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Abstract

We study initial value problems for functional differential (algebraic) equations of mixed type posed on
Hilbert spaces. We develop key tools such as exponential dichotomies and Wiener-Hopf factorizations for
such systems that allow us to characterize in what sense such problems are well-posed. The key mathematical
issue is that the natural technical state space for such systems is bigger than the appropriate space containing
the initial conditions.

We illustrate our techniques by studying an optimal control problem with time delays posed on an integer
lattice, which can be used to weigh the costs and benefits of utilizing polluting chemicals to enhance crop
yields. The conditions defining Nash equilibria can be explicitly analyzed in our framework, allowing us to
give conditions under which such optimal strategies exist.

Key words: functional differential equations, exponential dichotomies, advanced and retarded arguments,
indeterminacy, initial value problems, spatial lattices.

1 Introduction

In this paper we consider a class of initial value problems that includes the prototypes

Ta'(€) = Aw(€)+ B[ a(E+a)do+ f(z(€))  forall £ >0, (1)
g — 0 as { — 00, '
at times coupled with an initial condition
z(¥) = ¢(9) forall —1 <9 <0. (1.2)

Here x takes values in a Hilbert space H, while A, B € L£L(H;H) are bounded linear maps and the
nonlinearity f is assumed to have f(0) = D f(0) = 0. We require the solution z to be continuous for
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all &£ > 0, but we will allow it to have a single discontinuity at £ = 0. More precisely, the right-hand
limit z(0") = limg | z(£) must exist but may satisfy z(0%) # ¢(0).

For now, the operator Z should be thought of as being either the identity on H or the zero
operator. In the former case, we refer to (1.1) as a functional differential equation of mixed type
(MFDE), in which the term mixed refers to the fact that the system features both delayed and
advanced arguments. In the latter case, we impose the additional constraint that the system under
consideration can be turned into a differential equation after a finite number of differentiations. For
example, if f = 0 and A is invertible this is true for (1.1), in which case we refer to this system as
a functional differential-algebraic equation of mixed type (MFDAE).

In a broad sense, our goal is to classify which initial conditions ¢ and jumps x(0") — ¢(0) lead
to solutions of (1.1)-(1.2) and whether such solutions are unique. This paper hence continues the
program in [4, 10, 11], where it was always the case that H = R™. The extra ingredient in this paper
is that H is allowed to be a Hilbert space. Indeed, we are especially interested in situations where
H = (2(R;Z"™) and the operators A and B are convolution operators, allowing us to make effective
use of Fourier transforms.

Our earlier results for H = R™ relied heavily upon the framework developed in [20] by Mallet-
Paret and Verduyn Lunel. These authors exploited the classic Ascoli-Arzela theorem to obtain
exponential dichotomies and Wiener-Hopf factorizations for MFDEs. In addition, certain important
restriction operators were shown to be Fredholm. As we will explain in §1.2-§1.3, one cannot expect
these properties to hold in infinite-dimensional settings such as H = £2(R; Z™). We refer the casual
reader to the results stated in §3.4 and the worked out example in §4 to gain an appreciation of
what can still be expected in this situation.

1.1 Application to optimization problems

It is well-known that the solutions to optimal control problems often satisfy ill-posed equations, even
if the dynamics of the state and control variables themselves are well-posed. For example, minimizing
a convex cost functional over the path of a controlled heat equation leads to a backward heat equation
for the adjoint variable [26] that is coupled to the original system. In a similar spirit, a result due
to Hughes [8] shows that MFDEs arise as the Euler-Lagrange conditions when studying optimal
control problems that involve time delays [9, 25]. In both cases, the resulting equations are ill-posed
in the sense that initial conditions cannot always be continuated either in forward or backward time.
Research in this area has traditionally focussed on approximation techniques and abstract existence
theorems for optimal paths, whereas our approach here directly tackles the structure of the ill-posed
system.

Pollution and crop yields For concreteness, let us consider a toy model that describes the
interaction between a grid of farmers that each use fertilizers to enhance their crop yields, but who
all suffer from the environmental damage caused by the polluting chemicals spreading through the
ground water. Indexing the farms by j € Z, we use p;(t) to indicate the amount of pollutant used
at farm j at time t and write

p(t) = {p;j(t)}jez € £7(Z;R). (1.3)

The goal of each farmer individually is to maximize the functional

oo 1 B
T = [ o) = gelpl?)e (14)
by appropriately choosing his own fertilizer use
p;(t) € L=([0,00); R) N C([0, 00),R). (1.5)



The parameter p > 0 is a temporal discount factor and the function 24/p;(t) encodes the private
economic benefits of pollutant use. The concavity of this function models the decreasing marginal
benefits associated to increased fertilizer usage. On the other hand, the function ¢;[p](¢) is given by

cilpl(t) =y /

t
pr(o)do (1.6)
kez t—1

and reflects the volume of chemicals accumulated at site j, crudely taking into account leakages from
neighbouring farms and time delays caused by the finite spreading speed. This is a highly simplified
version of a so-caled lumped parameter model [21-23], originally developed to describe the spread
of tracers through ground water. The square in (1.4) reflects the increasing marginal costs caused
by the extra pollution and the associated cleanup costs.

As a consequence of the delay in (1.6), we need to fix an initial condition

pi () = ¢;(9) (1.7)
for all =1 <9 <0 and j € Z, with
¢ ={;}jez € C([-1,0[; £=(Z;R)). (1.8)

This initial condition can be viewed in some sense as the current environmental state, based upon
which each farmer needs to make decisions in order to attain his maximal pollution-adjusted welfare.

Naturally, the optimal choice for farmer j depends on ¢ and the functions {py }x; associated to
the other farmers. In §4 we search for a so-called Nash equilibrium [24], which is a choice for p that
ensures that all the individual functionals (1.4) cannot be increased by modifying only p;. We show
that such a simultaneous optimum must satisfy

1 140
=ho h'_k/ / pe(t+ o+ 0')e ?? do’ do, (1.9)
V4210 ,;Z ! 0o J-1

which is an algebraic equation covered by the theory in this paper. Under some technical conditions
on h, it is not hard to see that there exists a spatially and temporally homogeneous simultaneous
optimum

¢; (V) =ps,  pit)=ps, JEZL (1.10)

for ¥ € [-1,0] and ¢t > 0.

The main question for models such as these is whether it is still possible to find a bounded Nash
equilibrium for initial conditions ¢ that are sufficiently close to p.. Using the theory developed in this
paper this question can be answered affirmatively, provided one interprets closeness in an ¢?-sense,
ie.

sup  [[¢(9) = pill2zp) < 1 (1.11)
—1<9<0
and also allows for discontinuities
p;i(07) # p;(07) = $(0). (1.12)

Our main results can be split into three main themes, which we each briefly discuss below.

1.2 Exponential dichotomies

Linearizing (1.1) around the equilibrium = = 0, we arrive at the autonomous MFDE

2(€) = Aw(€)+ B[ 26 +0)do. (1.13)



A typical analysis of (1.13) hinges upon an understanding of the characteristic function, which is
given by

1
A(z) :z—A—B/ ™ do. (1.14)
-1

Notice that any solution pair (z,v) € CxH\{0} to A(2)v = 0 yields a non-trivial solution z(¢) = e**v
to (1.13).
In the finite dimensional case H = R", one can hence study the characteristic equation

det A(z) =0, zeC (1.15)

which typically has an infinite number of roots on both sides of the imaginary axis. This corresponds
to the fact that (1.13) is typically ill-posed on its mathematical state space C'([—1,1];R™). In par-
ticular, one cannot expect it to be possible to extend arbitrary initial conditions ¢ € C([—1,1];R™)
to solutions of (1.13) on the half-lines [0, c0) or (—o0, 0].

When studying such ill-posed problems, exponential dichotomies become the methods of choice.
For the finite dimensional case H = R™, it was established in [6, 20] that if the hyperbolicity condition

0 ¢ det A(iR) (1.16)
holds, one has an exponential splitting
C([-L,1;R") =Pa Q. (1.17)

Here ) contains all initial conditions ¢ € C([—1,1]; H) for which a bounded continuous function
x = z[¢] : [-1,00) — H exists that satisfies (1.13) for £ > 0 and has z(9) = ¢(¥9) for —1 < ¢ < 1.
Such solutions satisfy the estimate

I12[@]() 15, < Ce™ Ml o110 (1.18)

for some C' > 0 and e > 0. Similarly, P contains all initial conditions that can be extended to
bounded solutions on (—oo, 0].

These exponential dichotomies, together with their generalizations for non-autonomous systems,
have played a critical role in the analysis of MFDEs during the past decade. For example, they have
been used to construct travelling pulses for discrete FitzHugh-Nagumo equations [12], to analyze
the nonlinear stability of these pulses [13], to investigate Lax shocks in discrete conservation laws
[2] and to study the scattering of wave-fronts from obstacles in discrete planar systems [7].

In this paper we generalize the splitting (1.17) of the mathematical state space to settings where
‘H is an infinite-dimensional Hilbert space. The main obstacle that needs to be overcome is that H is
no longer locally compact, which prevents the use of the Ascoli-Arzela theorem that plays a crucial
role in the abstract existence results of [20]. Our novel ingredient is that we explicitly characterize
the spaces P and @ as the solution of two fixed point problems involving integral expressions related
to the inverse Laplace transform. This explicit approach allows us obtain detailed estimates of the
form

{81l < Ce™[116(0) g + 6]l 21 11) |- (1.19)

This should be contrasted to estimates of the form (1.18) that can be obtained from a more abstract
approach. It also allows us, in some settings, to replace H by a Banach space. Both these ingredients
are crucial to allow us to perform the Fourier decompositions discussed in the sequel in a transparent
fashion.

We remark that our use of inverse Laplace transforms is the sole reason that we restrict our
attention to the Hilbert space setting. In particular, we are confident that our results are also valid
for intermediate UMD-spaces [15], but we do not pursue this here.



1.3 Restriction operators

Here we discuss the linear homogeneous initial value problem

2 = Aw(€)+ B[l a(E+a)ds  forall £ >0, (1.20)
28 — 0 as € = oo, '
coupled with an initial condition
z(¥) = o) forall —1 <9 <0, (1.21)

for some ¢ € C([—1,0]; H). This prototype system differs from the traditional initial value problems
that one typically encounters when studying ODEs or delay equations. Indeed, the initial condi-
tion ¢ does not provide sufficient information to calculate x/(0). As discussed in §1.2, the natural
mathematical state space for (1.20) is given by C([—1,1]; H), which of course differs from the space
C([-1,0]; H) that ¢ belongs to. One of the interesting consequences of this discrepancy is that even
after fixing ¢, the problem (1.20)-(1.21) can still have multiple solutions rather than just a unique
solution or none at all.

Indeterminacy The potential for (1.20)-(1.21) to have multiple solutions ties directly into a well-
known problem in the area of macro-economic modelling. In particular, it is known that societies with
seemingly similar economic structures and initial conditions can nevertheless experience remarkably
distinct growth trajectories. For example, the expectations of market participants often play a major
role in the evolution of markets, allowing several different sequences of self-fulfilling expectations to
exist simultaneously [18]. The term indeterminacy is widely used to refer to models that reproduce
this uncertainty in some fashion; see [3] for an informative survey.

State space(s) The key mathematical question is how the exponential dichotomy that splits
C([-1,1];’H) projects down onto the modelling space C([—1, 0]; H). More precisely, let us define the
restriction operator

7 C([-L1H) = C([-1,0H), ¢ty (1.22)
and recall the space @ introduced in §1.2. Our goal now is to understand the space
7 (Q) € C([-1,0]; H) (1.23)

containing all modelling initial conditions for which (1.20)-(1.21) has a solution, together with the
space

Ker(m,) € C([-1,1]; M), (1.24)

which characterizes the uniqueness of such extensions.
In the scalar case H = R, the key tool [20] to understand this restriction operator To is the
existence of a Wiener-Hopf factorization

2A(z) = Ager(2) Aaav(2), (1.25)

in which Age is the characteristic equation of a (typically unknown) delay differential equation
with state space C([—1,0];C) and A,qy corresponds similarly to a (typically unknown) advanced
differential equation posed on C([0,1];C). Once such a splitting is obtained, one can compute an
integer n* by counting the roots of the characteristic equations Age(z) = 0 and A,qy(2) = 0 that
lie on the ‘wrong’ side of the imaginary axis. With this integer nf in hand, one can easily determine
the codimension of 7~ (Q) and the dimension of Ker (Tl'b), which are both finite. In particular, the

restriction operator WIE? is Fredholm.



Unfortunately, explicit factorizations (1.25) are usually extremely hard to find. Motivated by this
complication, we developed continuation techniques in [4, 10] that allow us to track the integer n
through carefully constructed homotopies that lead to systems for which factorizations are explicitly
available. In addition, we generalized the well-posedness results above to include certain differential-
algebraic systems and to allow for the possibility of a single jump at £ = 0. A small part of our
contribution here centers on streamlining these results by introducing an invariant similar to nf for
differential-algebraic systems.

In the non-scalar but finite dimensional setting H = R™ with n > 1, it is still the case that
the restriction operator 7r‘_Q is Fredholm and that Wiener-Hopf factorizations are available, but the

codimension of 7~ (Q) and the dimension of Ker(ﬂb) can at present [1] only be given in ranges in-
volving nf. Indeed, possible linear dependencies between eigenvectors that are hard to track through
continuations prevent the use of simple counting arguments.

Our main contribution in this regime is to give a description of the range 7~ (Q) and kernel
Ker (W‘z?) of the restriction operator in terms of the Hale inner product, which naturally couples the

linear system (1.13) with its formal adjoint. In the future this description might help to develop a
practical tool for understanding the well-posedness of (1.20)-(1.21). In the present paper however,
we need this description to show how the range and kernel of 7r|_Q vary after parameters (such as

Fourier frequencies) are introduced to the linear system (1.13).

1.4 Fourier decompositions

We here fix H = ¢*(Z;R") for n > 1 and assume that the operators A and B are convolution
operators. In particular, we pick a € ¢1(Z; R™"*") and b € ¢*(Z; R™"*") and study the system

(€ = Ywer i-ktkl(€) + Cpep biok [, ar(€ + 0) do,

(1.26)
||$(§)||e2(z;n@n) — 0Oas{— oo,
together with the initial condition
z;(9) = ¢;(0) forall —1<¢¥<0andje€Z, (1.27)

for some ¢ € C([—1,0]; ¢*(Z;R™)). Formally taking Fourier transforms
p(w &) =) e ay(€),  alw)=Y e Ta;,  bw) = ey, (1.28)
JEZ JEL JEL
the first line of (1.26) decouples as

1

Oez(w, §) = a(w)z(w, &) + b(w) / z(w, €+ 0)do. (1.29)

-1

For each w € [—m, 7] this is hence a system of the form (1.13) posed on H = R™. Assuming that the
characteristic functions
1

Au(2) = 2 — a(w) — b(w) / ¢*7 do (1.30)
-1
satisfy 0 ¢ det A, (4R) for all w € [—m, 7], the discussion in §1.2 shows that we have decompositions
C(-1,1;R") = P, & Q., (1.31)

together with

C([-1,1;(Z;R™")) = P& Q. (1.32)



In the final part of this paper we show how information concerning the set of restriction op-
erators ﬂbw associated to the Fourier frequencies can be used to study the properties of the full

restriction operator 7T|E2. Special care here is required because in contrast to the setting of §1.3, the
latter restriction operator is not Fredholm when not invertible. Indeed, the dimension of the kernel
Ker(ﬂ‘_Q) and the codimension of the range 7~ (Q) will either be zero or infinite dimensional. This
follows directly from the translation invariance of (1.26), as kernel elements or functions missing
from the range can be arbitrarily shifted in the j-direction.

A second factor that requires delicate attention is the interplay between the Fourier transform
and the spaces of continuous functions on which the restriction operators are defined. Indeed, for
z(€) € £2(Z;R™), the Fourier components (1.28) need not be defined for all w € [—m, «]. This can
be alleviated by demanding x(¢) € ¢*(Z;R™), which is why part of the efforts described above in
§1.2 focus on Banach spaces. In addition, to exploit the power of the Plancherel theorem we need
to focus on L2-based norms instead of supremum norms, which accounts for the discussion in §1.2
above concerning the detailed estimates (1.19) for the exponential splittings.

1.5 Organization

This paper is organized as follows. In §2 and §3 we state our main results, focussing on exponential
dichotomies in §2 and on the restriction operators in §3. We illustrate our results in §4 by analyzing
the model discussed above in §1.1. The remainder of the paper is devoted to the proof of the main
results. We set up two fixed point problems in §5 in order to establish the existence of exponential
splittings. We move on in §6 to discuss restriction operators for the finite dimensional case H =
R™. Differential-algebraic problems are analyzed in §7 and we conclude in §8 by studying Fourier
decompositions.

Acknowledgments Hupkes acknowledges support from the Netherlands Organization for Scien-
tific Research (NWO).
2 Exponential Splittings
Fix a Hilbert space H. In this section we are interested in bounded linear operators
L : C([rmin, "max); H) — M, (2.1)
in which we include the special case L € L£(H;H) by imposing the notation
C(0,0,H)=H (2.2)

throughout the entire paper. Most of our results will require the following form condition to be
satisfied.

(HF); We have mmin < 0 < rmax. There exists an integer N > 0 together with real numbers

Timin =70 <71 < ... <IN = max, Tmin < 85 < s;' < Tmax, (2.3)
operators
A; e L(HH), 0<j<N (2.4)
and functions
B; € C([s;,s/; L(H;H)), 0<j<N, (2.5)



so that
N S;r
L= [40(r) + [ By()oo) do]. (26)
j=0 Sj

We remark that the integrals in (2.6) are well-defined both as Riemann and Bochner integrals, since
the integrands are continuous functions on compact intervals.

Fix £ € R. For any H-valued function z that is continuous on the interval [€ + rmin, & + Fmax), We
introduce the notation

eve £ € C([Fmin, "max); H) (2.7)
to refer to the function that has
levex](o) = z(§+0) for all rmin < 0 < rpax. (2.8)

Our goal here is to characterize which functions ¢ € C([Fmin,Tmax); H) can be extended to
solutions to the homogeneous problem

z'(§) = Levex (2.9)

that are defined on half-lines and bounded by prescribed exponentials. For any n € R and any
interval Z C R, we therefore introduce the function space

BCy(I:H) = {z€C(TiH): |z, = supeer e™™ [|2(§) [l < o0} (2.10)

This allows us to define the two families

BCP(H) = BC, ((—00, rmax)i H) 2.11)
BCP(H) = BCy([rmin,0);H),
together with the solution spaces
Pr(n) = {ze€BCY(H):2'(§) = Levex forall £ <0},
Qr(n) = {yeBCPH):y(§) = Levey for all £ > 0}. (2.12)
The initial segments of these solutions are contained in the spaces
Pr(n) = {¢€ C([Fmins rmax); H) : ¢ = evo x for some x € Pr(n)},
Qr(n) = {¢€ C([rmin,™max]; M) : ¢ = evoy for some y € Qr(n)}. (2.13)
As a final preparation, we introduce the characteristic function
Ap:Cw L(HH) (2.14)
defined by
Ap(z) =z — Le* (2.15)

for any z € C. Here we are implicitly assuming that 7 has been complexified if necessary. If (HF),
is satisfied, then we may write

N gjr
Ap(z)=z-3_ {Ajezw + /7 Bj(0)e* da]. (2.16)

=0

Our first main result states that (2.9) admits exponential dichotomies, hence generalizing [20, Thm.
3.2] to the current infinite dimensional setting.



Theorem 2.1 (see §5). Fix a Hilbert space H and consider a linear operator L : C([Fmin, Tmax); H) —
H that satisfies (HF) . If the linear operators Ar(z) € L(H;H) are invertible for all z € C that
have Rez = 1, then the spaces Pr(n) and Qr(n) are both closed and we have the splitting

C([Fmin, "max); H) = Pr(n) ® QL(n). (2.17)

In order to allow solutions of (2.9) to have a jump discontinuity at & = 0, we introduce the
shorthands

BC(H) = BCy((—o0,0);H),
BCH(H) = BCy([0,00); M), (2.18)
together with the two families of function spaces
BC,(H) = C([rmm,0);H) x BC:H (M), 10)
BC,(H) = BC; (M) x C([0, rmax); H), '

all parametrized by n € R.

~ _==9 a1 o~ . . .
For y € BC, (H), we will simply write §(&) to refer to the approriate function value, using the
notation 7(0%) and 7(07) to resolve the ambiguity at ¢ = 0 whenever necessary. For any 0 < £ <
—Tmin and § € BC’%B, we introduce the notation

Ve y= ((blv P") € C([Tmina —¢&J; H) X C([—f, Tmax); H) (2.20)

to refer to the pair of functions that have

¢Z(O') _ { ?\\(fj_ U) Tmin S o< _5;
y(o ) g = 753 (2 21)
¢7"< ) { :7-/\(£+0') _§< o Srmax, ’
o2 =
y(0™) o=-¢

We then write

Ly&cj

Yo AT () + s A1) + X, o A (1)
N min{—g,s;r} max{—&,sj} r
5 [ ) Bi(0)¢ (@) do + [T ) Bi(0)¢7 (o) do | (2.22)
mln{sg, &} max{ §,sj}
sT "N
= 2 [AF(E+ ) + [ By + o) do).
The plus sign hence stands for the fact that every reference to §(0) is interpreted as g(0*). For
& > —rpmin we simply write
[e"/\é ﬂ}(o) = /Z/\(f + 0)7 Tmin < 0 < Tmax (2.23)

as there is no cause for confusion.
For ¥ € BC, (H) and —rpax < € <0, we again write éve 7 = (¢!, ¢") with (¢!, ") defined as in
(2.21) with y replaced by . We then write

Lo&e® = X, A )+ s o A (1) + X, ¢ A504(ry)
min{—{,s;r} max{—g,s;r} r
+ 20 [ ) Bi(0)e (@) do + [T "5 Bi(o)er (o) do | (2.24)

= T [Ad(E+r)T) + f+ B;(0)a(& + o) do|.



For convenience, we introduce the set
R ={0} U{-r}}0. (2.25)

We note that any discontinuities in the functions and & — L évey and & — L_ éve T will arise for
values of £ € R. In fact, for £ ¢ R there is no ambiguity between the two definitions (2.22) and
(2.24) and we simply use the notation L in this case.

Proposition 2.2 (see §5). Fiz a Hilbert space H and consider a bounded linear operator L :
C([Tmin, Tmax); H) — H that satisfies (HF), . If the linear operators Ap(z) € L(H;H) are invertible
for all z € C that have Re z = 1, then there exists a function

Gr(n) = (G (m),GE(m)) € C((—00,0]; L(H; H)) x C([0,00); L(H; H)) (2:26)
that satisfies the following properties.
(i) For every & € R\ R, the function GL(n) satisfies the differential equation

(Grml'(€) = Léve [Gr](n). (2.27)
(ii) There exist constants K > 0 and k > 0 such that

G (](©)] < Ke ™, geR. (2.28)

(iii) Writing I for the identity on H, we have
[GE)](0) = [GL(m)](0) = 1. (2.29)

We are now ready to introduce the solution spaces

Po) = {FeBC, (H):7(€) = Léve 7 for all € € (—00,0) \ R},
Bul) = {G€BC, (H):§() = Lévey for all € € (0,00) \ R}, 230
together with the associated initial segment spaces
Pu(n) = { € Cl[rmin: 01 H) x C([0, rmaxl: H) : 6 = &0 7 for some 7 € Pr(n) },
Ou) = {3 € Cllrmm 01 H) x C((0, rmans H) : § = 0§ for some § € Dp(m)y. o0

Our second main result shows that the Green’s function described in Proposition 2.2 acts as a bridge
between solution spaces that do and do not permit jumps at £ = 0.

Theorem 2.3 (see §5). Fiz a Hilbert space H and consider a linear map L : C([rmin, "max); H) —
H that satisfies (HF),. If the linear operators Ar(z) € L(H;H) are invertible for all z € C that
have Re z =1, then we have the relations

Pr(n) = Pr(n) @ spany {&oGr(m)},  Qr(n) = Qr(n) @ spany {&oGr(n)}, (2.32)
in which we have introduced the notation
Spanﬁ{&’OéL (77)} = {a S C([rmina 0]7 H) X C([07 Tmax]§ H) :

_ (2.33)
¢ = évo|Gr(n)v] for some v € H}.

10



We now turn our attention to differential-algebraic equations. In particular, we fix a bounded
linear operator

M : C([rmin, Tmax); H) = H (2.34)
and consider equations of the form
Ia'(§) = Mevex (2.35)
that satisfy the following structural condition.

(HS) We have H = (?(Z;R") or H = R™ for some n > 1 and the n x n-matrix Z is diagonal with
7?2 = 7. If H = (%(Z;R"), then the matrix multiplication in (2.35) should be interpreted in a
pointwise fashion, e.g.

[Tv]; = Zv; for any v € £*(Z;R™). (2.36)

We are interested in systems that can be closely related to a differential system of the form (2.9).
In order to clarify this relationship, we introduce the characteristic operator

drm(2) =Tz — Me* (2.37)

that is associated to (2.35). The restriction on the differential-algebraic structure of this system that
we need to impose can now be captured by the following condition on the characteristic function.

(HAlg); 5, There exists a linear operator

L € L(C([rmin, Tmax); H); H) (2.38)
together with a constant o € C and a set of non-negative integers (¢1,...,¢,) € Z% such that
Ja(2)0z,m(2) = Ar(2), (2.39)

where 7, : C — C™*" denotes the diagonal matrix function
Ja(z) = diag((z — ), (2 — a)é”). (2.40)

If H = ¢*(Z;R"), then the matrix multiplication in (2.39) should be interpreted in the pointwise
fashion described in (HS).

