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1 Introduction

Modelling spatial discreteness occurs in many areas of science and engineering.
This thesis focuses on the propagation of signals through nerve fibers. Such
fibers are coated with myelin sheaths and admits gaps at the so-called nodes of
Ranvier. There, ions can exit and enter the fiber. In 1952, Hodgkin and Huxley
described how action potentials propagates through a squid giant axon. How-
ever, the Hodgkin-Huxley equations are rather complicated. FitzHugh proposed
a simpler model and this model was further studied by Nagumo and has become
known as the FitzHugh-Nagumo equation. Theoretically, not everything is un-
derstood and there is not much work done numerically. This thesis explores the
issues encountered when doing such numerical research.

First, we discuss the discrete Nagumo equation in section 3:

dV;

with V; representing the potential in node i, o = h? with h the distance between
two consecutive nodes and p a constant between —1 and 1. By looking at the
waves that connect the points —1 and 1, we find a relation between «, p and
the wavespeed ¢ numerically. The numerical methods used in the simulations
are the collocation method and Newton’s method which are described in section
3.1.

Secondly, the FitzHugh-Nagumo equations given by

Vit) = alVig + Vi =2V + V(1= V)(V; —a) = W;
E(VJ_’}/Wj)a

=
—~~
o~
~—
I

with W; representing the recovery component, y a constant, € << 1 a constant
and a a constant between 0 and 1, will be examined and the profile of the waves
are to be explained in section 4. The difficulties encoutered when simulating are
discussed in section 4.1 and the results of the simulations are given in section
4.2. We will see a relation between €, a and c. It is only known rigorously
that there exists waves, ie solutions, under certain conditions. However, we find
in the numerical results that there are also solutions which do not meet the
conditions.

Elmer and van Vleck have also done some research with the FitzHugh-Nagumo
equations, see [14]. However, they used a different nonlinear function and it
turns out that there is a difference in our results. This will be discussed in 4.3.
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2 Biological background

There are nerve fibers in our body which are about a meter long. A signal
through a fiber must cover this distance. Luckily this happens in an instant.
For example it enables you to pull your hand away quickly when your hand
touches something extremely hot by accident. The reason why such a signal
can travel so fast is because the signal in the fiber actually jumps through it.

A fiber is shown in figure 1. It consists of alternately myelin sheaths and nodes
of Ranvier. Myelin sheaths are made of an isolating substance which prevents
the passage of ions. In contrast to myelin sheats are the nodes of Ranvier where
ions can acces and leave the fiber. The distance between two consecutive nodes
depends on the diameter of the fiber and lies between 0.3mm and 2mm, [1].

The concentration of sodium ions outside the fiber is a lot higher than inside
the fiber. As for the concentration of potassium ions it is the other way around.
This difference in concentration is maintained by energy consuming ion pumps
at the nodes of Ranvier. However, the transport of sodium ions is quicker than
that of the potassium ions, resulting in a negative potential of the fiber in rest
of approximately —70mV .

Due to the influence of a neurotransmitter or an approaching impulse the po-
tential can rise. When this exceeds the threshold of approximately —55mV’, the
permeability of sodium ions increases. Consequently, voltage-gated ion channels
become activated which leads to a further rise of the potential until it reaches
about +40mV. Then, the permeability of sodium ions decreases and the per-
meability of potassium ions increases. The latter leaves the fiber which leads
to a decrease of the potential. Since the potassium channels do not respond
that quickly, the potential becomes slightly more negative than its resting po-
tential. Subsequently, the permeability of the membrane returns to normal and
the potassium ions and sodium ions are pumped back to their positions, [2].
This proces is called an action potential and is shown in figure 2.

