([τ1 + rmin, τ2 + rmax];H1) for which Jx ∈

C1([τ1, τ2];H2), the function

f(ξ) = Mevξx (7.37)

satisfies the identity

(D − α)f(ξ) = −Jx′(ξ) + L evξ x (7.38)

for all τ1 ≤ ξ ≤ τ2.
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Proof. Proposition 7.4 implies that

f(ξ) = −Jx(ξ) + L
[
σ 7→ eασ

∫ σ
rmin

e−ασ
′
x(ξ + σ′) dσ′

]
− αJ

∫ 0

rmin
e−ασx(ξ + σ) dσ

= −Jx(ξ) + eαξL
[
σ 7→ eασ

∫ ξ+σ
ξ+rmin

e−ασ
′
x(σ′) dσ′

]
− αeαξJ

∫ ξ
ξ+rmin

e−ασx(σ) dσ.
(7.39)

We hence compute

(D − α)f(ξ) = −Jx′(ξ) + αJx(ξ)

+eαξL
[
σ 7→ eασ

[
e−α(ξ+σ)x(ξ + σ)− e−α(ξ+rmin)x(ξ + rmin)

]]
−αeαξJ

(
e−αξx(ξ)− e−α(ξ+rmin)x(ξ + rmin)

)
= −Jx′(ξ) + L[σ 7→ x(ξ + σ)]− eαrmin [Leα·]x(ξ + rmin) + αJe−αrminx(ξ + rmin)

= −Jx′(ξ) + L evξ x− eαrmin [Leα· − αJ ]x(ξ + rmin)
(7.40)

and recall that Leα· = αJ .

Corollary 7.8. Consider three bounded linear operators

L : C([rmin, rmax];H1)→ H2, M : C([rmin, rmax];H1)→ H2, J : H1 → H2 (7.41)

for which

−(z − α)Mez· = Jz − Lez· (7.42)

holds for all z ∈ C. Suppose furthermore that either (HFin)H1,H2
holds or that (hF)L;H1,H2

and
(hF)M ;H1,H2

both hold.
Then for any z ∈ C and φ ∈ C([rmin, rmax];H1), we have the identities

−(z − α)M
[
σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′] = L

[
σ 7→ eασ

∫ σ
0
e−ασ

′
φ(σ′) dσ′

]
−L
[
σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′

]
= Mφ+ Jφ(0)− L

[
σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′

]
.

(7.43)

Proof. As a preparation, note that for z 6= α we have

eασ
∫ σ

0
e−ασ

′
ezσ

′ ∫ σ′
0
e−zσ

′′
φ(σ′′) dσ′′ dσ′ = eασ

∫ σ
0

[ ∫ σ
σ′′
e(z−α)σ′ dσ′

]
e−zσ

′′
φ(σ′′) dσ′′

= (z − α)−1eασ
∫ σ

0
[e(z−α)σ − e(z−α)σ′′ ]e−zσ

′′
φ(σ′′) dσ′′

= (z − α)−1ezσ
∫ σ

0
e−zσ

′
φ(σ′) dσ′

−(z − α)−1eασ
∫ σ

0
e−ασ

′
φ(σ′) dσ′.

(7.44)

Proposition 7.4 now allows us to compute

M
[
σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′] = L

[
σ 7→ eασ

∫ σ
0
e−ασ

′
ezσ

′ ∫ σ′
0
e−zσ

′′
φ(σ′′) dσ′′ dσ′

]
= (z − α)−1L

[
σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′

]
−(z − α)−1L

[
σ 7→ eασ

∫ σ
0
e−ασ

′
φ(σ′) dσ′

]
.

(7.45)

68



7.2 Exponential splittings for differential-algebraic systems

Our aim here is to prove Lemma 2.4 and Theorem 2.5, following the approach developed in [4, §3].
Our starting point is the identity

Jα(z)δI,M (z) = ∆L(z) (7.46)

formulated in (HAlg)I,M . We introduce the expansion

Jα(z) = J0 + J1(z − α) + . . .+ J`∗(z − α)`∗ (7.47)

with `∗ = max{`1, . . . , `n}. Here the matrices Ji ∈ Rn×n satisfy J2
i = Ji for 0 ≤ i ≤ `∗ and JiJj = 0

for i 6= j. In addition, we have

I = J0 + J1 + . . .+ J`∗ . (7.48)

Using the identity Jα(α) = I, we see that I = J0. In particular, (7.46) can be stated as[
J0 + J1(z − α) + . . .+ J`∗(z − α)`∗

]
[J0z −Mez·] = z − Lez·. (7.49)

Multiplying (7.49) by J0 gives

J0z − J0Mez· = J0z − J0Le
z·, (7.50)

which implies that J0M = J0L. On the other hand, multiplying (7.49) by Jk gives

−(z − α)kJkMez· = Jkz − JkLez· (7.51)

for 1 ≤ k ≤ `∗. Repeatedly applying Proposition 7.4 and appropriately padding with zeroes, we find
that for each 1 ≤ k ≤ `∗ and 0 ≤ s ≤ k − 1, there is a bounded linear operator

Mk,s : C
(
[rmin, rmax];H

)
→ H (7.52)

so that

−(z − α)sJkMez· = −Mk,se
z· (7.53)

holds for all z ∈ C. We now record a number of useful facts concerning these operators.

Lemma 7.9. Consider a bounded linear operator M : C([rmin, rmax];H) → H and suppose that
(HF)M , (HS) and (HAlg)I,M are all satisfied. Then for all 1 ≤ k ≤ `∗, we have the identities

JkMφ = Mk,0φ (7.54)

together with

JkL[σ 7→ ezσ
∫ σ

0
e−zσ

′
φ(σ′) dσ′

]
= Mk,k−1φ+ Jkφ(0)

+(z − α)Mk,k−1[σ 7→ ezσ
∫ σ

0
e−zσ

′
φ(σ′) dσ′

]
.

(7.55)

Proof. The first identity follows from inspection of (7.53). The second identity follows upon applying
Corollary 7.8 to the identity

−(z − α)Mk,k−1e
z· = Jkz − JkLez·, (7.56)

which is a direct consequence of (7.53).
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Lemma 7.10. Consider a bounded linear operator M : C([rmin, rmax];H) → H and suppose that
(HF)M , (HS) and (HAlg)I,M are all satisfied. Then for all 2 ≤ k ≤ `∗ and 1 ≤ s ≤ k − 1, we have
the identity

Mk,s[σ 7→ ezσ
∫ σ

0
e−zσ

′
φ(σ′) dσ′

]
= (z − α)Mk,s−1

[
σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′

]
+Mk,s−1φ.

(7.57)

Proof. This follows upon applying Corollary 7.8 to the identity

−(z − α)Mk,se
z· = −Mk,s+1e

z·. (7.58)

Proof of Lemma 2.4. Applying Lemma 7.9 with k = 1 and z = α, we find

J1Mφ = −J1φ(0) + J1L
[
σ 7→ eασ

∫ σ

0

e−ασ
′
φ(σ′) dσ′

]
. (7.59)

For 2 ≤ k ≤ `∗, we may apply Lemma 7.10 with s = 1 and z = α to find

JkMφ = Mk,1

[
σ 7→ eασ

∫ σ

0

e−ασ
′
φ(σ′) dσ′

]
. (7.60)

In particular, we have the identity

[I − J0]Mφ = (J1 + . . .+ J`∗)Mφ

= (J1L+M2,1 + . . .+M`∗,1)
[
σ 7→ eασ

∫ σ
0
e−ασ

′
φ(σ′) dσ′

]
− J1φ(0).

(7.61)

The continuity claim follows directly from this representation. Indeed, the only term that can cause
trouble is J1φ(0), but this is avoided by using M̂+ on [0,∞) and M̂− on (−∞, 0].

For any integer 1 ≤ ` ≤ `∗, we now define the function δ` : C→ L(H;H) in such a way that

∆L(z) = (J0 + J1(z − α) + . . .+ J`−1(z − α)`−1)δI,M (z) + (z − α)`δ`(z) (7.62)

holds for all z ∈ Z. As usual, we assume that we have complexified H here. In addition, for all such
integers we introduce the bounded linear operator

K` : C([rmin, rmax];H)→ H (7.63)

that acts as

K` = M`,0 +M`+1,1 + . . .+M`∗,`∗−` =
`∗∑
k=`

Mk,k−`. (7.64)

Lemma 7.11. Consider a bounded linear operator M : C([rmin, rmax];H) → H and suppose that
(HF)M , (HS) and (HAlg)I,M are all satisfied. Then for any 1 ≤ ` ≤ `∗ we have

δ`(z) = −K`e
z· (7.65)

for all z ∈ C.
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Proof. Rewriting (7.62) in the form

(z − α)`δ`(z) = −(z − α)`
[
J` + J`+1(z − α) + . . .+ J`∗(z − α)`∗−`

]
Mez·, (7.66)

we compute

δl(z) = −
[
J` + J`+1(z − α) + . . .+ J`∗(z − α)`∗−`

]
Mez·,

= −[M`,0 +M`+1,1 + . . .+M`∗,`∗−`]e
z·

= −K`e
z·.