This condition roughly states that one arrives at a pure differential equation by differentiating
the i-th component of (2.35) ¢; times. We note that we do not require L above to satisfy (HF),. In
addition, the demand Z? = 7 means that all entries of the diagonal matrix Z are either zero or one.

Please note that the purely algebraic components of the system (2.35) are unaffected if the
corresponding components of M are multiplied by a non-zero factor. In particular, the corresponding
rows of 6z ps can be rescaled without affecting the dynamics of (2.35). Adjusting M in such a manner
will typically be necessary in order to show that all the terms (z — )’ appearing in (2.40) have
coeflicient one. Furthermore, we remark that a simple matching of asymptotics along the imaginary
axis shows that

Jala) =T, (2.41)

or alternatively, that ¢; = 0 if and only if Z;; = 1.
We will be interested in the solution spaces

prm(n) = {ze€BCY:Ix'(§) = Mevex for all £ <0},

2.42
arm(n) = {yeBCSB 1 Zy'(§) = M eve y for allsz}, ( )

11



together with their initial segments

pr(m) = {¢ € C([Fmin: rmax]; H) | ¢ = evox for some x € pza(n)},

2.43
azi() = {6 € Clrmins rmacli H) | 6 = evoy for some y € qz.u(n) }, (243)

which all describe solutions to (2.35) that do not admit a discontinuity at & = 0.

However, when considering functions that are allowed to be multi-valued at ¢ = 0, care must be
taken to ensure that (2.35) is well-posed. The following result is important in this respect, as it shows
that the part of the right-hand side of (2.35) that corresponds to the purely algebraic equations is
continuous.

Lemma 2.4 (see §7). Consider the differential-algebraic system (2.85) and suppose that (HF),,,
(HS) and (HAlg)I,M are all satisfied. Then for any ¥y € EE’?, the function

€ (I—T)My &l (2.44)
~ _ ==° .

is continuous on [0, 00), while for any T € BC’77 , the function
s (I—T)M_ & (2.45)

is continuous on (—oo,0].

Recalling the set R defined in (2.25), this result motivates the introduction of the solution spaces

Prau(n) = {F€BC, :T#(€)=TM & forall £ € (—00,0)\ R
and 0 = (I — T) M_ &v¢ 7 for all € < 0}.
~ == —~ (2.46)
dzm(n) = {geBC, Ty () =TI M, & yforall&e (0,00)\R
and 0 = (I — T) M, &v¢ g for all € >0},
together with their initial segments
prm(n) = {(EE C([rmin, 0; H) X C([0, "max]; H) : qAbz évo Z for some T € pI’M(n)},
_ ~ ~ ~ 2.47
Gnin) = {5 € Cllrmims 0 H) x C(I0,rac): H) = 60 for some G € azg(m)}. )

Our final result in this section relates these spaces to their counterparts that were defined for the
differential equation (2.9). In particular, initial value problems for the differential-algebraic system
(2.35) can be studied by techniques similar to those that we will develop for (2.9).

Theorem 2.5 (see §7). Consider the differential-algebraic equation (2.35) and suppose that (HF),,,
(HS) and (HAlg); 5, are all satisfied. Choose any 1, € R for which the characteristic operator

oz, (%) is invertible for all Re z = n.. Then there exists a bounded linear map L' : C([Fmin, Tmax); H) —
H that satisfies (HF),, and for which

In.(2)6z.0(2) = A (2) (2.48)

holds for all z € C.
In addition, for every sufficiently small € > 0 we have

~

dz,0 (7x) = Qr (N« — €), qz,m (1<) = Qo (ne —€), (2.49)
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together with

pza(ne) =B (e +€), Prv(ns) = %L’ (N« + €). (2.50)

Alternatively, for every n < n. we have

~

az,m(n) = Qr (n), qz,m(n) = Qr(n), (2.51)
while for every n > n. we have
prar(n) =P (), Pras(n) =Pu (). (2:52)

3 State Space Restrictions

In this section we state our main results concerning two pairs of restriction operators. The first pair

T C([Tminvo];H) X C([Oarmax];H) - C([Tminvo};H),

(3.1)
7 C([rmin, 0 H) X C([0,7max); H)  —  C([0, rmax); H)
acts as
(o7, 0%) =9, (o7, 0%) = o™, (3.2)
while the second augmented pair
77 C([Tmin, O; H) X C([0,"max); H) —  C([Fmin,0]; H) X H, 23
7 C([rmins 0; H) X C([0, rmax)i H)  —  H x C([0, Tmax); H) (33)
acts as
T (07, 0%) =(07,07(0)),  THo™,0") = (¢7(0),¢7). (3.4)

We are specifically interested in the action of these base restriction operators on the initial segment
spaces related to the exponential splittings that were introduced in §2.
In particular, for any € R we introduce the shorthands

o = T oy Toum = [Flewm

+ _ + — o _

L L i (3.5)
71-pL(??) - [71' ]‘pL(")’ 7T(QL(W) - [7‘(‘ ]\‘QL(W)’

which are all associated to the differential system (2.9). In addition, we introduce the spaces

Kim = Kermp . Rp, = Rangemp ),
Kpw = Keormp oy  Bp, = Rangemp ., (3.6)
IA{EM) = Kerfp . ﬁf%(n) = Rangep .,

together with
Kopy = Kermg oy, Lo = Rangemg ),
Ifém) = Kermp oy Ifém) = Rangemp ) (3.7)
Kooy = Berfg oy B, = Raneedy
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In order to conveniently formulate our results, we also introduce the collection of triplets

OL(n) = { (W;L(nVPL(U),C([U,Tmax];H)), (ﬂ'q_)L(n)vQL(W)aC([Tmin,o};H)),
(T;L(n), ﬁL(n)v C([0, rmax]; H))7 (ﬂ'éL(n), @L(n), C([rmin, 0]; ’H))7
(%;L(nyﬁl/(n)’H X C([Ovrmax]; H))’ GT\éL(ﬂ)’ @L("]), C([rmimo}; H) X H)}

(3.8)

For any triplet 6 = (79, Sy, Ty) € ©r(n), we will be interested in determining the properties of the
restriction operator

T - 59 — 'Tg (3.9)

To accompany the differential-algebraic system (2.35), we write

T = T lprums  Toum = T llazawm:
Tty = T e Ty = T e (3.10)
Tor iy = E bz Ty = T lloram)-

As above, we also introduce the spaces

+ _ + + _ +
sz,M m = Ker Tpz,n(n)? sz m(n) T Ranger,, 7,0 (1)’
+ _ + + _ +
Koy = Kermp ymy Bpp ey = Rangemy ) (3.11)
>+ _ ~+ n+ _ ~+
Koy = Koy vy Bpryy = RangeTp )
and
q_I,M(W) = Ker Trqz m(n)? Rq_z M = Range Trqz M)’
Koy = Kermp o By = Rangemy o, (3.12)
KE:I,M(T]) = Ker 7TlITI,M(n)’ R;I,M(U) = Rangew 7T M ()’

together with the collection of triplets

@I,]V[ (77) = { (W;_IWM(W)ypI,M(n% C([Oa 7‘max]; H))a (Trq_l',M (n)? qI,M(n)v C([Tmina O], H)),
(W;I,M(nyﬁI,M(??% C([07 Tmax]; H))a (ﬂ-gl',M(W)’ aI,M(n)a C([Tmina 0]7 H))a
(%;;z,M(T/)’ﬁI’M(n)’ H x C([O; rmax]; H))a (%I;LM(U)’ E]\I,M(n)v C([Tmlna ] H) X H)}

(3.13)

For any triplet 8 = (g, Sp, Tgp) € Or,m(n), we will again be interested in understanding the restriction
o : Sy — Tp. (3.14)

In §3.1 we present our results for the general finite dimensional case H = R"™. In the scalar setting
‘H = R more detailed characterizations are possible, which we formulate for differential systems in
§3.2 and for differential-algebraic systems in §3.3. Finally, in §3.4 we discuss the infinite dimensional
case H = (*(Z; R™).
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3.1 Finite dimensional systems

Our interest here is in the finite dimensional case H = R™. Our first results state that the restriction
operators (3.5) and (3.10) are Fredholm provided that the relevant vertical line in the complex plane
is free of eigenvalues. This property can already be found in [20] for ’R';L ) and T () together
with the index formula (3.16). Our extensions are relatively minor, but we include them here for
completeness. In fact, we provide an alternative proof for these facts that is based upon the fixed
point setup developed in §5.

Proposition 3.1 (see §6). Write H = R™ for some integer n > 1 and consider a linear operator
L : C([rmin, "max); H) — H that satisfies (HF), . Choose n € R in such a way that the characteristic
equation det Ap(z) = 0 admits no roots with Re z = 1. Then for every 6 = (mwy,Sp,Ty) € Or(n), the
restriction operator

w9 :Sp — Ty (3.15)
is a Fredholm operator. In addition, we have the index formula
ind(ﬂ;L(n)) +ind(rg, () = -, (3.16)
together with the variants
ind(w;L(n)) + ind(ﬂ'éL(n)) = ind(ﬂ-;L(n)) +ind(mg, ,y) = 0, (317
ind(ﬂ;L(n)) + ind(%éL(n)) = ind(?r;L(n)) + ind(ﬂéL(n)) = ’

Corollary 3.2. Consider the differential-algebraic equation (2.85) with H = R™ for some integer
n > 1 and suppose that (HF),, and (HAlg); ,, are satisfied. Choose n € R in such a way that
the characteristic equation det dz pr(z) = 0 admits no roots with Rez = n. Then for every £ =
(e, Se, Te) € Z1,m(n), the restriction operator

e Sg — T¢ (3.18)

is a Fredholm operator.
Proof. This follows directly from Theorem 2.5 and Proposition 3.1. O
Assuming the form condition (HF), is satisfied for the system (2.9), we define the formal adjoint
L, : C([~rmax; —Tmin); R") — R (3.19)

that acts as!
Lo = =5, [A50(-ry)+ [ Bj(o)"w(~0)do]

D (3.20)
> im0 [Ajw( 7“J)—|—f_sj+ Bj(—0)*(c)do].

The coupling between L and L, is provided through the Hale inner product

<'7 '>L : C([frmaxv *Tmin]; Rn) X O([Tmim Tmax]§ Rn) — Rn, (3.21)
which acts as
N rj N s‘jr o
(602 = 90760 = 3 | e =y st ar - > / ; | vtr =y B@)o(r) dr
(3.22)

1For later use, we are deliberately using complex notation here, even though all terms are real-valued at present.
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Introducing the two bounded linear operators

Lyo @ C([0,rmax];R") — R7,

(3.23)
Lo @ C([rmin,O;R™) — R"
that act as
st
Loop = 3,50 450(r) + Zs;’>0 m]ax{o,s;} Bj(o)é(o) do, (3.2)
min{O,s;r} :
Loy = er<o Aj¢(rj) + Zsi <0J4~ Bj(0)¢<‘7) do,
J J
we note that the corresponding Hale inner products
<'a'>L : O([_rmaxao};Rn) X C([O,’I"max};Rn) i Rn?
- (3.25)

<'7 '>L<o : C([O, *TminkRn) X C([Tmin,O]QRn) — R"
are given by

00120 = (007 0(0) = 3, 50 Jo' U7 —15)"Aj0(r) dr
st o 3.26
~Yrs0 ) Jo ¥(r = 0)*Bj(0)¢(r) dr do, 1320

max{0,s; }

together with

W, 0)ce = $(0)*¢(0) = X, <o Jo (T —1)" Ajg(r) dr

min{0,sT o (327)
~ Yo JS k(T = 0 By(0)(7) dr do

By construction, we have the identity

(W, o) = (m b, 7td) o, + (7T, 7 @)Ly — 1(0)*$(0) (3.28)

for all ¢ € C([rmin, "max); R™) and ¥ € C([—Tmax; —Tmin); R™).

The remainder of our results in this subsection require the Hale inner product to be complete.
To ensure that this is the case, we need to impose the following non-degeneracy condition on the
linear operator L. It roughly states that for every non-zero u € R™, computation of the expression
(u, Lg)grn requires knowledge of ¢ on the entire interval [rmin, "max)-

(HRnk), If ryax > 0, there exist s > 0 and Jy € R™*™ with det J # 0 so that
Ap(z) =z e (J, +0(1)) as z — oc. (3.29)
In addition, if 7y, < 0, there exist s_ > 0 and J_ € R™*™ with det J_ # 0 so that

Ap(z) = 275%™ (J_ +0(1)) as z — —oc. (3.30)

Proposition 3.3 (see §6). Write H = R™ for some integer n > 1 and consider a linear operator
L : C([rmins Tmax); ) — H that satisfies both (HF), and (HRnk),. Then the Hale inner products
(,)0s (V1w and (-, "), are all non-degenerate in the sense that the following properties hold.

(Z) Any ¢ € C([rmina Tmax]? Rn) for which

(W, )L =0 (3.31)
holds for all v € C([—rmax, —Tmin); R™) must satisfy ¢ = 0.

16



(i) Any ¢ € C([rmin, 0; R™) for which
(¥, 9)po =0 (3.32)
holds for all ¢ € C([0, —=min); R™) must satisfy ¢ = 0.
(iii) Any ¢ € C([0,"max); R™) for which
(¥, 0.0 =0 (3.33)
holds for all ¢ € C([—rmax, 0]; R™) must satisfy ¢ = 0.

To prepare for the next results, we need to extend the Hale inner product to functions with
discontinuities. To this end, fix any rymin < @ < rpmax and consider a pair of functions

7; € C([—Tmax, —); R™) x C([—a, —rmin]; R™), $ € C([rmin, a]; R™) x C([a, rmax); R™)  (3.34)

together with a pair v € R” and w € R"”. We now introduce the notation
(W), (B.0), = wo=3T [57 9 ) gty dr
- of fo (T = 0)"Bj(0)¢(7) dr do,

where the integrals are now taken over piecewise continuous functions. This notation isolates the
possible ambiguity corresponding to the evaluations at zero. We also use the analogous expressions
for the operators L. and L~g.

The Hale inner product can be used to characterize the restriction operators (3.5) and the initial
segment spaces (2.13) and (2.31) in terms of their counterparts defined for the adjoint operator L.

(3.35)

Proposition 3.4 (see §6). Write H = R™ for some integer n > 1 and consider a linear operator
L : C([rmin; "max); H) — H that satisfies both (HF), and (HRnk),. Pick n € R in such a way that
det Az (2) =0 has no roots with Re z =n. Then we have the representations

Pr(n) = {¢ € C([rmin, "max); R") : (¢, ¢) 1 = 0 for all o € Pr, (—n)}
= {6 € Cllrum, ruadi BY) = ((#,5(07), (6.6(0)) ) =0 for all § € Pr.(~n)},
Pr(n) = {6 € C([rmin, 0;R™) x C(10, Tmax); R") :

~

((©.0(0)), (6.6(07)) ), =0 for all v € Py ()}
= {é € C[rmin, O; R™) x C([0, Pmax); R™) :

~ o~

((9,9(07)),(6,6(07)) ) =0 for all i € Py (~m)},
(3.36)
together with

Qr(n)

{¢ € Clrmin, max; R™) : (¢, @) = 0 for all ¥ € QL. (—n)}
= {0 € Ollrmin, Tma:B") : (B.9(0%)), (6,6(0)) ) =0 for all € Qu. (=)},
Qi) = {6 € Cllrmin, 05 R") X C(0, Trnax: RY) :
((0,0(0)), (6,6(07))),, = 0 for all ¢ € Qu.(—n)}
= {6 € Ollrmin, OGR") x C((0, rmacs R") :

((@.9(01).(6.6(01) ) =0 Jor all § € Qr..(~n)}.
(3.37)
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Theorem 3.5 (see §6). Write H = R"™ for some integer n > 1 and consider a linear operator
L : C([rmin; "max); H) — H that satisfies both (HF), and (HRnk),. Pick n € R in such a way that
det Az (2z) =0 has no roots with Re z =n. Then we have the representations

Rangeﬂ;L(n) = {¢ € C([0, rmaxl; < ), (¢, (0 ))>L . 0
for all w € Ker 7TJ£L (- )}
Range WEL(U) = {9 € C([0,rmax; R") : <¢7¢>L>g =0 for all 4 € Ke”TP « (= 77)}
= {¢ € C([0, "max); R") <( (0))>L>0 =0 (3.38)
for all ¢ € KelmrJr (—n)}’
Rangewtp = {(v,6) € R" x C([0,rmax);R") : <(QZ7"Z(07))’ (¢’v)>L , =0
for all 15 € Ker 7TJ£L (777)},
together with
Rangery v = {¢ € C([rmin,0 < 3§, 9(0)), (¢, ¢(0))>L o 0
for all 1 € Ker (5 }
RangeﬂéL(m = {¢ € C([rmin, 0; R™) : (9, >L<o =0 for all ¢ € Kermg, (_,}
= {6 € Cllrmin, O R : ((#40,0). (6,00))), =0 (3.39)
for all z/J € Ker thL*(—n)}’
Range%éL(n) = {(¢,v) € C([rmin, 0; R") x R™ : <(7T+1/171/’(0+))’ (¢’U)>L - 0

for ally € KeerL*(in)}.

3.2 Scalar differential equations

We now turn to the differential equation (2.9) in the well-studied scalar case H = R. We recall
a number of results from [10] and [20] which together allow for a detailed understanding of the
restriction operators (3.5). We emphasize that none of these results require the form condition
(HF), to hold.

Proposition 3.6 (see [20, Thm. 5.2] and [10, Prop. 2.2]). Fiz ryin < 0 < rmax and consider
a linear operator L : C([Fmin, rmax]; C) — C that satisfies (HRnk),. Choose n € R in such a way
that the characteristic equation Ar(z) = 0 admits no roots with Re z = 1. Then for any o € C, there
exist linear operators

L_ € L(C([rmin,0];C); C), Ly € L(C([0, rmax]; C); C), (3.40)
with associated characteristic matrices
Ap,(z) =z —Lie* I (3.41)
for which the splitting
(z—a)AL(z) = AL_(2)AL, (2) (3.42)

holds for all z € C.
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The splitting (3.42) is referred to as a Wiener-Hopf factorization for the symbol Az, and we will
call any such triplet (o, L_, L1 ) a Wiener-Hopf triplet for L. In general, such triplets need not be
unique, but it is possible to extract a quantity that does not depend on the chosen splitting (3.42).
Indeed, for any Wiener-Hopf triplet (a, L_,Ly) for L and any n € R\ {Rea}, we introduce the
integer

nf (n) =ng, () —nf_(n) +nk®) (3.43)

that is defined by

nf () = #{zeC|AL (z)=0and Rez >},
np,(n) = #{z€C[Ar (2)=0and Rez <}, (3.44)
nt(n) = {lif Rea > nand 0 otherwise}.

Here all roots are counted with their multiplicity. This quantity nﬁL (n) is invariant in the following

sense.

Proposition 3.7 (see [20, Thm. 5.2] and [10, Prop. 2.3]). Fiz rmin < 0 < rmax and consider
a linear operator L : C([Tmin, Tmax); C) — C that satisfies (HRnk), . Fiz any n € R for which the
characteristic equation Arp(z) = 0 admits no roots with Re z = n. Then the quantity nﬂL(n) is

invariant across all Wiener-Hopf triplets (o, L_, L) for L that have Rea # 7.

Unfortunately, it is often intractable to find Wiener-Hopf triplets for a prescribed operator L. The
following result can often be used to calculate nﬁL (1) in such settings. The only requirement is that a
Wiener-Hopf triplet is available for some reference system that can be continuously transformed into
the original system without violating the completeness condition (HRnk). Please note however that
the exponents si appearing in this condition need not remain constant during this transformation.

Proposition 3.8 (see [10, Thm. 2.5]). Fiz ryin < 0 < ryax, consider a continuous path
I: [07 1] - ‘C<C([Tmina Tmax]§ (C)7 (C) (345)

and suppose that (HRnk)F(”) is satisfied for each 0 < p < 1. Fiz any n € R and suppose that the
characteristic equation Ap(,)(z) = 0 admits roots with Rez = n for only finitely many values of
wu € [0,1] and that p € (0,1) for all such p. Then we have the identity

ni(l)(n) - n%((]) (n) = —cross(I', n), (3.46)
in which the crossing number cross(I', ) denotes the net number of roots of the characteristic equation

Apu)(2) = 0, counted with multiplicity, that cross the line Re z = 1 from left to right as p increases
from 0 to 1.

We conclude this short review by showing how the quantities nﬁL(n) can be used to characterize

the kernels and ranges of the Fredholm operators (3.5).

Proposition 3.9 (see [20, Thms. 6.1-6.2], [10, Prop. 2.4] and [4, Thm. 3.10]). Fiz ry, <
0 < Tmax and consider a linear operator L : C([Imin, Tmax); R) — R that satisfies (HRnk), . Fiz any
n € R for which the characteristic equation Ar(z) =0 admits no roots with Re z = n. Then we have
the identities

dim K;EL(T]) = max{—nﬁL (n),0}, codim R;L(n) = max{nﬁL (n),0},
. + _ ok : + — # _

dim KPL(n) = max{l —nj(n),0}, codim RPL(n) max{n} (n) — 1,0}, (3.47)
o _ _nf im R = :

dim KPL(n) = max{—n}(n),0}, codim RPL(n) max{n} (n),0},
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together with

dim KéL(n) - max{nuL (77) -1, 0}7 codim RéL(TI) = max{l - nﬁL (77)7 0}
. _ _ # . _ _ 4

dim K(QL(n) = max{nj(n),0}, codim RQL(n) = max{—n}(n),0}, (3.48)
.S _ 8 B L o~ _ oy

dim K‘QL("?) = max{nj(n) — 1,0}, codim RQL(n) max{1 —nj (n),0}.

3.3 Scalar algebraic equations

Our goal here is to show how the explicit techniques outlined in §3.2 can be transferred to the
differential-algebraic setting of (2.35). In particular, we pick a bounded linear operator

M : O([rmin, Tmax; R) — R (3.49)
and study the system
0= Mevez. (3.50)
The conditions (HS) and (HAlg); ), can then be restated as the following assumption.
(HAlgSc),, There is a linear operator
L € L(C([rmin, "max]; C); C) (3.51)
together with a constant o € C and integer ¢ > 1 so that
(z — )0 (2) = AL(2) (3.52)
for all z € C.
Our first task is to generalize the notation of a Wiener-Hopf factorization to the symbol
do,m(z) = —Me*. (3.53)

Proposition 3.10 (see §7). Fiz rmin < 0 < 7max and consider a bounded linear operator M :
C([Tmin, "max]; C) — C that satisfies both (HRnk),, and (HAlgSc),,. Then there exist linear operators

M_ € L(C([rmin,0];C); C), M, € L(C([0,7max]; C); C), (3.54)
that satisfy (HAlgSc),, —and for which the splitting
b0, (2) = do,m (2)d0,m, (2) (3.55)
holds for all z € C.

Writing £+ > 1 for the integers appearing in the conditions (HAlgSc) M, » Wwe refer to any set
(M_,¢_, M,,¢;) that satisfies the statements in Proposition 3.10 as a Wiener-hopf set for M. We
note that any such set automatically satisfies the relation

0_ 40, =142, (3.56)

which can be seen by taking Im z — oo in (3.55).
For any n € R, we now define the integer

iy ) = g, (n) = iy () + (6 =€)+ 5, (357)
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in which we have

mi;, (n) =#{z€C:6y (2) =0and Rez > n} (3.58)
together with

myr, (n) = #{2 € C:dp, (2) =0 and Rez <n}. (3.59)
As usual, roots are counted according to their multiplicity in these definitions.

Proposition 3.11 (see §7). Fiz rmin < 0 < rmax and consider a bounded linear operator M :

C([Tmin, "max); C) — C that satisfies both (HRnk),, and (HAlgSc),,. Fiz any n € R for which the

characteristic equation 6o p(z) = 0 admits no roots with Rez = n. Then the quantity mg\/[(n) is

invariant across all Wiener-Hopf sets (M_,0_, My, ¢.) for M.

Our next step is to formulate a convenient tool to track the invariant mg\/l(n) through homotopies.

To assist us, we define the quantity

1 ag < n<ay,
cross(ag, ag;m) = ¢ —1 a1 < < ag, (3.60)
0 otherwise.

Proposition 3.12 (see §7). Fiz ryin < 0 < rmax and consider two bounded linear operators
My : C([Fmin; Tmaz); C) = C, My : C([Fmin; Tmaz); C) — C. (3.61)
Consider a continuous path
[':[0,1] = L(C([rmin; "max); C), C) (3.62)
for which we have the factorizations
00,0, (2) = (2 — CYQ)_ZAF(()) (2), 00,0, (2) = (2 — Oé])_ZAF(l)(Z) (3.63)

and for which (HRnk)F(M) is satisfied for each 0 < p < 1. Pickn € R in such a way that the two
characteristic equations

do,my(2) =0, o (2) =0 (3.64)
both have no roots with Rez = n. Then the following statements all hold.?
(i) If (co — (s — ) 0, we have
mgwl (n) — mg\/fo (n) = —cross(T';n) + Leross(ag, aq;n). (3.65)
(#) If min{ay, s} > n, then for all sufficiently small € > 0 we have
mg\/h (n) — mg\/lo (n) = —cross(T';n — €). (3.66)

(ii1) If max{ay, as} <n, then for all sufficiently small € > 0 we have

mgwl (n) — mg\/lo (n) = —cross(I';n + ¢€). (3.67)

2Please note that these conditions are not mutually exclusive.
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Here again the crossing number cross(T',n) denotes the net number of roots of the characteristic
equation Ap,)(z) = 0, counted with multiplicity, that cross the line Rez = n from left to right as p
increases from 0 to 1.

In a fashion analogous to Proposition 3.9, the invariant mgw (n) yields valuable information con-

cerning the restriction operators (3.10).

