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Introduction

The purpose of this thesis is to provide a text that both introduces the theory of Riemannian
geometry and introduces Hamilton’s Ricci flow, such that it also contains numerous explicit
examples and visualisations. Our aim is therefore to hand over as much intuition to the
reader as possible with regard to the introduced abstract concepts. In particular, an adequate
development of “curvature” for example requires a lot of technical machinery, which makes it
easy to lose the intuition of the underlying geometric content.

Riemannian geometry

Throughout the beginning and the middle of the 18th century, one studied curves and surfaces
lying in some Euclidean space. Considering a geometric object within a bigger space is what
we call an extrinsic point of view. This approach is favourable in the sense that it is visually
intuitive. Riemann on the other hand started to develop the intrinsic point of view, where one
cannot speak of moving outside the geometric object since it is regarded as a space on its own.

The intrinsic point of view appears to be more flexible. In general relativity for example, one
studies the geometry of space-time which cannot naturally be a part of a bigger space. However,
the intrinsic approach increases the technical complexity, it requires a lot of machinery and it
easily becomes in particular much less visually intuitive. This approach is nonetheless required
in order to work with ideas like Hamilton’s Ricci flow.

One main object of study in this thesis are Riemannian manifolds. Simply put, a Riemannian
manifold is some kind of smooth geometric object M , such as a sphere or torus for example,
that is equipped with a Riemannian metric g (a smoothly varying choice of inner products on
its tangent spaces). A Riemannian metric allows us to measure geometric quantities such as
distances, angles and curvature. This results for instance into Gauss’s Theorema Egregium, a
fundamental result in Riemannian geometry which states that the Gaussian curvature, a way
of defining curvature extrinsically, can simply be determined intrinsically.

Hamilton’s Ricci flow

Richard Hamilton introduced the Ricci flow in 1982 in his paper: “Three-manifold with positive
Ricci curvature”, see [Ham82]. The Ricci flow was utilised to gain more insight into Thurston’s
Geometrisation conjecture, a generalisation of the well-known Poincaré conjecture. These two
conjectures are far beyond the scope of this thesis, but in relatively simple terms it is about
the classification of certain three-dimensional spaces.

The Ricci flow is a geometric evolution of Riemannian metrics on M , where one starts with
some initial metric g0 and subsequently lets it evolve by Hamilton’s Ricci flow equation

∂

∂t
g(t) = −2Ric[g(t)].

As we will soon discover, the Ric operator simply measures some (intrinsic) curvature, meaning
that Ric[g(t)] is the curvature of M equipped with Riemannian metric g(t) for some time t.
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Hamilton’s motive to define the Ricci flow was because he wanted to have some kind of non-
linear diffusion equation, like the classical heat equation, that would evolve an initial metric
towards a metric that is more even. Evolving some metric based on its curvature is precisely the
reason why it evolves to a more even metric. For example, when interpreting things visually, we
see that the initial geometric object in the figure below evolves towards a more even geometric
object, namely a sphere.

Figure 1: A visualisation of the Ricci flow of a 2-dimensional surface, see chapter 5.

For over two decades the Ricci flow was not very popular, until Grigori Perelman published a
series of papers in 2002 and 2003 in which he proved Thurston’s Geometrisation conjecture.
Perelman essentially used the Ricci flow techniques as proposed by Hamilton together with
several innovations of his own, most importantly the Ricci flow with surgery.

Outline of this thesis

In the first chapter we give an overview of preliminary notions, definitions and important
results concerning smooth manifolds. The reader is not assumed to be familiar with smooth
manifolds, hence we focus here a lot on the geometric interpretations of the required concepts.

In the second and third chapter we continue with Riemannian manifolds and discuss their
geometric properties, most importantly curvature. We define intrinsic measures of curvature
thoroughly and briefly discuss their link with Gaussian curvature and parallel transport.

In the fourth chapter we define the Ricci flow in full depth and consider three types of solu-
tions: ancient, immortal and eternal solutions. We end this chapter with a brief discussion
on short- and long-time existence and uniqueness of the Ricci flow, the link between manifold
classification and the Ricci flow, and the Ricci flow with surgery.

Lastly, in the final chapter we consider the Ricci flow solution of a so-called surface of revolution.
The first two sections of this chapter are fully inspired by the work of Rubinstein and Sinclair,
see [RS08]. They provided us the Ricci_rot program, a publicly available code that visualises
the Ricci flow of a surface of revolution. In the last section we give a quite detailed sketch of our
proof on the short-time existence and uniqueness of the Ricci flow for a surface of revolution.
In contrast to the general analysis in any textbook or paper, we tried to achieve the short-time
properties without using parabolic PDE theory on manifolds.

The following link includes the original code and application (tested on a Mac OS X) as well
as an executable file Ricci_rot_windows created by the author of this thesis in order to work
with the Ricci_rot program on a Windows 10 computer:

http://pub.math.leidenuniv.nl/~hupkeshj/ricci_simulations.zip

This thesis is based on several textbooks, papers and lecture notes. The most important sources
were [Lee97], [Lee13] and [Tho79] for the first three chapters, and [CK04] and [CLN06] for the
last two chapters. Statements without a proof are provided with a source reference; various
proofs within this thesis are from the author himself; and whenever a given proof originates
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from the literature, but some gaps have been filled in or adjustments have been made in order
to be coherent with the rest of this thesis, we mention it as follows: Proof. (Based on [...]).

We also want to note that Riemannian geometry and the Ricci flow are strongly related to
algebraic topology, as becomes clear by reading [Lee97] and [CK04] for example. In this thesis,
we will omit all the group theory and focus on smooth geometric objects that can easily been
seen as a subspace of some Euclidean space. Lastly, we will often consider two-dimensional
examples in order to keep things concise and make visualising easier.

Discretisation of the Ricci flow

We like to end this introduction with a side note concerning applications of the Ricci flow
besides being a tool to achieve the manifold classification. The Ricci flow became worldwide
known since Perelman proved Thurston’s Geometrisation conjecture in 2003. Numerous papers
followed and mathematicians started to apply the Ricci flow directly in more tangible fields of
mathematics. This is basically achieved by discretising Hamilton’s Ricci flow and we like to
refer to [ZG13, p. 59] for a complete course on the discretisation of the Ricci flow.

For instance, see [GWK+07], the discretised Ricci flow can convert all three-dimensional prob-
lems into two-dimensional domains and hence offers a general framework for surface analysis.
Its applicability has been demonstrated through standard shape analysis problems, such as but
not limited to three-dimensional shape matching and registration.

Figure 2: See [GWK+07, p. 7]. Comparison of Ricci flow with LSCM and harmonic maps. (a) and
(f) are two surfaces to be registered. (b) and (g) are their Ricci flow maps. (c) and (h) are these two
surfaces after hole-filling. (d) and (i) are their LSCMs. (e) and (j) are their harmonic maps.

Another application, see [WYZ+08], is within brain mapping research. In short, brain mor-
phology in 21 patients with Williams Syndrome and 21 matched healthy control subjects with
the discrete surface Ricci flow has been studied. Their results show that the discrete surface
Ricci flow effectively detects group differences on cortical surfaces.