The sodium ions which have entered the fiber move to the next node of Ranvier
since the potential is more negative there. This results in an action potential
at the next node. Thus, we have a signal which penetrates the fiber. Since
the exchange of ions only takes place at the nodes, the action potential jumps
from node to node, resulting in a wave propagating through a discrete spatial
domain. This is the reason why a signal can travel a great distance in a very
short period of time. When the fibers do not, contain myelin sheats, the signal
does not jump and will travel at a much slower speed. The difference between
the speeds can lead up to 120m/s, [3].
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Fig. 1. A myelinated nerve fiber with nodes of Ranvier.!
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Fig. 2: Schematic of an action potential.?
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3 Nagumo equation

A signal jumping through a fiber can thus be seen as a wave travelling through
a discrete spatial domain. By using the model given by the Nagumo equation
(3.1), we want to observe what kind of effect changing the distance between two
consecutive nodes have on the shape and speed of such a wave. This model is
as follows
dv; _9
T b= [Vigr + Vi = 2Vi] = g(Vi, p), (3.1)
with V; a function of time t and representing the potential in node i, h the
distance between two consecutive nodes and g(V;, p) = (V; + 1)(V; — 1)(V; — p)
with p a constant between —1 and 1. We look at the states in which all the
nodes have the same potential, thus for all ¢ holds V; = V for some potential
V € R. Then the following holds:
T = —g(Virp) (32)

The roots of g(V;,p) are 1,—1 and p, thus the whole system is in rest if V
is equal to 1,—1 or p. Since the dynamics are stable for the points V' = +1
and unstable for V' = p, we have a bistable system. There exists a competition
between the discretization of the diffusion term and the nonlinearity. The result
of this competition is a formation of a travelling wave, [4].

Such traveling waves have a constant shape ¢, speed ¢, and connect the points
—1 and 1. We apply the travelling wave ansatz V;(t) = ¢(i — ct). This results
in the following equation

—c¢/(§) = adp(§+1) + ¢(§ — 1) = 26(§)] = ((§) + 1)(d(§) — 1)(4(§) — p), (3-3)

with @ = h=2 and ¢ =i — ct. The boundary conditions imposed are

lim ¢(§) = -1, lim ¢(§) = 1. (3.4)
E——o0 E—o0
The differential equation (3.3) is called a differential equation of mixed type
since ¢'(§) is dependent on the value of ¢ at £ — 1 and £ + 1. The following
theorem states that there are solutions to (3.3) with an unique wavespeed and
such solutions are unique when ¢ # 0.

Theorem 3.1. Let

—c¢' (&) = a[p(§ + 1) + ¢(§ — 1) = 26(E)] — f(o,p) (3.5)
Jm o) =r,  lim 9(¢) =7 (3.6)

with o > 0 and f(¢,p) a polynomial of degree three. Let its roots be r1,p,To
with T < p<T2 and f(¢7p) <0 Zfd) € (—OO,’Fl) U (p7r2) and f(¢7p) >0 Zf
¢ € (r1,p) U (re,00). Then for every p € (r1,73), there exists ¢ € R, and a
monotone increasing solution ¢ = P(£) of (3.5) on R satisfying the boundary
conditions (3.6). This ¢ = ¢(p) € R is unique, and depends continuously on
p, and is C* smoothly on p when c(p) # 0. If c(p) # 0 then the solution P is
unique up to translation among all solutions satisfying (3.4) and also satisfies
P'(€) > 0 with € € R.
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Proof. See [5]. O

One of the effects of p in (3.3) is determining in which direction the wave will
travel. Observe the case where the distance between the nodes goes to zero,
thus the limit A — 0. This results in the following PDE

U = Ugy — (u+ 1)(u—1)(u — p). (3.7)

If we look at the travelling wave solutions of (3.7), we find the following second-
order differential equation

—cd' =¢" — (¢ + 1)(¢ —1)(¢ — p). (3.8)
This can be solved explicitly. We find:

4(6) = tanh(; v2¢) (3.9)
c=V2p (3.10)

If p € (—1,0), then the wave travels to the left. If p € (0,1), then the wave
travels to the right. Only when p is equal to 0, the wave will stand still, in other
words ¢ = 0 and we speak of propagation failure. In our case, p still determines
in which direction the wave will travel. However, it can now occur that the wave
is standing still even though p is not zero.