Proposition 3.13 (see §7). Write H = R and consider a linear operator M : C([Fmin, Tmax); H) —
H that satisfies (HF),,, (HAlgSc),, and (HRnk),,. Fiz any n € R for which the characteristic
equation 9o ar(z) = 0 admits no roots with Re z = n. Then we have the identities

dim K;M(n) = max{—3/{— mgw (m),0}, codim R;ro,M m = max{3( + mgw (n),0},
dim K;M(n) = max{l — 10 —m!,(n),0}, codim R;)’M(n) = max{1¢+m,(n) — 1,0},
dim K;M(n) = max{—3/— mi}w(n), 0}, codim R;—O,M(W) = max{il(+ mh, (1), 0},

(3.68)

together with

dim K max{—3{ + mh, () — 1,0}, codimR = = max{3{ — mh, () +1,0}.
dim Ky ) max{—3(+ m4,(n),0}, codimR, . = max{$¢ — mh, (n),0},
dim[A(‘;))M(n) = max{—3(+ mh, (n) — 1,0}, codim}A%‘;),M(n) = max{3(— m?, (n) +1,0}.
(3.69)
3.4 Fourier decompositions
We now address the infinite-dimensional situation where H = ¢%(Z; R™) and the operator
L: C([rmin, rmax];€2(Z;]R")) — EQ(Z;R") (3.70)

is of convolution type. More precisely, we assume that (HF), is satisfied and impose the following
extra condition.

(HFrr), We have H = (*(R") for some integer n > 1. Recalling the terminology of (HF),, there exist

sequences a; € (! (Z; R”X") together with functions

b, € C([s;, sT); 0! (Z;R“X”)), (3.71)
both defined for all 0 < j < N, so that for all such j we have
[Alk = D [a]k—mvm (3.72)
mez
for all v € £%(Z; R"™), together with
[Bj(0)lk = D> [b;(0)]k—mtm (3.73)
mez

Si sj'] and v € (%(Z; R™).

For any v € (*(Z;R™*™), we define the Fourier transform Fv € C([—, 7]; R™*") by

[Fo)(w) =) ve . (3.74)

ez

for all o € |
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In a standard fashion, this map can be extended to a map from ¢?(Z; R™*") into L?([—r, n]; R™*"™)
that is bounded and invertible via

v = Finy|F], (3.75)
in which we have defined
1 o
Pl = 5= [ ™) do (3.76)

for w € L?([m, 7]; R™>™).
In particular, for all 0 < j < N, all w € [—m, 7] and o € [s;, sT], we have the estimates

Joog
IF @)@ lgnen < lasllaggoen s @@ ]gmen < M@l pgnin - (B77)
In addition, the function

(0,w) = [F(bj(0)))(w) (3.78)

is continuous as a map from [s; 7s;r] X [—m, 7] into R™*™,
For any w € [—, 7], these observations allow us to define a linear operator L(w) : C([Fmin, "max); R™) —

R™ that acts as
Lw) = S olF(a)lw)d(rs) + Xis, fjj? [ (bj(0)](@)é(0) do (3.79)

and satisfies (HF) ).
Pick any n € R and recall the collection ©r(n) defined in (3.8). For any triplet

0 = (7, Sp,Tp) € OL(1), (3.80)
we now introduce the notation

O(w) = (To(w)» So(w) Tow)) € OL(w)(M) (3.81)

to refer to the same projections and spaces but with L replaced by L(w) and H = ¢?(Z; R") replaced
by H(w) = R™. For example, if

0= (73, > Q) C ((rmin, 0 #(Z; RM)) ) (3.82)
then we have
a(w) = (TFCSL(W)(WV QL(w) (77)7 C([rmin7 0]7 Rn)) . (383)

Our main result gives conditions under which the kernel and range of the restriction operators
(3.5) are both closed, with a closed complement for the kernel. As explained in §1.4, this is the
closest one can hope to get to the Fredholm properties discussed in (3.1).

Theorem 3.14. Fiz H = (?(Z;R"™) for some integer n > 1 and consider a bounded linear oper-
ator L : C([Fmin, "max); H) — H that satisfies both (HF), and (HFrr),. Suppose furthermore that
(HRnk) y is satisfied for all w € [-m,7].

Fixn e R in such a way that

det A () (n+iv) #0 (3.84)
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for allv € R and w € [—7, 7| and choose a triplet
0 = (79,89, 79) € OL(n). (3.85)

Then Sy is a closed subspace of C([rmin, 0]; H) X C([0, "max); H). In addition, if there exists an
integer J > 0 so that

dim Ker mg(,,y = J (3.86)
for all w € [—m, 7], then the following properties hold true.

(i) The two spaces

Ky = Kermy C Sy,
Ry = Rangemy C Ty (3.87)
are both closed.
(i) There ezists a closed subspace Kz C Sp so that we have the decomposition
Sy =Ko & K. (3.88)
(i) If for all w € [—m, w] we have
Range mg() = o), (3.89)
then in fact Ry = Ty.
(i) If for all w € [—m, 7] we have
Ker mp(.y = {0} C Sp(wy), (3.90)
then in fact
Ko = {0} C Sy, K; =Sy. (3.91)

We note that items (i) and (ii) above imply that the restriction 7y : Kj — Rp is an invertible
bounded linear operator, which hence has a bounded inverse.

Corollary 3.15. Consider the setting of Theorem 3.14 with n = 1. Then the condition (3.86) is
automatically satisfied. In addition, if nnL(w) (n) =0 for all w € [—7, |, then the operators

7thL(n) : Pp(n) — C([0,rmax]; *(Z; R)),
Thyy (77) — C(Z;R) x O ([0 Tmax]; €2(Z; R)), (3.92)
QL(W) 77 - C( rmlnv a Z R))

are all invertible. On the other hand, if nﬁL(w) (n) =1 for all w € [—7, |, then the operators

+ .
7TPL (n) ’ PL (77) —C
ﬂ-CEL(n) (77) - C([rmmv ]§€2(Z;R))7 (3.93)
7T(gL(TI) ¢

are all invertible.
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Our final results concern the differential-algebraic system (2.35). If M satisfies (HF),, and
(HFrr),,, then the Fourier components

M(w) : O([Fmin; Tmax; R") — R (3.94)
can be defined in exactly the same fashion as L(w) in (3.79).

Theorem 3.16. Fiz H = (*(Z;R™) for some integer n > 1 and consider the differential-algebraic
system (2.35). Suppose that (HF),,, (HS), (HAlg)7 5, and (HFrr),, are all satisfied and that (HRnk)
holds for all w € [—m, ).

Fizn e R in such a way that

det 07, ar(w)(n +iv) #0 (3.95)
for allv € R and w € [—7, 7| and choose a triplet
0 = (79,89, Tp) € 91’,M(ﬁ)~ (3.96)

Then Sy is a closed subspace of C([rmin, 0]; H) X C([0, Tmax); H). In addition, if there exists an
integer J > 0 so that

dim Ker mg(,,y = J (3.97)
for all w € [—m, ], then the following properties hold true.

(i) The two spaces

Ky = Kermg C Sy,
Ry = Rangemy C 7y, (3.98)
are both closed.
(i) There ezists a closed subspace Kz C Sp so that we have the decomposition
Sy = Ko & K. (3.99)
(i11) If for all w € [—m, 7] we have
Range Ty () = To(w)» (3.100)
then in fact Ry = Ty
(i) If for all w € [—m, 7] we have
Ker myy = {0} C Sp(w)s (3.101)
then in fact
Ko = {0} C S, K; =Sy. (3.102)

Corollary 3.17. Consider the setting of Theorem 3.16 with n =1 and T = 0. Then the condition
(3.97) is automatically satisfied. In addition, writing £ = {1 for the integer defined in (HAlg)IyM,
the following statements hold true.
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(i) If mg)M(w)(n) = —10 for allw € [, 7], then the operators

Tpons(m ¢ P00 (1) = O ([0, rimax]: 2(Z: R)) (3.103)
Tpoy ¢ Poa(n) = C(Z;R) x C([0, rmax]; 2(Z; R)) '
are both invertible.
(i) If mg M) =1~ 30 for all w € [—m, @] the operator
Toons ) * D021 (1) = C ([0, Pmax]; €%(Z; R)) (3.104)
1s invertible.
(ii) If mg M) = %E for all w € [—m, |, the operator
T e 40,02 (1) = C([rmin, 0]; €%(Z; R)) (3.105)
is invertible.
(iv) If mg M) =1+ 0 for all w € [—m, @], the operators
T qo,01(n) = C([rmin, 0; (2(Z; R)),
qo,M("7) ( ) (3106)

Ty G00(1) = C([rmin, 01 (2 R)) x 2(Z;R)

are both invertible.

4 The Model

In this section we analyze the toy pollution model that was introduced in §1.1. In particular, we
recall the functionals

50 - [ " 2y/nsl0) - Lell @) (4.1)

together with the cost functions

=D hy- k/ pr(0) do, (4.2)

keZ

both defined for j € Z and
p € C([-1,05;£%(Z;R)) x BCy([0,00); £°(Z;R)). (4.3)
Our modelling assumptions are summarized in the following condition.

(hMod) The discount rate satisfies p > 0 and the spatial kernel h satisfies h € £1(Z; R) with

ho>0, > h;>0. (4.4)
Jez
In addition, the symmetry condition
h_; = hj, JjEZ (4.5)
holds, which implies that the Fourier transform of A is real-valued. In fact, the inequality
[Fhl(w) >0 (4.6)
holds for all w € [—m, 7.
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We now fix an integer j € Z and attempt to find p; in such a way that the functional (4.1) is
maximized, under the initial condition

p;i(0) = ¢;(9) (4.7)

for —1 <9 < 0. We do allow for p; to have a jump at zero, i.e. p;(0") # p;(07).
To separate out the functions that need to be considered as fixed, we write

a(t) = {ar () hrtg = {Pr(t) bz (4.8)

for all £ > —1. In addition, we write

d;lq)(t) = Z »/t;l hj—kqr(u)du (4.9)

keZ\{j}

for all ¢ > 0. Our goal is hence to find, for fixed ¢, the function p; that maximizes the expression

i) = [ (20~ 5[ hapsto o+ i) e (410)
In order to apply the method of variations, we now write
Pj = Pj + €Pvar (4.11)
and assume that
Pvar(¥) =0,  —-1<9J<0 (4.12)

to account for the initial condition (4.7). We also write

t
&Pl = [ hopy () dut difal(0) (413
t—1
We may now formally write

Jipj0) = Ti(®;,9) + QB> q)[pvar] + O(€?) (4.14)

in which

00 1 o t -
(p]a )[pvar] = / (—pvar(t) - Ci[pj,q} (t)/ hopvar(U) dU)@ ptdt. (415)
0 D (T t—1
p;(t)
A short computation shows that
_ oo g o
Q(pjaq)[ var] = fO —\/vaar(t)e pl dt
u+1_ _
—ho fu— 1 Jt=0 Ja ]( )e ptpvar(u) dtdu (4.16)
—ho fu 0 ft m Cj p]a t)e_ptpvar (U) dt du.
Exploiting (4.12), this can be rephrased as
_ o o
Q@ Ppvar) =, —\/I_vaar(t)e Pt dt
u 1_ _
—ho fu Of y [p]7 )6 ptpvar(U) dt du

_ oo 1 pu
fO /ﬁj(fu)pvar(u)e du
1 ro —pPo ,—pPuU
—ho [ 20 oGPy ) (u+ 0)e™P7 e P pyar(u) do du,

(4.17)
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which gives the optimality condition

1 1
= hg / [Py, ql(u+o)e 7 do (4.18)
pj(u) o=0
for all u > 0.
We now look for a so-called simultaneous optimum p = {ﬁj }jez, for which we must have
1 1
= ho/ [Py, pl(u+o)e” "7 do (4.19)
pj(u) o=

for all j € Z. Substituting (4.13), we find that such an optimum must satisfy
1

1,0
= ho E hj—k / / Pr(u+ o +0o')do'e "7 do (4.20)
p;(u) keZ 0=0Jo'=-1

for all 7 € Z and u > 0. Upon introducing the expression
" { [0 5 dg for o <0,

IQ_U e_%(g_t,_al)do—/ for o > 07

o

(4.21)

the simultaneous optimum condition (4.20) can be rewritten in the convenient form

1
! ho Y hj—k / v(o)e 2P, (u + o) do, (4.22)
-1

\/D; (u) B kez

which must hold for all v > 0.
We note that we have included the extra exponential factor e~ 27 in (4.22) for symmetry purposes.
Indeed, with this choice the function v satisfies the following properties.

Lemma 4.1. Suppose that (hMod) is satisfied. Then we have v(o) = v(—o) for o € [-1,1]. In
addition, we have

v e C([=1,1;R) N C([=1,0R) N C*((0, 1) R), (4.23)
with v(=1) = v(1) =0 and v(o) > 0 for o € (—1,1). For any z € C we have the identity
f_ll e*v(o)do = fol e*7e" 57 do f_ol e*7e57 do, (4.24)
which for z ¢ {—5,5} can be evaluated as
f—ll eZUV(O') do = e 5 Zig Zi% (ez +e % — ef — €_§)~ (425)

Finally, we have the identities

[ e Eno)ds = pi(1—e),
fl v(o)do = L(1-e9)2 (4.26)
1 = 2
Proof. These statements follow directly from the explicit expressions

ple 5% e — 7] for ¢ <0,
v(o) = ) (4.27)

p~te2%e=r7 —e7F] for o > 0.
O
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For convenience, we now introduce the constant

K= 2{[Zhj]p—1(1 —e P B > 0. (4.28)

jez
Any spatially and temporally homogeneous solution
p;(u) =ps (4.29)

to (4.22) must satisfy

1

1 ’
=h h; “2%(0)do|ps = 2hok ™ ps, 4.30
= el | etvtordo]p. = 2hanp (1.30)

which immediately gives

Py = [2ho] 72323, (4.31)

Our main goal in this section is to study solutions to (4.22) that are close to this homogeneous
state p,. In particular, substituting the Ansatz

By = pe +w; (4.32)
into (4.22), we find
—gmwi(w) = ho [1_y Senhjmkwi(u+ o)e” 87 u(o)do — N (w;(u)), (4.33)
in which we have introduced the nonlinear expression
Mw) = 75— 7 + gome] = 0w?). (4.34)
Substituting (4.31), this can be written as
wi) = —k Y penhjr [T, e 2 v(0)wi(u + o)do + rhy N (w;(w). (4.35)
Introducing the bounded linear operator
M, : C([-1,1; (Z;R™)) — *(Z;R™) (4.36)
that acts as
1
Moy = <050) =k S bk | e En()n(o)do, (4.37)
k€EZ -1
the system (4.35) can be written as
—M,ev,w = khy ' N (w(u)), (4.38)

which must hold for all u > 0. Here N7 acts in a pointwise fashion.
In the remainder of this section we use the theory outlined in §2 and §3 to analyze the linear
part of (4.38). In particular, we establish the following well-posedness result.

Proposition 4.2 (see §4.1). Suppose that (hMod) holds. Then we have

Rangem, ) = C([-1,0]; *(Z;R™)) (4.39)

» My

together with
Kerm, ()= {0}. (4.40)
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Using the nonlinear techniques of 4, §3.4], this result shows that for every ¢ € C([—1, 0]; £2(Z; R™))
with

sup |¢(9) —p*|p(Z;Rn) <1, (4.41)
—1<9<0
there exists a unique p with
p—p. € C([—1,0];(Z;R™)) x BCy([0, 00); £*(Z; R™)) (4.42)

that solves (4.22) with the initial condition
p;(9) = ¢;(9) for —1 <9 <0. (4.43)

In particular, the jump p(0") —p(07) is determined uniquely by ¢.

4.1 Preparations

In this subsection we set up the machinery that we will need to establish Proposition 4.2. In par-
ticular, we illustrate the steps which typically are necessary to apply the theory developed in this
paper to explicit models.

Lemma 4.3. Assume that (hMod) is satisfied. Then the linear operator M, defined in (4.37) sat-
isfies (HAlg)g 5. -

Proof. The result follows immediately by applying Proposition 7.5 with J = 1, exploiting the piece-
wise differentiability of v. Alternatively and more directly, one can introduce the bounded linear
operator

L, : C([-1,1];6*(Z;R™)) — €*(Z;R™) (4.44)
that acts as
1
(L) = gwj (0) + HZ hj—k / e 57V (o) (o) do. (4.45)
kez -1

Exploiting the identities v(07) = v(0") and v(—1) = v(+1) = 0, we may then compute
Al = [l-Le,
= 205 — v — kY cp hjkvk fil e 59 (0)e* do (4.46)
1

= (2= L)+ KX pep hjrve(z — &) [, e 27v(0)e* do

for all v € £%(Z;R) and j € Z. In addition, we can compute

1

[—M.e*v]; =v; + /{Z hj—kvg / e~ 570(0)e* do, (4.47)
kez -1
which implies
(z = D)oo (2) = AL (2). (4.48)
|
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In order to efficiently exploit the symmetry properties in (4.1), we will study the exponentially
shifted operator

M : C([-1,1]; *(Z; R™)) — £*(Z;R™) (4.49)
that acts as
M = M5 (). (4.50)
In particular, we have
M)y = —w(0) = & Xz hymk [1 V(o) di(0) do (4.51)
The Fourier components
M(w):C([-1,1;R) - R (4.52)
act as
1
(M)l(e) = —00) =’ [ vio)(e) do (453)
For convenience, we write
Bw = VE[Fh|(w) >0, (4.54)

which is well-defined on account of (hMod). We note that

1
So,m(w)(2) =1+ 63 / v(o)e* do, (4.55)

-1

which in view of Lemma 4.1 implies that
50JVIW (Z) = 5071\/[“) (72) (456)

In addition, upon introducing the functions
Su(2) = (2 = 5)z 4+ £)oa10 (), (4.57)
Lemma 4.1 implies

2
S.(2) = 2% — % + Be % (" +e = ef —e”

[N}

(4.58)

We now show that dg,as,(2) = 0 has no roots in the strip [Rez| < £. This will allow us to
conclude that oz, (0) = qo,ar(0).

Lemma 4.4. Suppose that (hMod) holds. Then for every w € [—m, 7], the characteristic equation
do,m,,(2) =0 (4.59)
has no roots with [Rez| < §.

Proof. For p € R and ¢ € R we may compute

2
ReS,(p+iq) =p* — ¢* — pz + Be% (2 cosh(p) cos(q) — 2cosh(g)). (4.60)
In particular, for [p| < £ we may estimate
02
Re S, (p +iq) < p* — T ¢ < —¢, (4.61)
while for p € R we have o ar, (p) > 1. O
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In §4.2 below we establish the following result concerning the invariants mg M(w)(O), which in
fact turn out to be independent of w. This allows us to apply one of our main results and establish
Proposition 4.2.

Proposition 4.5 (see §4.2). Suppose that (hMod) holds. Then for every w € [—m, w| we have

1
Ml 110 (0) = 5 (4.62)

Proof of Proposition 4.2. Corollary 3.17 and Proposition 4.5 imply that

Rangem, () = C([-1,0];2(Z;R)), (163
Kermy o) = {0},
while Lemma 4.4 yields the identities
Range W%YM(O) = Range Ty ar. (0)? (4.64)
Ker T 01 (0) = Ker Ty ar. (0)°
O

4.2 Wiener-Hopf factorizations

Our goal here is to establish Proposition 4.5 by constructing a path of operators that connects
M (w) to a reference operator Mt for which a Wiener-Hopf factorization is available. Inspired by
the factorization (4.24) for v, we define

M7é = —4(0) - B, [°) e57¢(0) do, (165)
Mi¢ = —¢(0) =B [y e 27¢(0) do,
together with
M ¢ = 2¢(0) + M(w)p + M ¢ + M 6. (4.66)
The characteristic functions are given by
Sonrs () = —Mge*
= 140, E e2%¢% do,
. f ' (4.67)
50,M§; (z) = —MZe?
= 140, fol e~ 59 do,
together with
50’M£}ct (z) = -2+ 50,M(w) () + 607MJ (Z) + 50,Mj (2)
(4.68)
= 50,M; (2)50,M: (2)-
Lemma 4.6. Suppose that (hMod) holds. Then for every w € [—m, ], we have the identity
§ 1
M pptet (0) = > (4.69)
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Proof. We first verify that the conditions (HAlgSc),,+ and (HAlgSc) Miev AT€ satisfied. To see this,
one can either apply Proposition 7.5 with J =1 or dlrectly introduce the operators

L, :C([-1,1;R) — R, L, :C(-1,0;R) = R, L C(0,1;R) - R (4.70)

w

that act as
1

Loy = B3 )2,V (0)¢(0) do,

Ly = —Bu[6(0) — e 5p(-1) = 5 [° e57¢(0) do], (4.71)
Lio = —Bule 26(1) = 6(0) = § Jy e 57¢(0) do],
together with
L = L,+ L, + L. (4.72)
We can then compute
dor.(2) = =3 [1 vV (0)e* do
— 282 [ v(0)e do (4.73)

together with

So.1- (2) = B [1 —e e — gf_ol e57e%° da]
= 2(04 ,-(2) = 1),
0. M (4.74)
JO,LLJE(’Z) = ﬁw[e 2@ _1__f0 ——J zada.]
= 2(50,Mj (z) = 1),
showing that (HAlgSc),,+ are satisfied. In addition, this allows us to write
Apei(z) = 2+400,0.(2) + 04 - (2) + 6y 1+(2)
= 200,m,(2) + 2(0y 5= (2) = 1) + 2(8g pp+ (2) — 1) (4.75)
= z(SOJ\/[icc(z)7
which establishes (HAlgSc) et -
To compute mg et (0), we observe that
6O,Mj(—z) = 14+ ﬁw fol e—%ae—za do
= 148, [0 e do (4.76)
= 50,1\/1; (2).
This implies that
m]'t'/[u_ (0) = mys (0) (4.77)
and hence
4 _ N 1 11
M et (0) = mMj(O) My (0) + 5(@ —l)+ 3= (4.78)
exploiting the identities {1 = 1. O
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We now define, for 0 < 4 < 1, the bounded linear operators

Yo(p) : C([-1,1;R) — R, (4.79)
that act as
Yolu) = M(w)p+ (1 —p)[M5é+ Mo +26(0)]. (4.80)
By construction, we have
1w (0) = M, (1) = M(w). (4.81)

Lemma 4.7. Suppose that (hMod) holds. Then for every w € [—7, x| and every 0 < u < 1, we have

00,7, () (19) # 0 (4.82)
for all g € R.
Proof. Observe that
800wy (i0) = o,m,(19) + (1 — p) [0y 5 (i) + 8¢ 5y (i) — 2]
= Go, (ig) + (1= p)Bu[ [7, et Do do + [ eli1=5)7 do] (4.83)

= do,m, (ig) + (1 — p)Buw [ fi)l cos(qo)es? do + fol cos(qo)e 27 do].

In particular, writing

2

Ton(@) = (6% + 200000 (i9). (4.84)
we find that
Top(a) = —Suliq) + (1~ p)fulp —e 2 pcos(q) +2¢ 2gsin(q)]
= ¢#+ % — %e~%(2cos(q) — 2 cosh(£)) (4.55)
+(1— p)Bu[p — e Epcos(q) + 2¢ 2 gsin(q)]
> ¢+ 5§+ 2075 (1 - p)Bugsin(g).
Exploiting (4.28), we now observe that
82 = KlFhl(w) < 2 _pe_p <2(1+ p). (4.86)
This in turn implies that
201 — p)e 58, <2v/2e 5 /1+ p< 3. (4.87)
Noting that
¢ > —agsin(q) (4.88)
holds for all 0 < o < 3 and ¢ € R, we hence see that T, ,,(¢q) > 0. O

Proof of Proposition 4.5. In order to apply Proposition 3.12, we construct a continuous map

[0,1] 2 p— Tw(p) € L(C([-1,1];R); R) (4.89)
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for which

Ar, () (2) = 2005, () (2) (4.90)

holds for all i € [0,1]. The identity (4.62) then follows from Proposition 3.12 and Lemma 4.6, since
Lemma 4.7 implies that one can pick 0 < € < 1 in such a way that no roots of the characteristic
equation Ar_(,)(z) = 0 cross the lines Re z = %€ as p is increased from p =0 to pu = 1.

To construct the branch (4.89), one can either invoke Proposition 7.5 with J = 1 or directly
write

Pulw) = Lo+ (1-p)(Lg +L3), (4.91)

in which we have reused the operators defined in the proof of Lemma 4.6. Indeed, a short computation
shows that

Ar,u(2) = 2+4+00,L,(2)+(1—p) (50,L; () + 607Lj (Z))
= 200,am,(2) + 2(1 = p) (G py- (2) = 1) + 2(1 = p) (8 5 (2) — 1) (4.92)
= 2507%(“)(2).

5 Exponential splittings via fixed point problems

In this section we set out to prove the existence of exponential dichotomies by characterizing the
spaces Pr(n) and Qr(n) as solution spaces to two fixed point problems. In particular, we establish
Theorems 2.1 and 2.3 together with Proposition 2.2.

Most of our results here concern MFDEs posed on Banach-spaces. We therefore fix a Banach
space B and consider a bounded linear operator

L : C([rmin, "max); B) — B (5.1)
on which we impose the following condition.
(hF);.5 The form condition (HF), holds with H replaced by B.