Figure 3: See [WYZ+08, p. 43]. Cortical surfaces with landmark curves and their conformal parame-
terization results. The first row shows a cortex with 4 landmarks and the second row shows a cortex
with 7 landmarks (one landmark is not visible in this view).
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Chapter 1

Preliminaries

In this chapter we will give a succinct overview of definitions and important results needed to
construct Riemannian manifolds. We like to note that there are several ways to approach this
construction since various concepts can be defined differently. Throughout this chapter we will
focus a lot on the intuition behind definitions and their geometric interpretation in order to
achieve a better understanding of the more abstract concepts and matter.

The reader is moreover assumed to be familiar with advanced calculus, linear algebra and the
basics of topology. For a complete introduction on smooth manifolds we refer to either [Lee13]
or [Lee00]. The latter is an early draft of [Lee13] that is publicly available.

1.1 Topological Manifolds

Let M be a topological space. To be precise, we consider a pair (M, T ) such that M is a set
with a topology T . We however omit this notation and simply write M since the topology will
be clear from the context. It is often the Euclidean (subspace) topology. Consequently, when
we say S ⊂ M is a subset of M then we have to interpret S as the subspace of M with its
induced subset topology. Now also recall that a homeomorphism is a continuous bijective map
with a continuous inverse.

Definition 1.1. Let M be a topological space. Then M is locally n-dimensional Euclidean
if for every p ∈ M there exits an open neighbourhood Up ⊂ M such that Up is homeomorphic
to an open subset of Rn.

Definition 1.2. Let M be a second countable Hausdorff topological space. Then M is said to
be a topological n-manifold when it is locally n-dimensional Euclidean.

Requiring manifolds to be second countable and Hausdorff ensures us that the manifolds behave
and look like Rn even more. Nonetheless, these technical properties are often left out by authors
to generalise the concept, see for example [Sch08, p. 18].

Proposition 1.3. Let M be a topological n-manifold. Every open subset of M is again a
topological n-manifold.

Note this proposition follows directly from the fact that topological subspaces inherit the second
countable and Hausdorff properties. Very important though trivial examples of topological
manifolds of dimension n are Rn itself and any open subset of Rn.

Example 1.4. Continuous plane curves that do not self-intersect and circles are topological
1-manifolds. Spheres, tori, and hyperboloids are topological 2-manifolds. The n-dimensional
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sphere Sn = {x ∈ Rn+1 : ‖x‖ = 1} with ‖ ·‖ being the standard Euclidean norm and the graph
of a continuous map f : Rn → R are topological n-manifolds. 4

Remark 1.5. The examples given in example 1.4 can be thought as subsets of Rn. In this
thesis we will be limiting ourselves to such examples. Examples of non-Euclidean manifolds
are the real projective space RPn and the space of m× n matrices, see [Lee13, p. 19].

Definition 1.6. Let M be a topological n-manifold. A coordinate chart on M is a pair (U,ϕ)
with U ⊂ M open and ϕ : U → ϕ(U) a homeomorphism onto an open subset of Rn. Such a
map ϕ is called a local coordinate map and its inverse ϕ−1 is a local parametrisation
of M . The component functions of ϕ are called local coordinates on U.

Figure 1.1: A visualisation of definition 1.6.

Local coordinates on U are often denoted as (x1, ..., xn), where xi : U → R is the i-th component
function of ϕ. Although local coordinates constitute formally a map from U to Rn, it is more
common to identify a point p ∈ U with its coordinate representation in Rn. Therefore, we will
say p = (x1, ..., xn) in local coordinates while actually we have to say p̂ = (x1(p), ..., xn(p)) is
a local coordinate representation of p.

Example 1.7. Consider R = R2\{(x, 0) : x ≤ 0} which is an open subset of R2 and therefore
a topological 2-manifold. Note that (R,ψ) with ψ : R → R, (x, y) 7→ (x, y) and (R,ϕ) with

ϕ : R → R>0 × (−π, π), (x, y) 7→ (
√
x2 + y2, arctan2(y, x)) are both coordinate charts.1 The

components functions (x1, x2) of ψ are called the standard coordinates on R and the polar
coordinates (r, θ) are the components functions of ϕ. Note that the following well-known
implicit formulae hold:

x1 = r cos θ and x2 = r sin θ. (1.1)

For any p ∈ R we now would say p = (x1, x2) in standard coordinates or p = (r, θ) in polar
coordinates. Ultimately, we deliberately looked at R instead of R̃ = R2\{(0, 0)} for example
because ψ(R̃) = R>0 × (−π, π] is not an open subset of R2. 4

Since topological manifolds are locally Euclidean by definition, it follows immediately that
each point p ∈M is contained in the domain of some chart (U,ϕ). This implies the existence
of charts. Moreover, any topological manifold can be written as a union of chart domains. A
collection of charts A = {(Ui, ϕi)}i such that the Ui cover M is called an atlas. Commonly,
one defines a topological manifold to be a topological space that is able to admit an atlas, see
for example [Sch08, p. 18]. Note this is equivalent with definition 1.2.

1.2 Smooth Manifolds

In simple terminology, smooth manifolds are objects that locally look like some Euclidean space
and on which one can do calculus. With smooth we mean infinitely differentiable, thus for a

1The function arctan2(y, x) returns the angle of (x, y) ∈ R2\{(0, 0)} within the interval (−π, π].
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map f : U → R with U ⊂ Rn open all the partial derivatives of f need to exist and need to be
continuous on U . When f is smooth we use the common notation f ∈ C∞(U). In general, a
function F : U → Rk with U ⊂ Rl open is said to be smooth if each component function Fi of
F = (F1, ..., Fk) is smooth. Our next focus will therefore be to define for a map f : M → Rk
what it means to be a smooth function.

Suppose M is a subspace of Rl for some l > 0. One way to achieve a smoothness criterion is to
say that a map f is smooth when it can be extended to a smooth map f̃ : U → Rk with U open
such that f̃ |M = f , see for example [Tho79, p. 23] and [Sch08, p. 21]. It would be a plausible
approach, however there are two disadvantages. First, this cannot be done in general which
follows from remark 1.5. Secondly, in order to do this we need to suppose M is surrounded by
some ambient space (see also section 1.3). In later chapters this seems to be undesirable since
we want to consider a manifold as a space on its own and not being part of some bigger space.

Definition 1.8. Suppose U ⊂ Rl and V ⊂ Rk are open subsets. A map F : U → V is called
a diffeomorphism if it is a bijective smooth map with a smooth inverse.

Note that when F is a diffeomorphism, it is clearly a homeomorphism too. Since standard
calculus is defined on Rk, the following approach seems to be the most logical. In what will
follow, M is assumed to be a topological n-manifold unless otherwise specified.

Definition 1.9. Two charts (U,ϕ) and (V, ψ) on M are said to be compatible if either the
intersection U ∩ V is disjoint or the transition map

ψ ◦ ϕ−1|ϕ(U∩V ) : ϕ(U ∩ V )→ ψ(U ∩ V ) (1.2)

is a diffeomorphism.

Figure 1.2: A visualisation of definition 1.9.

Definition 1.10. A collection of charts A whose domains cover M is called a smooth atlas
of M if and only if any two charts in the atlas A are compatible. Moreover, the atlas A is said
to be complete whenever it is not contained in any other smooth atlas.

Definition 1.11. The pair (M,A) is a smooth n-manifold whenever A is a complete atlas
of M. Charts in the complete atlas A are called smooth.

Hence one might say that a complete atlas A gives M a smooth structure. Finding a
complete atlas is difficult, but the following proposition shows how to induce such structure.