3.1 Numerical methods

The model in (3.3) can be simulated by using a special written program in
Fortran 95 which can simulate differential equations of mixed type, see [6] for
more information. Programs such as AUTO, [7], are not suited to simulate this,
since we do not have ordinary differential equations. Using DDE-biftool, [8],
will also not work, since it can only simulate equations with delay terms and
not advanced terms and we have both.

The numerical methods used are the collocation method and Newton’s method.
By using the collocation method, we get a system with unknown variables.
This can be solved numerically by using Newton’s method. However, using this
method, a starting solution is required.

Example 1. Let

y'(z) = y(z), (3.11)
with the boundary condition y(0) = 1 and = € [0, 1]. Assume y is a polynomial
of second degree, thus y = az® + bz + ¢ with a,b, and ¢ constants. Then take

two points in [0, 1], so called collocation points, for example & and 2 for which
(3.11) must hold. Then, the following must hold:

y(0) =1 (3.12)
1. 1

v3) =¥ (3) (3.13)

(2 =y (%) (3.14)

3 3
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Thus, we find the following system of equations:

c=1 (3.15)
1 1 2
- Z == 1
9a+3b+c 3a+b (3.16)
4 2 4
= z = _ 1
9a+3b+c 3a+b (3.17)

When solving (3.11) analytically, we find y = e*. Note, the series expansion at
=0is 14+ 2+ Lz’ From (3.15),(3.16) and (3.17), we find a = &, b= & and
¢ = 1. Thus, an approximation of y is y = 19—13@2 + %:E + 1.

In our case, we must solve the following
—cg'(§) = a[p(§+1) + ¢(§ — 1) = 26(&)] — (A(§) + 1)(4(§) — D)((&) —(P) |
3.18
A =0 (3.19)
with € € [Ly, L,] and Ly, L, € R. Since ¢ is unknown, solving (3.19) simultane-

ously with (3.18) gives both the solution ¢ and ¢. By following the approach of
[9], we introduce an artificial diffusion term ¢, giving

0 = 7¢"(&) +cd'(&) +alp(€+1)+o(E = 1) —26(¢)]
—=(0(&) + 1)(8(&) — 1)(¢(&) — p), (3:20)
) = 0. (3.21)

The value of v is of the order v = 1075. Since ¢ € [L;, L,], the boundary
conditions are

¢(Li) = -1, (3.22)
o(Ly) =1, (3.23)
¢(0) = 0. (3.24)

The last boundary condition is to have the solutions normalized. The equation
(3.20) can be written as

§'(6) = —%(o¢(5)+a[¢(5+1)+¢(5—1>—2¢(§)1

—(9(&) + D(p(§) = 1(d(§) — p)) (3.25)

The right-hand side of (3.25) is a nonlinear function, making the system of
equations such as in (3.15), (3.16) and (3.17) more complicated. Thus, Newton’s
method is used to solve this. Note, since ¢ is dependent on the shifts ¢(£ + 1)
and ¢(¢ — 1), determining the inverse of the matrix in Newton’s method is very
difficult. Thus, this is all done numerically.

3.2 Numerical results

By simulating (3.25), (3.21) with (3.22), (3.23) and (3.24) we find the following
graphs.
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Fig. 3: Wave profiles ¢(£) at different values of p with a = 1. The curves have
been shifted for presentation purposes.
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Fig. 4: Wavespeed c against p with a = 1.

In figure 3, we see that when the parameter p decreases to 0.05, the waveprofile
starts to lose its smoothness.
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Fig. 5: Wave profiles ¢(&) at different values of p with a = 0.5. The curves have
been shifted for presentation purposes.

0,8
0,6
0,4
0,2

0,0

Fig. 6: Wavespeed ¢ against p with a = 0.5.
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In figure 5, the value of « is 0.5, which is smaller than in figure 3. Notice that as
the parameter p is decreased, the waveprofiles begins to lose their smoothness
at p = 0.1 and is a step function at p = 0.05 as opposed to figure 3.
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Fig. 7: Wave profile ¢(&) at p = 0.1 with a = 0.05.
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Fig. 8: Wavespeed c against p with a = 0.05.
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In figure 7, the value of « is 0.05. The waveprofile of p = 0.1 has lost all its
smoothness and has become a step function.