In addition, we introduce the spaces

Prs) = {FeBC, (B):#(¢) = Léved for all € € (—00,0) \ R},
~ — N 5.2
Qr.pn) = {@\E BC?(B) 1Y (&) = Levey forall € € (0,00)\R}, (5:2)

which simply generalize the definitions (2.30) by replacing H with B.
Fix n € R. For any function ¢ € C([rmin,0]; B) x C([0, max]); B), any element v € B and any
¢ € R, we formally introduce the expression

n+iQ

o~ % ~

T, 0] () li e AL(z) T (e77 1), (¢, v)), d. (5.3)

=—1
271 Q—o0 n—if

This expression is related to the inverse Laplace transform of (2.9) and hence plays a fundamental
role in this section. We first show in what sense 7z, is well-defined.
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Lemma 5.1 (see §5.1). Fiz a Banach space B and consider a bounded linear operator L : C([Fmin, "max); B) —
B that satisfies (hF)L;B. Pick n € R in such a way that the linear operators Ar(z) are invertible for
all z € C that have Rez = 1. R
Then for any ¢ € C([rmin, 0]; B) x C([0, rmax); B) and any v € B, the symbol Tr,.,[¢,v](§) intro-
duced in (5.3) is well-defined for & # 0. In addition, the functions

o~

f—(f) = 7—11;?7[(;53'0](5) f07”§<0,

~ (5.4)
[+(€) = Tuy[e,v](€) Jor >0
can be extended at & = 0 to satisfy
f- € BC, (B), f+ € BCH(B). (5.5)

In particular, the one-sided limits f_(07) and f(0T) both exist and the jump at zero is explicitly
given by

F(0) = f-(07) = . (5.6)

Finally, there exists a constant K > 1 that does not depend on $ and v such that
Ty, HT 5, H < K[HAH . 5.7
H zinl@:] BCy (B) | Tzalo-e] BC,f(B) ¢ C([rmin,01:B) x C([0,rmax];B) lells 5.7

When B is finite dimensional, the map 7., admits certain compactness properties that we
describe below. In §6 this result will allow us to establish Fredholm properties for the restriction
operators (3.5).

Lemma 5.2 (see §5.1). Fiz a finite dimensional Banach space B and consider a bounded linear
operator L : C([Fmin, Tmax|; B) — B that satisfies (hF).5. Pick n € R in such a way that the linear
operators Ay, (z) are invertible for all z € C that have Rez = 1. Then the linear operator

&voTy, 1 C([rmin, 0]; B) x C([0, 7max); B) x B — C([rmin, 0]; B) x C([0, rmax]; B) (5.8)
18 compact.

In the Hilbert space setting B = H, the map 7r,, can be used to relate functions in ‘,]A3L (n) and
9r(n) back to their initial segments. The almost-everywhere pointwise convergence of the inverse
Laplace transform lies at the basis of this result, which is why the restriction B = H is necessary.

Proposition 5.3 (see §5.2). Fiz a Hilbert space H and consider a bounded linear operator L :
C([rmin, "max); H) — H that satisfies (HF),. Pick n € R in such a way that the linear operators
AL (z) are invertible for all z € C that have Rez = 1.

Then for any § € 9, (n) we have

(&) = Toy[¥0 3, 3(07)](€) (5.9)
for all £ > 0, while for any p € s3\3L(77) we have
P(&) = —Ty[évo p, p(07)](€) (5.10)

for all € < 0.

Pick n € R in such a way that the linear operators A (z) € L(B;B) are invertible for all z € C
that have Re z = 7. Inspired by the identities (5.9) and (5.10), we now introduce the two operators

—®
Ep, iy ¢ Cllrmin.01:B) % C([0, rmaxl: B) — BC, (B),

5 (5.11)
Ep C([rmin, 0]; B) x C([0,Tmax]; B) — BC, (B)
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that act as

-~ Trinld, $(07)](6), €>0and & =07,
[E@mo:](g):{ Tl o070 ) i (5.12)
(b(g) + ﬂ;n[qﬁ, ¢(0+)}(£)7 Tmin < 5 < 0 and f =0 )
together with
. ~Trin[6, 6(07)](6), £<0and (=0,
[EpL<n>¢](£){ ~ zinl (A)l( )_ o (5.13)
¢(§) - TL;U[¢7¢(O )](5)7 0 <& <Tmax and § = 0t.

A direct consequence of Proposition 5.3 is that in the Hilbert space setting B = H, all elements of
Pr(n) and Qr,(n) can be interpreted as solutions to a fixed point problem.

Corollary 5.4. Consider the setting of Proposition 5.3. Then for any (}5 € Py (n) we have
¢ = eAVOEpL(n)d)a (5~14)
while for any ¢ € Q1 (n) we have

6 =&oEy, () 0- (5.15)

The main technical result of this section can be interpreted as a converse to Corollary 5.4 that
also works in a Banach space setting. In addition, it provides detailed bounds for the operators
E b () and EQL ) that reference the L?-norm instead of the usual supremum norm.

Proposition 5.5 (see §5.3). Fir a Banach space B and consider a bounded linear operator L :
C([rmins rmax); B) — B that satisfies (hF); 5. Pick n € R in such a way that the linear operators
Ar(z) are invertible in L(B;B) for all z € C that have Rez = 1.

Then for any ¢ € C([rmin, 0]; B) X C([0, rmax]; B), we have the inclusions

EQL(W)(Z € ﬁL;B(n),

~ _ (5.16)
Ep ip® € PBrs).

In addition, there exist constants K > 1 and € > 0 that do not depend on $ so that the estimates

n =& |[p(0+ oy
aiiel, = st [, ) G
hold for all £ > 0, while the estimates
b (+OE[ || h(0~ b
nuitcl, < st iyl G
hold for all £ < 0.
As a consequence of (5.6), we note that we have the restrictions
EPL(n) (O([Tmifhrmax];lg)) C BOnG(B)a E(QL(,?) (O([Tmirurmax];B)) C BOSB(B) (519)

This observation lies at the heart of our final result, which is more explicit than Theorem 2.1. In
particular, it shows how the operators EPL(n) and E(QL(n) can be interpreted as the projections
associated to the desired exponential splitting of the state space C([rmin, "max); H)-
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Proposition 5.6 (see §5.3). Fiz a Hilbert space H and consider a linear operator L : C([Fmin, Tmax]; H) —
H that satisfies (HF) . If the linear operators Ar(z) € L(H;H) are invertible for all z € C that
have Rez = 1, then the spaces Pr(n) and Qr(n) are both closed and we have the splitting

C([ramin, max]; H) = Pr(n) & Qr(n), (5.20)

which can be made explicit by writing
¢ = eVOEpL(n)¢ ©® eVOEQL(7I)¢ (5.21)
for any ¢ € C([rmin, "max); H)-

5.1 Decomposition of 7;,

In this subsection we set out to gain a detailed understanding of the formal expressions

Tonlo0](€) = shlimo oo [0 e ALE) (e, 1), (6,0)),, -
LTa(6.0)(€) = ghlima s [ e 2AL(2){(e77,1). (6,0)),. (522

In particular, we will obtain an explicit description of the components in the integral representations
above that are not integrable with respect to z on the vertical line Re z = .

Let us therefore pick a Banach space B and a bounded linear operator L : C(["min, "max); B) — B.
In order to isolate the slowest decaying portion of Az (2)~!, we formally introduce the expression

Rpa(z) = Ap(z)™' -2 I_ﬁzei,;)g (5.23)

zZ—x

We note that Ry..(z) € L(B; B) whenever A (z) € L(B; B) is invertible and z # «a.

Lemma 5.7. Consider a bounded linear operator L : C([Fmin, ™max); B) — B and suppose that
Ap(z) € L(B;B) is invertible for all z € C with Rez = n. Pick o € R\ {n}. Then there exist
constants kK > 0 and K > 1 so that

K
IRL.0( ) g8 < —3 (5.24)
LB:B) = 11 |z|3
for all z € C with |Rez —n| < k.
Proof. For large |Im z|, the desired behaviour follows from the expansion
Ar(z)™' = [z—a+(a—Le*)|

= (z—a) I+ (z—a) (a—Le) (5.25)

= (z—a)! [I —(z—a) Ha—Le*)+O((z — a)*Q)],
exploiting the fact that z — Le*  is bounded in vertical strips of the complex plane. O

To exploit the decomposition (5.23), we introduce, for any @ € R\ {n}, any v € B and any
@ € C([rmin, 0]; B) x C([0, rmax); B), the expressions

ML = phlimg o [0 e | + K Ss o, a0
i 5.26
R0 = o :j;;oengL;a(z)vdz,
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together with

MEIBI(E) = mhmnmf"“”e&[ Le=s] ((e7,0),(5,0)),, dz,
RAGIE) = 5 [ e Rya(2){(e77,0),(6,0)), dz

(5.27)

Observe that we have dropped the limit with respect to €2 in the expressions for R} and R?, which is
possible because Lemma 5.7 guarantees that the integrands are in L!. The expressions (5.26)-(5.27)
allow us to write

Tonl$,0](€) = ME[0](€) + ME[A]() + RA[0](€) + RIS (). (5.28)

We now set out to derive explicit expressions for M [v] and M2[@]. For convenience, we define
the function

1 £E>0,
HE=9 35 £=0, (5.29)
0 £E<0
and evaluate several key integrals.
Lemma 5.8. For any o > n and £ € R we have
Qe P
27” llmSZHOO fn+ 5 1 dZ - —e€ gH(_f)a (530)
together with
+iQ2 ¢,
7= limg oo f;’ o€ (Z}a)z dz = —&e*CH(-¢).

(5.31)

Proof. The expressions follow from standard computations using Jordan’s lemma and the residue
theorem. O

For a > m, we hence have the explicit representation
ML) = —[e®SH(=&) + (L — a)eve[¢' — &'eS H(—¢')] |v, (5.32)

in which we have introduced the shorthand (L — «)¢ = Ly — a1)(0) for ¢ € C([rmin, Tmax); B). The
following result summarizes some facts that can be read off directly from this representation.

Lemma 5.9. Consider a bounded linear operator L : C([rmin, "max); B) — B that satisfies (hF)L;B
and pick a > 1. Then for any sufficiently small € > 0, the map®

B> wv— ML[v] € BC,, (B)NBC} (B) (5.33)
is well-defined and bounded. Upon fixring v € B, we have the jump discontinuity
MERI(0F) = ML](07) = v. (5.34)
In addition, ML [v] is continuously differentiable on R \ R with

MLII(€) = aML)(€) — (L — a)évele’ > € H(—¢)v (5.35)

3 Actually, the map (5.33) should be interpreted as two separate maps, one into BC’T;L&(B) and one into BC7T7E(B).
Throughout this section we will slightly abuse the symbol N in this fashion.
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for £ € R\ R. In particular, for all 0 < j < N we have the jump

ML) (1) = ML) (=17) = Ajv. (5.36)
Finally, upon writing
Hoann [0](€) = M) (€) — L& e ML) (5.37)
for all € € R\ R, we have
Hay[0](€) = (L= a)eve[¢' > (L—a)evele” s e H(—£")]] (5.38)

for all such &.
We remark that the right-hand side of (5.38) is in fact a member of BCy,(R; B). Formally however
one can say that the functions M [v]" and Ha: [v] both have a §(£)v component at £ = 0.

For any « € R\ {n}, any (Z € L?([Pimin, Tmax); B) and any ¥ € [Fmin, "max], We now introduce the
two expressions

TRONE) = g lima o [T e Loe® [ e 6(0) do dz,
; 5.39
Jﬁ@[a;](&) = 5 limg oo f:ﬁé’efz e?? fﬂ e~ p(0) do dz. (5.39)

We remark that both expressions are identically zero if ¥ = 0. The other cases are studied in the
following result, in which we use the notation

1 x>0,
sign(x) = 0 x =0, (5.40)
-1 z < 0.

Lemma 5.10. Suppose that rmin < 0 < rmax and pick a > 1 and 9 € [rmin, "max) \ {0}. Then for
all sufficiently small € > 0, the maps

L2([Tmin7 7Amax]; B) =
L2([Tmin7 Tmax]; B) >
L2([rmin7 Tmax]; B) >

— j“) [6] € BC,(R; B) N BC,, (B) N BC;_(B),
—  J3)d] € BC,(R; B) N BC,,.(B) N BC;_.(B), (5.41)

a;

— J< )19 € BC,(R; B) N BC,.(B) N BC, (B)

<) ©) ©)

are all well-defined and bounded. Upon fizing $ € C([rmin, 0]; B) X C([0, rmax]; B), we have the explicit
identities

TN = e [TH(o — €~ 9)e™75(0) do (5.42)
- max{0,£+9} _ oo :
= —€ (&+9) fmax{{ﬁ §+19}} ¢( )
together with
TR0 = =@ [le+9 - 0)H(o — € —V)e " ¢(0) do
a max v —aoc T (543)
= _ea(é+9) fmax{{s g-tﬁf (E+9—0)e *¢(o)do
which both hold for any £ € R.
In addition, for any & ¢ {0, —Y} we have

Tl (€)= ad[B1(6) = sign(9)9(€ + V) Linin{—o.0}<e <max{ 0.0} (5.44)
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while for any £ € R we have

TEIE = ag2elE) + T8l (5.45)

In particular, if Y < 0, then we have

T8 € BC,((—00,0];B) N C([0, ~]; B) N BC,([~0, 00); B) (5.46)
with jumps
TR0 = TDeron) = o), -
TR (—07) = THBI(—07) = —d(0).
On the other hand, if ¥ > 0 then we have
T8) € BC,((—o0, —0);B) N C([~9,0); B) N BC, ([0, 00); B) (5.48)
with jumps
T (0% = TR Bl (—07) = —d(0t), 50
N ~ 5.49
TR = ghero) = 6.
Proof. Exploiting Fubini, we write
TR = shlima o [) [ €= L4(0) dz do. (5.50)
Applying the limits in Lemma 5.8, which hold uniformly for compact sets of £, we find
ToN©) = 5 J)limoao [ €070 12d(0) dz do
= [y H(o ~ &~ 0)e" €7 =)4(0) do (5:51)
= —e(&t9) fﬁ H(o — & —9)e " ¢(0) do
We first fix ¥ < 0. For £ + ¢ < 0, we have
TBle) = —ex@ D [0 oy € 27 0(0)do, (5.52)

while ._765;11% [6](€) = 0 for £+9 > 0. In both cases this matches the desired identity (5.42). In addition,
for 0 < £ < —U we have

-~ -~

THVE) = aTBE) + b +v), (5.53)

while

TR = aT DBl (5.54)

for £ < 0 and & > —v. Both identities agree with (5.44).
We now fix 9 > 0. For £ < 0 we may compute

Taalol©) = —eoter?) [P0 oo (o) do, (5.55)
while for £ > 0 we have j(l)[gb](f) = 0, again matching (5.42). For —¢ < £ < 0 we have

TN = ad0lE) — d(E+9), (5.56)
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which matches (5.44).
In a similar fashion as above we may compute

OB = e [Y¢ 49— 0)H(o — € — V) 3(0) do (5.57)

We again fix ¥ < 0. For £ + 9 < 0, we now see
" (0% 0 70(0'/\
TDNBE) = e [0 erayE+ D —0)e 0 d(0) do, (5.58)

while J()Ei; [(/5] (&) =0 for £ + 9 > 0. Both expression agree with (5.43). In addition, for £+ < 0 we
may compute

TDOVE) = aTDBlE) — e+ [0 o ery e 7 b(0) do, (5.59)

while J O(i; [(Z]’ (&) =0 for £+ 9 > 0. Both expressions are equal at £ + 9 = 0, allowing us to conclude

that J ;213 [q?] is continuously differentiable on R.
Finally, fix 9 > 0. For £ < 0 we have

~

T = —eoterd) (O y _ 5)e=a7 (o) do, (5.60)

a;

while for £ > 0 we have ja(fg [5](5) = 0, which both agree with (5.43). For £ < 0 we may compute

TOE) = agBdl(e) — exEtd) [0St a0 g5y dg, (5.61)

a?

while jo(fg [5]'(5) =0 for £ > 0. As before, both expressions are equal at £ = 0.
The remaining statements follow easily from inspection of the explicit expressions (5.42)-(5.45).

1
For any a > 7, we can hence explicitly evaluate (5.27) as
MBI = o [458 1810 + [ B,0)T D)6 o]
HE = aeve ¢ = S0 [4,582, 060 + [7 B0)7 21 0]
(5.62)
In addition, a direct computation shows that
MEGV(©) = aMEIBIE) — X2 jLo Ajsign(r))o(€ + ) Linin{—r,,0) <e<max{-r;.0)
- f:j B;(1)sign(9)6(€ + V) Limin{—0,0} <¢ <max{—v.0} 49
HE = aeve[e = 2 4T BIE) + [ 5,011 a0)]
(5.63)

for £ € R\ R. Inspection of these identities readily yields the following result.

Lemma 5.11. Consider a bounded linear operator L : C([Fmin, "max); B) — B that satisfies (hF)L;B
and pick a > n. Then for any sufficiently small € > 0, the map

L2([enins Tmax; B) 3 6 = M2[9] € BC,(R; B) N BC,, (B) N BC, (B) (5.64)

is well-defined and bounded.
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Upon fizing € C([Fmin, 0]; B) x C([0, Tmax]; B), the function M2 [¢] is continuously differentiable
on R\ R. For{ € (—00,0) \ R, we have

M) = aM2[G)() = X, o0 AjB(E + 7)1 r ceco
e B ()3 + ) d

= 2150 s ey B
L~ aeve € = Tl [A, L 101N + /2 B, )L [6)€) ] .

(5.65)
while for £ € (0,00) \ R we have
MEG(E) = aMEBIE) + 30, o AjoE +r)Locear,
FE o [ By@)3(E + ) v
L~ aeve € = TLy [ATEL10E) + 2 B;0)TL01(€) av) |-
(5.66)
In particular, for r; <0 we have the jump
M2, (=) = M2 ) (7)) = —A;6(07), (5.67)
while for r; > 0 we have
[M2) (=) — M) (—r7) = —A;6(0%). (5.68)
In addition, the discontinuity at & = 0 is given by
N
MO = MEJO) = 3 400 + Y Ao+ Y [ 7 Bi@)s@)do. (5.69)
r; <0 r; >0 j=0"9%;
Finally, upon introducing the expression
Hz [6)(6) = MG[G]'(€) — Leve M 4] (5.70)
for £ € R\ R, we have
Haz[0(€) = —ilo(L—a)eve[¢ = (L—a)evele” — A;T)[4](¢")]]
— N (L= a)eve € (L — a)eve € — [ B;(0) T, [B1(€M]
I (5.71)

N . ~
— D=0 A;8ign(r;)¢(€ + 5) Liin{—r; 0} <t <max{—r;,0}

st . ~
- Zj\f:o fsi Bj (ﬁ)SIgn(ﬂ)(b(f + 19)1min{—19,0}<§<max{—19,0} dv

for all such &.

Observe that the right-hand side of (5.71) admits the same jump discontinuities as M2 [@]’, which
are described in (5.67)-(5.69).

Lemma 5.12. Consider a bounded linear operator L : C([Imin, Tmax); B) — B that satisfies (bF), .
suppose that Ar(z) € L(B; B) is invertible for all z € C with Re z = n and pick a > 1. Then for any

sufficiently small € > 0, the maps
B3v +— RLv] €BC,(R;B)N BC, . (B)N BC’;F_e(B), (5.72)
B>v — RL] € BC,(R;B)NBC,, (B)NBC} (B) '
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together with

2 Tmins "max|> o = g +_ ’
L] 1:B) 3 ¢ [di] (R B) N BC,H_G(B) N BCn (B) (5.73)

2
L*([rmins rmax); B) 26— R2[4] € BC,(R; B) N BC,, (B) N BC;_(B)

are all well-defined and bounded.
Upon fizing ¢ € C([rmin, 0]; B) x C([0, "max]; B) together with v € B and writing

Hry[](§) = RAW]'(€) — Leve Ry v,
~ ~ ~ (5.74)
Hrz[0](§) = RI[¢]'(§) — Leve RA[4]
for any € € R, we have the identity
Hri[](€) = —(L—a)eve[€ = (L —a)eve [€" s &"e™" H(—€")0]] (5.75)

together with
Hrz[8(€) = SN o(L—a)eve[€ v (L —a)eve[e” — A; T3 8)(€")]]
FE (L - aleve € = (L= aeverle” = [ BT I(E" )]

(5.76)
for all £ e R.
Proof. As a consequence of Cauchy-Schwartz, we can find € > 0 and K > 1 so that
H<(e—z*70), ) 0)>LHZS < . (5.77)
holds for all z € C with |[Rez — 1| < e. On account of Lemma 5.7, we see that the function
z = (L4 D) [1RLa (2 5. (5.78)

is in both L(n + iR) and L'(n 4 € + iR). The estimates in Lemma 5.7 also allow us to shift the
integration path from Rez = n to Rez = n £ ¢, which guarantees the inclusions (5.72) and (5.73).
The identities (5.75) and (5.76) now follow from the computation

z—Le* —Le* ) (Le* —
AL(Z)RL;Q(Z) = I- zfa - L cizz(oz)Z o 5.79
(Le? —a)? (5.79)
I CETIEN
O

We have now studied all of the terms in (5.28) in considerable detail. Combining these results,
we arrive at the following characterization of the operator 77,.

Proposition 5.13. Consider a bounded linear operator L : C([Fmin, "max); B) — B that satisfies
(hF) ;.5 and suppose that Ap(z) € L(B;B) is invertible for all z € C with Rez = 1. Then for any
sufficiently small € > 0, the map

L2([rains Tmax): B) % B 3 (6,0) = Tp[,0] € BC;,.(B) N BC,_(B) (5.80)

is well-defined and bounded.
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Upon fizing ¢ € C([Fmin, 0]; B) x C([0, rmax); B) and v € B, we have the jump discontinuity
g, 0] (0F) = T [, 0](07) = 0. (5.81)
In addition, TLW[;Z)\, v] is continuously differentiable on R\'R. Forr; <0, the derivative has the jump
TL’W[¢, v](—r;f) — ’TL’m[qS, v](—r;) = Ajv—A;¢(07), (5.82)
while for r; > 0 we have
TL 6,0 (=) = T [0, 0] (=15 ) = Ajv — A;(07). (5.83)
On the other hand, we have

T} [0, 0)(0%) = T}, [6,0](07) = z“mj%w+z“mj&m+zWiAv

(5.84)
—i—ZJ Of B B(0) do.
Finally, consider for any £ € R\ R the expression
HTL;w [g? ’U](g) = TL;W[$’ U}/(f) - Zé{’vﬁ TL;n[$7 ’U]. (585)
Then for any £ € (—00,0) \ R we have
HTLm [(ga ’U} (5) = - er>0 A](g(f + rj)]'—""j <£<0
max{s}, 5} . (5.86)
_ZS;—>O max{s‘ —€} ( )(]5(5—{-’[9)
while for any £ € (0,00) \ R we have
Hr,,[6,0)(6) = + 2 ;<0 A;O(€+ 7)) 1ocecr,
min{s;r7—§} ~ (587)
+ Es; <0 min{sf,f,f} B] (19)¢(€ + ?9) d’lg
In particular, for r; <0 we have the jump
HTL;n [(Ea U]( ) HTL n [(b? ]( ) = _Aj ¢( ) (588)
while for r; > 0 we have the jump
Hr,,,[6,0)(=rf) = Hr, ,6,0](=r}) = —A;0(07). (5.89)
In addition, at & = 0 we have the discontinuity
N st
HTL;T,[¢7’U]( ) Hr, in (ba Z AJ¢ rj )+ Z Aj(b rj Z/ B (19)¢(79) dd. (590)
r; <0 ;>0 J
Proof. For all £ € R\ R we can compute
Hr, 0,06 = =Yg Ajsign(r) (€ + 1) Linin(—r, 0)<e<max(—r,.0)
(5.91)

sT . ~
Z;‘vzo fsf Bj (ﬁ)SlgH(ﬂ)gﬁ(g + 19)1111in(—19,0)<§<max(—19,0) dd.
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For £ € (0,00) \ R this reduces to

My, [6,01(6) = 3, 0 Aj0(€ +75)locecr,
o (5.92)
+ Zs; <0 fsi B;(0)$(€§ + ) 1ocec—vg dV,
while for £ € (—o00,0) \ R we obtain
HTL;n [(Eﬂ U](f) = - er >0 AJ(Z(g + /rj)l*'rj <€<0
o+ - (5.93)
- Esj*>0 fsz Bj(9)¢(€ + 7)1 _y<g<o dV.
Further inspection of the integral terms leads to (5.86) and (5.87). O

Formally one can say that the functions TL;n[q/ﬁ\, v]" and Hr, [q/b\, v] inherit the 6(£)v component at
¢ = 0 from the functions M/ [v]" and Haq [v].

Proof of Lemma 5.1. The statements follow immediately from Proposition 5.13. O

Proof of Lemma 5.2. Since H is finite-dimensional, the Ascoli-Arzela theorem can be used to obtain

~

the desired compactness properties, exploiting the explicit expressions for M2 [¢] obtained in Lemma
5.11 together with the observation that

¢ — evoR[6] (5.94)

is a bounded map. O
Proof of Proposition 2.2. The Green’s function G r(n) can be defined by writing

Gr(n) = ME[o] + Ryfv] = Toy[0, 0], (5.95)

The desired properties all follow directly from Proposition 5.13. O

5.2 Laplace transform

Our goal here is to use the Laplace transform to prove the representations in Proposition 5.3 for

~ ~ P .
functions in Pr(n) and Qr(n). For any ¥ € BC' (n) and any z € C with Rez > 17, we therefore
introduce the Laplace transform

i) = [ e de (5.96)
0
In addition, for any Z € EE’S and any z € C with Rez < n we write
—o0
T_(2)= / e *CB(€) de. (5.97)
0
Lemma 5.14. Fiz n € R together with a Hilbert space H. Then for any y € EE’?(H) and y4 > 1,

we have

_ I QAL
9O = 5 dm [ R (5.98)
Y
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for almost all £ > 0. In addition, if §' is continuous on (0,00) \ R, then

/0 TG (0) = 2 (2) - 90 (5.99)

for all Rez > n.
On the other hand, for any T € EE’?(H) and y_ < n we have

1 ~
M= [, TR (5.100)

for almost all £ < 0. In addition, if ' is continuous on (—o00,0) \ R, then

/0 T e (€)= 25 () — 5(07) (5.101)

for all Rez < n.