(7.67)

Lemma 7.12. Consider a bounded linear operator M : C([rmin, rmax];H) → H and suppose that
(HF)M , (HS) and (HAlg)I,M are all satisfied. Then we have the identity

L[σ 7→ ezσ
∫ σ

0
e−zσ

′
φ(σ′) dσ′

]
= (I − J0)φ(0)

+Jα(z)M [σ 7→ ezσ
∫ σ

0
e−zσ

′
φ(σ′) dσ′

]
+
∑`∗
i=1(z − α)i−1Kiφ.

(7.68)

Proof. For any integer 1 ≤ k ≤ `∗, Lemma 7.9 implies

JkL[σ 7→ ezσ
∫ σ

0
e−zσ

′
φ(σ′) dσ′

]
= Jkφ(0) +Mk,k−1φ+ (z − α)Mk,k−1[σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′

]
= Jkφ(0) +

∑k
i=1(z − α)i−1Mk,k−iφ

+(z − α)kMk,0[σ 7→ ezσ
∫ σ

0
e−zσ

′
φ(σ′) dσ′

]
.

(7.69)

Recalling (7.48), the fact that Mk,0 = JkM for 1 ≤ k ≤ `∗ and the identity J0M = J0L, we hence
see

L[σ 7→ ezσ
∫ σ

0
e−zσ

′
φ(σ′) dσ′

]
= J0L[σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′

]
+
∑`∗
k=1 JkL[σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′

]
= J0M [σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′

]
+
∑`∗
k=1 Jkφ(0)

+
∑`∗
k=1

∑k
i=1(z − α)i−1Mk,k−iφ

+
∑`∗
k=1(z − α)kJkM [σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′

]
.

(7.70)

Rearranging, we find

L[σ 7→ ezσ
∫ σ

0
e−zσ

′
φ(σ′) dσ′

]
= Jα(z)M [σ 7→ ezσ

∫ σ
0
e−zσ

′
φ(σ′) dσ′

]
+(I − J0)φ(0)

+
∑`∗
i=1(z − α)i−1

∑`∗
k=iMk,k−iφ

= Jα(z)M [σ 7→ ezσ
∫ σ

0
e−zσ

′
φ(σ′) dσ′

]
+(I − J0)φ(0)

+
∑`∗
i=1(z − α)i−1Kiφ

(7.71)

as desired.
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Proof of Theorem 2.5. We can apply the same techniques as in the proof of Thm. 3.16 in [4]. Indeed,
the crucial identity (7.68) above is the analogue of [4, Eq. 5.132]. This allows the computations in
Lemma 5.8 - 5.11 from [4] to be copied almost verbatim, linking the Laplace transform of the
differential-algebraic system (2.35) to that of the associated differential system (2.9).

7.3 Algebraic Wiener-Hopf factorizations

In this subsection we establish the results stated in §3.3, using the explicit factorizations in §7.1 to
transfer the techniques from (3.2) to the scalar differential-algebraic setting.

Proof of Proposition 3.10. Pick η ∈ R in such a way that δ0,M (z) = 0 has no roots with Re z = η.
Propositions 7.4 and 7.6 allow us to construct a bounded linear operator L : C([rmin, rmax];C)→ C

for which δM (z) = (z − η)−`∆L(z) holds. In addition, Proposition 3.6 allows us to find

L− ∈ L
(
C([rmin, 0];C);C

)
, L+ ∈ L

(
C([0, rmax];C);C

)
(7.72)

for which

(z − η)∆L(z) = ∆L−(z)∆L+(z) (7.73)

holds for all z ∈ C. Writing `± ≥ 0 for the order of z = η as a root of ∆L±(z) = 0, we see that
`− + `+ = ` + 1 ≥ 2. By root-swapping in the sense of [20, Lem. 5.7], we can hence ensure that
`± ≥ 1. Applying Proposition 7.4 once more, we find

M− ∈ L
(
C([rmin, 0];C);C

)
, M+ ∈ L

(
C([0, rmax];C);C

)
, (7.74)

with

δ0,M±(z) = (z − η)−`±∆L±(z), (7.75)

which implies that (HAlgSc)M± both hold. This gives the desired factorization

δ0,M (z) = δ0,M−(z)δ0,M+(z). (7.76)

We note that if M satisfies (HAlgSc)M , then Propositions 7.4 and 7.6 imply that for any α ∈ R
there is a bounded linear operator L : C([rmin, rmax];C)→ C so that

δ0,M (z) = (z − α)−`∆L[M ;α,`](z). (7.77)

Throughout the remainder of this section we will use the notation

L = L[M ;α, `] (7.78)

to refer to this operator.

Lemma 7.13. Fix rmin ≤ 0 ≤ rmax, consider a bounded linear operator M : C([rmin, rmax];C)→ C

that satisfies both (HRnk)M and (HAlgSc)M and suppose that (M−, `−,M+, `+) is a Wiener-Hopf
set for M . Pick η ∈ R in such a way that δ0,M (z) = 0 has no roots with Re z = η.

Then for all sufficiently small ε > 0 we have

m]
M (η) = n]L[M ;η,`](η − ε) +

1
2
` = n]L[M ;η,`](η + ε)− 1

2
`. (7.79)
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In addition, for every γ > η, we have

m]
M (η) = n]L[M ;γ,`](η) +

1
2
`, (7.80)

while for every γ < η we have

m]
M (η) = n]L[M ;γ,`](η)− 1

2
`. (7.81)

Proof. Writing

L = L[M ; η, `], L+ = L+[M+; η, `+], L− = L−[M−; η, `−], (7.82)

we see that

(z − η)∆L(z) = ∆L−(z)∆L+(z). (7.83)

Notice that for all sufficiently small ε > 0 we have

n−L+
(η − ε) = m−M+

(η),

n−L+
(η + ε) = `+ +m−M+

(η),

n+
L−

(η − ε) = `− +m+
M−

(η),

n+
L−

(η + ε) = m+
M−

(η),

(7.84)

together with

n+
η (η − ε) = 1

n+
η (η + ε) = 0.

(7.85)

We may hence explicitly compute

n]L(η − ε) = m−M+
(η)− (`− +m+

M−
) + 1

= m]
M (η) + 1

2 −
1
2 (`+ + `−)

= m]
M (η)− 1

2`,

(7.86)

together with

n]L(η + ε) = `+ +m−M+
(η)−m+

M−
(η) + 0

= m]
M (η)− 1

2 + 1
2 (`+ + `−).

= m]
M (η) + 1

2`.

(7.87)

The identities concerning n]L[M ;γ,`] follow in a similar fashion.

Proof of Proposition 3.11. Any Wiener-Hopf set for M leads to a factorization for L[M ; η, `] via
(7.82)-(7.83). The invariance of m]

M (η) hence follows directly from the invariance of n]L(η).

Proof of Proposition 3.13. Write L = L[M ; η, `] and pick ε > 0 sufficiently small. Combining Theo-
rem 2.5 with Proposition 3.9, we obtain

dimK+
p0,M (η) = dimK+

PL(η+ε) codimR+
p0,M (η) = codimR+

PL(η+ε)

= max{−n]L(η + ε), 0}, = max{n]L(η + ε), 0},

dimK+
bp0,M (η) = dimK+

bPL(η+ε)
codimR+

bp0,M (η) = codimR+
bPL(η+ε)

= max{1− n]L(η + ε), 0}, = max{n]L(η + ε)− 1, 0},

(7.88)
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together with

dimK−q0,M (η) = dimK−QL(η−ε) codimR−q0,M (η) = codimR−QL(η−ε)

= max{n]L(η − ε)− 1, 0}, = max{1− n]L(η − ε), 0},

dimK−bq0,M (η) = dimK−bQL(η−ε)
codimR−bq0,M (η) = codimR−bQL(η−ε)

= max{n]L(η − ε), 0}, = max{−n]L(η − ε), 0}.

(7.89)

In addition, we have

dim K̂+
bp0,M

= dimK+
p0,M

, codim R̂+
bp0,M

= codimR+
p0,M

, (7.90)

together with

dim K̂−bq0,M = dimK−q0,M , codim R̂−bq0,M = codimR−q0,M . (7.91)

The desired expressions now follow immediately from Lemma 7.13.