Observe figure 4, 6 and 8. The interval for which ¢ = 0 holds, becomes larger as
« decreases. Also, there are values of p unequal to zero for which ¢ = 0 holds in
contrast to the continuous case. Define p* as the largest p such that ¢ = 0 holds.
In figure 8 this would be the sharp point in the graph. In figure 9, it is shown
that p* increases as « decreases. According to theorem 2.6 in [5], p* < 1 holds.
However, Keener has shown in chapter 2 in [11] that lim,_, p* = 1 holds.

0,8
0,6

0,4

pd

0,24

0,0

0,0 0,2 04 0,6 0,8 1,0

Fig. 9: p* against a.
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4 FitzHugh - Nagumo equations

Another model describing the excitations of a nerve is given by the FitzHugh
- Nagumo equations. This model is a bit more complicated then (3.1), but
it is more realistic. In this case, there is a pulse. The system returns to an
equilibrium after being disturbed and the behaviour is described as a relaxation
oscillator. The model is as follows

Vit) = alVig + Vi =2V +g(Vj,a) = W;
Wi(t) = e(V; =),

—_~ o~
[N
~— ~—

with V; still the potential in node j, a = h™2, with h the distance between
two consecutive nodes and g(Vj,a) = V;(1 — V;)(V; — a), with a € (0,1). The
variable TW; represents the recovery component of node j (a slow variable). v is
a positive constant and 0 < € << 1 accounts for the slow kinetics of the sodium
channel.

The O(1), ie fast time scale, equations in (4.1) and (4.2) are

Vi) = alVig+ Vi1 =2Vl +g(Vj,a) = W; (4.3)
W;(t) = o.

The O(e), ie slow time scale, equation in (4.2) is
Wit) = e(V = W)). (4.5)

We can now analyze the profiles of both the waves. Observe figure 11. By
looking for spatially constant equilibria for the fast time scale, thus V; = V1, =
V;—1 holds, we find V](t) = 0 when W; = ¢g(V;,a). Thus, the equilibrium points
of the fast time scale are given by the red graph W, = ¢(V;, a).

The arrows on this graph describe the behaviour in time for O(e). We see that
W;(t) < 0 holds for the left side of the line V; = W, and W;(t) > 0 for the
right side of the line using (4.5), thus the arrows correspond to how W; changes
in time. We assume that V; always goes to an equilibrium value instantly on
the slow time scale. However, since WW; changes on the slow time scale and we
can see Vj as a function of W, V; also changes on the slow time scale. For W
on the purple part of the graph in figure 10, we have V; = hy(W;) with hy(W;)
the inverse of W; = g(Vj,a) on that part. Thus,

W; = e(hu(Wy) —yW;) (4.6)

holds for W; in the slow time scale on the purple part. For W; on the light blue
part, we have V; = h,(W;) with h,(WW;) the inverse of W; = ¢(V;,a) on that
part. Thus, )

W, = e(h, (W;) = 777)) (4.7)

holds for W; in the slow time scale on the light blue part.

Since (4.4) holds, we can take WW; as a constant for the fast time scale. Then
(4.3) can be written in the form such as (3.1), but with a different polynomial
of degree three. By following the same approach as in section 3, we can apply
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theorem 3.1. Thus, there exists a wave called the front that connects V; = 0
and V; = 1. This is the green graph in figure 11. The cubic is symmetric around

the point (Umir, Wmir). We mirror W; to Wj(m) and Vj to Vj(m) with
‘/J(m) = Umir — (Vy - Umir): (48)

Wj(m) = Wmnir — (W] — U)mir). (49)

This mirrors the front in a wave called the back, which is the yellow graph. The
double arrows describe the behaviour on the fast time scale.

The solution is periodic and the trajectory through one cycle is given by the
blue graph. How smaller ¢ is, how closer the graph follows the path given by
(I),(IT) (I1I) and (IV). This path consists of two fast components and two slow
components. Together they form what is known as a relaxation oscillation.