Proposition 1.12. [Lee13, p. 13] Suppose A is a smooth atlas of M . Then there exists a
unique complete atlas A′ containing A. We say A′ is the complete atlas determined by A.

In conclusion, if there exists a smooth atlas then M can be extended to a smooth manifold.
We must note that a smooth atlas might not exist and therefore M will not attain a smooth
structure. Also M may admit different smooth structures. But luckily both cases do not occur
for dimensions n < 4, see for example [Lee13, p. 40].
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Example 1.13. We will show S2 is a topological 2-manifold and that it can be extended to a
smooth manifold. Recall S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. Define the open sets:

S2
+ = {(x, y, z) ∈ S2 : z > 0} and B2 = {(x, y) ∈ R2 : x2 + y2 < 1}.

We call S2
+ the northern hemisphere. Now note that the projection map

ϕ : S2
+ → B2, (x, y, z) 7→ (x, y) (1.3)

is a homeomorphism since we have

ϕ−1 : B2 → S2
+, (x, y) 7→ (x, y,

√
1− x2 − y2) (1.4)

and both ϕ and ϕ−1 are clearly continuous. Hence (S2
+, ϕ) is a chart of S2.

Figure 1.3: A visualisation of the given chart (S2
+, ϕ).

Similarly, we can consider the southern hemisphere chart:

S2
− = {(x, y, z) ∈ S2 : z < 0}, ψ : S2

− → B2, (x, y, z) 7→ (x, y);

and the remaining four charts needed to cover the 2-dimensional sphere:

U+ = {(x, y, z) ∈ S2 : x > 0}, π1 : U+ → B2, (x, y, z) 7→ (y, z);

U− = {(x, y, z) ∈ S2 : x < 0}, π2 : U− → B2, (x, y, z) 7→ (y, z);

V+ = {(x, y, z) ∈ S2 : y > 0}, π3 : V+ → B2, (x, y, z) 7→ (x, z);

V− = {(x, y, z) ∈ S2 : y < 0}, π4 : V− → B2, (x, y, z) 7→ (x, z).

Now let A be the collection of the six charts which is an atlas for S2 and therefore the 2-
dimensional sphere is a topological 2-manifold. Furthermore, A is a smooth atlas which can
be easily verified. For example, consider the functions

(π2 ◦ ϕ−1)(x, y) = (y,
√

1− x2 − y2)

and
(π2 ◦ ϕ−1)−1(y, z) = (ϕ ◦ π−1

2 )(y, z) = (
√

1− y2 − z2, y)

which are clearly smooth when restricted to ϕ(S2
+ ∩ U−) and π2(S2

+ ∩ U−) respectively, hence
the maps ϕ and π2 are compatible. According to proposition 1.12, the atlas A determines a
smooth structure, which is said to be the standard smooth structure on S2. 4

Example 1.14. Let U be any open subset of Rn. The chart (U,ϕ) with ϕ the identity map
already defines an atlas {(U,ϕ)} for U . It is automatically a smooth atlas, since ϕ is compatible
with itself. Thus {(U,ϕ)} determines a smooth structure on U . In general, every open sub-
set V of a smooth manifold (M,A) is a topological manifold due to proposition 1.3 which can
be extended smoothly by considering the atlas A|V = {(U,ϕ) ∈ A : U ⊂ V }. Then the smooth
manifold (V,A|V ) is said to be an open submanifold of (M,A). 4
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Generally, all examples listed in 1.4 can be extended to smooth manifolds with an analogous
approach. The notion of a complete atlas and a smooth structure is extremely important, since
this enables us to define smoothness on functions f : M → Rk in an acceptable manner.

Definition 1.15. Let (M,A) be a smooth n-manifold. A map f : M → Rk is smooth if for
any smooth chart (U,ϕ) ∈ A the composition f ◦ ϕ−1 : ϕ(U)→ Rk is smooth.

For k = 1 we usually denote f ∈ C∞(M). Checking whether a map f is smooth would be a lot
of work if not impossible. It appears however that looking at a smooth atlas is sufficient.

Lemma 1.16. Suppose A = {(Ui, ϕi)}i is a smooth atlas of M. Then a map f : M → Rk is
smooth if and only if for all i the map f ◦ ϕ−1

i : ϕi(Ui)→ Rk is smooth.

Proof. (Based on [Lee00, p. 24]) Recall proposition 1.12 and let (U,ϕ) be any smooth chart
from the complete atlas determined by A. It suffices to show that f ◦ ϕ−1|Nϕ(p)

is smooth for
some open neighbourhood Nϕ(p) of ϕ(p) for any p ∈ U . Note there is a chart (Uj , ϕj) in the
atlas A whose domain contains p. The charts (U,ϕ) and (Uj , ϕj) are compatible, hence the
composition

f ◦ ϕ−1
∣∣
Nϕ(p)

= (f ◦ ϕ−1
j ) ◦ (ϕj ◦ ϕ−1)

∣∣
Nϕ(p)

: Nϕ(p) → Rk

is smooth because the maps f ◦ϕ−1
i : ϕi(Ui)→ Rk are smooth by assumption. Since this holds

for all p ∈ U , we conclude that the map f ◦ ϕ−1 : ϕ(U)→ Rk is smooth.

Suppose we have a smooth atlas A on M . Then by proposition 1.12 we know A determines
the smooth structure on M. Furthermore, due to lemma 1.16, in order to check whether a map
f : M → Rk is smooth, one only considers the charts in A. In practice, a smooth atlas is often
clear from the context and thus one says M is a smooth manifold and omits the pair notation.

Remark 1.17. According to the lemma above, it seems to be somewhat redundant to define
a complete atlas because one smooth atlas is sufficient. Nonetheless, defining f : M → Rk to
be smooth if it is smooth for some smooth atlas may seem as an atlas dependent definition.

Recall the discussion at the beginning of this section. According to [Tho79, p. 128], when M
is an n-surface in Rn+1 (see section 1.3) then definition 1.15 is equivalent with saying that the
function f is smooth if some extended map f̃ is smooth. Additionally, a similar result is true
in [Sch08, p. 22]. Hence this is another indication that it is a good definition. Note that this
definition can be generalised to smooth maps between smooth manifolds.

Definition 1.18. Let M and N be smooth manifolds. A map F : M → N is called smooth
if for any smooth chart (U,ϕ) on M and any smooth chart (V, ψ) on N , the coordinate repre-
sentation ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V ))→ ψ(V ) of F is smooth.

Conform to the previous lemma it suffices once again to show the smoothness for two specific
smooth atlases A and B on M and N respectively. This enables us to see that definition 1.15
is a special case of the above, namely take N = Rk and the atlas defined in 1.14. Note that
definition 1.18 makes it possible to speak about diffeomorphisms between smooth manifolds.

1.3 Submanifolds of Euclidean Space

As stated in remark 1.5, in our examples we will only be considering manifolds that can be
thought as a subset of some Euclidean space. To be precise, in our examples we focus on
what we call n-surfaces and more generally submanifolds of Euclidean space. For a much more
abstract approach, see [Lee13, p. 98].