Proof. The statements for y follow from the pointwise almost-everywhere convergence of inverse
Fourier transforms for functions in L?(R;H); see e.g. [15]. To verify the statements for Z, assume
without loss that 7y = —7max and write

(€)= 7(=¢). (5.102)
Note that @ € 1/3565,,, with
wi(z) = [y e Sw()de
= W e—ﬁza(_g) “ (5.103)
I fo 66 Z5 df'

= —Z_(-2)

after substituting ¢’ = —¢. Picking vy > —n, we find that

(&) = w(=¢)
= = limg oo f’”—:}?e 2wy (2) dz
= —5t limo_.s fwﬂge &7 _(—2)dz (5.104)
= olimg oo [~ ,;y:+7gl 7 F_(2)d2
= —5-limg . fV HQ ¥ T () d2
for almost all £ < 0, in which we have used 2’ = —z and 7_ = —v; <.
The expressions (5.99) and (5.101) follow in a standard fashion upon integrating by parts on the
intervals where 7’ and 7’ are continuous. O

Let us now consider two functions q € ﬁL(n) and p € ‘ﬁL (n). Taking the appropriate Laplace
transforms, we find

24 (2) —q0t) = Y, [Aj [ e #6G(E + ry) dE + f?f Bj(0) [5° e #q(& + o) dE do
Yo Aje (@ (2) + ) el >dr>

+Zﬁiof5j_f' Bj(0)e* (G, (2) + [ e *q(r) dr) do,

(5.105)

47



together with
() —p07) = Y, [Aj % e pE + 7y) dE + f+ Bj(0) [y e *#p(¢ + o) dE do
= Yilo e (p-(2) + [y, e Th(r) dr)

+ Zj-\;o f:g Bj(0)e* (p—(z) + f: e *p(7) dr) do.

(5.106)
Rearranging, we obtain
sT ~
AL(2)in(z) = G0%)+ 5, [Ae* [ e *7q(r)dr + [ Bj(o)e*” [} e=*7q(r) dr do]
= _Z*‘ SV a0l +
<(€ 71)7(eVOQ7q<O ))>L’
(5.107)
together with
st .
Ap(2)p-(2) = PO7)+ 500 [Aje™ [ e B(r) dr + 2 By(0)e™ [, e=7i(r) dr do]
= == 1), (01, p(07)) ) .
<(€ ) )7(eVOp»p(0 ))>L
(5.108)

Proof of Proposition 5.3. First of all, we note that Ap(z) = z 4+ O(1) as Imz — oo, uniformly in
vertical strips of the complex plane. In particular, there is € > 0 so that Ay (z) is invertible for all z
in the vertical strip |[Rez — | < 2e.

Possibly excluding a set ¢ € £ of measure zero, the identities (5.9) and (5.10) with 77, replaced
by Tr.p+e respectively 77, now follow from Lemma 5.14 and the identities (5.107) and (5.108) for
7.() and p_(2)

To show that £ = ), we can invoke Lemma 5.1 to argue that the left and right hand sides of
(5.9) and (5.10) are both continuous. In addition, the bound

|AL(z ):O(|z|_1) as Imz — oo, (5.109)

-1
) ||£(H;H
which holds uniformly in vertical strips of the complex plane, implies that the integration paths in

(5.98) and (5.100) can both be shifted to the line Rez = 1. O

5.3 Projection operators

The preparations in §5.1 and §5.2 allow us to establish the remaining technical results of this section.
In particular, we can use the explicit form of the extension operators EQL(n) and Ep, ) to show

that they play a dual role as the projection operators associated to the desired exponential splitting
of the state space C([rmin, "max); H)-

Proof of Proposition 5.5. Fix a ¢ € C([rmin, 0]; B) X C([0, 7max); B) and write

Mg, (&) = [Big, @)/ (&) — LéveEy, () (5.110)

for £ € (0,00) \ R, together with

Hpy (&) = [Ep, )@ (€) = L&cEp, ) (5.111)
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for £ € (—00,0) \ R. Inspection of the identities (5.12) and (5.87) shows that for all £ € (0,00) \ R
we have

Mg, (&) = Hri,[6,6(00)](€)

—~ st ~
- er<0 Ajp(E+7i)locec—r, — Zs; <0 fS—J B (9)$(€ + ) 1oce< 9 di
— O,
(5.112)

which together with the bounds in Proposition 5.13 yields the inclusion EQL(n)a o) L:8(n) and the
bounds (5.17). In addition, inspection of (5.13) and (5.86) shows that

Hp, (&) = —Hz,[6,6(07)](€)

. o ~
=250 A0+ )1 ceco = 2o J 2 Bi(@)o(E+ D)1 y<eco dd
= 0,
(5.113)

which now guarantees the inclusion EPL(U);Z/)\ eP 1;8(n) together with the bounds (5.18). O

Proof of Proposition 5.6. Combining Corollary 5.4 and Proposition 5.5, we have the characteriza-
tions

PL (77) = {d) € C([Tminv Tmax]; H) : ¢ = eVOEbL(n)¢}7

(5.114)
Qun) = {6 € Cllrmin, rmaxli H) : & = evoEg, 6}

This immediately implies that Pr(n) and Qr(n) are closed.
In addition, we can inspect (5.12) and (5.13) to find that for any ¢ € C([rmin, Tmax|; H) we have

¢(§) = evoEy, (,® +evoEp 0. (5.115)
This shows that Pr(n) + Qr(7) = C([Fmin, "max); H). In addition, if ¢ € Pr(n) N Qr(n), this identity
gives ¢ = 2¢ which is only possible if ¢ = 0. O
Proof of Theorem 2.1. The statements are a subset of those in Proposition 5.6. O

Proof of Theorem 2.3. The statements follow directly from the fact that for any v € H, we have
Gr(n) € Qr(n) and GL(n) € B (n). In particular, for any § € Qr(n) we have that

q— &0 GLlg(0") — q(07)] € Qrn). (5.116)
O

6 Finite dimensional MFDEs

In this section we set out to prove the results in §3.1 concerning the restriction operators (3.5) in the
finite dimensional case H = R". In §6.1 we establish Proposition 3.1, developing a technique that
exploits our explicit representation of the symbol 7., introduced in §5. This provides an alternative
for the more abstract arguments employed in [20]. In §6.2 we investigate the non-degeneracy of
the Hale inner product and use it to establish the characterizations of Qr(n) and Pp(n) stated in
Proposition 3.4. We also prove Theorem 3.5, up to an index formula that mixes L with its formal
adjoint L,. This formula is derived in §6.3, where we exploit the ideas introduced in [20] for non-
autonomous MFDEs.
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6.1 Fredholm properties

It turns out that the desired Fredholm properties for the restriction operators (3.5) all follow easily
from the corresponding properties for

T o) . LR n ~+ D n on
WQL(n) : QL(n) — C([Tmln,o]vR ) x R s WPL(H) : PL(T]) — R™ x C([O,Tmax],R ) (61)

We hence focus on these two operators here. For convenience, we recall the definitions

~

]E:Qm) = Range(Tg () EC([rmm,O];R ) x R", 62
Ke oy = Ker(WQL(W)) CQr(n)

together with
Rt =t n RN
IEPL(U) Range<7TPL (77)) ER x C([0, rmax]; R™), 63)
Kp o = Ker(®p (m) C Pr(n).

Lemma 6.1. Write H = R" for some integer n > 1 and consider a bounded linear operator L :
C([Tmin, "max); H) — H that satisfies (HF),. Choose n € R in such a way that the characteristic

equation det A (z) = 0 admits no roots with Re z = 1. Then the kernels I/(\'; - and I/(\'é () O both
'L (7 (7

finite dimensional and the ranges E; ) and E(_Q () 9T both closed.
L L

Proof. We focus here on T, (n)’

venience, we introduce the notation

noting that the statements for %E ) follow analogously. For con-
L

evy =T €V, evy = mtév, (6.4)
together with ¢ = (¢, ¢") for ¢ € C([Fmin, 0]; R™) x C([0, rmax); R") and
¢~ =evyd € C[rmim, O;R™), ¢ =evid € C([0, rmax); R?). (6.5)

In such cases we often replace the expression TLm[QAS, v] defined in (5.3) by T7.,[¢~, ¢, v] for explic-
itness. R
Inspection of (5.12) shows that ¢ = (¢, q") € Qr(n) if and only if

¢ = ¢ tevgTiyla ¢, (0)] (6.6)
holds, together with
¢ = evgTuyla,q".q7(0)]: (6.7)
Observe that (6.7) is equivalent to
[I —eva T1.4[0, -, 0]] (¢7) = evd Tr.nlg~, 0,47 (0)]. (6.8)
Since eva' 7.y is a compact operator by Lemma 5.2, we see that the bounded linear map
[ — evi 000, -,0]] + C([0, 7rmax; R™) — C([0, Pmax]; R™) (6.9)
is Fredholm. In particular, for some integer d > 0 there exist compact bounded linear operators

Ly : C([rmin, O; R™) X R™ — C([0, rmax); R™), Ly :RY — C([0, rmax]; R™) (6.10)
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so that a pair ¢ = (¢7,¢") € C([Tmin, 0]; R"™) x C([0, rmax); R™) satisfies (6.7) if and only if
q"=Li(g,q7(0)) + Lok (6.11)

holds for some x € R?. R
In summary, we see that § = (¢, ¢%) € Qr(n) if and only if there exists x € R? so that

gt = Li(q7,q7(0)) + L2k,

(6.12)
0 = evgTugle, Li(q7,q7(0)) + Lok, ¢+ (0)]

both hold.
We now introduce the bounded linear operator Lz : RY — C([rmin, 0]; R™) x R” that acts as

Lyk = <engLm[o, Lok, 0], [LQE](O)). (6.13)
Write K, = Ker(Lg) and pick a subspace KfB C R? so that
R =K, ® Kf,. (6.14)
By inspection we readily obtain the characterization
f(éL o = Ker@p )= (0, La(KL,)). (6.15)

In addition, for any (¢~,v) € C([Fmin, 0]; R™) x R™ we see that (¢—,v) € ﬁé - if and only if
L

evy Tomlo ™, Li(d,v) + Lokt 0] = 0, (6.16)
[L1(¢™,v) + Lot (0) = v
both hold for some s+ € K 53. In particular, we then have
(67 v)=7"7q (6.17)
with
7= (¢7,Li(q",v) + Lar™) € Qrn). (6.18)
Suppose now that (6.16) holds for k+ = ki € K7, and also k' = k3 € Ki-s. Inspecting (6.13) we

then see L3(ki) = Lz(k3 ), which implies that ki — k3 € K, and hence ki = k5. In particular, if

it exists, K+ € Kf3 in (6.16) depends uniquely and linearly on (¢, v).

We now claim that this dependence is also bounded. To see this, consider a sequence {(;5;, v, /—@j‘}
of solutions to (6.16) with ¢; € C([rmin, 0; R™), v; € R™ and f-zjl € KLLS. Suppose also that HQSJ_H +
|v;] = 1. It now suffices to show that /{j‘ is bounded. Supposing to the contrary that |/<cj-| — 00,

. -1
there exists a non-zero k. € K7, so that a subsequence of the bounded set {|x;| " ki} C KF,

converges to k, € K7, while (0,0, x,) is a solution to (6.16). This contradicts the uniqueness claim
above, as (0,0,0) also satisfies (6.16).

A

To see that RQL(U) is closed, consider a sequence {(¢;,v;)} € R(QL(n) for which

(05,05) = (¢s,v4) € C([rmin, O; R™) x R™. (6.19)

1yoco
J Ji=1
(05,5, /{j‘) satisfies (6.16). After passing to a subsequence, we have the convergence /ij- — ki, which

by continuity implies that (¢., v, k) also satisfies (6.16). This shows that (¢.,v,) € ﬁé = O
L

The discussion above allows us to pick a bounded sequence {x Cc K 1%_3 in such a way that
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The result above implies that we can find spaces

~ ~ . ~
Ty CP2lm, Ty () € Qrlm) (6.20)

so that we have the decompositions

D _ it T+ 2) - Ti—

PLin) = Kp, ) @ T,y Qe =Ky () @ Ty, (6.21)
The maps

~+ NGaAs p+ == .= p—

o oo 7 Bhy Toum T T Rowwm (6.22)

are now invertible with bounded inverses.

Lemma 6.2. Write H = R" for some integer n > 1 and consider a bounded linear operator L :
C([Tmin, "max); H) — H that satisfies (HF),. Choose n € R in such a way that the characteristic
equation det A (z) = 0 admits no roots with Re z = n. Then the operators

—[a+ —1 . D+ . RPN

L 623
+ [~ —1 . D— .TRPN :

T [TFQL(n)] : R‘QL(U) — C([0, rmax); R™)

are both compact.

Proof. The result follows by inspection of (6.17)-(6.18), recalling from the proof of Lemma 6.1 that

k™t is a bounded linear function of (¢~,v) and that L; and L, are compact operators. O

Lemma 6.3. Suppose that X, Y and Z are three Banach spaces and that A : X — Y and B:)Y — Z
are Fredholm operators. Then BA : X — Z is also Fredholm with

ind(BA) = ind(A) + ind(B). (6.24)

In particular, if X C Y is a closed subspace of finite codimension, then the restriction Bjy : X — Z
is Fredholm with

ind(B|x) = ind(B) — codimy (X). (6.25)

Proof. See [20, Eq. (3.10)]. O

+
pL (m)
technique developed by Mallet-Paret and Verduyn-Lunel in the proof of [20, Thm. 3.4].

In order to obtain information concerning the codimensions of R and ]%:Q ()’ we adapt a
L

Lemma 6.4. Write H = R" for some integer n > 1 and consider a bounded linear operator L :
C([Tmin, "max); H) — H that satisfies (HF),. Choose n € R in such a way that the characteristic
equation det A (z) = 0 admits no roots with Re z = n. Then the inclusions

C R™ x C([0, rmax]; R™), R

nt
R b

br(n) C C([rmin, 0; R") x R (6.26)

both have finite codimension, which means that the two operators in (6.1) are both Fredholm. In
addition, we have the identity

. o~ . /\Jr
1nd(7r(9L (n)) +ind(7y

L(n)) = —n. (6.27)
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Proof. Consider the Banach space
X = C([rmin, "max); R") x R" x R" (6.28)

together with the bounded linear map

J.: Qu(n) @ PL(n) — X (6.29)
that acts as
7.@0) = (7-Cumlao*) -0"),[a(o") —§(07),0),
R (6.30)
J0.5) = (5 Culp0¥) —p07)],0,[H(0%) —5(07)).

Exploiting the fact that Pr(n) ® QL (1) = C([Fmin, "max); R™), the representations (2.32) imply that
J. is a bijection.
We now introduce the bounded linear map

T: Ry % R;L(n) — X (6.31)
that acts as
T((67 ). (w,6h) = F([Fp, )7 07 )7, )7 (w.6h)). (6.32)

-1

We see that T is injective because 7, and the inverses [%é (n)]_l and [%; (n)] are all injective. In
L L

particular, the Fredholm index of T is

ind(T) = —codim Range(T) = —dim I?éL(n) — dim I?;L(n). (6.33)
Introducing the Banach space
Y = C([Fmin, 0; R™) x C([0, max); R") x R™ x R™ (6.34)
together with the operators
Iy X =), Iy X =Y (6.35)
that act as
(o, v,w) = (eva¢, evy o, v, w),
R N (6.36)
L(¢,v,w) = Ti(dv,w) + ([evg Crin)] v+ w), [evi Gr(m] (v +w),0,0),
we see that Zo — 77 is compact and that
Io(p,v,w) = (evafb + [evgé,;(n)} (v + w), eva'(b + [evg@L(n)] (v+w),v, w) (6.37)
In particular, since Z; is injective and Z; (X)) has codimension n in ), we see that
ind(Z3) = ind(Z;) = —n. (6.38)
Notice that
LI@0) = (evg devi 4 (3(0%) - (07).0), o0
LJ.0,5) = (evg bevi 5.0, (50) = 5(07))), |
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which yields

LT((07 ). (w,6h) = (67 +n[7h, | w.oh).6" + 77y 1767 0),

(6.40)
v—67(0),6*(0) —w).
Let us rewrite this as
LT((67,0), (,61)) = Lil(67,0), (w,6")] + L[(67,v), (1, 67)] (6.41)
for two operators
Li: Ry, % Rp, ) =Y, Ls: Ry, % Bp, () =Y, (6.42)
in which L, acts as
La[(¢7,0), (w,¢T)] = (¢7, 6", v,w). (6.43)

Inspecting (6.40) and applying Lemma 6.2, we see that Ls is a compact operator. In addition, it
follows from (6.43) that L4 is injective with Fredholm index

. _ . D— . . D+
ind(L4) = —codim R(QL(n) codim RPL(n)' (6.44)
In particular, we may compute
. . _ _ _ . 55— _ . o+
ind(T) — n = ind(ZoT) = ind(Ly4) codim RQL(n) codim RPL " (6.45)
Comparing (6.33) with (6.45), we find
. >— . >+ _ _ . D— . D+
dim K(QL("']) + dim KPL = ind(7T) n + codim RQL(n) + codim RPL ) (6.46)
and so
. ~— . /\+ _
1nd(7r(9L(n)) + md(ﬂ-PL(n)) = —n. (6.47)
O

Lemma 6.5. Write H = R" for some integer n > 1 and consider a bounded linear operator L :
C([Tmin, "max); H) — H that satisfies (HF),. Choose n € R in such a way that the characteristic
equation det A (z) = 0 admits no roots with Re z = n. Then the operators

~

T QL) = C([ramin, O R™),

Z " (6.48)
TFQL(U) : QL(U) - C([Tmina O]vR )
and
+ . D LN
7TF’L(ﬂ) tPr(n) —  C([0, rmax]; R™), (6.49)
W;L(n) :Pr(m) —  C([0,7max); R™)
are all Fredholm. In addition, we have the identities
ind(mg, ) = 1nd(7r(9L(n)) —n= 1nd(7r(9L(n)), (6.50)
together with
. + I + _ - /\+
ind(7p, () = 1nd(7rpL(n)) n = lnd(ﬂ-pL('fl)). (6.51)
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Proof. Note first that the projection

- C([Tmina O]; R™) x R" — O([Tminv 0}5 R™), (¢, v) — ¢ (6.52)
is Fredholm with index n. Since ooy = ™7, () Lemma 6.3 implies that T, (n) is Fredholm
with index

ind(ﬂ'éL(n)) =n+ ind(%éL(n)). (6.53)

In addition, since the inclusion Qy,(n) C @L (n) has codimension n, we can again use Lemma 6.3 to
conclude that

WéL(y]) = [ﬂ-éL(n)hQL(n) (6.54)

is Fredholm with index
ind(ﬂ'gh(n)) = ind(wéL(m) —n. (6.55)
The statements concerning Py (1) and Py (n) follow in a similar fashion. O
Proof of Proposition 3.1. The statements follow directly from Lemma’s 6.4 and 6.5. O

6.2 The Hale inner product

Our first focus here is the non-degeneracy of the Hale inner product. We cannot directly follow the
approach in [20, §5] because (HRnk), is weaker then the atomicity condition employed there. As a
preparation, we need to rule out non-zero elements of Br,(n) and Qr,(n) that decay at a rate faster
than any exponential.

Lemma 6.6. Write H = R" for some integer n > 1 and consider a bounded linear operator L :
C([Tmin, Tmax); H) — H that satisfies both (HF), and (HRnk), . Then we have the trivial intersections

N Pty ={0}, ) Qwin ={o}. (6.56)

neRrR neR

Proof. Consider any q € mneR Q1 (n). By uniqueness of extensions there is a

yq € [ BCY(R™) (6.57)
neRrR

for which y;(§) = Leve y, holds for all £ > 0. In particular, we have limg_ ey, (€) = 0 for all
n € R. The proof of [20, Lem 5.6] can be repeated to show that one must have y, = 0. Indeed,
this proposition uses an atomicity condition that is stricter than (HRnk),. However, this stricter
condition [20, Eq. (2.3)] is only used to verify the conditions associated with a Phragmén-Lindelof
theorem [17, Thm. I.21]. This theorem asserts that entire functions that grow at most exponentially
on C and polynomially on the real and imaginary axes, are in fact polynomials. Allowing s+ > 0 in
(3.29)-(3.30) does not destroy these required growth estimates. O

Our explicit characterization of Pr(n) and Qr(n) in §5 is the key that allows us to exploit the
result above to obtain the non-degeneracy of the Hale inner product.

Lemma 6.7. Write H = R" for some integer n > 1 and consider a bounded linear operator L :
C([rmin, "max); H) — H that both satisfies (HF), and (HRuk),. Then the Hale inner product is
nondegenerate, in the sense that ¢ = 0 is the only ¢ € C([Tmin, Tmax); R™) for which

()L =0 (6.58)
holds for all v € C([—Tmax, —"min); R™).
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Proof. For any ¢ € C([rmin, "max); R™) that satisfies the conditions in the statement, we see that

(700 = (721, (0.0007)), = (1), (6.0(07) ), =0 (659

for every z € C. In particular, if the characteristic equation det A (z) = 0 admits no roots with
Re z = n, then we have 77,,[¢, ¢(0)] = 0. In view of Proposition 5.5, this means that

evoBg, (;n¢ = (e $,0) € Qr(n),  evoEp ¢ = (0,evg¢) € Pr(n) (6.60)
for all such 1. When 7; < 12 we naturally have the inclusions
Qr(m) C Qu(ne),  Pr(nz2) C Pr(m), (6.61)
which means that (6.60) in fact holds for all n € R. In particular, we see that
(evg ¢,0) € [ Qrln (0,evie) € [ Pu(n (6.62)
neR neR
which in view of Lemma 6.6 implies that ¢ = 0. O

Proof of Proposition 3.3. The statements follow by applying Lemma 6.7 to the operators L, L~g
and L<0. O

The following technical result clarifies the relation between L and L, induced by the Hale inner
product. For convenience, we introduce the notation eAVZ to refer to the evaluation operator that
arises by making the substitutions 7min — —7rmax and rmax — —rmin in the definition (2.21). This
accounts for the fact that the natural statespace for Ly is C'([—"max, —"min); R™).

Lemma 6.8. Write H = R" for some integer n > 1 and consider a bounded linear operator L :
C([Tmin, "max); H) — H that satisfies (HF), . Consider two functions

¥ € C([rmin, 0; R™) x C ([0, 00); R"), z € C([~Tmax, 0; R™) x C([0,00); R™) (6.63)
and write Hpp : [0,00) — R for the function defined by
Hyp(€) = (V¢ 2,2(6)), (v 7.5(E7) ) - (6.64)

Then Hyy, is continuous on [0,00). In addition, if ¥ and Z are also in Cl((O, 00) \ R; R"), then
in fact Hyp is differentiable whenever & € (0,00) \ R. For any such &, we have

Hy(€) = 2(€)°[5'(€) — Leved) + [£'(6) — L. &v; 25 (¢). (6.65)
Proof. We note that for £ > 0 we have
Hyp(€) = Z(E7)G(EH) - z” 5*” 2(r —1j)* Ay dr
o R (6.66)
—Zj Of f 0)*B;(0)y(T) dr do,

which implies that Hpp is indeed continuous on [0, 00). In addition, for very £ € (0,00) \ R we may
compute

Hyo(€) = 256 + 297 (©)
-k o[3(5)*Aj§(€+rj)*E(Sfrj)*Ajﬁ(é)] (6.67)
SN0 7 (37 BT + ) 3 — ) B(0)7(6)) do

which reduces to the desired expression. O
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Using the non-degeneracy of the Hale inner product, we can establish the representations (3.36)-
(3.37) in Proposition 3.4. In order to appreciate the exponents —n appearing in these expressions,
we note that

Ap,(2) = Z+ZJ OA* e~ #Ti J'_f_T:l:B o) e do
24 Y0y Afe 4 [T B(o) e *do (6.68)
= [+ X Aje T 4 [ Blo)e ™ 7do]”
= —AL(—Z*)*.

Proof of Proposition 3.4. Applying Lemma 6.8 with 2z = Ey, (777)7,; and y = E(QL(U)QAS shows that
(3.37) holds if one replaces the equality signs by the left inclusion C. In order to show the identities
for Qr(n) in (3.37), it hence suffices to show that the inclusions

S C 8 C QL(U) (669)

hold for the sets

Si = {6€ Clrmin Tmari R 1 ((9.5(09)). (¢, 6(0)) ) =0 for all § € Qr.(—m)},
Sy = {¢ € C([rmins Tmax; R™) : (¢, ¢)r, =0 for all v € Qp, (—n)}.

The first inclusion is a consequence of Qr,, (—n) C @L* (—n). For any ¢ € S, we may write ¢ = p+q

with p € P(n) and ¢ € Qr(n). By the remarks above for (3.37) we know that Qr(n) C Sz, which

implies by linearity that also p = ¢ — g € Ss. The same remarks but now applied to Pr(n) and (3.36)

show that (p, )y = 0 for all ¢» € Pr, (—n). Since Q. (—n) ® Pr, (=) = C([~"max; —"min); R"), the

non-degeneracy of the Hale inner product implies that we must have p = 0, which gives ¢ € QL (n).
Turning to the identities for @ r(n) in (3.37), it suffices to show that the inclusions

§1 - §2 C @L(T]) (671)

(6.70)

hold for the sets

S = {6 € C([rmim,0);R") x C(0, rmax); R") :
((£.9(0M). (6.6(01)) =0 for all § € Q. ()},
S = {3 Cllrmm R x C([0, rma: R™) (6.72)

(. 0(0). (6.0(0%)) ), = 0 for all 4 € Q. (~n)}.