Wj Vi =~W;

V[/](t) <0

Fig. 10: The graph W; = g(V}, a).
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Fig. 11: Phase portrait of FitzHugh-Nagumo model.

By applying the travelling wave ansatz (V;, W;)(t) = (v,w)(j — ct) and letting
& =j — ct, we get the following equations

—ev'(€) = apE+1)+v(E—1)—20()]

+0(§)(1 = v(§))(v(§) —a) — w(§) (4.10)
—cw'(§) = e(v(§) —yw(f)) (4.11)
with
Jim o(© =0, Jim u(©) =0 (4.12)
Jim w(@ =0, lim w(©=0 (4.13)

as the boundary conditions. Notice that (4.10) and (4.11) are both differential
equations of mixed type. The following theorem states that there are solutions
to (4.10) and (4.11).

Theorem 4.1. Consider (4.10) and (4.11), then for each ¢ > ¢, with ¢, < 0
the wavespeed belonging to the Nagumo wave equation

—cv'(§) = efu(f+1) +v(€ = 1) = 20()] +v(§) (1 —v(§)(v(§) —a) (4.14)
with a > 0 and ¢ sufficiently close to c., there exists a unique € = €(c) > 0 for
which (4.10) and (4.11) admist a solution (v,w). This pair (v,w) is O(c+ ¢y)-
close to the singular orbit that arises by combining the orbits (I)-(IV) in figure
11 and is unique up to translations.

Proof. See [10]. Note the ansatz used in [10] is (V}, W;)(t) = (v, w)(j +ct), thus
the ¢ used in this thesis is equal to their —c. O
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So we have solutions (v,w) to (4.10) and (4.11) if the wavespeed ¢ is close to
the wavespeed ¢, belonging to the Nagumo wave equation. However, we will
see in section 4.2 that there are also solutions in which ¢ is not close to c..

4.1 Numerical difficulties

When trying to simulate the model given by (4.10) and (4.11) multiple problems
occured. Using the same starting solution as the one used in the Nagumo model
does not work. This is because the starting solution differs too much from the
real solution. Thus, a more accurate starting solution is needed. By using the
model in [12], which is continuous and has a different nonlinearity, solutions
belonging to that model were found. Then discrete terms were added to the
equation. By putting a factor S in front of the continuous part and a factor
1 — S in front of the discrete part, it was possible to give the discrete part
more weight then the continuous part in each iteration. This was done by
setting S = 1 at the beginning and increasing S in each iteration until S was
(almost) 0. The same was done with the different nonlinearity. Consequently,
we obtained a more accurate starting solution for the following system

—c'(§) = ap€+1)+v(§-1)—20()]
+B(©) (1 —v(&)(v(§) —a)) —w(E) (4.15)
—cw'(§) = &(v(§) —yw(§)), (4.16)

with B = 3.3814. Notice we have a factor B in front of the nonlinearity, but
this does not have a big effect on our research.

Another problem is that the interval in which the solutions are located was de-
pendent on the value of €. If £ is small, then the interval in which the solutions
are given would become larger. The reason for this to happen is that e deter-
mines how fast the slow time scale is and the period of the solution is determined
by the slow time scale. Thus, if € is small, the period of the solutions would
become larger resulting in a larger interval. This is not very practical. This
can be solved by scaling the solutions, making the solutions fit in the interval
[0,1]. Therefore we introduce s(¢) with the new scaled solutions f)(%) = v(§)
and 1[)(%) = w(£). The speed c is not affected by the scaling and thus remains
the same.

Just as in section 3.1 we introduce artificial diffusion term &4 and dw, giving
the system we want to solve

0@ = 2T a4 1) +9(E - 1)~ 20()
B~ 5(@)6(E) ) — 5(E). (4.17)
5@ = -5 4 ow@) - @), (4.18)
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with 5: £ and 6 =105, The boundary conditions are

S

v(0) =0, v(1)=0, 4.20)
w(0) =0, w(l) =0, 21)
v(%) = % (4.22)

The last boundary condition eliminates the trivial solution v = 0 = w.