Definition 1.19. Let S ⊂ Rn+1 be a topological space. Then S is said to be an n-surface if
there exists a map f : Rn+1 → R such that S = f−1(0) and ∇f(p) 6= 0 for all p ∈ S.
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Example 1.20. Consider the map f : Rn+1 → R, x→ ‖x‖2 − 1 with ‖ · ‖ being the standard
Euclidean norm. Note the equality Sn = f−1(0). We have ∇f(p) = 2p 6= 0 for all p ∈ Sn

hence Sn is by definition an n-surface. 4

The definition of n-surfaces is used throughout the entire book [Tho79]. Note that we have
the following generalisation of definition 1.19.

Definition 1.21. Let k ≥ 0 and M ⊂ Rn+k be a topological space such that for every p ∈ M
there exists an open subset Up ⊂ Rn+k with p ∈ Up and a smooth map

f = (f1, ..., fn) : Up → Rk (1.5)

with Jacobian Jf so that the following properties hold:

f−1(0) = M ∩ Up and rank Jf(p) = k. (1.6)

Then M is called an n-dimensional submanifold of Euclidean space and Rn+k is said to
be its ambient space.

Thus n-surfaces are submanifolds of Euclidean space of dimension n with Rn+1 as its ambient
space. Note that for k = 0 we have R0 = {0}, hence every open set of Rn is an n-dimensional
submanifold of Euclidean space.

Also, when a submanifold M has Rn as ambient space, then Rn+l for all l ≥ 0 is an ambient
space too for M when seen as a subset of Rn+l. Let us illustrate this in the following example.

Example 1.22. Consider the topological space M = {(0, y, z) ∈ R3 : y2 + 4z2 = 1}. It is an
ellipse in a 3-dimensional space, on the yz-plane to be precise. Let f be the following smooth
function:

f : R3 → R2, (x, y, z) 7→ (x, y2 + 4z2 − 1).

Then we have

Jf(x, y, z) =

(
1 0 0
0 2y 8z

)
which has clearly rank 2 for all (x, y, z) ∈ M . Moreover, we have f−1(0, 0) = M. Therefore
the ellipse is an 1-dimensional submanifold of Euclidean space in its ambient space R3 which
is usually called a space curve. 4

Definition 1.23. Let M be a smooth n-manifold. A smooth map F : M → Rn+k is said to
be an embedding if it is a topological embedding, a homeomorphism onto its image, and for
any smooth chart ϕ we have rank J(F ◦ ϕ−1)(p) = n for all p ∈ U .

Theorem 1.24. [And01, p. 18] Let M be a subset of Rn+k. Then M is an n-dimensional
submanifold of Euclidean space if and only if M is a topological n-manifold which can be
extended smoothly in such a way that the inclusion map ι : M ↪−→ Rn+k is an embedding.

We like to note that this proof relies highly on the Inverse Function Theorem. For a detailed
proof of the Inverse Function Theorem, see for example [Lee13, p. 657].

Definition 1.25. A smooth manifold M ⊂ Rk is an embedded submanifold of Rk when
the inclusion map ι : M ↪−→ Rk is an embedding.

Example 1.26. Let f : (a, b)→ R be a continuous function and consider its graph:

M = {(x, f(x)) : x ∈ (a, b)}.

Note that both ϕ : M → (a, b), (x, y) 7→ x and ϕ−1 : (a, b) → M, x 7→ (x, f(x)) are clearly
continuous and each others inverse. This implies A = {(M,ϕ)} is an atlas which consists of a
single chart, hence a smooth atlas like in example 1.14. This means M is a smooth manifold.
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When considering for example f(x) = |x| it seems quite counter intuitive. This is due to the
fact M is no embedded submanifold of R2 since the inclusion map ι : M ↪−→ R2 is not smooth
because ι ◦ ϕ−1 : (a, b)→ R2, x→ (x, |x|) is clearly not a smooth function. 4

From the previous examples, we deduce that the most intuitive (smooth) manifolds in Rn are
the submanifolds of Euclidean space and especially n-surfaces. Thanks to theorem 1.24, we
are able to forget its ambient space, which is favourable in chapters later on because we want
to consider a manifold as a space on its own and not being part of some bigger space.

1.4 Tangent Vectors

First suppose M is an n-dimensional embedded submanifold of Rk for some k ≥ n. Then one
usually defines the tangent space of M at p to be the following set:

TpM =
{
γ′(0) : a path γ : (−ε, ε)→M with γ ∈ C∞

(
(−ε, ε)

)
and γ(0) = p

}
⊂ Rk. (1.7)

Although this approach is favourable from a geometric point of view since a tangent vector,
an element of TpM , is in fact tangent to M , it requires M to be a subset of Rk. Also note
this interpretation needs an ambient space and it is an R-vector space of dimension n. For
arbitrary smooth (abstract) manifolds another definition is required.

There are various ways to define tangent vectors: one may generalise the above via equivalence
classes, see [vdV12, p. 33]; one says a tangent vector is a quantity satisfying a specific transfor-
mation law, see [Ros03, p. 38]; one introduces derivations, see [Lee13, p. 54]; etcetera. In this
thesis we consider derivations. Introducing this abstract concept of tangent vectors appears
to have several advantages like decreasing the difficulty of definitions and proofs later on. For
what will follow, let M be a smooth n-manifold unless otherwise specified.

Definition 1.27. A linear map X : C∞(M)→ R is said to be a derivation of M at p when
it satisfies the Leibniz condition

X(fg) = f(p)Xg + g(p)Xf (1.8)

for all f, g ∈ C∞(M). The tangent space of M at p, denoted by TpM , is the set of all
derivations of M at p. An element of TpM is also called a tangent vector of M at p.

Clearly a tangent space is an R-vector space. Furthermore note that the Leibniz condition
is some kind of product rule, hence an essential example of a derivation is the directional
derivative of a function along a smooth path. Particularly, let γ : I → M be some smooth
path with the property γ(0) = p. Then the map X acts as

X(f) =
d

dt

∣∣∣
t=0

(f ◦ γ) (1.9)

for all f ∈ C∞(M) defines a derivation at p. This follows quite directly by noting the useful
equality fg ◦ γ = (f ◦ γ)(g ◦ γ). The converse is actually true as well.

Theorem 1.28. [And01, p. 25] Every derivation of M at p can be written as the directional
derivative of a function along some smooth path through p at time zero.

Now suppose again M ⊂ Rk is an embedded submanifold and let X ∈ TpM . Then the inclusion
map ι : M ↪−→ Rk is smooth by definition hence the projection maps πj : M → R are also
smooth because πj is the j-th component of ι. Thanks to the theorem above, we observe:

X(πj) =
d

dt

∣∣∣
t=0

(πj ◦ γ) =
d

dt

∣∣∣
t=0

(γj) = (γj)′(0) (1.10)

with γ = (γ1, ..., γk) a corresponding smooth path on M through p at time zero.

11



Hence we can interpret a derivation X geometrically as a real vector X ∈ Rk, since we have

X(ι) :=
(
X(π1), ..., X(πk)

)
=
(
(γ1)′(0), ..., (γk)′(0)

)
= γ′(0) (1.11)

which moreover coincides with geometric approach (1.7). Note that the above gives us a natural
isomorphism η : TpM → η(TpM), X 7→ X(ι) with η(TpM) ⊂ Rk an R-vector space.

Definition 1.29. Let p ∈ U with U ⊂ Rn an open submanifold and consider the standard
coordinates (x1, ..., xn) on U. Then the standard coordinate vectors of U at p are

∂

∂x1

∣∣∣
p
, ...,

∂

∂xn

∣∣∣
p

(1.12)

which act on any f ∈ C∞(U) as just a partial derivative, that is ∂
∂xi

∣∣
p
f = ∂f

∂xi (p).