The first inclusion again follows from Q. (—n) C Q. (— ) Any ¢ € S, can be decomposed as
6=p+qwithp € Pp(n) and q € @L(n). Since QL( ) C S, we see that also p = ¢ — § € Sy. As
above, we have (p,v¢)r, = 0 for all ¥ € Pr_(—n), which again allows us to conclude p = 0 and hence
¢ € Q. (n). The identities (3.36) can be obtained in a similar fashion. O

We now turn our attention to Theorem 3.5, which we prove up to the index formula stated in
Proposition 6.10 below. As a reminder, we recall the shorthands

Rp oy = Range(my, (n)) EO([rmimO];Rn), -
Ko o = Ker(my () CQrln),

together with
Ry, .y = Range(rg, (1) C C([rmin, 0;R), oo
Kq,m = Ker(mg, () C QL)
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Lemma 6.9. Write H = R" for some integer n > 1 and consider a bounded linear operator L :
C([Tmin, Tmax); H) — H that both satisfies (HF), and (HRnk),. Choose n € R in such a way that
the characteristic equation det Ap(z) = 0 admits no roots with Re z = 1. We then have the inclusion

Ry, () € {6 € Cllrmin, OR") : (770, )1, =0 forall) € Ky}, (6.75)

together with

R:QL(n) C {¢ € C[rmm, O;R™) : (m*9, $)r, =0 forallp € Ky}
- ~ o~ 6.76
= {¢ € C([rmin,0;R") : <(7T+¢,0), (¢,¢(0))>L<0 =0 for all 4 € KéL*(fn)} 0
and finally
R c {(¢,v) € C([rmm,0];R™) x R™ :
(QL(W) (6.77)

((#0.001),(6,0)), =0 forall €Ky, 1}

Proof. To see (6.75), pick any ¢ € Ry, () and choose an arbitrary y € Qr(n) that has evy y = ¢.

~ ~
For any ¢ = (¢, ¢ )GK(QL*(*”]) we have

0= (D" 0), (evoy.y(0)) = (¥*.0),_. (6.78)

where the first identity follows from Proposition 3.4 and the second identity follows from the fact
that v~ = 0.

To see (6.76), first observe that K‘QL*(—U) =Kg,

Let us therefore pick any ¢ € Ré ) and choose an arbitrary § € Qr (n) that has ev, ¥ = ¢. For
L
any ¢ = (¢~,¢") € Kq,_(—n), Proposition 3.4 together with )~ = 0 and " (0) = 0 implies that

0 which allows us to focus on the first line.

0= (v (0), (evo7.501)) = W, B)uy. (6.79)

Finally, to establish (6.77), pick any (¢,v) € ]359 ) and an accompanying y € ﬁL(n) with
L
evy y=¢ and g(0") = v. For any v = (¢, ¢) € K@, (_y) We see that
0= ((B.50): (% 5.507)) = (v ). (6v)) . (6.80)
L L<o

in which the first identity follows from Proposition 3.4 and the second identity follows from the fact
that ¥~ = 0. O

Proposition 6.10 (see §6.3). Write H = R™ for some integer n > 1 and consider a bounded
linear operator L : C([rmin, rmax|; H) — H that satisfies both (HF),; and (HRnk),. Choose n € R in
such a way that the characteristic equation det Ap(z) = 0 admits no roots with Re z = n. Then we

have the identities
0 = ind(mg, ) +indlrg, () (6.81)
0 = indFg, ) +indlrg, )

Proof of Theorem 3.5. The inclusion (6.76) together with the non-degeneracy of (,)r_,, yields the
inequality

codim Ry, > dimKq, (). (6.82)
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On the other hand, applying (6.75) to L. yields

codim Rq, (—y = dim K@L(n)' (6.83)
In particular, we see that
ind (wéL(n)) = dim KQL(n) — codim RQL(n)
< codimRq, (—y) —dimKqg, (- (6.84)
= _ind<7TCSL* (*77))'

On account of Proposition 6.10 we see that all inequalities above are in fact equalities. Applying the
same argument to L., we may conclude that the inclusions in (6.75) and (6.76) are in fact identities.
In a similar fashion, we can use (6.76) and (6.77) to obtain

ind (%éL(n)) = dim I?(QL(”]) — codim EQL(”])
< codimRQL*(_n) — dimK@L*(_n) (6.85)
= —ind(my, )
On account of Proposition 6.10 we again see that the inequality above is in fact an equality, which
in turn shows that (6.76) and (6.77) are in fact identities. O

6.3 Index equations

Here we set out to establish Proposition 6.10. In order to further explore the relation between L and
L., we introduce two operators

Lt o C([rmin, Tmax); R™) — R™, Lo, : C([Tmin, "max); R") — R, (6.86)
that act as
st
Lo = Yo [A;6(r) + [ Bj(o)é(o)do],
N s (6.87)
Lux® = Yo [4;0(ri) + [ Bj(0)é(o) do].
Writing
LERRY) = {z€ Lj(R;R") : e7"a(-) € L2(R;R")}, (6.88)
W,}’OO(R;]R”) = {z¢€ Lg"(R;R") 12’ e LSIO(R; R™)},
with norms
lell s = e 2Ol lallwse = lalle + 12l e - (6.80)
we now combine the two operators (6.87) into a single non-autonomous mixed operator
. 1,00 . oo . RN
Ly : Wy (R;R™) — L (R;R™) (6.90)
that acts as
[Linxv](§) = v'(§) — Ly evev (6.91)
whenever £ < 0 and
[Lunxv](€) = v'(§) — L evev (6.92)
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for £ > 0. In addition, we introduce the solution spaces

Pux(n) = {z€BCYR"):a'(§) = Ly evex for all £ <0},
Qux(n) = {y€BCFR"):y(§) = L evey for all £ > 0}, (6.93)
Bux(n) = {b € Wnlvoo(R;R”) D [Lmxd](§) =0 for all € e R\ {0}},
together with the initial segment spaces
Pas(n) = {6 € C[rmins Tmaxli R?) 1 6 = evoa for some @ € P ()},
Qux(n) = {¢ € CO([Fmin; Tmax; R") 1 ¢ = evo y for some y € me(n)}7 (6.94)
Bux(n) = {¢ € C[rmin, Tmax); R™) : ¢ = evo b for some b € By (n) }.

Finally, for any interval Z C R and any function x : Z — R", we write
[Rev(x)](€) = z(—¢) (6.95)
for all £ € 7.

Lemma 6.11. Consider the setting of Proposition 6.10. Then Ly is Fredholm as a map from
W (R; R™) into Ly°(R;R™), with

ind(Lmx) = 0. (6.96)
In addition, we have the identifications
Qr.(=n) =Rev(Pux(n),  QL(1) = Qux(n). (6.97)
Proof. Seeking to employ a spectral flow argument, we introduce the expression
Au(z) = 2= L0(nA; + (1= m)A7)e™
N ot (6.95)
SN0 [ (uBi(o) + (1 - ) By (o) do
for 0 < p <1 and z € C. Note that
Ao(2) =Ap- (2), Ai(z) = A+ (2), (6.99)
while also
A, (27) = Au(z)". (6.100)

In particular, the net number of roots of det A, (z) = 0 that crosses the line Re z = n as p is increased
from zero to one is precisely zero. The spectral flow formula [19, Thm. C] hence yields (6.96).
The second identity in (6.97) is immediate as L}, = L. To see the first identity, pick any

v € Qp.(—n) and write w = Rev(v). We then see that w € BCZ(R™). In addition, for any £ < 0 we
may compute

w'(§) = —v'(=¢)
= Yoo [45u(—¢—r)+ f+ Bj(0)*v(—¢ — o) do] (6.101)
= il [Ajwie )+ f-+ Bj(0)*w(& + o) do],

which shows that w € P« (n). O
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In order to account for the possibility that the space Bumx(7) = Qmx(n) N Pmx(n) is non-trivial,
we need to introduce the normalized spaces

Bt (1) = {2 € Bune(n) = [0 e 270(€) 2(€)dE = 0 for all b € Bux(n) },
6.102
Qi t (1) = {y € Qux(n) : [~ e 2"b(¢ (f)df =0 for all b € Bpx(n)}, ( )
together with the initial segment spaces
Puxi(n) = {d) € C([rmin; Tmax]; R™) : ¢ = evg z for some z € ‘Bmx;l(n)},
6.103
me;l(n) = {(b € C([rmina Tmax]; Rn) : ¢ =€evoy for some Yy € me;J_(n)}‘ ( )

Our goal here is to mimic the non-autonomous theory developed in [20, §4] and apply it to the
operator L. As before, special care needs to be taken here because our non-degeneracy condition
(HRnk), is weaker than its counterpart in [20].

Proposition 6.12. Consider the setting of Proposition 6.10. Then the spaces Pux,1 (1), Qmx:1 (1)
and Bmx(n) are all closed subsets of C([Fmin, "max); R™) and the direct sum

SmX(n) = PmX;J-(n) S mez,l_(n) S2) BmX(n) (6-104)
is well-defined. In addition, Syx(n) is a closed subset of C([Fmin, Tmax); R™), with
codim Syx(n) = dim By« (n). (6.105)

Finally, we have the identities

me(n) = PmX;J_(n) S2) Bmx(ﬁ)> me(n) = me;l(n) ©® Bmx(’ﬂ) (6106)

and the index formula
md(ﬂ'P o) Tind(mg ) = —n. (6.107)

Proof. The idea is to apply the results from [20, §4] that lead up to [20, Cor. 4.7]. In our setting we
note that the Hale inner product associated to L« at £ = 0 is given by

W, O)mx = V(0)0(0) = X2, 50 Jo V(T — 1) A0(7) dT = 32, o Jo? V(T —15) " Afo(T) dT

S,J-r o *
min{0,sT}

- 257_ <0JgT ! fO B*( )¢(T) dT do—?

(6.108)
for ¢ € C([—"max, —"min); R™) and ¢ € C([Fmin, "max); R™). In particular, this can be written as
(¢, ¢) g for a suitably chosen L that satisfies (HF)g and (HRnk)g. This implies that the Hale inner
product (-, -)mx is non-degenerate in the sense of Proposition 3.3, which gives the analogue of [20,
Prop 4.16].

We now claim that there are no non-zero functions x € B« (n) that vanish on an interval of the

form [£p + Tmin, €0 + Tmax] for some & € R. To see this, note first that if £y > 0, the function Z that
has

I(§)7 f §§0+rmin7
z(€) =4 0, €0+ Tmin <€ <& + Tmax + T (6.109)
.’E(S—T), £Z£O+Tmax+T
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is also an element of B,x(n) for arbitrary T > 0. The finite dimensionality of B,x(n) now implies
that in fact 2(§) = 0 for all £ > &. In case & < 0, the same reasoning can be used to show that
z(€) =0 for all £ < &.

Furthermore, we note that the identifications (6.97) together with Lemma 6.6 imply that

ﬂ me(n) = {0}7 ﬂ Qux(n) = {O} (6'110)

In particular, we see that if & > 0, the function x must vanish on [rmy,, 00), which allows us to take
& = 0. Similarly, if £, < 0, the function x must vanish on (—o00, rmax], which again allows us to take
&o = 0. In particular, we obtain the contradiction x = 0. This gives the analogue of [20, Prop 4.9].
With these obstacles removed, the relevant theory developed in [20, §4] can be generalized to
our setting, which readily yields the desired properties. In the codimension formula (6.105) and the
index formula (6.107), we exploit the fact that ind(Lpx) = 0. O

Proof of Proposition 6.10. Using Lemma 6.11 we see that
ind(rg,, () =ind(r} ), ind(rg, ) =nd(r, ) (6.111)
In particular, (6.107) gives
ind(mg, () +ind(mg, ) = —n. (6.112)

The desired expressions now follow directly from Lemma 6.5. O

7 Algebraic Systems

In this section we study the differential-algebraic system (2.35), allowing both H = R™ and H =
(?(Z;R™). We start by studying the associated characteristic functions in §7.1, focussing on explicit
techniques to divide and multiply such functions by factors of (z — a). As can be seen from §4, these
results are useful by their own right.

In §7.2 however we exploit these root extraction techniques to establish the exponential splittings
for (2.35) described in Theorem 2.5, slightly generalizing the approach in [4]. Finally, in §7.3 we study
scalar algebraic equations and show how the Wiener-Hopf factorizations for differential systems can
be coupled to the techniques from §7.1, allowing us to establish the results stated in §3.3.

7.1 Characteristic equations

Throughout this section we fix two Hilbert spaces H; and Hy. We are interested in bounded linear
operators

L : C([rmin, "max); H1) — Ha (7.1)
that satisfy one of the two conditions below.

(hF)L,H1 Ho We have rmin < 0 < rpax. There exists an integer N > 0 together with real numbers

Tmin =70 <71 < ... <IN = Tmax;  Tmin < 8; <87 < Fmax (7.2)
and operators
AL;j € L(H1;Ha), Br; € C([s7,s7]; L(Hi; Hz)), (7.3)

defined for 0 < 7 < N, so that
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(hFin)y, 7, We have rmin < 0 < ryax and there exist integers m > 0 and n > 0 so that H; = R™ and
HQ — R™.

Let us recall the set NBV([Fmin, Tmin]; R"*™) that consists of all R™*"-valued functions ¢ that
are right-continuous on (7min, "max ), are normalized to have ((rmyin) = 0 and have bounded variation
on [Tmin, Tmax); see [5, App. I]. If (HFin),, ,, is satisfied, there exists a unique

¢z € NBV([rmin, Tmax); R™*™) (7.5)

so that

Tmax

Lo = dCr(o)9(0). (7.6)
T'min
We start out with three preparatory results concerning the expression L¢, which discuss how two
frequently occurring transformations on ¢ can be transferred to the linear operator L. In particular,
for any a € R we introduce the bounded linear operators

LD& : C([Tmin, Tmax]; Hl) - H?a IL;oz : C([Tminv rmax]; Hl) - HQ (77)
that act as
La¢ = Le™ ¢, (7.8)
together with
Ir0¢ = L]o — e‘w/ e~ ¢(c") do']. (7.9)

We discuss the exponentially shifted operator L, in Lemma 7.1 and the integrated operator Zr., in
Lemma’s 7.2 and 7.3.

Lemma 7.1. Consider a bounded linear operator L : C([Fmin, Tmax]; H1) — Ha and suppose that
(HFin),,, 4, is satisfied. We then have

Cr, (o) =e*(r(o) — oz/o e (1 (o) do’. (7.10)

min

In particular, we have
(L. (max) = Le™. (7.11)

Proof. A direct computation yields

= dC, (o)glo) = [ [aeaUCL(U) - O‘eaaCL(U)] ¢(o) do
Tmax d eqo
, - fr"““ e #o) (7.12)
= [."dCr(o)e a”¢(0)
= Le*¢(").
The final statement (y, (rmax) = Le® follows after substituting ¢ = 1 and noting (1, (0) = (1 (0) =
0. O

Lemma 7.2. Consider a bounded linear operator L : C([rmin, "max); H1) — Ha and suppose that
(HFin),, 4, is satisfied. Then we have the representation

o) = [ T (G () — Co (0] o (7.13)

min
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Proof. We compute
fomder,, (0)o(a) = [ (e, (rmax) = Cro (9)]e*7¢(0) do

Tmin Tmin

= [(Lo(Tmax) = (Lo (Tmax)] f,:::x 670‘”/(;5(0’) do’
TG (o) [7, e 6" do’ (714
. 870‘0/(}5(0/) do./]

= Llor—ev [’ e’o‘”/gé(a’)do’]

Tmin

= La[o'l—>

as desired. O

Lemma 7.3. Consider a bounded linear operator L : C([Fmin, Tmax|; H1) — Ha and suppose that
(W)} .5, 2, s satisfied. Then we have the representation

Irad = Z;'V:O Tj AL;jea(T‘j_g)ﬁb(U)dU

Tmin

+Z§V:0 % [fs_j ea"lBL;j(a’)dU’]e_Mgb(U) do (7.15)

Tmin S
J
N S; sy ao’ ’ 1 ,—aoc
+2 im0 fsl, [fUJ €*” Br,;(0") do’] e~ ¢(o) do.
J
In particular, we see that (WF)z, 5, 4 is satisfied.

Proof. A direct computation yields

Trap = Yo gArye® [ e 7¢(o)do

Tmin

st " ,
+ YN [ Brg(o)e [T e b(o”) do’ do

Tmin

_ Z:;\/':0 T3 AL;jea(rj_U)¢(U) do

sT /
+ Z;\;O Tmin [fm]ax{o,s;} e’ BL;j (U,) dO'/] eiagd)(o—) do (7'16)

= Z;\’:O " Ape*i=) (o) do

Tmin

- st ,
+3 o [ [ [ e Bry(o”) do']e 7 ¢(0) do

+
Sj

st + /
+ 300 [ [ [ e Bry(o') do']e= 7 ¢(0) do,
J
as desired. 0

In Propositions 7.4-7.6 we show how and when factors of (z — a) can be divided out and fac-
tored into the characteristic functions associated to differential operators L respectively differential-
algebraic operators M. We frequently use the fact that L and M are uniquely determined by their
representations z — Le* and z — Me* . This is a consequence of the fact that sums of exponential
functions are dense in C([rmin, "max]; R)-

Proposition 7.4. Consider a bounded linear operator L : C([Fmin, "max); H1) — Ha, suppose that
either (WF); .4, 5, or (HFin),, 4, is satisfied and pick J € L(H1;Ha2).

Then if Le™ = aJ, there is a unique bounded linear operator M : C(["min, Tmax]; H1) — Ha such
that

—(z—a)Me* = Jz — Le* (7.17)
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holds for all z € C. This operator is given by

Mo = —Jp(0)—Ja [ e ¢(c)do+TIpad
= —Jp(0)+ L[o e [ e~ ¢(o")do"].

(7.18)

Proof. A short computation exploiting Le* = Ja shows that the two identities for M are equal. In

addition, for z # o we may compute

Me* = —J—aJ f::mn elz=a)o g5
+L [U — e*? frgmin e(zf‘l)glda’]
= —J—aJ(z—a) 1 —elz=)min]
+L[o— (2 — a) "t o= — ezma)rmin]]
= (z—a) ' [-J(z—a)—aJ[l—eF®rmn]]
+(z — )"t [Le* — e(#=)rmin Leo]
= (z—a)™! [Lez‘ — Jz — e(#=®) min [Le* — aJH,

as desired.

(7.19)

O

If (hF); 4, 4, is satisfied in the result above, then Lemma 7.3 guarantees that also (hF),, 5, 4, is

satisfied for the operator (7.18).

Proposition 7.5. Consider a bounded linear operator M : C(["min, "max]; H1) — Ha and suppose
that (hF) /.9, 3¢, 18 satisfied. In addition, assume that M can be represented in such a way that the

following three properties hold.
(a) We have ro =0 and Anr,o = —J for some J € L(H1;Ha).
(b) For alll < j < N we have Ap.; = 0.

(¢) For all 0 < j < N we have
Barj € C'([s5 5 87 ]; £L(Ha; Ha)).
Then for any a € R, there is a unique bounded linear operator
L : C([rmin, "max); H1) — Ha
for which
—(z—a)Me* = Jz — Le*
holds for all z € C. This operator acts as
L = aJo0) = S0y [Bar(s;)o(s;) = Burs(s)o(s])]
SN0 £ By e @) p(0) do

which means that (hF); 5/ 4, is satisfied.
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Proof. Using the explicit expression for L, we simply verify

Le*

+ —\ zS.
= aJ— Z;'V:O [_ BM;j(S;r)ezs'j + BM;j(Sj )e*’i

T —a)sT —\ s (z—a)s.
—I—BM;j(sj)easJ‘ elFm)sy _ Bir;j(s; )e™s e(F=)s;
s‘.F
—(z—a) fsz BM;j(U)eaae(z—a)a da}
N ! S+ 2o
= al =X [~ (2= ) [ Buy(o)e* do|
= aJ+(z—a)[Me* + J]
= (z—a)Me* + zJ.

+ N\ zsT s;' . —a)o
o = S0 | = Bars(s7)e™ + Baryg(s7)e™ + [ [Bar ()] (0)e==)7 do |
J

(7.24)

O

Proposition 7.6. Consider a bounded linear operator M : C(["min, "max]; H1) — Ha and suppose
that (HFin)HhH2 is satisfied. In addition, assume that M can be represented in such a way that the

following two properties hold.
(a) There exists J € L(H1;Hz) so that
Cm+JH() € Wlt’cl([rminzrmax];'c(Hl; Ha)),
in which H is the Heaviside function defined in (5.29).
(b) There exists v € NBV ([Fmin, Tmax); L(H1; Hz2)) so that
[Cur + JH()] (o) = v(0)
for almost all o € [Fmin, "'max] -
Then for any o € R there is a unique bounded linear operator
L : C([rmin; "max); H1) — Ha
for which
—(z—a)Me* = Jz — Le*

holds for all z € C. Normalizing* v so that v(rmax) = 0, the operator L is then given by

Lé = aJé(0) + / " i) (o)

Tmin

in which the NBV function ( is given by

(o) = —[v(o) —1—04/0 v(o')do'].

Tmin

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

4This is possible because the right hand point of an NBV function can be modified at will without destroying the

NBYV property.
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Proof. Considering the operator L defined in (7.29), we write Z(b = L¢ — aJ¢(0) and note that

(o = C. (7:31)
In particular, comparing the definition (7.30) with the expression (7.10), we see that
(g, = —€e*v(). (7.32)
This allows us to compute
Le* = aJ+ Le*
= aJ+ Zae(zf‘l)'
(7.33)

= o = [T dlev v()](0)elxm 7
= aJ— frmax [aeaay(g)]e(Z*Q)U do — me'dx eaUdV(O.)e(zfa)o'.

Integrating by parts, we obtain
L = aJ— af:;ix [Cam () + JH()] (0)e* do

Y (Pmax) €5 A v (rmin )€™ + 2 [ v(0)e*7 do

= —a [ dCy(0)e*”
—V(Tmax) €™ 4 V(T )€ ™ 4 2 :{:Z" Cm () + JH()] (0)e*” do (7.34)

= —a [/ dCy(0)e™
—U(Pmax) e ™ 4 p(Pppy e min 4 2 J 4 2 f:r:ix d¢n(0)e*”

= —aMe* +zJ + zMe*

as desired. In the last step we have exploited the normalizations v(rmin) = ¥(7max) = 0. O

Our final results here explore some useful relations between L and M that we exploit in §7.2.
The proofs are based heavily on the explicit factorizations obtained above.

Corollary 7.7. Consider three bounded linear operators
L : C([Fmin, rmax)i H1) = Hz, M : C([rmin, Tmax); H1) — Ha,  J: Hy — Ha (7.35)
for which
—(z—a)Me* = Jz — Le* (7.36)

holds for all z € C. Suppose furthermore that either (HFin),, 4, holds or that (hF), .. 4, and

(hF) ypipq, 24, bOth hold.
Then for any pair 71 < T and any function x € C([T1 + Tmin, T2 + Tmax); H1) for which Jz €
CY([r1,m2]; Hz), the function

Ho

f(§) = Mevex (7.37)
satisfies the identity
(D—a)f(§) =—-Ja'(§) + Levex (7.38)

for all p <& < 5.
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Proof. Proposition 7.4 implies that

1) = —Ja@+ Lo e [7 e a(¢+ o)) do'] —al [} e™7a( + o) do (7:39)
e e 7.39
= —Jz(§) +e** Lo > gjgnm e 1(0") do’| — et J f&irman e *z(o0) do.

We hence compute

(D-a)f(€) = —Ja'(€) +atu(¢)
+e* L {0 €27 [em &g (¢ 4 o) — e (EFTmm) g (€ + rmin)]}
—ae"€ ] (e ¢ (€) e—a<s+rmin>x<§ + anin)
—T2(€) + Llo = #(€ + )] = e [Le o€ + rin) + QT (E + i)
= —J2'(§) + Levex — e*™n[Le® — aJ]z(§ + rmin)

(7.40)
and recall that Le® = a.J. O
Corollary 7.8. Consider three bounded linear operators
L : C([rmins Tmax); H1) = Ha, M : O([Fmin, Tmax); H1) — Ha,  J : H1 — Ho (7.41)
for which
—(z—a)Me* = Jz — Le* (7.42)

holds for all z € C. Suppose furthermore that either (HFin),, 4, holds or that (hF); ., 5, and
(WF) p127¢, ¢, both hold.
Then for any z € C and ¢ € C([min, "max); H1), we have the identities

—(z—a)M[o e [ e 2 ¢(o’)do'] = Lo — e [ e ¢(o”) do’
—L [(f s %0 f‘f’ 6720l¢(0/) do']

Mo+ Jop(0) — [U'—>ez”f i o(o )do’].
(7.43)

Proof. As a preparation, note that for z # a we have
aa’f 67040' zo' f 720' ¢ //) dO_// do_/ = Q0 fOU |:f:'” e(Zfa)a'/ dO'/:| 67za//¢(011) dU”
(Z _ a)—leaa fOU [e(z—a)a' _ e(z—a)o'”]e—za”(b(all) do"
= (z—a)7le®* [J e *7 ¢(o") do’
*(Z _ a)fleaa f()a efacr'(b(a.l) do'.

(7.44)
Proposition 7.4 now allows us to compute
Mo e [J e 7 ¢(0")do’] = L[o+s e [] e o > fog/ e=*7" ¢(o") do" do’]
= (z— a)_lL[a — %% foo e‘z"/q’)(a') da'] (7.45)
—(z—a) 'L[o— e [ e ¢(o”) do'].
O
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7.2 Exponential splittings for differential-algebraic systems

Our aim here is to prove Lemma 2.4 and Theorem 2.5, following the approach developed in [4, §3].
Our starting point is the identity

Ja(2)01,m(2) = Ap(2) (7.46)
formulated in (HAlg); ,,. We introduce the expansion
To2)=Jo+Ji(z—a)+...+Jo (2 — )™ (7.47)

with £, = max{/1, ... ,¢,}. Here the matrices .J; € R™ " satisfy J? = .J; for 0 <i < ¢, and J;.J; =0
for i # j. In addition, we have

I=Jdo+i+...+ Jdo,. (7.48)
Using the identity J,(a) = Z, we see that Z = Jy. In particular, (7.46) can be stated as
[Jo+ Ji(z—a)+ ...+ Jp, (2 — )| [Joz — Me*] = z — Le*". (7.49)
Multiplying (7.49) by Jy gives
Joz — JgMe* = Jyz — JoLe*, (7.50)
which implies that JyM = JoL. On the other hand, multiplying (7.49) by Ji gives
—(z—a)"JyMe* = Jpz — JLe* (7.51)

for 1 < k < /.. Repeatedly applying Proposition 7.4 and appropriately padding with zeroes, we find
that for each 1 < k </, and 0 < s < k — 1, there is a bounded linear operator

Mps : C([rmin, rmax); H) — H (7.52)
so that

—(z — )’ JyMe* = —Mj, s~ (7.53)
holds for all z € C. We now record a number of useful facts concerning these operators.