Proof of Proposition 3.12. Let us first suppose that (α0 − η)(α1 − η) 6= 0. Lemma 7.13 then implies
that

m]
M1

(η) = n]Γ(1)(η) + sign(α1 − η) 1
2`, (7.92)

in which sign(x) = 1 for x > 0 and −1 for x < 0. Similarly, we have

m]
M0

(η) = n]Γ(0)(η) + sign(α0 − η) 1
2`. (7.93)

We also know

n]Γ(1)(η)− n]Γ(0)(η) = −cross(Γ; η), (7.94)

which gives

m]
M1

(η)−m]
M0

(η) = −cross(Γ; η) +
1
2
`[sign(α1 − η)− sign(α0 − η)]. (7.95)

This is equivalent to the stated result.
If min(α1, α2) ≥ η, we choose ε > 0 sufficiently small to ensure that δ0,Mi

(z) = 0 has no roots
with η − ε ≤ Re z ≤ η for both i = 0 and i = 1. Applying the computation above with η 7→ η − ε,
we find

m]
M1

(η)−m]
M0

(η) = m]
M1

(η − ε)−m]
M0

(η − ε)

= −cross(Γ; η − ε).
(7.96)

A similar computation covers the case max(α1, α2) ≤ η.

8 Fourier decompositions

In this section we prove the main results stated in §3.4. We start in §8.1 by showing how solutions
to the differential system (2.9) posed on H = `2(Z;Rn) can be approximated by solutions taking
values in `1(Z;Rn). The latter class of solutions is easier to handle in frequency space as the Fourier
transform is well-posed in a pointwise fashion.
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We proceed in §8.2 by studying the frequency dependence of the restriction operators (3.5)
associated to the Fourier components L(ω). In particular, we will obtain frequency-independent
bounds on the inverses of these restriction operators that reference L2-based norms in a sense
similar to Proposition 5.5.

These bounds are subsequently used in §8.3 to show that the range R̂−bQL(η)
can be written as

the closure of a set of functions that all have smooth Fourier transforms with frequency components
that belong to the appropriate R̂−bQL(ω)(η)

. We characterize the kernel K̂−bQL(η)
in a similar fashion,

allowing us to obtain the direct sum decomposition of Q̂L(η) described in (3.88). We conclude in
§8.4 by describing some minor adjustments that allow the remaining operators π−bQL(η)

and π−QL(η)

to be incorporated into the framework developed here.

8.1 Preparations

We start by considering the invertability of the characteristic functions ∆L(z) and the relation
with the Fourier components L(ω). We consider ∆L(z) as operators in both L

(
`1(Z;Rn)

)
and

L
(
`2(Z;Rn)

)
. In the latter case the Fourier transform readily provides the link with ∆L(ω)(z), while

in the former case the following technical result from the field of Banach algebras plays a key role.

Proposition 8.1 (see [16, Thm. 3]). Let h ∈ `1(Z;Rn×n). Then the map Th : `1(Z;Rn) →
`1(Z;Rn) defined by

[Thv]i =
∑
j∈Z

hi−jvj (8.1)

is invertible if and only if det[Fh](ω) 6= 0 for all ω ∈ [−π, π].

Corollary 8.2. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HFrr)L. Pick η ∈ R. Then the following
two statements are equivalent.

(i) The characteristic operator ∆L(z) ∈ L
(
`2(Z;Rn); `2(Z;Rn)

)
is invertible for all Re z = η.

(ii) The characteristic function det ∆L(ω)(z) = 0 admits no roots with Re z = η for all −π ≤ ω ≤ π.

In addition, if either (i) or (ii) holds, then there exists ε > 0 and K ≥ 1 so that for all z ∈ C with
|Re z − η| < η the characteristic operator ∆L(z) is invertible both in L

(
`1(Z;Rn)

)
and L

(
`2(Z;Rn)

)
,

with ∥∥∆L(z)−1
∥∥
L
(
`1(Z;Rn);`1(Z;Rn)

) +
∥∥∆L(z)−1

∥∥
L
(
`2(Z;Rn);`2(Z;Rn)

) ≤ K

1 + |z|
. (8.2)

Proof. The equivalence between (i) and (ii) follows from the fact that for all v ∈ `2(Rn) we have

F [∆L(z)v](ω) = ∆L(ω)(z)[Fv](ω) (8.3)

and the fact that ω 7→ ∆L(ω)(z)−1 ∈ L(Rn;Rn) is continuous and hence bounded.
The final statement follows from Proposition 8.1, utilizing the continuity of the map

η + iR 3 z 7→ ∆L(z) ∈ L
(
`1(Z;Rn); `1(Z;Rn)

)
∩ L
(
`2(Z;Rn); `2(Z;Rn)

)
(8.4)

together with the fact that ∆L(z) − zI can be uniformly bounded with respect to both norms on
vertical strips in the complex plane.

In view of the result above, we introduce the following assumption.
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(hω)L;η For each ω ∈ [−π, π], the equation det ∆L(ω)(z) = 0 has no roots with Re z = η.

We now show how `2(Z;Rn)-valued solutions can be approximated by `1(Z;Rn)-valued ones. Propo-
sition 5.5 provides the key to this result, as it shows how to extract solutions in Q̂L;`1(Z;R)(η) from
arbitrary functions

φ̂ ∈ C
(
[rmin, 0]; `1(Z;R)

)
× C

(
[0, rmax]; `1(Z;R)

)
. (8.5)

In order to state this result, we introduce the notation

Q̂L;B(η) =
{
ψ̂ ∈ C([rmin, 0];B)× C([0, rmax];B) : ψ̂ = êv0 ŷ for some ŷ ∈ Q̂L;B(η)

}
. (8.6)

Lemma 8.3. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HFrr)L. Pick η ∈ R in such a way that
(hω)L;η is satisfied.

Then for any q̂ ∈ Q̂L;`2(Z;Rn)(η) there exists a sequence {q̂j}∞j=1 ⊂ Q̂L;`1(Z;Rn)(η) for which∥∥q− − q−j ∥∥C([rmin,0];`2(Z;Rn))
+
∥∥q+ − q+

j

∥∥
C([0,rmax];`2(Z;Rn))

→ 0 (8.7)

as j →∞.

Proof. Fix (q−, q+) ∈ Q̂L;`2(Z;Rn)(η). The density of `1(Z;Rn) in `2(Z;Rn) allows us to construct a
sequence

(φ−j , φ
+
j ) ∈ C

(
[rmin, 0]; `1(Z;Rn)

)
× C

(
[0, rmax]; `1(Z;Rn)

)
(8.8)

for which ∥∥φ−j − q−∥∥C([0,rmin;`2(Z;Rn))
+
∥∥φ+

j − q
+
∥∥
C([0,rmax];`2(Z;Rn))

→ 0 as j →∞. (8.9)

We now write

(q−j , q
+
j ) = êv0E bQL(η)[φ

−
j , φ

+
j ], (8.10)

which by Proposition 5.5 implies (q−j , q
+
j ) ∈ Q̂L;`1(Z;Rn)(η).

We now compute∥∥q−j − q−∥∥C([rmin,0];`2(Z;Rn))
=

∥∥∥q− − ev−0 E bQL(η)[φ
−
j , φ

+
j ]
∥∥∥
C([rmin,0];`2(Z;Rn))

=
∥∥∥ev−0 E bQL(η)[q

−, q+]− ev−0 E bQL(η)[φ
−
j , φ

+
j ]
∥∥∥
C([rmin,0];`2(Z;Rn))

=
∥∥∥ev−0 E bQL(η)

[
q− − φ−j , q+ − φ+

j

]∥∥∥
C([rmin,0];`2(Z;Rn))

.

(8.11)

Lemma 5.1 implies that

ev−0 E bQL(η) ∈ L
(
C
(
[rmin, 0]; `2(Z;Rn)

)
× C

(
[0, rmax]; `2(Z;Rn)

)
;C
(
[rmin, 0]; `2(Z;Rn)

))
, (8.12)

which shows that
∥∥q−j − q−∥∥C([rmin,0];`2(Z;Rn))

→ 0 as j → ∞. The proof can be completed by

obtaining the analogous estimates for q+ and q+
j .

Our next task is to show how a class of elements of Q̂L;`2(Z;Rn) can be constructed from suitably
prepared Fourier transforms. As a preparation, we fix η ∈ R, introduce the shorthands

Q̂ω = Q̂L(ω)(η), Pω = PL(ω)(η) (8.13)

and study how these spaces vary with the frequency ω.
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Lemma 8.4. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HFrr)L. Pick η ∈ R in such a way that
also (hω)L;η is satisfied.