Taking partial derivatives of a product satisfies the Leibniz rule obviously, hence ∂
∂xi

∣∣
p

are

derivations of U at p. The standard coordinate vectors are also linearly independent:
n∑
i=1

λi
∂

∂xi

∣∣∣
p
f = 0

for all f ∈ C∞(U). This clearly implies λi = 0 for any i because we can take f to be simply
the projection maps. Moreover, the standard coordinate vectors of U at p form a basis for TpU
because with the chain rule one get for any X ∈ TpU the following:

X(f) =
d

dt

∣∣∣
t=0

(f ◦ γ) =

n∑
i=1

∂f

∂xi
(γ(0)) · (γi)′(0) =

n∑
i=1

Xi ∂

∂xi

∣∣∣
p
f

with γ = (γ1, ..., γk) a corresponding smooth path on U with γ(0) = p and Xi = (γi)′(0). In
short, for X ∈ TpU we have X =

∑n
i=1X

i ∂
∂xi |p for particular Xi ∈ R. More specific, note that

one has xj ∈ C∞(U) and therefore X(xj) =
(
Xi ∂

∂xi

∣∣
p

)
(xj) = Xi ∂xj

∂xi

∣∣
p

= Xj .

Remark 1.30. (Einstein’s summation convention) Whenever in any term the same index
name appears twice, as both an upper and a lower index, that term is summed over all possible
values of that index (often from 1 to n) unless stated otherwise. For example, writing the
expression X = Xi ∂

∂xi |p is a shorthand notation for X =
∑n
i=1X

i ∂
∂xi |p. Note that we regard

an upper index in the denominator as a lower index. Throughout this thesis, we will be using
the summation convention.

Let (e1, ..., en) be the standard basis of Rn, then we can also write:

∂

∂xi

∣∣∣
p
f =

d

dt

∣∣∣
t=0

f(p+ tei). (1.13)

Thus there is a natural identification, as mentioned in (1.11), between ∂
∂xi |p and ei. From this

observation, we conclude the isomorphic relation TpU ∼= Rn for any U ⊂ Rn open and p ∈ U.

Our next goal is to relate a tangent space TpM with some Euclidean tangent space, which is
a tangent space of an open subset of Rn as discussed above. This will be achieved by “pushing”
tangent vectors “forward” from one manifold to another.

Definition 1.31. Let M and N be smooth manifolds and F : M → N a smooth map. For
each p ∈M the map F∗ : TpM → TF (p)N is defined by

F∗X(f) = X(f ◦ F ) (1.14)

for all f ∈ C∞(N) and is said to be the pushforward of F at p.

Note that F∗X is indeed a derivation at F (p) whenever X is derivation at p because the Leibniz
condition is satisfied, that is:

(F∗X)(fg) = f(F (p))(F∗X)(g) + g(F (p))(F∗X)(f).

12



Also note that the notation F∗ does not show the dependence of a particular point p ∈M since
it should be clear from the context which pushforward we are dealing with.

Example 1.32. Consider the identity map 1M : M → M which is clearly smooth. Then the
pushforward of 1M at p ∈M is given by the identity map

1TpM : TpM → TpM,

since (1M )∗X(f) = X(f ◦ 1M ) = X(f) for any X ∈ TpM and all f ∈ C∞(M). 4

Lemma 1.33. Let M and N be smooth manifolds, p ∈M and F : M → N a diffeomorphism.
Then the map F∗ : TpM → TF (p)N is an isomorphism between vector spaces.

Proof. It is clear that F∗ is a linear map. Furthermore, F is a diffeomorphism hence there is
a smooth map G : N →M such that we have G ◦ F = 1M and F ◦G = 1N . Now consider the
pushforward G∗ : TF (p)N → TpM of G at F (p). Then by example 1.32 we have:

G∗ ◦ F∗ = (G ◦ F )∗ = (1M )∗ = 1TpM and F∗ ◦G∗ = (F ◦G)∗ = (1N )∗ = 1TF (p)N .

Hence G∗ is the inverse of F∗ and therefore it is an isomorphism.

Now let (U,ϕ) be a smooth chart on M. Then we naturally extend U and ϕ(U) to be the open
submanifolds of M and Rn respectively. In particular ϕ : U → ϕ(U) is a diffeomorphism due
to example 1.14. Consequently, according to lemma 1.33, the pushforward of ϕ−1 at p is an
isomorphism. Lastly recall that in general isomorphisms send a basis to a basis.

Definition 1.34. Let (U,ϕ = (x1, ..., xn)) be a smooth chart on M . Then the coordinate
vectors of U at p associated with the given local coordinates are defined by:

∂

∂xi

∣∣∣
p

= (ϕ−1)∗
∂

∂xi

∣∣∣
ϕ(p)

. (1.15)

Together these n derivations of TpU form a basis of TpU .

Note that one uses the same notation for two different objects with on the right hand side the
standard coordinate vectors of ϕ(U) at ϕ(p). This appears to be abuse of notation, however
if we have (U,ϕ) with U ⊂ Rn open and ϕ the identity map, as in example 1.14, then the
following holds according to example 1.32: ∂

∂xi |p = (1−1
U )∗

∂
∂xi |ϕ(p) = ∂

∂xi |p.

Figure 1.4: A visualisation of the geometric interpretation of definition 1.34. Note x = ϕ(p).

Coordinate vectors act on smooth functions f ∈ C∞(U) as:

∂

∂xi

∣∣∣
p
f =

∂

∂xi

∣∣∣
ϕ(p)

(f ◦ ϕ−1). (1.16)

In other words, ∂
∂xi |p f is the i-th partial derivative of the coordinate representation f ◦ϕ−1 of

the map f at the coordinate representation ϕ(p) of p. Again, when X ∈ TpU is known, we can
write X = Xi ∂

∂xi

∣∣
p

with X(xj) = Xi ∂
∂xi

∣∣
p
xj = Xj .
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Now let M ⊂ Rk be an embedded submanifold again and recall (1.13). Then one can naturally
identify ∂

∂xi |p, as mentioned in (1.11), with the following real vector:

∂

∂xi

∣∣∣
p
ι =

(
∂

∂xi

∣∣∣
x
(πj ◦ ϕ−1)

)
j

=
d

dt

∣∣∣
t=0

ϕ−1(x+ tei) = Jϕ−1(x)ei (1.17)

where x = ϕ(p) as in figure 1.4. Visually, a smooth path t→ x+tei on Rn is being transported
via ϕ−1 thus we get the map t→ ϕ−1(x+ tei) which is a smooth path on M . The best linear
approximation of the last path gives us the tangent vector of M at p.

The above is also an explanation why the inclusion map is required to be an embedding, see
definition 1.23 and theorem 1.24. The Jacobian of ϕ−1 needs to have rank n to ensure the fact
that we have an n-dimensional tangent space whenever the dimension of the manifold is n.

Remark 1.35. For U an open submanifold of M we have TpU ∼= TpM for any p ∈ U which
is intuitively and geometrically speaking quite evident. The main idea is that one can extend
any map f ∈ C∞(U) to an arbitrary smooth map f̃ ∈ C∞(M) such that f = f̃ in a small
neighbourhood of p. See [Lee13, p. 56] for a proof without using theorem 1.28. This means we
can interpret elements of TpU as elements of TpM as done in figure 1.4.