Lemma 7.9. Consider a bounded linear operator M : C(["min, "max); ) — H and suppose that
(HF),,, (HS) and (HAlg); 5, are all satisfied. Then for all 1 <k < L., we have the identities

JMo = Moo (7.54)

together with

JeL[o — €7 [ e ¢(o')do'] = My 10+ Jx$(0)

o (7.55)
+(z — Q) My j—1lo — € [ e7*7 ¢(0’) do’].

Proof. The first identity follows from inspection of (7.53). The second identity follows upon applying
Corollary 7.8 to the identity

—(z — )My p—1€* = Jpz — JiLe*, (7.56)

which is a direct consequence of (7.53). O
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Lemma 7.10. Consider a bounded linear operator M : C([rmin, "max); H) — H and suppose that
(HF),,, (HS) and (HAlg)I’M are all satisfied. Then for all2 < k </{, and 1 < s <k —1, we have
the identity

Mk,s[o' — %% foﬂ 6726,¢(U/) dcr'} — (Z _ Q)Mk73_1 [O’ — %% foﬂ 6726,¢(U/) dcr'} (7 57)
+Mk,sfl¢' .
Proof. This follows upon applying Corollary 7.8 to the identity
—(z — a)My s* = =My, 51167 (7.58)
O
Proof of Lemma 2.4. Applying Lemma 7.9 with £k = 1 and z = «, we find
ZMé = —J16(0) + L L[o — ¢ / ' §(o") do]. (7.59)
0
For 2 < k < /,, we may apply Lemma 7.10 with s = 1 and z = « to find
JeMe = My, 1[0 — ea(’/ e ¢(a’) do']. (7.60)
0
In particular, we have the identity
- Jo)M¢ = (Ji+...+J, )Mo
(7.61)

= (LhL+Myy+...4+ Mg 1)[o—e* [] e~ p(c") do’] — J1¢(0).

The continuity claim follows directly from this representation. Indeed, the only term that can cause
trouble is J;¢(0), but this is avoided by using M+ on [0, c0) and M_ on (—00,0]. O

For any integer 1 < ¢ < /., we now define the function d; : C — L(H;H) in such a way that
Ay = (Jo+ iz —a)+...+ Je_1(z — a)zfl)éz,M(z) +(z— a)zég(z) (7.62)

holds for all z € Z. As usual, we assume that we have complexified H here. In addition, for all such
integers we introduce the bounded linear operator

K¢ : C([rmins Tmax); H) = H (7.63)

that acts as
K, ZM570—|—M5+1,1—|—...+Mg*7g*_g ZZMch_g. (764)

Lemma 7.11. Consider a bounded linear operator M : C([rmin, Tmax); H) — H and suppose that
(HF),,, (HS) and (HAlg); ,, are all satisfied. Then for any 1 < € < {, we have

00(z) = —Kpe* (7.65)

for all z € C.
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Proof. Rewriting (7.62) in the form

(z—a)ou(2) = —(z—a)[Je+Jipa(z—a)+ ...+ Jp(z — )| Me*, (7.66)
we compute
§(z) = —[l+dmi(z—a)+...+Jo, (z— )" Me*,
= —[Myo+Mp11+ ...+ Mg, o, —ole” (7.67)
= —Kpe*.

O

Lemma 7.12. Consider a bounded linear operator M : C([rmin, "max); H) — H and suppose that
(HF),,, (HS) and (HAlg); 5, are all satisfied. Then we have the identity

Llo = e* [] e > ¢(c')do’'] = (I — Jo)¢(0)
+Ta(2) Mo — €27 [ e ¢(0") do’] (7.68)
+ Zf*:l(z — ) 1K;¢.
Proof. For any integer 1 < k < /., Lemma 7.9 implies
JpLlo = e [T e > ¢(c')do’'] = Jup(0) + Myp_16+ (2 — Q)M j_1]o — €27 [T e=*7 ¢(0") do’]
= Jkd(0) + 3y (2 — @) My kit

+(z — @) My oo — €27 7 e % p(o’) do’].
(7.69)

Recalling (7.48), the fact that My o = JpyM for 1 < k < £, and the identity JoM = JyL, we hence
see

Lig = e® [T e ¢(o")do'] = JoLlo = e* [T e~ ¢(o") do]
0 JeLlo e e [T e ¢(a”) do']
JoMlo — e [7 e~ ¢(o") do’]
+ 300 Tk (0)
Y S (2 — @) My i
+ 30 (2 — )T Mo — e [ e2 ¢(o”) do].

(7.70)
Rearranging, we find
Llo— e* [T e > ¢(0")do'] = Ju(z)Mlo— e [ e 7 ¢(o") do’]
+(I = Jo)(0)
+ 30 (2 - ) z/,‘i;i Mer—id o
= Ju(z2)Mo — e*° fOU e *7 ¢(a’) do’]
+(I = Jo)#(0)
+ Y0 (2~ @) K
as desired. O
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Proof of Theorem 2.5. We can apply the same techniques as in the proof of Thm. 3.16 in [4]. Indeed,
the crucial identity (7.68) above is the analogue of [4, Eq. 5.132]. This allows the computations in
Lemma 5.8 - 5.11 from [4] to be copied almost verbatim, linking the Laplace transform of the
differential-algebraic system (2.35) to that of the associated differential system (2.9). O

7.3 Algebraic Wiener-Hopf factorizations

In this subsection we establish the results stated in §3.3, using the explicit factorizations in §7.1 to
transfer the techniques from (3.2) to the scalar differential-algebraic setting.

Proof of Proposition 3.10. Pick n € R in such a way that dp as(z) = 0 has no roots with Rez = 7.
Propositions 7.4 and 7.6 allow us to construct a bounded linear operator L : C([rmin, Tmax); C) — C
for which 63/(2) = (2 — 1) *AL(z) holds. In addition, Proposition 3.6 allows us to find

L_ € L(C([rmin,0];C);C), L € L£(C([0, rmax]; C); C) (7.72)
for which
(z=n)AL(z) = Ar_(2)AL, (2) (7.73)

holds for all z € C. Writing ¢4 > 0 for the order of z = n as a root of Ap, (z) = 0, we see that
{_+/{¢, ={+1> 2 By root-swapping in the sense of [20, Lem. 5.7], we can hence ensure that
£+ > 1. Applying Proposition 7.4 once more, we find

M_ € £(C([rmin,0];(C);(C), M, € E(C’([O,Tmax];@);@), (7.74)
with
So,ms (2) = (2 =)~ *Ap, (2), (7.75)

which implies that (HAlgSc),,, both hold. This gives the desired factorization

do,:(2) = do,m_ (2)00, a1, (2)- (7.76)
O

We note that if M satisfies (HAlgSc),,, then Propositions 7.4 and 7.6 imply that for any o € R
there is a bounded linear operator L : C([rmin, "max); C) — C so that

So.m(2) = (2 = @) “ALiara(2). (7.77)
Throughout the remainder of this section we will use the notation
L =L[M;a,/f] (7.78)
to refer to this operator.

Lemma 7.13. Fiz rmin <0 < rpax, consider a bounded linear operator M : C(["min, "max]; C) — C
that satisfies both (HRnk),, and (HAlgSc),, and suppose that (M_,0_, My, 0 ) is a Wiener-Hopf
set for M. Pick n € R in such a way that 6o ar(2) = 0 has no roots with Re z = n.

Then for all sufficiently small € > 0 we have

1 1
mgw(n) = nuL[Mm’g] (n—e)+ 56 = nﬁL[M;n’e] (n+e€)— 5[. (7.79)

72



In addition, for every ~ > n, we have

miy () = 1y g (1) + %& (7.80)
while for every v < n we have
mg\/l(n) = nﬁL[M;M] (n) — %E. (7.81)
Proof. Writing
L=L[M;n, 0],  Li=Li[Mynty], L-=L_[M_nt], (7.82)
we see that
(z—mAL(z) = Ar_(2)AL, (2). (7.83)
Notice that for all sufficiently small € > 0 we have
np, (n—€) = my, (n),
np,(n+e = L +my (n), (7.8
np_ (m—e¢ = {-+mj (n),
ng_(m+e) = my (n),
together with
=9 =1 (7.85)
ni(n+e = 0.
We may hence explicitly compute
(=€) = my (n) = (- +mi; ) +1
= mh(n)+ 34— L0t +00) (7.86)
= miy(n) - 3¢,
together with
(e = Lo+my (n)—mi; (1) +0
= mh,(n) — 5+ 5y +00). (7.87)
= mh, () + L.
The identities concerning nuL[ M0 follow in a similar fashion. O

Proof of Proposition 3.11. Any Wiener-Hopf set for M leads to a factorization for L[M;n,{] via
(7.82)-(7.83). The invariance of mg\/f(n) hence follows directly from the invariance of nﬁL (n). O

Proof of Proposition 3.13. Write L = L[M;n, ¢] and pick € > 0 sufficiently small. Combining Theo-
rem 2.5 with Proposition 3.9, we obtain
dim Kt = dim K}

codim R* = codim RT,

po.nm (1) Pr(n+e) Po. (1) Pr(n+e)
= max{—nﬁL(n +¢),0}, = max{nﬁL (n+¢),0},
. + _ . + . + _ . +
dim Kbo,M(n) = dim KPL(U+€) codim Rbo,M(n) = codim RPL(n+e)
= max{l—nﬁL(n—i—e),O}, = max{nﬁL(n—i—e) - 1,0},

(7.88)
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together with

dim K;OM m = dim KéL(n_e) codim R;O‘M(n) = codim RéL(n_E)
= max{nf(n—c) ~ 1,0}, = max{1 - nf(n - e),0},
dim K&)M m = dim KéL(nié) codim R;O‘M(n) = codim RéL(nie)
= max{nf,(y - ¢),0}, = max{—n},(y —),0}.
(7.89)
In addition, we have
dimKy =dimK) ,  codimR) ~=codimR} (7.90)
together with
dimK, ~=dimK, ,  codimR, =codimR, . (7.91)
The desired expressions now follow immediately from Lemma 7.13. O

Proof of Proposition 3.12. Let us first suppose that (ap — n)(a; —n) # 0. Lemma 7.13 then implies
that

mhn () = nbg,(n) +sign(ar — )3, (7.92)

in which sign(z) =1 for > 0 and —1 for < 0. Similarly, we have

mhy,(n) = nh, (1) + sign(ao — n) 3L (7.93)
We also know
nf 1) (M) = nfs ) (m) = —cross(Tsm), (7.94)
which gives
1. .
iy, (1) = miy, (1) = —cross(Ln) + 5 fsign(an — 1) = sign(ag — ). (7.95)

This is equivalent to the stated result.

If min(o, ) > 1, we choose € > 0 sufficiently small to ensure that g az,(2) = 0 has no roots
with 7 — e < Rez < for both ¢ = 0 and ¢ = 1. Applying the computation above with n +— n — ¢,
we find

mhy, (1) =iy, (n) = miy, (1= €) = miy, (n =€) (7.96)
= —cross(I;n —e).
A similar computation covers the case max(ay, as) < 7. O

8 Fourier decompositions

In this section we prove the main results stated in §3.4. We start in §8.1 by showing how solutions
to the differential system (2.9) posed on ‘H = ¢?(Z;R") can be approximated by solutions taking
values in ¢1(Z;R™). The latter class of solutions is easier to handle in frequency space as the Fourier
transform is well-posed in a pointwise fashion.
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We proceed in §8.2 by studying the frequency dependence of the restriction operators (3.5)
associated to the Fourier components L(w). In particular, we will obtain frequency-independent
bounds on the inverses of these restriction operators that reference L2-based norms in a sense
similar to Proposition 5.5. R

These bounds are subsequently used in §8.3 to show that the range R:g ) can be written as

the closure of a set of functions that all have smooth Fourier transforms with frequency components

that belong to the appropriate R B, ()" We characterize the kernel K 810 in a similar fashion,
L(w)

allowing us to obtain the direct sum decomposition of Q .(n) described in (3.88). We conclude in
§8.4 by describing some minor adjustments that allow the remaining operators 71'(5 ) and ﬂéL(n)
L

to be incorporated into the framework developed here.

8.1 Preparations

We start by considering the invertability of the characteristic functions Ap(z) and the relation
with the Fourier components L(w). We consider Ay (z) as operators in both £(¢*(Z;R™)) and
E(ZQ(Z; ]R")) In the latter case the Fourier transform readily provides the link with A ,(2), while
in the former case the following technical result from the field of Banach algebras plays a key role.

Proposition 8.1 (see [16, Thm. 3]). Let h € (*(Z;R"*"™). Then the map Ty, : (*(Z;R") —
N (Z;R™) defined by

[Tovli = hijv; (8.1)

JEZL
is invertible if and only if det[Fh](w) # 0 for all w € [—m, 7].

Corollary 8.2. Fiz H = (?(Z;R"™) for some integer n > 1 and consider a bounded linear operator
L : C([rmin, "max); H) — H that satisfies both (HF), and (HFrr),. Pick n € R. Then the following
two statements are equivalent.

(i) The characteristic operator Ar(z) € L(0*(Z;R™); (*(Z;R™)) is invertible for all Rez = 1.
(ii) The characteristic function det A (z) = 0 admits no roots with Re z = n for all -7 < w < 7.

In addition, if either (i) or (ii) holds, then there exists € > 0 and K > 1 so that for all z € C with
|Re z — | < n the characteristic operator Ar(z) is invertible both in L(¢*(Z; R™)) and L((*(Z;R™)),
with

K
1+ |z

|AL(2) 1” +||AL(z) ) < (8.2)

-1
c(e @zmrye (zR)) H[(@2(Z;Rn);£2 ZR")

Proof. The equivalence between (i) and (ii) follows from the fact that for all v € 2(R™) we have
FlAL(2)v](w) = Apw)(2)[Fo](w) (8.3)

and the fact that w — A, (2)~! € L(R™;R") is continuous and hence bounded.
The final statement follows from Proposition 8.1, utilizing the continuity of the map

n+iR 3 z— Ap(z) € L(E1(Z;R™); 01(Z; R™)) N L(P(Z;R™); 02(Z; R™)) (8.4)

together with the fact that Ar(z) — zI can be uniformly bounded with respect to both norms on
vertical strips in the complex plane. O

In view of the result above, we introduce the following assumption.
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(hw)y., For each w € [—m, ], the equation det Ar,,)(2) = 0 has no roots with Rez = .

We now show how £2(Z; R")-valued solutions can be approximated by ¢!(Z;R™)-valued ones. Propo-
sition 5.5 provides the key to this result, as it shows how to extract solutions in Qp1(zg)(n) from
arbitrary functions

¢ € C([Fmin, 0; €1(Z; R)) x C([0, mas); £1(Z; R)). (8.5)
In order to state this result, we introduce the notation
Qr:(n) = {¥ € C([rmin, 0); B) X C([0, Pmax]; B) : 1 = & § for some § € Qrs(n)}.  (8.6)

Lemma 8.3. Fiz H = (?(Z;R"™) for some integer n > 1 and consider a bounded linear operator
L : C([Fmin; Tmax); H) — H that satisfies both (HF), and (HFrr),. Pick n € R in such a way that
(hw)y.,, is satisfied.

Then for any q € @L;gZ(Z;Rn)(n) there exists a sequence {q;}52; C @L;gl(Z;Rn)(Tl) for which

le™ = 45 lle s oper oy + 197 = G llco e @any) = (8.7)

as j — oQ.

Proof. Fix (¢~,q7) € @L;p(Z;Rn)(’I]). The density of £1(Z;R™) in (?(Z;R™) allows us to construct a
sequence

(¢5,67) € C([rmin, 0; £1(Z; R™)) x C([0, rmax]; €' (Z; R™)) (8.8)
for which
195 = 4" Nl rmsmser iy T 185 = T oo runtitr gy = 0 859 = o0 (8.9)
We now write

which by Proposition 5.5 implies (g; , q;r) € @L;KI(Z;RTL)(’I]).
We now compute

- - _ - — -
l07 =0 lequmaperzaey = |07 =0 Baywler ol o

HeVO_EQL(’?) [q_7 q+] - eV(;E(QL(n) [(b]_’ ¢;’_]

= HeVaEQL(m [a7 —¢7 a7 = &]] H

C([rmin,0];£%(Z;R™))

C([rmin,0];£2(Z;R™)) :
(8.11)

Lemma 5.1 implies that
evo Eg, () € C(C([rmin,O];EQ(Z;R”)) X C([O,rmax};ﬁz(Z;R”));C([rmin,O];€2(Z;R"))), (8.12)

which shows that ||qj_ — — 0 as j — oo. The proof can be completed by

T HC([Tmin,O];fQ (Z:R™))
obtaining the analogous estimates for ¢ and qj. O

Our next task is to show how a class of elements of @ Ly2(z;R») can be constructed from suitably
prepared Fourier transforms. As a preparation, we fix n € R, introduce the shorthands

Q\w = @L(w) (77)7 P, = PL(w)(n) (8'13)

and study how these spaces vary with the frequency w.

76



Lemma 8.4. Fiz H = (?(Z;R"™) for some integer n > 1 and consider a bounded linear operator
L : C([Fmin; Tmax); H) — H that satisfies both (HF), and (HFrr),. Pick n € R in such a way that
also (hw); . is satisfied.

Then for each w € [—m, 1] we have the decomposition

C([Fmins 0, R™) x C([0, 7max); R™) = Qu @ P, (8.14)
with associated projections

11 . C min s 0 ,Rn C 07 max 7Rn — Awa
a, ([r ] ) x C([0, Tmax) ) Q -
HP“’ : C([Tmifﬂ 0]7 Rn) X C([O7 Tmax]; Rﬂ) — Pw.

This decomposition varies continuously in w, in the sense that for each fized wy € [—m, 7| there exists
0wy > 0 together with continuous maps

v ué“’ (W) < ﬁ(@wa([Trﬂin’O];R") X C([Oarmax];Rn))a

W o () € L(Pay, Cllrmin, OFE) X C([0, ) B)), (#10
defined for all w € [—m, 7] that have |w — wp| < du,, S0 that
Qu=1p @) (Qu).  Po=up, @)(Ps). (8.17)
with
HQ% ujgwo (w) =1, Ip, up,, (w)=1. (8.18)

Proof. The decomposition (8.14) follows from Theorems 2.1 and 2.3. Exploiting the continuity of
the family w — L(w), the remaining statements follow from the results in [14, §5]. O

Lemma 8.5. Fiz H = (?(Z;R"™) for some integer n > 1 and consider a bounded linear operator
L : C([rmin; Tmax); H) — H that satisfies both (HF), and (HFrr),. Pick n € R in such a way that
(hw)., is satisfied.

Consider any function

qu (¢7,0") € C([rmin, 0] X [—7, 7); R™) x C([0, Pmax] X [, 7]; R™) (8.19)
with the property that
;5(‘,‘*’) € @w C C([rmin, 0; R™) x C([0, rmax]; R™) (8.20)

for each w. Then the inverse Fourier transforms

¢ (o) = Fivo (0,7), Tmin < 0 <0,
q*io; = Fi f}Ea, ; 0 <0 < Fmax 520
satisfy
§=(g"q%) € Qrn). (8.22)
Proof. The compactness of the rectangle implies that
¢~ € C([rmin, 0} C([=m,7|;R™)) N C ([, 7]; C([rmin; 0; R™)), (8.23)

A= C’([O,rmax];C’([—ﬂ',ﬂ];R"))ﬂC([—ﬂ',w];C’([O,rmax};Rn)),
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with norms that are independent of the above-mentioned spaces. For every w € [—m, 7] we now
define a function y(-,w) € BC,(R™) that has

&G = () (8.24)
together with
(& w) = [Eg_o(-w)](©) (8.25)
for € > rmax. The second inclusions above for ¢+, the continuity of the map
(& w) = [Eg_ (&) € L{C([rmin, 0, R™) x C([0, 7max); R"); R™) (8.26)

for £ > 0 and the fact that g(-,w) € Q. imply that y(,w) € }SL(W) (n) for all w € [—m, x|, but also
that the map

(0,00) 3 & (w— (& w)) € C([—m, 7;R™) (8.27)
is continuous. In addition, the estimate (5.17) yields the bound

”@\(57 .)llc([fﬂ"‘n’];Rn) S 067]5 ||?:/\||C(['rmin,0];R”)XC([O,Tmax];R") . (828)

Extending ¢ by writing

for £ > rmax, we hence see that this expression is well-defined with
~ ==
q€ BC, (H). (8.30)

Similarly arguments allow us to show that ¢’ and EeAVEcY are bounded continuous functions on
(0,00) \ R and that ¢ satisfies

7€) =Le&veq (8.31)

for all ¢ € (0,00) \ R. This allows us to conclude that in fact § € Qz(n). O

8.2 Frequency dependent restriction operators

In this subsection we concentrate on the w-dependence of the two restriction operators

ﬁé :Qu — C([rmin, 0); R™) x R", 71'(5 :Qu — C([rmin, 0); R™). (8.32)

In particular, we set out to show that we can invert these operators in a fashion that depends
continuously on w. In addition, we obtain frequency independent L2-based bounds on these inverses.
In order to project out the kernels Ké and Ké of the restriction operators (8.32), we introduce

for any w € [—m, 7] the subspaces

j—\' =
b,
T_ =
b,
In addition, most of our results will require the following non-degeneracy condition on the Fourier
components L(w).

{¢ € Qu fn“a" k:* (o) qAb(J) do=0forallke I/(\'é }

r ~ ~ (8.33)
(6€Qu: [y k*(0)p(o)do =0 for all k € K }
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(hr) For each w € [—m, 7] the condition (HRnk) ) is satisfied.

The following two propositions are the main results of this subsection, constructing two branches of
inverse functions 7! and 7 1. We note that these operators are defined on the whole function space
C([rmin, 0]; R™) x R™ respectively C([rmin,0]; R™), allowing us to avoid the usual complications that
occur when discussing the continuity of maps with varying domains of definition.

Proposition 8.6. Fiz H = (*>(Z;R") for some integer n > 1 together with n € R and consider a
bounded linear operator L : C([rmin, Tmax); H) — H that satisfies both (HF), and (HFrr),. Suppose

furthermore that (hw); . and (hr) are satisfied and that dim Ké does not depend on w.

Then there exists a constant K > 1 together with a contz’num:s map

[-mal 2w — 7' € L(C([rmin, O;R™) X R™ C([Fmin, 0]; R™) X C([0, Tmax]; R™)) (8.34)

so that for all w € [—m, 7| and (¢,v) € E@w, we have the inclusion 7, (¢p,v) € ftQ_ , the identity

77, (¢, v) = (¢,v) and the estimate
17 ol ™ (@0l oy < K LI L (0, rmanginy + 101 (8.35)

Proposition 8.7. Fizr H = (*(Z;R") for some integer n > 1 together with n € R and consider a
bounded linear operator L : C([Imin, rmax|; H) — H that satisfies both (HF), and (HFrr), . Suppose
furthermore that (hw), ., and (hr) are satisfied and that dim Ké does not depend on w.

Then there exists a constant K > 1 together with a continuous map

[-m 73w = w5t € L(C([rmin, 0; R™); C([Fmin, O; R™) X C([0, rmax]; R™)) (8.36)

so that for allw € [—m, 7] and ¢ € Ry, we have the inclusion ;¢ € Ty, , the identity 7~ n, ¢ = ¢

and the estimate
17 ()™ Bl oo gy S KNS 2 (0, rmanlin) (8.37)

We note that if (hw) L 18 satisfied, Proposition 3.1 guarantees the decomposition

Q=K. Ty . (8.38)

w

Our first goal is to study how this decomposition varies with the parameter w.

Lemma 8.8. Fiz H = (*(Z;R") for some integer n > 1 and consider a bounded linear operator
L : C([rmin, Tmax); H) — H that satisfies both (HF), and (HFrr),. Pickn € R in such a way that
also (hw) ., is satisfied.