Then for each ω ∈ [−π, π] we have the decomposition

C([rmin, 0];Rn)× C([0, rmax];Rn) = Q̂ω ⊕ Pω, (8.14)

with associated projections

Π bQω : C([rmin, 0];Rn)× C([0, rmax];Rn)→ Q̂ω,

ΠPω : C([rmin, 0];Rn)× C([0, rmax];Rn)→ Pω.
(8.15)

This decomposition varies continuously in ω, in the sense that for each fixed ω0 ∈ [−π, π] there exists
δω0 > 0 together with continuous maps

ω 7→ u∗bQω0
(ω) ∈ L

(
Q̂ω0 , C([rmin, 0];Rn)× C([0, rmax];Rn)

)
,

ω 7→ u∗Pω0
(ω) ∈ L

(
Pω0 , C([rmin, 0];Rn)× C([0, rmax];Rn)

)
,

(8.16)

defined for all ω ∈ [−π, π] that have |ω − ω0| < δω0 , so that

Q̂ω = u∗bQω0
(ω)
(
Q̂ω0

)
, Pω = u∗Pω0

(ω)
(
Pω0

)
, (8.17)

with

Π bQω0
u∗bQω0

(ω) = I, ΠPω0
u∗Pω0

(ω) = I. (8.18)

Proof. The decomposition (8.14) follows from Theorems 2.1 and 2.3. Exploiting the continuity of
the family ω 7→ L(ω), the remaining statements follow from the results in [14, §5].

Lemma 8.5. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HFrr)L. Pick η ∈ R in such a way that
(hω)L;η is satisfied.

Consider any function

φ̂ = (φ−, φ+) ∈ C([rmin, 0]× [−π, π];Rn)× C([0, rmax]× [−π, π];Rn) (8.19)

with the property that

φ̂(·, ω) ∈ Q̂ω ⊂ C([rmin, 0];Rn)× C([0, rmax];Rn) (8.20)

for each ω. Then the inverse Fourier transforms

q−(σ) = Finv φ
−(σ, ·), rmin ≤ σ ≤ 0,

q+(σ) = Finv φ
+(σ, ·), 0 ≤ σ ≤ rmax

(8.21)

satisfy

q̂ = (q−, q+) ∈ Q̂L(η). (8.22)

Proof. The compactness of the rectangle implies that

φ− ∈ C
(
[rmin, 0];C([−π, π];Rn)

)
∩ C

(
[−π, π];C([rmin, 0];Rn)

)
,

φ+ ∈ C
(
[0, rmax];C([−π, π];Rn)

)
∩ C

(
[−π, π];C([0, rmax];Rn)

)
,

(8.23)
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with norms that are independent of the above-mentioned spaces. For every ω ∈ [−π, π] we now
define a function ŷ(·, ω) ∈ B̂Cη(Rn) that has

êv0 ŷ = φ̂(·, ω) (8.24)

together with

ŷ(ξ, ω) =
[
E bQω φ̂(·, ω)

]
(ξ) (8.25)

for ξ > rmax. The second inclusions above for φ±, the continuity of the map

(ξ, ω)→
[
E bQω ·](ξ) ∈ L

(
C([rmin, 0];Rn)× C([0, rmax];Rn);Rn

)
(8.26)

for ξ > 0 and the fact that φ̂(·, ω) ∈ Q̂ω imply that ŷ(·, ω) ∈ Q̂L(ω)(η) for all ω ∈ [−π, π], but also
that the map

(0,∞) 3 ξ 7→
(
ω 7→ ŷ(ξ, ω)

)
∈ C([−π, π];Rn) (8.27)

is continuous. In addition, the estimate (5.17) yields the bound

‖ŷ(ξ, ·)‖C([−π,π];Rn) ≤ Ce
ηξ ‖ŷ‖C([rmin,0];Rn)×C([0,rmax];Rn) . (8.28)

Extending q̂ by writing

q̂(ξ) = Finv ŷ(ξ, ·) (8.29)

for ξ > rmax, we hence see that this expression is well-defined with

q̂ ∈ B̂C
⊕
η (H). (8.30)

Similarly arguments allow us to show that q̂′ and L̂ êvξ q̂ are bounded continuous functions on
(0,∞) \ R and that q̂ satisfies

q̂′(ξ) = L̂ êvξ q̂ (8.31)

for all ξ ∈ (0,∞) \ R. This allows us to conclude that in fact q̂ ∈ Q̂L(η).

8.2 Frequency dependent restriction operators

In this subsection we concentrate on the ω-dependence of the two restriction operators

π̂−bQω
: Q̂ω → C([rmin, 0];Rn)× Rn, π−bQω

: Q̂ω → C([rmin, 0];Rn). (8.32)

In particular, we set out to show that we can invert these operators in a fashion that depends
continuously on ω. In addition, we obtain frequency independent L2-based bounds on these inverses.

In order to project out the kernels K̂−bQω and K−bQω of the restriction operators (8.32), we introduce
for any ω ∈ [−π, π] the subspaces

T̂−bQω
= {φ̂ ∈ Q̂ω :

∫ rmax

0
k̂∗(σ)φ̂(σ) dσ = 0 for all k̂ ∈ K̂−bQω},

T−bQω
= {φ̂ ∈ Q̂ω :

∫ rmax

0
k̂∗(σ)φ̂(σ) dσ = 0 for all k̂ ∈ K−bQω}

(8.33)

In addition, most of our results will require the following non-degeneracy condition on the Fourier
components L(ω).
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(hr) For each ω ∈ [−π, π] the condition (HRnk)L(ω) is satisfied.

The following two propositions are the main results of this subsection, constructing two branches of
inverse functions π̂−1

ω and π−1
ω . We note that these operators are defined on the whole function space

C([rmin, 0];Rn)×Rn respectively C([rmin, 0];Rn), allowing us to avoid the usual complications that
occur when discussing the continuity of maps with varying domains of definition.

Proposition 8.6. Fix H = `2(Z;Rn) for some integer n ≥ 1 together with η ∈ R and consider a
bounded linear operator L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HFrr)L. Suppose
furthermore that (hω)L;η and (hr) are satisfied and that dim K̂−bQω

does not depend on ω.
Then there exists a constant K ≥ 1 together with a continuous map

[−π, π] 3 ω 7→ π̂−1
ω ∈ L

(
C([rmin, 0];Rn)× Rn;C([rmin, 0];Rn)× C([0, rmax];Rn)

)
(8.34)

so that for all ω ∈ [−π, π] and (φ, v) ∈ R̂ bQω , we have the inclusion π̂−1
ω (φ, v) ∈ T̂−bQω , the identity

π̂−π̂−1
ω (φ, v) = (φ, v) and the estimate∥∥π+[π̂ω]−1(φ, v)

∥∥
C([0,rmax];Rn)

≤ K
[
‖φ‖L2([0,rmax];Rn) + |v|

]
. (8.35)

Proposition 8.7. Fix H = `2(Z;Rn) for some integer n ≥ 1 together with η ∈ R and consider a
bounded linear operator L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HFrr)L. Suppose
furthermore that (hω)L;η and (hr) are satisfied and that dim K−bQω

does not depend on ω.
Then there exists a constant K ≥ 1 together with a continuous map

[−π, π] 3 ω 7→ π−1
ω ∈ L

(
C([rmin, 0];Rn);C([rmin, 0];Rn)× C([0, rmax];Rn)

)
(8.36)

so that for all ω ∈ [−π, π] and φ ∈ R bQω we have the inclusion π−1
ω φ ∈ T−bQω , the identity π−π−1

ω φ = φ

and the estimate ∥∥π+[πω]−1φ
∥∥
C([0,rmax];Rn)

≤ K ‖φ‖L2([0,rmax];Rn) . (8.37)

We note that if (hω)L;η is satisfied, Proposition 3.1 guarantees the decomposition

Q̂ω = K̂−bQω
⊕ T̂−bQω . (8.38)

Our first goal is to study how this decomposition varies with the parameter ω.

Lemma 8.8. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HFrr)L. Pick η ∈ R in such a way that
also (hω)L;η is satisfied.