Example 1.36. Note that one can write S2 = f−1(0) with f(x, y, z) = x2 + y2 + z2 − 1 and
most importantly Jf(x, y, z) = (2x, 2y, 2z) 6= 0 for all (x, y, z) ∈ S2 thus the 2-sphere is an
embedded submanifold of R3 by theorem 1.24. Recall example 1.13 and note S2

+ and B2 are
open submanifolds of S2 and R2 respectively. Thus the following maps are diffeomorphisms:

ϕ : S2
+ → B2, (x, y, z) 7→ (x, y) and ϕ−1 : B2 → S2

+, (x, y) 7→ (x, y,
√

1− x2 − y2).

We consider the smooth chart (S2
+, ϕ = (x1, x2)) and thus the coordinate vectors of S2

+ at p,
associated with the given local coordinates, are given by

∂

∂x1

∣∣∣
p

= (ϕ−1)∗
∂

∂x1

∣∣∣
ϕ(p)

and
∂

∂x2

∣∣∣
p

= (ϕ−1)∗
∂

∂x2

∣∣∣
ϕ(p)

.

These two derivations form a basis for TpS
2
+ and subsequently also for TpS

2 due to the remark
above. These derivations act on functions f ∈ C∞(S2

+) as described in (1.16) and moreover,
by writing p = (x, y, z) the derivations can be geometrically interpreted as the real vectors

∂

∂x1

∣∣∣
p
ι =

(
1, 0,

−x√
1− x2 − y2

)>
and

∂

∂x2

∣∣∣
p
ι =

(
0, 1,

−y√
1− x2 − y2

)>
(1.18)

which follows from (1.17) and by calculating the Jacobian Jϕ−1(x, y). 4

Ultimately, when two smooth charts (U,ϕ = (x1, ..., xn)) and (V, ϕ = (y1, ..., yn)) on M overlap
in the region U ∩V then a tangent vector at p ∈ U ∩V can be written as a linear combination
of both ( ∂

∂x1 |p, ..., ∂
∂xn |p) and ( ∂

∂y1 |p, ...,
∂
∂yn |p). A significant question may be: how are these

two different bases of coordinate vectors related to one another?

Lemma 1.37. (Change of Coordinates) Let (U,ϕ = (x1, ..., xn)) and (V, ψ = (y1, ..., yn)) be
two smooth charts on M with U ∩V 6= ∅. Then the coordinate vectors at p ∈ U ∩V associated
with the local coordinates (x1, ..., xn) and (y1, ..., yn) are related by the following transformation
rule:

∂

∂xi

∣∣∣
p

=
∂yj

∂xi
(ϕ(p))

∂

∂yj

∣∣∣
p

(1.19)

where one writes the yj in terms of the coordinate functions xi for the expression ∂yj

∂xi .

The proof can be found on page 14 and note that (1.19) is abbreviated according to Einstein’s
summation convention. Furthermore, as briefly mentioned in the beginning of this section, one
may define a tangent vector at p as a quantity which relative to a coordinate chart around p is
represented by an n-tuple. In addition, this definition requires that two n-tuples representing
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the same tangent vector relative to two different charts have to be related by a very similar
transformation rule as seen above. This approach can be found in for example [Ros03, p.38].
Assuming such transformation rules was very common during the early days of differential
geometry, as stated in [Lee00, p. 52], and in a lot of physics literature it still is. See [Car97]
and [FG17] for example. Now consider the change of coordinates in practice.

Example 1.38. Recall example 1.7 and let p ∈ R be arbitrarily given. Note that R is an open
submanifold of R2 thus (R,ψ = (x1, x2)) is a smooth chart. A little verification shows that
the chart (R,ϕ = (r, θ)) is compatible with (R,ψ) and is therefore also contained in the atlas
of R. Writing x1 and x2 in terms of the coordinate functions r and θ gives the formulae (1.1),
hence we have the following relations:

∂

∂r

∣∣∣
p

=
∂x1

∂r
(ϕ(p))

∂

∂x1

∣∣∣
p

+
∂x2

∂r
(ϕ(p))

∂

∂x2

∣∣∣
p

= cos θ(p)
∂

∂x1

∣∣∣
p

+ sin θ(p)
∂

∂x2

∣∣∣
p

(1.20)

and similarly:
∂

∂θ

∣∣∣
p

= −r(p) sin θ(p)
∂

∂x1

∣∣∣
p

+ r(p) cos θ(p)
∂

∂x2

∣∣∣
p
. (1.21)

Now suppose we have the tangent vector X = ∂
∂x1 |p− ∂

∂x2 |p at p = (2, π4 ) in polar coordinates.

Then by the above, we have ∂
∂r |p = 1

2

√
2 ∂
∂x1 |p + 1

2

√
2 ∂
∂x2 |p and ∂

∂θ |p = −
√

2 ∂
∂x1 |p +

√
2 ∂
∂x2 |p.

Consequently we can write X = − 1
2

√
2 ∂
∂θ |p in terms of the polar coordinates. 4

Figure 1.5: A visualisation of example 1.38 with the geometric interpretation of derivations.

Now let F : U → V be a smooth map with U ⊂ Rn and V ⊂ Rm open and p ∈ U arbitrary
and denote (x1, ..., xn) and (x̃1, ..., x̃m) for the standard coordinates on U and V respectively.
Consider the pushforward F∗ : TpU → TF (p)V and by the chain rule we have the following:

(
F∗

∂

∂xi

∣∣∣
p

)
(f) =

∂(f ◦ F )

∂xi
(p) =

∂f

∂x̃j
(F (p))

∂F j

∂xi
(p) =

(
∂F j

∂xi
(p)

∂

∂x̃j

∣∣∣
F (p)

)
(f)

for all f ∈ C∞(U), hence we have

F∗
∂

∂xi

∣∣∣
p

=
∂F j

∂xi
(p)

∂

∂x̃j

∣∣∣
F (p)

. (1.22)

Note again the presence of the Einstein summation convention. Moreover, the matrix of F∗ in
terms of the standard coordinate vector bases ( ∂

∂x1 |p, ..., ∂
∂xn |p) and ( ∂

∂y1 |p, ...,
∂
∂yn |p) is simply

the Jacobian JF (p). This result comes in handy in the proof below.
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Proof..of lemma 1.37. (Based on [Lee13, p. 63]) By writing the yj in terms of the coordinate
functions xi, we actually introduce the notation

(ψ−1 ◦ ϕ)(x) =
(
y1(x), ..., yn(x)

)
for x ∈ ϕ(U ∩ V ). By definition of coordinate vectors and by using formula (1.22), we have:

∂

∂xi

∣∣∣
p

= (ϕ−1)∗
∂

∂xi

∣∣∣
ϕ(p)

= (ψ−1 ◦ (ψ ◦ ϕ−1))∗
∂

∂xi

∣∣∣
ϕ(p)

= (ψ−1)∗

(
(ψ ◦ ϕ−1)∗

∂

∂xi

∣∣∣
ϕ(p)

)
=

(ψ−1)∗

(
∂yj

∂xi
(ϕ(p))

∂

∂yj

∣∣∣
ψ(p)

)
=
∂yj

∂xi
(ϕ(p))(ψ−1)∗

∂

∂yj

∣∣∣
ψ(p)

=
∂yj

∂xi
(ϕ(p))

∂

∂yj

∣∣∣
p
.