Then the Fredholm index of the restriction operator %(g does not depend on w. In addition, for

each fized wy there exists 0, > 0 together with continuous maps

w o wh (W) € L(Ky C([rmin, 0 R?) x C([0, rmax]; R™)),

8.,
Bug L (8.39)
W Uy (w) € l:(Tde ; C([rmin, 0; R™) x C([O,rmax];R")),
s “o
defined for all w € [—m, 7] that have |w — wy| < du,, so that
Up- (wo) =1, up- (wo) =1, (8.40)

Bug B
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together with

f{éw c uj%wo (w) (f(éwo)’ u%éwo (w) (féw,) c f—w (8.41)

and
Qu =ty K, You, T ). 8.42
Q Uhy. (w)( @wO) Up, (w)( @wo) (8.42)

Proof. The representation (8.17) shows that for all w sufficiently close to wy we have

ind (7 ) = iz g, (o i (7 b, (). (8.43)

The latter index varies continuously in w and hence must be constant.
We now recall from Proposition 3.1 the decomposition

C([rmin, O R™) % O([0,rmaxsR") = Ky @ Ty @ Py, (8.44)
«“o

“o

together with
C([Fmin, 0; R") x R = E;Q ® E;# (8.45)
«wo «wo

We write Ip-  and Il for the projection operators corresponding to the latter decomposition.
Qo ]

0 «wo
In view of (8.17) we have the characterization
Ry = {u F+1:(RHeRy xTp withauj (F+1=0}
b. {UQWO [k—i—ﬂ (k,t) € b., X b., with 7 UQWO (w)[k‘—l—ﬂ 0} (8.46)
This last condition is equivalent to requiring that both

- %—[E+ﬂ+n% #lup (@) —Dk+8=0 (8.47)

wo

and

Mpoo 7 WkE+8=0 (8.48)

are satisfied. Since 7~k = 0, we note that (8.47) can be rewritten as

T+ Ry 7 lup, (@)- Nf=-Mp 7 [, (@) - Ik, (8.49)

which is equivalent to

T+ Fe "My 7 [u) —INi=—[7, | 'Op- 7 [u} — Ik 8.50
+ g, ) ey 7l (@)~ = —lry 1My, 7l (@) —1) (8.50)
For w sufficiently close to wp, the left hand side can be considered as an invertible linear operator

on Té . In particular, for all such w there is a bounded linear map
“o

tAw:[A(_ T

b., b, (8.51)

which depends continuously on w, so that (8.47) is satisfied if and only if t=1, [E] Notice that
fo = 0.
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For any ke IA(é , we now define

0
uho @k =up (@) [k + 1., [K]]. (8.52)
This allows to write
KQw ={¢¢€ ukéwo (w)(KQWO) : Hhé;jo 7 ¢ =0}, (8.53)
establishing the first inclusion in (8.41).

In addition, for any ¢ € fé we define k,, ] € I?é in such a way that
w wo

0

L bk, @Ry, @A = [ i, @R, @RE)eE 65

Tmin (9“’0 Tmin QWO ‘9“’0

holds for all k € K, b, - This is possible because one can choose a basis for the finite dimensional
«wo

space K o, that is orthonormal under the integration above and v}, (w) — I = O(w — wp). Note
wo

«0

that
HE“H = 0w —wy), (8.55)
ﬁ(i‘-"@wo ;Rf(gwo)
since the left-hand side of (8.54) vanishes at w = wy by the definition of f(g_ .
«“o
For any te Té , this allows us to define
wo

up- (W)t = g, (W)t = uhy (W)ku[t], (8.56)

‘Qwo IQ“’O

which yields the second inclusion in (8.41).

Finally, to establish (8.42), we note that for any pair (%,tA) € I?é X Té it is possible to find
wq wq

a pair (k1) € K x T so that

8., 8.,
(5, 0) = (k) (= Rlf], Folk] = T [Ruff]])- (8.57)
In particular, we have
up @FE+T = up @k LE] +up @F-up (@) |kl + L R l0)]]
= uph (w)k + W (w)i, (8.58)
B w0
from which the decomposition (8.42) easily follows. O

Corollary 8.9. Consider the setting of Lemma 8.8. If dim IA(é does not depend on w, then the

inclusions (8.41) are identities and the associated projections

Oy C([rmin, O R™) X C([0, Pmax); R?) — K
7 _ & (8.59)
Hp(gw : C([rmin, 0]; R™) x C([0, rmax); R™) — TQ_w

depend continuously on w as elements of L(C([rmin,0); R™) x C([0, rmax); R™)).
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Proof. Our assumption directly implies that the first inclusion (8.41) is an identity. In view of (8.42),
the second inclusion must hence also be an identity. The continuity of the projections follows directly

from (8.58). O
A second consequence of Proposition 3.1 and (hw) Lin is that one can pick finite-dimensional

spaces ﬁgj‘ for which the decomposition
C([rmin, O; R") x R” = Ry, @ R4 (8.60)

holds for each w € [—m, 7]. Our next result shows that the spaces ]/%(QJ‘ can be picked in a continuous

fashion.

Lemma 8.10. Fiz n € R and H = (*(Z;R™) for some integer n > 1 and consider a bounded linear
operator L : C([Fmin, Tmax); H) — H that satisfies both (HF), and (HFrr),. Suppose furthermore

that (hw), and (hr) are satisfied and that dim I?(g does not depend on w.

w
Then one can choose finite-dimensional subspaces

%;L C C([rmin, 0); R™) x R" (8.61)

in such a way that the following properties are satisfied.

(i) The dimension dim ﬁ(gj‘ does not depend on w.

w

(i) The decomposition (8.60) holds for all w € [—m, 7).

(i1i) For each fized wy € [—m, w|, there exists 6, > 0 together with maps

w uE_ (w) € E(Réwo;C([rmin,O};R”) X Rn),

8o
0 ~_. 8.62
w UEQL (w) € E(Ré:;C([rmin,O];RN) X }Rn)7 ( )
defined for w € [—m, | that have |w — wo| < du,, so that
up- (wo) =1, Vp— (wo) =1 (8.63)
Bup oy
and
Eéu = uj‘% (w)(ﬁéuo)’ v;‘%;i (w)(R élt) E Eéj. (8.64)
wo w0
In fact, in (iii) we can choose
UE;, (W[, v] =T up- (w)[@wo]*l[@ v] (8.65)

for all (¢,v) € }A%é .

Proof. First of all, we note that Theorem 3.5 and the fact that the index of 7?(5 does not depend

w

on w imply that there exists an integer d > 0 for which

d=dim K

1,y (=n) (8.66)
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holds for all w € [—m, w]. Exploiting continuity properties for Ké (=) that are similar to those
Lu(w) (=

stated in Lemma 8.8 for I?éw, it is possible to construct continuous mappings
[—7, 7] 3 w = (W) € C([rmin, 0; R?) X C([0, Fmax); R™) (8.67)

for 1 < j < d so that the set {%(w) 4_, forms a basis for Ky, (=) for each w € [—m, ]. This in
turn can be used to construct continuous mappings

[-7, 7] D w— (r*(w),vJ‘(w)) € C([rmin, 0; R™) x R™ (8.68)

J J

for 1 < j < d in such a way that

(@050, B3(@)O1), (i @), 0F @) =5y (5.69)

Lo

holds for all w € [—m, 7] and all pairs (i,j) € {1,... ,d}?. Upon writing

~
RQ; = span{ (TJ»L(C«)), v]l(w)) ?:1, (8.70)
the desired statements follow from Theorem 3.5 and the explicit expression (8.65). O

Proof of Proposition 8.6. We first set out to construct the branch 7 1. To this end, fix wy € [, 7].
Lemma 8.10 allows us to construct continuous maps

w — t, € E(C([rmin,O];R") X R”;Tg ),
- ~0 (8.71)
w o TE o€ E(C([rmin,O];R") X R”;RQ’ ),

defined for w sufficiently close to wp, such that for any (¢,v) € C([Fmin,0]; R™) X R™ we have the
decomposition

(¢,v) =7 ujp— (W)to[o,v] + Vh. ()T [, v]. (8.72)

o Bug

In particular, we see that (¢,v) € ﬁé if and only if 71 [¢, v] = 0. For any (¢,v) € C([rmin, 0]; R") x
R™, this allows us to define :

7o (d,0) = U, (w)tu[¢, 0], (8.73)

«0

which can readily be verified to satisfy the required properties for all w sufficiently close to wy. To
see that this definition does not depend on the specific basis-point wy, we note that

My (¢,0) =7 up (0)tw(d, ], (8.74)

«wo

which yields the alternative representation

Al _ae 1-1
T = [WQL(M)} - (8.75)

We now turn to the estimate (8.35). If one cannot find a constant K > 1 for which this estimate
holds, there exists a sequence

{6767 w2 € Ty x [-m7] (8.76)

J
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such that H(b;r =1 and

||C([O,rmax];Rn)

1671 2 grgey T 165 (0)] = 0 as j — oo. (8.77)
([remin O};R™)

Inspecting (5.12), exploiting the continuity of w — eVOjE’TL(w);,7 and utilizing (5.80), we see

=V Tr(w;)m [0, ¢j+’0] = vy Ti(w,)mld; 0, ¢j(0)] -0 (8.78)
(I - engL(wj);n[Ov ) O])QS;— = eVS_TL(wj);n[QSj_v 0, ¢j_ (O)] —0
as j — oo. Passing to a subsequence, we may assume w; — w,. In particular, we see that
(I = evg Tr(w.)iml0, -, 0))¢f — 0 (8.79)

as j — oo. The compactness of evarTL(w*)m[O, -,0] allows us to pass to a further subsequence for
which we have the convergence

d)j — @7 € O([0,7max); R™) as j — oo. (8.80)
Again exploiting continuity, we have ¢7 (0) = 0 and

_evaﬂ(w*);n[07¢ivo] = 0,

8.81
(I - engL(w*);ﬂ[Oa *y 0])(;5:5 = Oa ( )

which shows that (0,¢7) € K; . Inspection of (8.33) shows that these normalization conditions
survive the limit j — oo, which implies (0,¢}) € féw . In particular, we must have ¢ = 0,
contradicting our initial assumption that qujH =1forall j > 1. O
Proof of Proposition 8.7. The maps 7! can be constructed in the same fashion as the maps 7 *

in the proof of Proposition 8.6 above. If one cannot find a constant K > 1 for which the estimate
(8.37) holds, there exists a sequence

(67,07 )k C Ty x [ (5.:82)

such that Hgb;r =1 and

||C([07"‘max]§Rn)

H¢;|‘L2([Tmm’0];ﬂgn) — 0as j — oo. (8.83)

After passing to a subsequence, we may assume that q[);r(O) — vy € R" and w; — w, as j — oo.
Inspecting (5.12), exploiting the continuity of w +— evg’TL(w)m and utilizing (5.80), we see

=V D1yl 05, 0] = vy Ti(w)ml95,0, 6 (0)] = evg Tr ) [0, 0, 4], (554
(I = evi Tow,)ml0,, 00)of = evi TLw,)ml¢; 0, 8F (0)] = evg Tr(w.)m[0,0,v.]
as j — oo. In particular, we see that
(I - eVS“TL@J*)m[O, g O])(b;_ - engL(w*);n[Ov 0, v.] (8.85)
as j — o0o. One can now continue with the arguments in the proof of Proposition 8.6. O
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8.3 Properties of T,

In this subsection we set out to establish the statements in Theorem 3.14 concerning the restriction
operator 7, , .. The main issues are to prove that the spaces K, and R, are closed and to
Br(n) Br(n) b

construct a closed complement f(g ) for IA(é; () Our approach will be to construct dense subsets
L L

of these spaces that consist of the inverse Fourier transforms of appropriate continuous functions in
the frequency domain.
In particular, we define the spaces

Rgm = Fund(67,6%) € Cllrmin,0] x [-m, 7l R") x C([0, ] X [, 7} R7)
(o (hw), o (w ))GKQ for every — 7 <w < 7},
T n . (8.86)
Toimn = Funrd (07,6%) € Cllrmin, 0] x [=m, 7 R") x C((0, rmax] x [, 7] R")
( ( ) ( )) ETQ fOI‘ every —’]Tgw Sﬂ'}
As a consequence of Lemma 8.5, we have the inclusions
@L(n) < Quln), féf{; c QL. (8.87)
In addition, we define
ff[gf?;) = Fin{(4,v) € C([rmin, 0] x [=7, 7]; R?) x C([~7, 7]; R") .
: (B(,w),v(w)) € ]Tzé for every — 7 <w < 7}, '
which implies
Ryt € C([rmin, 0 C(Z:R™)) x £(Z;R"). (8.89)

As a final preparation, we encode the frequency independence of the kernel dimensions in the fol-
lowing assumption.

(hk) The dimension of the kernel I?(g does not depend on w € [—7, 7.
The first step is to explore the relation between R 69 s and T(Q 76(77) In particular, we lift the
identities
Ry = T (Téu) (8.90)
from the frequency level to the full system. The key ingredient is our use of L?-based estimates,
which allows us to effectively interchange the norms concerning w and o.

Lemma 8.11. Fiz H = (*(Z;R") for some integer n > 1 and consider a bounded linear operator
L : C([rmin, "max]; ) — H that satisfies both (HF), and (HFrr), . Suppose furthermore that (hw)
(hk) and (hr) are all satisfied.

Then we have the identification

Lin»

T (Torom) = oy (8.91)

;sm

In addition, for every (r,v) € R(Q ()

there is a unique pair

(=, t%) = (" [r,0],t[r,0]) € f(g—f(j;) (8.92)

85



so that (r,v) =7 (t~,t7) = (t7,t7(0)).
Finally, there exist constants K1 > 1 and Ko > 1 so that the estimates

11 0l 10, ramanl2 i) By 17l (032 2y + 0]l i) ]

(8.93)

IN

K [ ”T”C([rm;n,O];P(Z;R)) + ||U||£2(Z;R)]

hold for all (r,v) € R(g S?:’)
L

Proof. The C inclusion in (8.91) is immediate. Let us therefore consider a pair (r,v) € EQ’SE“) By
construction, we have

([Fr](-,w), [Fol(w)) € Ry (8.94)

for all w € [—m, 7], which allows us to define

t,w) = A_l([]-'r]( w), [fv](w)). (8.95)
On account of Proposition 8.6, we may conclude that
?6 C([Tminvo] X [_Waﬂ—];Rn) X C([Oa TmaX] X [_Wvﬂ];Rn)a (896)
which yields
Finvt € T@;( )’ (8.97)

By construction, we have 7~ Fin, t = (7, v).
We now turn to the estimate (8.93). The estimates in Proposition 8.6 imply that

|t(0,w)] < KTIFrIC,w)ll e (g opizy + [FO)(w)]] (8.98)

for all 0 < 0 < Tmax and w € [—m, 7). In particular, for all such o we obtain

H}_mv HP (ZR") f:r |?(U"")|2 dw
< 2K?[" [||[~7:7”]('7W)||2L2([rmh,,o];1gn) + [Fo)()[* ] dw
< 2K2 T [ [Fr](s,0)% ds + |[Fo] <w>|2] d 599
= 22 [0 [T Fr s ) dods + [T, [Fe(@) d)
= 2K? [||7”||L2([rmm,o];e2(z;Rn)) + ||UH42(Z;1R<")]
< /[|‘THQC([Tm;n,O];€2(Z;]R")) + Hv||?2(Z;]R")]
for some K’ > 1, as desired. 0

The estimate (8.93) can be exploited to construct Cauchy sequences in the closed space Qr,(n)

from Cauchy sequences in R ) Together with the approximation technique described in Lemma

Qr(n)
8.3, this allows us to show that R_L(n) is the closure of Ré;?:])

Lemma 8.12. Fiz H = (?(Z;R"™) for some integer n > 1 and consider a bounded linear operator
L : C([rmin, "max); H) — H that satisfies both (HF), and (HFrr), . Suppose furthermore that (hw)Lm,
(hk) and (hr) are all satisfied. Then we have

Closc([rmin70];[2(Z;Rn))XZQ(Z;RW) (R(E)f?;)) - RéL(n) (8100)
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;sm

Proof. Consider a sequence {(r;,v;)}52; C R(Q () and suppose that
(rj,05) = (1, v4) € C([Tmin, 0]; 2(Z; R™)) x £*(Z; R™) (8.101)

as j — oo. Lemma 8.11 implies that there is a sequence {(;, ;“)}‘;’;1 € TQ_ S(m so that t; = r; and

t;r(O) = v;. In addition, exploiting the linearity of R ~ = ()’ the estimate (8.93) yields

2 2 2
’t; (o) — t;; 0)‘[2(Z;Rn) < Kp [ l[rj, — sz||c([7-mimo];p(z;n§n)) + v, — szHﬁ(Z;Rn)] (8.102)
for 0 < 0 < Tmax. Since {(r;,v;)} is a Cauchy sequence, we can use this estimate to conclude that

t7 — t5 € C([0,rmax); £(Z;R™)) with ¢ (0) = v,. Since Q1 (n) is closed, we find that (r,,t}) €
Q. (n) and hence

(re,ve) =7 (re,tf) €R (8.103)

by
O

Lemma 8.13. Fiz H = (?(Z;R"™) for some integer n > 1 and consider a bounded linear operator
L : C([rmin, rmax); H) — H that satisfies both (HF) and (HFrr); . Suppose furthermore that (hw);., .
(hk) and (hr) are all satisfied. Then we have

EQL(TZ) C CIOSC([Tm;n,O];W(Z;]R"))sz(Z;R“ (R(Qf?:])) (8104)

Proof. Pick (¢—,q") € QL (17) and consider an approximating sequence {(q; , q;r)};‘;l € @L;gl(Z;Rn)(’fl)
as described in Lemma 8.3. Write

T, = iy, (05 0) € Qron 2wy () (8.105)

and note that evgﬂqj = qji by construction.
For every w € [—m, m] we now see that

[*7::/[/\%‘]('7(“}) € QL(w)(n)7 (8106)
which directly implies that
-+ H—ism
completing the proof. O

We now set out to obtain the desired direct sum decomposition of @ (). In particular, we define
Ty, (1) = ClOSC([rynin 01362 (ZR)) X C10,Pman] 12 (Z:E7) QL(I:;) (8.108)
and proceed to show that

Qun) =Ky . &Ty (1) (8.109)

We start by identifying IA((g o with the closure of IA((;S(I];). The approximation technique from
L L

Lemma 8.3 again plays an important role here.
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Lemma 8.14. Fiz H = (?(Z;R"™) for some integer n > 1 and consider a bounded linear operator
L : C([rmin, "max); H) — H that satisfies both (HF), and (HFrr), . Suppose furthermore that (hw)
(hk) and (hr) are all satisfied. Then we have

Lin’
KéL(n) = CIOSC([Tm;n,0];(2(Z;R"))XC([O,TmaX];ZQ(Z;R"))Kéf(rg)' (8110)
Proof. Tt suffices to show the inclusion
K(gL(n) - CIOSC([Tmin,O];ﬁ(Z;R"))><C([O,Tmax];Zz(Z;R"))KéfZ:;)- (8.111)
To this end, pick ke K 01 () and consider an approximating sequence
(@152 = {(¢; .4 )}321 € QL @rmy(n) (8.112)

as described in Lemma 8.3. This allows us exploit the decomposition (8.38) and define

~

Riow) =g [FGICw), t(w) = My, [FG)() (8.113)

for each w € [—m, 71]. Writing

kj('vw) = (k;(~7w)7kj(-,w)) € C([Tmimo];Rn) X C([07rmax];Rn)7 (8 114)
%\j("w) = (t;('vw)vtj('»w)) € C([rmina0]§Rn) X C([O,Tmax];R"),
Corollary 8.9 implies that the maps
[Tmin, 0] X [=m, 7] 2 (0,w) — (k; (o,w),t; (o,w)),
(k5 ! ) (8.115)
[0, "max] X [-7, 7] 2 (0,w) — (k‘j(a,w),tj'(a,w))
are both continuous. By construction, we hence have
- T 7>—;sm - F—ssm
Finv kj € K(QL(n)’ Finvt; €T o (8.116)
with
(/]\j = f}nv 7ij\j + -Env%\]V (8117)

In particular, we have the convergence

Fie (k5 k) + Finn (85,65) = & € C([Famin, 0; £2(Z; R™)) X C ([0, 7max; £2(Z; R™)) (8.118)

PR 3%
as j — 0.
Since k; = 0 and k;’(()) = 0, we see that
- +
H]:inv t] HC([Tmin,o];ZQ(Z;R”)) + H‘?:inv t] ](O)‘ZQ(Z;R") —0 (8119)

as j — 0o. The estimate (8.93) implies that also t;r — 0 in C([0, Tmax); €*(Z; R™)) as j — oo, which
shows that in fact
Fiue (k5 k) = & € C([rmin, 01; 2(Z;R™)) x C([0, rmaxl; £2(Z; R™)), (8.120)

VARERN]

as desired. O
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Lemma 8.15. Fiz H = (?(Z;R"™) for some integer n > 1 and consider a bounded linear operator
L : C([rmin, rmax); H) — H that satisfies both (HF), and (HFrr), . Suppose furthermore that (hw)
(hk) and (hr) are all satisfied. Then we have

n?
Ko Moy = 10+ (8.121)
Proof. If the statement is false, then there exists a non-zero
¢ =(6",9") € C([Fmin, 0; 2(Z;R™)) x C ([0, rmas; 2(Z; R™)) (8.122)
together with sequences

{(k;, kD)5 C f(éfz), {(t5 1)), © f{gf(r;) (8.123)

so that both

155" = 07 loqrmore @y + 145 = 97 loqrumore@any ) (8.124)
167 = 8"l co e mnn T 15 = oo rmpe@an) 0
as j — oo.
The estimate (8.93) yields
15 o rmentser zimmyy < K2l e o @iznyy T 15 O 2 i) (8.125)
On the other hand, since k;” = 0 and k;‘ (0) =0, we find ¢~ = 0 and ¢ (0) = 0, which gives
16 o gy + 65 O 0 (8.126)
as j — oo. In particular, we see t;r — 0 in C([0, 7max); €%(Z; R™)) and hence ¢ =0. O

Lemma 8.16. Fiz H = (*(Z;R") for some integer n > 1 and consider a bounded linear operator
L : C([rmin, "max]; ) — H that satisfies both (HF), and (HFrr), . Suppose furthermore that (hw)

Lin»
(hk) and (hr) are all satisfied. Then we have

~

@uim © Ky, )+ T, ) (8.127)
Proof. Pick (¢—,q") € @L(n). Arguing as in the proof of Lemma 8.14, one can find sequences

(kT PR c RO (B )Y, T
(Finv (k7 k)32 C Km0 AT (85, 87)1520 C T 70 (8.128)

for which we have the convergence

Finv (k5 k1) 4 Fine (85 ,8]) = (¢7,¢7) € C([Pmin, 01; €2(Z; R™)) x C([0, rmax]; €2(Z; R™))  (8.129)

VIR
as j — oo.

Since k; = 0 and k;r(O) = 0, we have

a4 HC([rx,,ixl,O];ﬁ(Z;R"')) (0) Hﬁ(mn)

as j — oo. In particular, the sequence

{(finv tis [Finw tﬂ(o)) ;il - C([Tminao];€2(z; Rn)) X EQ(Z;RTL) (8.131)
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is a Cauchy sequence. The estimate (8.93) implies that the same holds for the sequence
{Finv t] 3521 C C([0, Tmaxl; £ (Z; R™)). (8.132)

In particular, there exist (¢t ,¢]) and (k7 ,k]) so that we have the separate convergences

Fine(t7,t5) = (t7,tF) € C([rmin, 01; 2(Z; R™)) x C([0, rmax]; €2(Z;R™)),

Fie (k7 k) = (k7 k) € C([rmin, 0; €2(Z; R™)) x C([0, rmax]; £2(Z; R™))

777

(8.133)
as j — oo. By construction, we have (t;,t}) € f(g_ )’ while (k;, k) € I?(g ) by Lemma 8.14. O
L L

8.4 Proof of main results

We are now ready to prove Theorems 3.14 and 3.16. We note that the restriction operator 7'('(5 )
L

can be treated exactly as in §8.3, provided one uses Proposition 8.7 rather than Proposition 8.6. For
the remaining operator wéL(n) we develop the following more direct approach.

Lemma 8.17. Fiz H = (?(Z;R"™) for some integer n > 1 and consider a bounded linear operator
L : C([rmin, Tmax); H) — H that satisfies both (HF) and (HFrr); . Suppose furthermore that (hw);., .
(hk) and (hr) are all satisfied. Then the range Ry, (o 18 closed in C([Pmin, 0]; £2(Z; R™)).

Proof. Consider a sequence r; € RC_QL(n) for which r; — 7, € C([Tmin,O];éz(Z; R")) Naturally, we
also have

R o 2 (rj,75(0)) = (r+,7:(0)) € C([rmin, 0); £2(Z; R™)) x *(Z; R™). (8.134)
The closedness of }A%:Q now implies that
(n)

(re,r(0) =777 (8.135)

for some ¢ € @L(n), which hence must have g(07) = g(07). In particular, we may write ¢ = ¢ €
Qr(n) and r, = 7 g, as desired. O

Lemma 8.18. Fiz H = (?(Z;R™) for some integer n > 1 and consider a bounded linear operator
L : C([rmin, "max]; ) — H that satisfies both (HF), and (HFrr), . Suppose furthermore that (hw)
(hk) and (hr) are all satisfied. Then the subspace

—{fe Ty, 107)=i0")) (8.136)

Lim»

TCE (m —

15 closed in C’([rmin,rmax];ZQ(Z;R")) and we have the direct sum decomposition
Qrn) =Kg, (,y ®Tg, on- (8.137)

Proof. The closedness of Ty, (,,) follows from the closedness of T Q ) and the fact that the defining
property is preserved through limits. In addition, remembering that K; Boin) = K Q1(n)> We see that
L

Koo Vo, © K, 0y N Ty, ) = 0F

T

(8.138)

It hence remains to show that Qr(n) C K, To this end, pick any ¢ € Qr(n) and

¢ remains to show R M D
write ¢ = k+t with k € K(g ) = Kg,(, and te T(Q . Since k(0%) = k(07) = 0, the identity
L L
t = g — k implies that £(0~) = £(0T) and hence t € Tq. (n), as desired. O
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Proof of Theorem 3.14. The results for %éL(Tl) follow from Lemma’s 8.12-8.16. On the other hand,
the results for ﬂéL () €O be obtained by almost identical arguments, substituting Proposition 8.7
for Proposition 8.6 where appropriate. Finally, Top () CAN be analyzed using Lemma’s 8.17 and 8.18,
while the spaces Pr,(n) and Pr(n) can be treated in an analogous fashion. O

Proof of Theorem 3.16. The statements follow from Theorems 2.5 and 3.14, using the observation
that the identity

Ta(2)07,0(2) = ALz (8.139)

implies that
Ja(2)01 p1(w)(2) = AL (2) (8.140)
holds for each w € [—m,7]. O
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