Then the Fredholm index of the restriction operator π̂−bQω does not depend on ω. In addition, for
each fixed ω0 there exists δω0 > 0 together with continuous maps

ω 7→ u∗bK−bQω0

(ω) ∈ L
(
K̂−bQω0

;C([rmin, 0];Rn)× C([0, rmax];Rn)
)
,

ω 7→ u∗bT−bQω0

(ω) ∈ L
(
T̂−bQω0

;C([rmin, 0];Rn)× C([0, rmax];Rn)
)
,

(8.39)

defined for all ω ∈ [−π, π] that have |ω − ω0| < δω0 , so that

u∗bK−bQω0

(ω0) = I, u∗bT−bQω0

(ω0) = I, (8.40)
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together with

K̂−bQω
⊂ u∗bK−bQω0

(ω)
(
K̂−bQω0

)
, u∗bT−bQω0

(ω)
(
T̂−bQω0

)
⊂ T̂−bQω (8.41)

and

Q̂ω = u∗bK−bQω0

(ω)
(
K̂−bQω0

)
⊕ u∗bT−bQω0

(ω)
(
T̂−bQω0

)
. (8.42)

Proof. The representation (8.17) shows that for all ω sufficiently close to ω0 we have

ind
(
π̂−bQω

)
= indL( bQω0 ;C([rmin,0];Rn)×Rn)

(
π̂−u∗bQω0

(ω)
)
. (8.43)

The latter index varies continuously in ω and hence must be constant.
We now recall from Proposition 3.1 the decomposition

C([rmin, 0];Rn)× C([0, rmax];Rn) = K̂−bQω0
⊕ T̂−bQω0

⊕ Pω0 , (8.44)

together with

C([rmin, 0];Rn)× Rn = R̂−bQω0
⊕ R̂−;⊥

bQω0
. (8.45)

We write Π bR−bQω0

and Π bR−;⊥
bQω0

for the projection operators corresponding to the latter decomposition.

In view of (8.17) we have the characterization

K̂−bQω
= {u∗bQω0

[k̂ + t̂] : (k̂, t̂) ∈ K̂−bQω0
× T̂−bQω0

with π̂−u∗bQω0
(ω)[k̂ + t̂] = 0}. (8.46)

This last condition is equivalent to requiring that both

Π bR−bQω0

π̂−[k̂ + t̂] + Π bR−bQω0

π̂−[u∗bQω0
(ω)− I][k̂ + t̂] = 0 (8.47)

and

Π bR−;⊥
bQω0

π̂−u∗bQω0
(ω)[k̂ + t̂] = 0 (8.48)

are satisfied. Since π̂−k̂ = 0, we note that (8.47) can be rewritten as

π̂−t̂+ Π bR−bQω0

π̂−[u∗bQω0
(ω)− I]t̂ = −Π bR−bQω0

π̂−[u∗bQω0
(ω)− I]k̂, (8.49)

which is equivalent to

t̂+ [π̂−bQω0
]−1Π bR−bQω0

π̂−[u∗bQω0
(ω)− I]t̂ = −[π̂−bQω0

]−1Π bR−bQω0

π̂−[u∗bQω0
(ω)− I]k̂. (8.50)

For ω sufficiently close to ω0, the left hand side can be considered as an invertible linear operator
on T̂−bQω0

. In particular, for all such ω there is a bounded linear map

t̂ω : K̂−bQω0
→ T̂−bQω0

, (8.51)

which depends continuously on ω, so that (8.47) is satisfied if and only if t̂ = t̂ω[k̂]. Notice that
t̂ω0 = 0.

80



For any k̂ ∈ K̂−bQω0
, we now define

u∗bK−bQω0

(ω)k̂ = u∗bQω0
(ω)
[
k̂ + t̂ω[k̂]

]
. (8.52)

This allows to write

K̂−bQω
= {φ ∈ u∗bK−bQω0

(ω)(K̂−bQω0
) : Π bR−;⊥

bQω0

π̂−φ = 0}, (8.53)

establishing the first inclusion in (8.41).
In addition, for any t̂ ∈ T̂−bQω0

we define k̂ω[t̂] ∈ K̂−bQω0
in such a way that

∫ rmax

rmin

[
u∗bK−bQω0

(ω)k̂
]
(σ)
[
u∗bQω0

(ω)t̂
]
(σ) dσ =

∫ rmax

rmin

[
u∗bK−bQω0

(ω)k̂
]
(σ)
[
u∗bK−bQω0

(ω)k̂ω[t̂]
]
(σ) dσ (8.54)

holds for all k̂ ∈ K̂ bQω0
. This is possible because one can choose a basis for the finite dimensional

space K̂ bQω0
that is orthonormal under the integration above and u∗bK−bQω0

(ω)− I = O(ω − ω0). Note

that ∥∥∥k̂ω∥∥∥
L(bT−bQω0

; bK−bQω0
)

= O(ω − ω0), (8.55)

since the left-hand side of (8.54) vanishes at ω = ω0 by the definition of T̂−bQω0
.

For any t̂ ∈ T̂−bQω0
, this allows us to define

u∗bT−bQω0

(ω)t̂ = u∗bQω0
(ω)t̂− u∗bK−bQω0

(ω)k̂ω[t̂], (8.56)

which yields the second inclusion in (8.41).
Finally, to establish (8.42), we note that for any pair (k̂, t̂) ∈ K̂−bQω0

× T̂−bQω0
it is possible to find

a pair (k̃, t̃) ∈ K̂−bQω0
× T̂−bQω0

so that

(k̂, t̂) = (k̃, t̃) +
(
− k̂ω[t̃], t̂ω[k̃]− t̂ω

[
k̂ω[t̃]

])
. (8.57)

In particular, we have

u∗bQω0
(ω)[k̂ + t̂] = u∗bQω0

(ω)
[
k̃ + t̂ω[k̃]

]
+ u∗bQω0

(ω)t̃− u∗bQω0
(ω)
[
k̂ω[t̃] + t̂ω

[
k̂ω[t̃]

]]
= u∗bK−bQω0

(ω)k̃ + u∗bT−bQω0

(ω)t̃,
(8.58)

from which the decomposition (8.42) easily follows.

Corollary 8.9. Consider the setting of Lemma 8.8. If dim K̂−bQω
does not depend on ω, then the

inclusions (8.41) are identities and the associated projections

Π bK−bQω
: C([rmin, 0];Rn)× C([0, rmax];Rn)→ K̂−bQω

,

ΠbT−bQω
: C([rmin, 0];Rn)× C([0, rmax];Rn)→ T̂−bQω

(8.59)

depend continuously on ω as elements of L
(
C([rmin, 0];Rn)× C([0, rmax];Rn)

)
.
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Proof. Our assumption directly implies that the first inclusion (8.41) is an identity. In view of (8.42),
the second inclusion must hence also be an identity. The continuity of the projections follows directly
from (8.58).

A second consequence of Proposition 3.1 and (hω)L;η is that one can pick finite-dimensional
spaces R̂−;⊥

bQω
for which the decomposition

C([rmin, 0];Rn)× Rn = R̂−bQω
⊕ R̂−;⊥

bQω
(8.60)

holds for each ω ∈ [−π, π]. Our next result shows that the spaces R̂−;⊥
bQω

can be picked in a continuous
fashion.

Lemma 8.10. Fix η ∈ R and H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear
operator L : C([rmin, rmax];H) → H that satisfies both (HF)L and (HFrr)L. Suppose furthermore
that (hω)L;η and (hr) are satisfied and that dim K̂−bQω

does not depend on ω.
Then one can choose finite-dimensional subspaces

R̂−;⊥
bQω
⊂ C([rmin, 0];Rn)× Rn (8.61)

in such a way that the following properties are satisfied.

(i) The dimension dim R̂−;⊥
bQω

does not depend on ω.

(ii) The decomposition (8.60) holds for all ω ∈ [−π, π].

(iii) For each fixed ω0 ∈ [−π, π], there exists δω0 > 0 together with maps

ω 7→ u∗bR−bQω0

(ω) ∈ L
(
R̂−bQω0

;C([rmin, 0];Rn)× Rn
)
,

ω 7→ v∗bR−;⊥
bQω0

(ω) ∈ L
(
R̂−;⊥
bQω0

;C([rmin, 0];Rn)× Rn
)
,

(8.62)

defined for ω ∈ [−π, π] that have |ω − ω0| < δω0 , so that

u∗bR−bQω0

(ω0) = I, v∗bR−;⊥
bQω0

(ω0) = I (8.63)

and

R̂−bQω
= u∗bR−bQω0

(ω)
(
R̂−bQω0

)
, v∗bR−;⊥

bQω0

(ω)
(
R̂−;⊥
bQω0

)
= R̂−;⊥

bQω
. (8.64)

In fact, in (iii) we can choose

u∗bR−bQω0

(ω)[φ, v] = π̂−u∗bT−bQω0

(ω)[π̂−bQω0
]−1[φ, v] (8.65)

for all (φ, v) ∈ R̂−bQω0
.