In [13], where the model was continuous, each a corresponds to two wavespeeds.
Thus, this is also suspected in the discrete case. Thereby, it was not sufficient
to only vary a in each iteration when observing the effect of @ on ¢. This can
be solved, by varying c in each iteration.

4.2 Numerical results

The following results were found numerically. The values of a and ~y are 1 and
0.8 respectively in all the simulations. The scaling that was used is s = g In
figure 12, the profiles of both the waves are shown. The solutions travel to the
right. Thus, the potential for V; grows quickly first, followed by a slow decrease
and then a fast decrease in which the potential even becomes negative and
finaly increasing slowly until it reaches zero again. The potential of W; barely
changes when the potential V; changes quickly, but it slowly grows when that of
V; decreases and slowly decreases when that of V; increases. This corresponds
to the analytically theory discussed at the beginning of chapter 4.

Increasing B in (4.15) to 1.75 x B = 10.32 and simulating

—a'(§) = apE+1)+o(—1)—20()]
+B((§) (1 —v(£)(v(§) —a)), (4.23)

which is the Nagumo equation with solutions that are waves connecting 0 and 1,
we see in figure 13 that there is propagation failure for some a. Notice that the
graph in 13 is reflected over the a-axis. This is done for presentation purposes.

In figure 14, the relationship between a and ¢ are plotted for ¢ = 0.02 and
¢ = 0.08. Since the boundary conditions of (4.10) and (4.11) are (4.12) and
(4.13), if ((v, w)(&), ) is a solution then ((v,w)(—¢&), —c) is also a solution. Thus,
the reflection of the Nagumo graph over the a-axis is justified. Notice how close
the black en blue graph follow the pink graph, but then make a turn which
ensures a second solution of ¢ corresponding to a value of a. After the turn, both
the graphs grow in the c-direction slowly. Thus, we have solutions eventhough
¢ is not close to c,.

The reason why the blue graph stops at the top is because the solutions of v
corresponding to the values of ¢ becomes wider as ¢ increases. This can be seen
in figure 15. By increasing the scale factor s, this can be solved. It is not known
why the black graph stops at the right side. The reason why the blue graph as
well as the black graph stops at the left side is that the solution of v shrinks.
In figure 16, this can be seen for € = 0.08. The consequence is that it cannot
satisfy the boundary condition (4.22) anymore.
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Fig. 12: Wave profiles v and w with ¢ = 0.01 and € = 0.01.
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Fig. 13: Wavespeed ¢ (reflected over the a-axis) against a using (4.23).

Observe figure 17, this is the graph with ¢ = 0.02 in figure 14 zoomed in after
the turn. The graph drops a bit before it increases steadily.
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Fig. 15: The waveprofile v for multiple values of ¢ with € = 0.08.

3 The Nagumo graph is reflected over the a-axis for presentation purposes.
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Fig. 16: The waveprofile v for multiple values of p with ¢ = 0.08.

Fig. 17: Zoomed in after the turn in figure 14.

4.3 Difference between our results and Elmer and van Vleck’'s

Elmer and van Vleck have also done some research with the spatially discrete
FitzHugh-Nagumo equations [14]. However, the nonlinear function used was a
piecewise linear function f,

0, v < a,
f(v)=v—h(v—a), where h(v —a) =< [0,1], v=a, (4.24)
1, v > a,

where a € (0,1). By using this function, Elmer and van Vleck could analytically
find solutions to the equations, which in our case it is not possible to do so. The
curves found by Elmer and van Vleck are monotonic decreasing in ¢ travelling
from top to bottom in contrast to the results in figure 14. In our case, both of
our graphs grow in the c—direction after the turn.
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5 Discussion and suggestions for further research

By looking at the Nagumo equation, we have found a relation between the «a, p
and the wavespeed c¢. For a small enough, there exists some values for p not
equal to zero for which ¢ = 0 holds. This is in contrast to the continuous case,
where only p = 0 gives ¢ = 0. As a becomes smaller, the interval for p in which
¢ = 0 becomes larger. The profile of the wave for such p is not smooth.