Note that we have used the fact that a pushforward is a linear map.

Lastly, for a smooth map F : M → N with M and N smooth manifolds the pushforward matrix
representation can be easily generalised. For charts (U,ϕ) on M containing p and (V, ψ) on N
containing F (p), an analogous computation gives that the matrix of F∗ : TpM → TF (p)N (note
remark 1.35) in terms of the coordinate vector bases is precisely the Jacobian of the coordinate
representation of F at p, in other words the Jacobian J(ψ ◦ F ◦ ϕ−1)(p).

Now recall the previous definition of an embedding, see definition 1.23. Intuitively we want an
embedding to be a topological embedding such that the tangent space structure of a smooth
manifold will not be lost during the embed process.

Definition 1.39. A smooth map F : M → N is said to be an immersion if the pushforward
F∗ : TpM → TF (p)N is injective for all p ∈ M . The map F is called an embedding if it is
an immersion and a topological embedding.

Note that the above is a coordinate independent definition, which becomes useful in the next
chapters. In particular, a smooth map F : M → Rn+k with M a smooth n-manifold is an
immersion if and only if for any smooth chart (U,ϕ) we have rank J(F ◦ ϕ−1)(p) = n for all
points p ∈ U . Thus definition 1.23 is indeed a special case of the above.

1.5 Vector Fields

Let M be an n-dimensional smooth manifold. Before we are able to construct vector fields we
will first have to define the notion of a tangent bundle.

Definition 1.40. The tangent bundle of M , denoted by TM , is the disjoint union of tangent
spaces TpM at all points p ∈M . That is: TM = {(p,X) : p ∈M and X ∈ TpM}.

An important fact is that the tangent bundle TM has a natural topology and smooth structure
for what it becomes a smooth 2n-manifold. For any smooth chart (U,ϕ = (x1, ..., xn)) on M ,

one defines an open set Ũ = {(p,X) ∈ TM : p ∈ U} and a map:

ϕ̃ : Ũ → R2n,
(
p,Xi ∂

∂xi

∣∣
p

)
7→ (ϕ(p), X1, ..., Xn). (1.23)

Then the collection Ã of all coordinate charts (Ũ , ϕ̃) is a smooth atlas and hence it determines
a smooth structure on TM which we call the natural smooth structure of TM . For more
details, see [Lee13, p. 66].

Example 1.41. Recall example 1.36. Then we have:

TS2
+ =

{
(p,X) : p ∈ S2

+ and X = X1 ∂
∂x1

∣∣
p

+X2 ∂
∂x2

∣∣
p

for some X1, X2 ∈ R
}
.

By interpreting TS2
+ ⊂ TS2, which can be done because TpS

2
+
∼= TpS

2 holds for all p ∈ S2
+

according to remark 1.35, we could determine other tangent bundles like the tangent bundle
of the southern hemisphere TS2

− in order to construct TS2 as a whole. 4
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Definition 1.42. Let U ⊂ M be open. A (tangent) vector field of M defined on U is a
map X : U → TM such that for each point p ∈ U we have X|p ∈ TpM.

Note that we write X|p instead of X(p) to avoid conflict with the notation for tangent vectors
acting on smooth function. Formally speaking we should also write X|p ∈ {p} × TpM ⊂ TM ,
but it is more usual to consider the notation as in the definition. Therefore we will often omit
the pair notation (p,X) and write X|p ∈ TpM and X|p ∈ TM interchangeably because the
dependence of p is clear from the context and notation.

Let (x1, ..., xn) be any local coordinates on some open subset U ⊂M and consider some global
vector field X : M → TM . Then we can express it locally as

X|p = Xi(p)
∂

∂xi

∣∣∣
p

(1.24)

for all p ∈ U and specific functions Xi : U → R that we call the component functions of
X with respect to the given coordinates. Furthermore, since TM is a smooth 2n-manifold one
can speak of smooth vector fields. A vector field X is said to be smooth if it is a smooth map
between smooth manifolds. We write TM for the set of all smooth vector fields defined on M.

Lemma 1.43. Let X : M → TM be a vector field. Then X is smooth if and only if for any
smooth chart (U,ϕ) (of a smooth atlas) the component functions X1, ..., Xn are smooth (as in
definition 1.15 with the subset U interpreted as the smooth open submanifold of M).

Proof. (Based on [Lee00, p. 61]) Now recall lemma 1.16 or actually the analogous variant for
definition 1.18. In order to show that the vector field X is smooth, it suffices to look at all the
charts of M (in some smooth atlas of M) and all the charts contained in Ã of TM which is
the collection of smooth charts defined in the beginning of this section.

Let (U,ϕ) and (V, ϕ) be arbitrary smooth charts on M and consider (Ṽ , ψ̃) ∈ Ã. Observe:

ψ̃ ◦X ◦ ϕ−1 : ϕ(U ∩X−1(Ṽ ))→ ψ̃(Ṽ ),

x 7→
(
(ψ ◦ ϕ−1)(x), (X1 ◦ ϕ−1)(x), ..., (Xn ◦ ϕ−1)(x)

)
.

Note x 7→ (ψ ◦ ϕ−1)(x) is clearly smooth on its domain because the charts (U,ϕ) and (V, ψ)
are compatible. Now assume the vector field X is smooth. Then ψ̃ ◦X ◦ϕ−1 and consequently
all Xi ◦ ϕ−1 are smooth for any smooth charts (U,ϕ) and (Ṽ , ψ̃). Hence by definition all the
component functions Xi are smooth.

By assuming the contrary we have by definition that all Xi ◦ϕ−1 are smooth hence ψ̃ ◦X ◦ϕ−1

are smooth for all charts (U,ϕ) on M and (V, ψ) ∈ Ã. Consequently X is smooth.

Corollary 1.44. Let (U,ϕ) be any smooth chart of M and interpret U as the open submanifold
of M . Then we have that X : U → TM is a smooth vector field if and only if the component
functions X1, ..., Xn with respect to (U,ϕ) are smooth.

Definition 1.45. Let (x1, ..., xn) be local coordinates on an open set U ⊂M , then

∂

∂xi
: U → TM, p 7→ ∂

∂xi

∣∣∣
p

(1.25)

determines a smooth vector field on U said to be the i-th coordinate vector field.

Note that the coordinate vector fields are clearly smooth due to corollary 1.44 since the j-th
component functions with j 6= i are all identically zero and the i-th component function is
constant since it equals 1 everywhere hence all component functions are smooth.

In general we will define objects globally, thus a smooth vector field from M to TM for example.
In practice however, as we will see in the next chapters, one looks at these objects locally for
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some smooth chart since this enables computations and explicit examples. Importantly note
that some smooth vector field of M defined on an open subset U cannot always be extended
smoothly, consider for example (0, 1) ⊂ R and the smooth vector field

X : (0, 1)→ TR, p 7→ p−1(1− p)−1 ∂

∂x1

∣∣∣
p
.

Note that X is smooth because its component function x→ x−1(1−x)−1 is smooth thanks to
corollary 1.44 since it is smooth with respect to the standard coordinate chart.