Proof. First of all, we note that Theorem 3.5 and the fact that the index of π̂−bQω does not depend
on ω imply that there exists an integer d ≥ 0 for which

d = dimK−bQL∗(ω)(−η)
(8.66)
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holds for all ω ∈ [−π, π]. Exploiting continuity properties for K−bQL∗(ω)(−η)
that are similar to those

stated in Lemma 8.8 for K̂−bQω , it is possible to construct continuous mappings

[−π, π] 3 ω 7→ ψ̂j(ω) ∈ C([rmin, 0];Rn)× C([0, rmax];Rn) (8.67)

for 1 ≤ j ≤ d so that the set {ψ̂j(ω)}dj=1 forms a basis for K bQL∗(ω)(−η) for each ω ∈ [−π, π]. This in
turn can be used to construct continuous mappings

[−π, π] 3 ω 7→
(
r⊥j (ω), v⊥j (ω)

)
∈ C([rmin, 0];Rn)× Rn (8.68)

for 1 ≤ j ≤ d in such a way that〈(
π+ψ̂j(ω), ψ̂j(ω)(0+)

)
,
(
r⊥i (ω), v⊥i (ω)

)〉
L<0

= δij (8.69)

holds for all ω ∈ [−π, π] and all pairs (i, j) ∈ {1, . . . , d}2. Upon writing

R̂−;⊥
bQω

= span{
(
r⊥j (ω), v⊥j (ω)

)
}dj=1, (8.70)

the desired statements follow from Theorem 3.5 and the explicit expression (8.65).

Proof of Proposition 8.6. We first set out to construct the branch π̂−1
ω . To this end, fix ω0 ∈ [−π, π].

Lemma 8.10 allows us to construct continuous maps

ω 7→ t̂ω ∈ L
(
C([rmin, 0];Rn)× Rn; T̂−bQω0

)
,

ω 7→ r̂⊥ω ∈ L
(
C([rmin, 0];Rn)× Rn; R̂−;⊥

bQω0

)
,

(8.71)

defined for ω sufficiently close to ω0, such that for any (φ, v) ∈ C([rmin, 0];Rn) × Rn we have the
decomposition

(φ, v) = π̂−u∗bT−bQω0

(ω)t̂ω[φ, v] + v∗bR⊥bQω0

(ω)r̂⊥ω [φ, v]. (8.72)

In particular, we see that (φ, v) ∈ R̂−bQω if and only if r̂⊥ω [φ, v] = 0. For any (φ, v) ∈ C([rmin, 0];Rn)×
R
n, this allows us to define

π̂−1
ω (φ, v) = u∗bT−bQω0

(ω)t̂ω[φ, v], (8.73)

which can readily be verified to satisfy the required properties for all ω sufficiently close to ω0. To
see that this definition does not depend on the specific basis-point ω0, we note that

Π bR−ω (φ, v) = π̂−u∗bT−bQω0

(ω)t̂ω[φ, v], (8.74)

which yields the alternative representation

π̂−1
ω = [π̂−bQL(ω)

]−1Π bR−ω . (8.75)

We now turn to the estimate (8.35). If one cannot find a constant K ≥ 1 for which this estimate
holds, there exists a sequence

{(φ−j , φ
+
j , ωj)}

∞
j=1 ⊂ T̂−bQωj

× [−π, π] (8.76)
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such that
∥∥φ+

j

∥∥
C([0,rmax];Rn)

= 1 and∥∥φ−j ∥∥L2([rmin,0];Rn)
+
∣∣φ+
j (0)

∣∣→ 0 as j →∞. (8.77)

Inspecting (5.12), exploiting the continuity of ω 7→ ev±0 TL(ω);η and utilizing (5.80), we see

−ev−0 TL(ωj);η[0, φ+
j , 0] = ev−0 TL(ωj);η[φ−j , 0, φ

+
j (0)]→ 0,(

I − ev+
0 TL(ωj);η[0, ·, 0]

)
φ+
j = ev+

0 TL(ωj);η[φ−j , 0, φ
+
j (0)]→ 0

(8.78)

as j →∞. Passing to a subsequence, we may assume ωj → ω∗. In particular, we see that(
I − ev+

0 TL(ω∗);η[0, ·, 0]
)
φ+
j → 0 (8.79)

as j → ∞. The compactness of ev+
0 TL(ω∗);η[0, ·, 0] allows us to pass to a further subsequence for

which we have the convergence

φ+
j → φ+

∗ ∈ C([0, rmax];Rn) as j →∞. (8.80)

Again exploiting continuity, we have φ+
∗ (0) = 0 and

−ev−0 TL(ω∗);η[0, φ+
∗ , 0] = 0,(

I − ev+
0 TL(ω∗);η[0, ·, 0]

)
φ+
∗ = 0,

(8.81)

which shows that (0, φ+
∗ ) ∈ K̂−bQω∗

. Inspection of (8.33) shows that these normalization conditions

survive the limit j → ∞, which implies (0, φ+
∗ ) ∈ T̂−bQω∗

. In particular, we must have φ+
∗ = 0,

contradicting our initial assumption that
∥∥φ+

j

∥∥ = 1 for all j ≥ 1.

Proof of Proposition 8.7. The maps π−1
ω can be constructed in the same fashion as the maps π̂−1

ω

in the proof of Proposition 8.6 above. If one cannot find a constant K ≥ 1 for which the estimate
(8.37) holds, there exists a sequence

{(φ−j , φ
+
j , ωj)}

∞
j=1 ⊂ T−bQωj

× [−π, π] (8.82)

such that
∥∥φ+

j

∥∥
C([0,rmax];Rn)

= 1 and∥∥φ−j ∥∥L2([rmin,0];Rn)
→ 0 as j →∞. (8.83)

After passing to a subsequence, we may assume that φ+
j (0) → v∗ ∈ Rn and ωj → ω∗ as j → ∞.

Inspecting (5.12), exploiting the continuity of ω 7→ ev±0 TL(ω);η and utilizing (5.80), we see

−ev−0 TL(ωj);η[0, φ+
j , 0] = ev−0 TL(ωj);η[φ−j , 0, φ

+
j (0)]→ ev−0 TL(ω∗);η[0, 0, v∗],(

I − ev+
0 TL(ωj);η[0, ·, 0]

)
φ+
j = ev+

0 TL(ωj);η[φ−j , 0, φ
+
j (0)]→ ev+

0 TL(ω∗);η[0, 0, v∗]
(8.84)

as j →∞. In particular, we see that(
I − ev+

0 TL(ω∗);η[0, ·, 0]
)
φ+
j → ev+

0 TL(ω∗);η[0, 0, v∗] (8.85)

as j →∞. One can now continue with the arguments in the proof of Proposition 8.6.
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8.3 Properties of π̂−bQL(η)

In this subsection we set out to establish the statements in Theorem 3.14 concerning the restriction
operator π̂−bQL(η)

. The main issues are to prove that the spaces K̂−bQL(η)
and R̂−bQL(η)

are closed and to

construct a closed complement T̂−bQL(η)
for K̂−bQL(η)

. Our approach will be to construct dense subsets
of these spaces that consist of the inverse Fourier transforms of appropriate continuous functions in
the frequency domain.

In particular, we define the spaces

K̂−;sm
bQL(η)

= Finv{(φ−, φ+) ∈ C([rmin, 0]× [−π, π];Rn)× C([0, rmax]× [−π, π];Rn)

:
(
φ−(·, ω), φ+(·, ω)

)
∈ K̂−bQω for every − π ≤ ω ≤ π},

T̂−;sm
bQL(η)

= Finv{(φ−, φ+) ∈ C([rmin, 0]× [−π, π];Rn)× C([0, rmax]× [−π, π];Rn)

:
(
φ−(·, ω), φ+(·, ω)

)
∈ T̂−bQω for every − π ≤ ω ≤ π}.

(8.86)

As a consequence of Lemma 8.5, we have the inclusions

K̂−;sm
bQL(η)

⊂ Q̂L(η), T̂−;sm
bQL(η)

⊂ Q̂L(η). (8.87)

In addition, we define

R̂−;sm
bQL(η)

= Finv{(φ, v) ∈ C([rmin, 0]× [−π, π];Rn)× C([−π, π];Rn)

:
(
φ(·, ω), v(ω)

)
∈ R̂−bQω for every − π ≤ ω ≤ π},

(8.88)

which implies

R̂−;sm
bQL(η)

⊂ C
(
[rmin, 0]; `2(Z;Rn)

)
× `2(Z;Rn). (8.89)

As a final preparation, we encode the frequency independence of the kernel dimensions in the fol-
lowing assumption.

(hk) The dimension of the kernel K̂−bQω does not depend on ω ∈ [−π, π].

The first step is to explore the relation between R̂−;sm
bQL(η)

and T̂−;sm
bQL(η)

. In particular, we lift the
identities

R̂−bQω
= π̂−

(
T̂−bQω

)
(8.90)

from the frequency level to the full system. The key ingredient is our use of L2-based estimates,
which allows us to effectively interchange the norms concerning ω and σ.

Lemma 8.11. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H)→ H that satisfies both (HF)L and (HFrr)L. Suppose furthermore that (hω)L;η,
(hk) and (hr) are all satisfied.