Using the FitzHugh-Nagumo equations, which describe a pulse, we have plotted
for some values of € the relation between p and ¢. We found the solutions where
¢ is close to c., with ¢, the wavespeed belonging to the Nagumo equation.
However, we also found solutions in which this is not the case and the theory
discussed does not hold for those solutions. Krupa and Sandstede have describe
how solutions of the PDE behave around the turning point in [13]. On the other
hand, there is still not much known about the solutions after the turning point
for the discrete case. Nevertheless, there is hope, since we can now find them
numerically.

As mentioned before, it is not clear why we cannot find further solutions (¢ >
0.44) for the black graph at ¢ = 0.44 in figure 14. Further research could give us
the answer and also describe the behaviour of the solutions when ¢ is not close
to Cy.-



References 24

References

[1]

[9]

E. Decuypere, Hoofdstuk 5: Informatie-overdracht in fyshiologische
processen. Deel A: zenuwcorrelatie. http://www.biw.kuleuven.be/DP/
fysiologie/hfdstbzpagl.htm, 2005.

L.C. Junqueira, J. Carneiro and R.O. Kelly, Functionele histologie. Elsevier
gezondheidszorg, Maarssen, 2002.

Keiichiro Susuki, Myelin: A Specialized Membrane for Cell Communica-
tion. Nature Education 3(9):59, 2010.

Paul C. Fife and J.B. McLeod, The Approach of Solutions of Nonlinear
Diffusion Equations to Travelling Front Solutions. Archive for Rational Me-
chanics and Analysis, Vol. 65, Issue 4, pp. 335-361, 1977.

John Mallet-Paret, The Global Structure of Traveling Waves in Spatially
Discrete Dynamical Systems. Journal of Dynamics and Differential Equa-
tions, Vol. 11, No. 1, 1999.

H.J. Hupkes and S.M. Verduyn Lunel, Analysis of Newton’s Method to
Compute Travelling Waves in Discrete Media. Journal of Dynamics and
Differential Equations, Vol. 17, Issue 3, pp. 523-572, 2005.

Pankaj Kamthan, AUTO, SOFTWARE FOR CONTINUATION AND
BIFURCATION PROBLEMS IN ORDINARY DIFFERENTIAL EQUA-
TIONS. http://indy.cs.concordia.ca/auto/, 1996.

Koen Engelborghs, DDE-BIFTOOL v. 2.03, a Matlab package for bifur-
cation analysis of delay differential equations. http://twr.cs.kuleuven.
be/research/software/delay/ddebiftool.shtml, 2007.

Christopher E. Elmer and Erik S. van Vleck, A Variant of Newton’s Method
for the Computation of Traveling Waves of Bistable Differential-Difference
Equations. Journal of Dynamics and Differential Equations, Vol. 14, Issue
3, pp- 493-517, 2002.

H. J. Hupkes and B. Sandstede, Travelling Pulse Solutions for the Discrete
FitzHugh-Nagumo System. SIAM Journal on Applied Dynamical Systems,
Vol.9, Issue 3, pp. 827-882, 2010.

James P. Keener, Propagation and Its Failure in Coupled Systems of Dis-
crete Ezxcitable Cells. STAM Journal on Applied Mathematics, Vol. 47, No.
3, pp. 556-572, 1987.

Robert M. Miura, Accurate Computation of the Stable Solitary Wave for
the FitzHugh-Nagumo Equations. Journal of Mathematical Biology, Vol. 13,
Issue 3, pp- 247-269, 1982.

Martin Krupa, Bjorn Sandstede and Peter Szmolyan, Fast and Slow Waves
in the FitzHugh-Nagumo Equation. Journal of Differential Equations, Vol.
133, Issue 1, pp. 49-97, 1997.

Christopher E. Elmer and Erik S. van Vleck, Spatially discrete FitzHugh-
Nagumo Equations. Siam J. Appl. Math, Vol. 65, No. 4, pp. 1153-1174,
2005.