Then we have the identification

π̂−
(
T̂−;sm
bQL(η)

)
= R̂−;sm

bQL(η)
. (8.91)

In addition, for every (r, v) ∈ R̂−;sm
bQL(η)

there is a unique pair

(t−, t+) =
(
t−[r, v], t+[r, v]

)
∈ T̂−;sm

bQL(η)
(8.92)
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so that (r, v) = π̂−(t−, t+) =
(
t−, t+(0)

)
.

Finally, there exist constants K1 ≥ 1 and K2 ≥ 1 so that the estimates

‖t+[r, v]‖C([0,rmax];`2(Z;R)) ≤ K1

[
‖r‖L2([rmin,0];`2(Z;R)) + ‖v‖`2(Z;R)

]
≤ K2

[
‖r‖C([rmin,0];`2(Z;R)) + ‖v‖`2(Z;R)

] (8.93)

hold for all (r, v) ∈ R̂−;sm
bQL(η)

.

Proof. The ⊂ inclusion in (8.91) is immediate. Let us therefore consider a pair (r, v) ∈ R̂−;sm
QL(η). By

construction, we have (
[Fr](·, ω), [Fv](ω)

)
∈ R̂−ω (8.94)

for all ω ∈ [−π, π], which allows us to define

t̂(·, ω) = π̂−1
ω

(
[Fr](·, ω), [Fv](ω)

)
. (8.95)

On account of Proposition 8.6, we may conclude that

t̂ ∈ C([rmin, 0]× [−π, π];Rn)× C([0, rmax]× [−π, π];Rn), (8.96)

which yields

Finv t̂ ∈ T̂−;sm
bQL(η)

. (8.97)

By construction, we have π̂−Finv t̂ = (r, v).
We now turn to the estimate (8.93). The estimates in Proposition 8.6 imply that∣∣t̂(σ, ω)

∣∣ ≤ K[ ‖[Fr](·, ω)‖L2([rmin,0];Rn) + |[Fv](ω)|
]

(8.98)

for all 0 < σ ≤ rmax and ω ∈ [−π, π]. In particular, for all such σ we obtain∥∥Finv t̂(σ, ·)
∥∥2

`2(Z;Rn)
=

∫ π
−π

∣∣t̂(σ, ω)
∣∣2 dω

≤ 2K2
∫ π
−π
[
‖[Fr](·, ω)‖2L2([rmin,0];Rn) + |[Fv](ω)|2

]
dω

≤ 2K2
∫ π
−π
[ ∫ 0

rmin
[Fr](s, ω)2 ds+ |[Fv](ω)|2

]
dω

= 2K2
[ ∫ 0

rmin

∫ π
−π[Fr](s, ω)2 dω ds+

∫ π
−π |[Fv](ω)|2 dω

]
= 2K2

[
‖r‖2L2([rmin,0];`2(Z;Rn)) + ‖v‖2`2(Z;Rn)

]
≤ K ′

[
‖r‖2C([rmin,0];`2(Z;Rn)) + ‖v‖2`2(Z;Rn)

]
(8.99)

for some K ′ ≥ 1, as desired.

The estimate (8.93) can be exploited to construct Cauchy sequences in the closed space QL(η)
from Cauchy sequences in R̂−QL(η). Together with the approximation technique described in Lemma

8.3, this allows us to show that R̂−QL(η) is the closure of R̂−;sm
QL(η).

Lemma 8.12. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H)→ H that satisfies both (HF)L and (HFrr)L. Suppose furthermore that (hω)L;η,
(hk) and (hr) are all satisfied. Then we have

closC([rmin,0];`2(Z;Rn))×`2(Z;Rn)

(
R̂−;sm
bQL(η)

)
⊂ R̂−bQL(η)

. (8.100)
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Proof. Consider a sequence {(rj , vj)}∞j=1 ⊂ R̂
−;sm
bQL(η)

and suppose that

(rj , vj)→ (r∗, v∗) ∈ C
(
[rmin, 0]; `2(Z;Rn)

)
× `2(Z;Rn) (8.101)

as j →∞. Lemma 8.11 implies that there is a sequence {(t−j , t
+
j )}∞j=1 ∈ T̂

−;sm
bQL(η)

so that t−j = rj and

t+j (0) = vj . In addition, exploiting the linearity of R̂−;sm
bQL(η)

, the estimate (8.93) yields

∣∣t+j1(σ)− t+j2(σ)
∣∣2
`2(Z;Rn)

≤ K2

[
‖rj1 − rj2‖

2
C([rmin,0];`2(Z;Rn)) + ‖vj1 − vj2‖

2
`2(Z;Rn)

]
(8.102)

for 0 ≤ σ ≤ rmax. Since {(rj , vj)} is a Cauchy sequence, we can use this estimate to conclude that
t+j → t+∗ ∈ C

(
[0, rmax]; `2(Z;Rn)

)
with t+∗ (0) = v∗. Since Q̂L(η) is closed, we find that (r∗, t+∗ ) ∈

Q̂L(η) and hence

(r∗, v∗) = π̂−(r∗, t+∗ ) ∈ R̂−bQL(η)
. (8.103)

Lemma 8.13. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H)→ H that satisfies both (HF)L and (HFrr)L. Suppose furthermore that (hω)L;η,
(hk) and (hr) are all satisfied. Then we have

R̂ bQL(η) ⊂ closC([rmin,0];`2(Z;Rn))×`2(Z;Rn)

(
R̂−;sm
bQL(η)

)
. (8.104)

Proof. Pick (q−, q+) ∈ Q̂L(η) and consider an approximating sequence {(q−j , q
+
j )}∞j=1 ∈ Q̂L;`1(Z;Rn)(η)

as described in Lemma 8.3. Write

ŷqj = E bQL(η)(q
−
j , q

+
j ) ∈ Q̂L;`1(Z;Rn)(η) (8.105)

and note that ev±0 ŷqj = q±j by construction.
For every ω ∈ [−π, π] we now see that

[F ŷqj ](·, ω) ∈ QL(ω)(η), (8.106)

which directly implies that (
q−j , q

+
j (0)

)
∈ R̂−;sm

bQL(η)
, (8.107)

completing the proof.

We now set out to obtain the desired direct sum decomposition of Q̂L(η). In particular, we define

T̂−bQL
(η) = closC([rmin,0];`2(Z;Rn))×C([0,rmax];`2(Z;Rn))T̂

−;sm
bQL(η)

(8.108)

and proceed to show that

Q̂L(η) = K̂−bQL(η)
⊕ T̂−bQL(η). (8.109)

We start by identifying K̂−bQL(η)
with the closure of K̂−;sm

bQL(η)
. The approximation technique from

Lemma 8.3 again plays an important role here.
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Lemma 8.14. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H)→ H that satisfies both (HF)L and (HFrr)L. Suppose furthermore that (hω)L;η,
(hk) and (hr) are all satisfied. Then we have

K̂−bQL(η)
= closC([rmin,0];`2(Z;Rn))×C([0,rmax];`2(Z;Rn))K̂

−;sm
bQL(η)

. (8.110)

Proof. It suffices to show the inclusion

K̂−bQL(η)
⊂ closC([rmin,0];`2(Z;Rn))×C([0,rmax];`2(Z;Rn))K̂

−;sm
bQL(η)

. (8.111)

To this end, pick k̂ ∈ K̂ bQL(η) and consider an approximating sequence

{q̂j}∞j=1 = {(q−j , q
+
j )}∞j=1 ⊂ Q̂L;`1(Z;Rn)(η) (8.112)

as described in Lemma 8.3. This allows us exploit the decomposition (8.38) and define

k̂j(·, ω) = Π bK−bQω
[F q̂j ](·, ω), t̂j(·, ω) = ΠbT−bQω

[F q̂j ](·, ω) (8.113)

for each ω ∈ [−π, π]. Writing

k̂j(·, ω) =
(
k−j (·, ω), k+

j (·, ω)
)
∈ C([rmin, 0];Rn)× C([0, rmax];Rn),

t̂j(·, ω) =
(
t−j (·, ω), t+j (·, ω)

)
∈ C([rmin, 0];Rn)× C([0, rmax];Rn),

(8.114)

Corollary 8.9 implies that the maps

[rmin, 0]× [−π, π] 3 (σ, ω) 7→
(
k−j (σ, ω), t−j (σ, ω)

)
,

[0, rmax]× [−π, π] 3 (σ, ω) 7→
(
k+
j (σ, ω), t+j (σ, ω)

) (8.115)

are both continuous. By construction, we hence have

Finv k̂j ∈ K̂−;sm
bQL(η)

, Finv t̂j ∈ T̂−;sm
bQL(η)

(8.116)

with

q̂j = Finv k̂j + Finv t̂j . (8.117)

In particular, we have the convergence

Finv(k−j , k
+
j ) + Finv(t−j , t

+
j )→ k̂ ∈ C

(
[rmin, 0]; `2(Z;Rn)

)
× C

(
[0, rmax]; `2(Z;Rn)

)
(8.118)

as j →∞.
Since k−j = 0 and k+

j (0) = 0, we see that∥∥Finv t
−
j

∥∥
C([rmin,0];`2(Z;Rn))

+
∣∣[Finv t

+
j ](0)

∣∣
`2(Z;Rn)

→ 0 (8.119)

as j →∞. The estimate (8.93) implies that also t+j → 0 in C
(
[0, rmax]; `2(Z;Rn)

)
as j →∞, which

shows that in fact

Finv(k−j , k
+
j )→ k̂ ∈ C

(
[rmin, 0]; `2(Z;Rn)

)
× C

(
[0, rmax]; `2(Z;Rn)

)
, (8.120)

as desired.
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Lemma 8.15. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H)→ H that satisfies both (HF)L and (HFrr)L. Suppose furthermore that (hω)η,
(hk) and (hr) are all satisfied. Then we have

K̂−bQL(η)
∩ T̂−bQL(η)

= {0}. (8.121)

Proof. If the statement is false, then there exists a non-zero

φ̂ = (φ−, φ+) ∈ C
(
[rmin, 0]; `2(Z;Rn)

)
× C

(
[0, rmax]; `2(Z;Rn)

)
(8.122)

together with sequences

{(k−j , k
+
j )}∞j=1 ⊂ K̂

−;sm
bQL(η)

, {(t−j , t
+
j )}∞j=1 ⊂ T̂

−;sm
bQL(η)

(8.123)

so that both ∥∥k−j − φ−∥∥C([rmin,0];`2(Z;Rn))
+
∥∥t−j − φ−∥∥C([rmin,0];`2(Z;Rn))

→ 0,∥∥k+
j − φ+

∥∥
C([0,rmax];`2(Z;Rn))

+
∥∥t+j − φ+

∥∥
C([0,rmax];`2(Z;Rn))

→ 0
(8.124)

as j →∞.
The estimate (8.93) yields∥∥t+j ∥∥C([0,rmax];`2(Z;Rn))

≤ K2[
∥∥t−j ∥∥C([rmin,0];`2(Z;Rn))

+
∥∥t+j (0)

∥∥
`2(Z;Rn)

]. (8.125)

On the other hand, since k−j = 0 and k+
j (0) = 0, we find φ− = 0 and φ+(0) = 0, which gives∥∥t−j ∥∥C([rmin,0];`2(Z;Rn))

+
∥∥t+j (0)

∥∥→ 0 (8.126)

as j →∞. In particular, we see t+j → 0 in C
(
[0, rmax]; `2(Z;Rn)

)
and hence φ̂ = 0.

Lemma 8.16. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H)→ H that satisfies both (HF)L and (HFrr)L. Suppose furthermore that (hω)L;η,
(hk) and (hr) are all satisfied. Then we have

Q̂L(η) ⊂ K̂−bQL(η)
+ T̂−bQL(η)

. (8.127)

Proof. Pick (q−, q+) ∈ Q̂L(η). Arguing as in the proof of Lemma 8.14, one can find sequences

{Finv(k−j , k
+
j )}∞j=1 ⊂ K̂

−;sm
bQL(η)

{Finv(t−j , t
+
j )}∞j=1 ⊂ T̂

−;sm
bQL(η)

(8.128)

for which we have the convergence

Finv(k−j , k
+
j ) + Finv(t−j , t

+
j )→ (q−, q+) ∈ C

(
[rmin, 0]; `2(Z;Rn)

)
× C

(
[0, rmax]; `2(Z;Rn)

)
(8.129)

as j →∞.
Since k−j = 0 and k+

j (0) = 0, we have∥∥Finv t
−
j − q

−∥∥
C([rmin,0];`2(Z;Rn))

+
∥∥[Finv t

+
j ](0)− q+(0)

∥∥
`2(Z;Rn)

→ 0 (8.130)

as j →∞. In particular, the sequence

{
(
Finv t

−
j , [Finv t

+
j ](0)

)
}∞j=1 ⊂ C

(
[rmin, 0]; `2(Z;Rn)

)
× `2(Z;Rn) (8.131)
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is a Cauchy sequence. The estimate (8.93) implies that the same holds for the sequence

{Finv t
+
j }
∞
j=1 ⊂ C

(
[0, rmax]; `2(Z;Rn)

)
. (8.132)

In particular, there exist (t−∗ , t
+
∗ ) and (k−∗ , k

+
∗ ) so that we have the separate convergences

Finv(t−j , t
+
j )→ (t−∗ , t

+
∗ ) ∈ C

(
[rmin, 0]; `2(Z;Rn)

)
× C

(
[0, rmax]; `2(Z;Rn)

)
,

Finv(k−j , k
+
j )→ (k−∗ , k

+
∗ ) ∈ C

(
[rmin, 0]; `2(Z;Rn)

)
× C

(
[0, rmax]; `2(Z;Rn)

) (8.133)

as j →∞. By construction, we have (t−∗ , t
+
∗ ) ∈ T̂−bQL(η)

, while (k−∗ , k
+
∗ ) ∈ K̂−bQL(η)

by Lemma 8.14.

8.4 Proof of main results

We are now ready to prove Theorems 3.14 and 3.16. We note that the restriction operator π−bQL(η)

can be treated exactly as in §8.3, provided one uses Proposition 8.7 rather than Proposition 8.6. For
the remaining operator π−QL(η) we develop the following more direct approach.

Lemma 8.17. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H)→ H that satisfies both (HF)L and (HFrr)L. Suppose furthermore that (hω)L;η,
(hk) and (hr) are all satisfied. Then the range R−QL(η) is closed in C

(
[rmin, 0]; `2(Z;Rn)

)
.

Proof. Consider a sequence rj ∈ R−QL(η) for which rj → r∗ ∈ C
(
[rmin, 0]; `2(Z;Rn)

)
. Naturally, we

also have

R̂−bQL(η)
3
(
rj , rj(0)

)
→
(
r∗, r∗(0)

)
∈ C

(
[rmin, 0]; `2(Z;Rn)

)
× `2(Z;Rn). (8.134)

The closedness of R̂−bQL(η)
now implies that(

r∗, r∗(0)
)

= π̂−q̂ (8.135)

for some q̂ ∈ Q̂L(η), which hence must have q̂(0+) = q̂(0−). In particular, we may write q = q̂ ∈
QL(η) and r∗ = π−q, as desired.

Lemma 8.18. Fix H = `2(Z;Rn) for some integer n ≥ 1 and consider a bounded linear operator
L : C([rmin, rmax];H)→ H that satisfies both (HF)L and (HFrr)L. Suppose furthermore that (hω)L;η,
(hk) and (hr) are all satisfied. Then the subspace

T−QL(η) = {t̂ ∈ T̂−bQL(η)
: t̂(0−) = t̂(0+)} (8.136)

is closed in C
(
[rmin, rmax]; `2(Z;Rn)

)
and we have the direct sum decomposition

QL(η) = K−QL(η) ⊕ T
−
QL(η). (8.137)

Proof. The closedness of TQL(η) follows from the closedness of T̂−bQL(η)
and the fact that the defining

property is preserved through limits. In addition, remembering that K̂−bQL(η)
= K−QL(η), we see that

K−QL(η) ∩ T
−
QL(η) ⊂ K̂

−
bQL(η)

∩ T̂−bQL(η)
= {0}. (8.138)

It hence remains to show that QL(η) ⊂ K−QL(η) + T−QL(η). To this end, pick any q ∈ QL(η) and

write q = k̂ + t̂ with k̂ ∈ K̂−bQL(η)
= K−QL(η) and t̂ ∈ T̂−bQL . Since k̂(0+) = k̂(0−) = 0, the identity

t̂ = q − k̂ implies that t̂(0−) = t̂(0+) and hence t̂ ∈ TQL(η), as desired.
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Proof of Theorem 3.14. The results for π̂−bQL(η)
follow from Lemma’s 8.12-8.16. On the other hand,

the results for π−bQL(η)
can be obtained by almost identical arguments, substituting Proposition 8.7

for Proposition 8.6 where appropriate. Finally, π−QL(η) can be analyzed using Lemma’s 8.17 and 8.18,

while the spaces PL(η) and P̂L(η) can be treated in an analogous fashion.

Proof of Theorem 3.16. The statements follow from Theorems 2.5 and 3.14, using the observation
that the identity

Jα(z)δI,M (z) = ∆L(z) (8.139)

implies that

Jα(z)δI,M(ω)(z) = ∆L(ω)(z) (8.140)

holds for each ω ∈ [−π, π].
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