Example 1.46. Recall example 1.38. Then the coordinates vector fields on R associated with
the polar coordinates (r, θ) in terms of the standard coordinates (x1, x2) are given by:

∂

∂r
= cos θ

∂

∂x1
+ sin θ

∂

∂x2
and

∂

∂θ
= −r sin θ

∂

∂x1
+ r cos θ

∂

∂x2
. (1.26)

Here one needs to interpret r and θ within the component functions of the coordinate vector
fields as the coordinate maps from R → R>0 and R → (−π, π) respectively as discussed in
example 1.7.

Note that both the standard and polar coordinate vector fields are smooth which follows from
the definition. Moreover, the smoothness of the polar coordinate vector fields can also be
determined by looking at (1.26) and by noting that its component functions are smooth for the
coordinate chart (R,ψ = (x1, x2)). Hence ∂

∂r and ∂
∂θ are smooth because of corollary 1.44. 4

Thanks to the observations within the example above, we see that the following lemma is an
immediate consequence of lemma 1.37. An useful note is that when (U,ϕ) is a smooth chart
of M , then we have that (U ′, ϕ|U ′) with U ′ ⊂ U is a smooth chart of M as well.

Lemma 1.47. (Change of Coordinates) Let (U,ϕ = (x1, ..., xn)) and (V, ψ = (y1, ..., yn))
be two smooth charts on M such that U ∩V 6= ∅. Then the coordinate vector fields on the open
submanifold U ∩ V associated with the local coordinates (x1, ..., xn) and (y1, ..., yn) are related
by the following transformation rule:

∂

∂xi
=
∂yj

∂xi
∂

∂yj
. (1.27)

Moreover the component functions ∂yj

∂xi : U ∩ V → R, p 7→ ∂yj

∂xi (ϕ(p)) are smooth.

Note that the lemma above is an easy tool to perform a change of coordinates for general smooth
vector fields, which is useful in later chapters. Also we now know that changing coordinates
preserves the smoothness of the vector field which of course one would like to require.

1.6 Covector and Tensor Fields

Recall for some arbitrary vector space V we have a dual vector space, denoted by V ∗, which
is the space of linear maps F : V → F with the set F being a field. We consider F = R and
our V will be finite dimensional. Two significant results are: dim(V ) = dim(V ∗) and when
the collection (E1, ..., En) is a basis of V then V ∗ has a unique basis (ε1, ..., εn) called the dual
basis such that the relation εj(Ei) = δji holds with δji being the Kronecker delta.

Definition 1.48. The n-dimensional cotangent space T ∗pM of M at p is the dual space
of the tangent space TpM and an element of T ∗pM is called a covector of M at p. The
cotangent bundle of M , denoted by T ∗M , is the disjoint union of cotangent spaces T ∗pM at
all p ∈M . In other words: T ∗M = {(p, ω) : p ∈M and ω ∈ T ∗pM}.

Again one can give T ∗M a natural 2n-dimensional smooth manifold structure similar to what
we have done briefly in the previous section. For a detailed approach, see [Lee13, p. 276]. We
will omit the pair notation again and write ω|p ∈ TpM and ω|p ∈ T ∗M interchangeably.
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Definition 1.49. Let U ⊂M be an open submanifold. A covector field of M defined on U
is a map ω : U → T ∗M such that ω|p ∈ T ∗pM for each point p ∈ U .

Definition 1.50. Let (x1, ..., xn) be local coordinates on an open set U ⊂M . Then the unique
map dxj : U → T ∗M satisfying the properties dxj |p ∈ T ∗pM and dxj |p( ∂

∂xi |p) = δji for all
points p ∈ U is said to be the j-th coordinate covector field.

Now let (x1, ..., xn) be any local coordinates on some open subset U ⊂M and consider a global
covector field ω : M → T ∗M . Then we can express it locally as

ω|p = ωi(p)dx
i
∣∣
p

or ω = ωidx
i (1.28)

for all p ∈ U and functions ωi : U → R called the component functions of ω with respect to
the given coordinates. An important observation is that we have ωi(p) = ω|p( ∂

∂xi |p). Similarly,
a covector field ω is said to be smooth if it is a smooth map between smooth manifolds and
we denote T 1

0 M as the set of all smooth covector fields defined on M. Completely analogous
to the previous section, we get the following results upon giving the cotangent bundle T ∗M its
natural smooth structure.

Lemma 1.51. [Lee13, p. 278] Let ω : M → T ∗M be a covector field. Then ω is smooth if and
only if for any smooth chart (of a smooth atlas) the component functions ω1, ..., ωn are smooth.

Corollary 1.52. Let (U,ϕ) be any smooth chart of M . Then ω : U → T ∗M is a smooth co-
vector field if and only if the component functions ω1, ..., ωn with respect to (U,ϕ) are smooth.

Due to the corollary, one concludes that the coordinate covector fields associated to some local
coordinates are always smooth because the component functions are all constant.

Definition 1.53. A local frame for TM on an open set U ⊂ M is a collection (E1, ..., En)
of smooth vector fields defined on U such that (E1|p, ..., En|p) is a basis for TpM for every
p ∈ U. The corresponding local coframe for T ∗M is the collection (ε1, ..., εn) that consists
of the unique smooth covector fields defined on U satisfying εi(Ej) = δij . Often the map εi is
simply called the dual field of Ei.

Example 1.54. Recall example 1.46. Let X : R2 → TR2 be an arbitrary smooth vector field.
Then ( ∂

∂x1 ,
∂
∂x2 ) and ( ∂∂r ,

∂
∂θ ) are two local frames and note one can locally write X as

X = X1 ∂

∂r
+X2 ∂

∂θ

with X1, X2 : R→ R smooth component functions. Substituting the relations from (1.26) into
the above gives the following:

X = (X1 cos θ −X2r sin θ)
∂

∂x1
+ (X1 sin θ −X2r cos θ)

∂

∂x2
.

Consequently, since dx1 is the dual field of ∂
∂x1 we have for all p ∈ R the expression

dx1|p(X|p) = X1(p) cos θ(p)−X2(p)r(p) sin θ(p) = cos θ(p)dr(X|p)− r sin θ(p)dθ(X|p)

because dr and dθ are the dual fields of ∂
∂r and ∂

∂θ respectively. Thus we have

dx1 = cos θdr − r sin θdθ, (1.29)

and conform to the above we can show the equality

dx2 = sin θdr + r cos θdθ. (1.30)

Now the above shows the relation between the two local coframes (dx1, dx2) and (dr, dθ). 4

As we have done in the previous example, one can do the exact same computations for a general
case. Thus the following lemma is a generalisation of the example above.
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Lemma 1.55. (Change of Coordinates) Let (U,ϕ = (x1, ..., xn)) and (V, ψ = (y1, ..., yn))
be two smooth charts on M such that U ∩ V 6= ∅. Then the coordinate covector fields on the
open submanifold U ∩ V associated with the local coordinates (x1, ..., xn) and (y1, ..., yn) are
related by the following transformation rule:

dyi =
∂yj

∂xi
dxj . (1.31)

Moreover the component functions ∂yj

∂xi : U ∩ V → R, p 7→ ∂yj

∂xi (ϕ(p)) are smooth.

Importantly note that there is a subtle difference between the transformation rule (1.27) of
vector fields and the transformation rule (1.31) of covector fields. Ultimately, our goal is to
generalise the concept of covector fields. Consider a general n-dimensional vector space V .

Definition 1.56. A tensor on V of type
(
k
l

)
is a multilinear map

F : V × ...× V︸ ︷︷ ︸
k times

×V ∗ × ...× V ∗︸ ︷︷ ︸
l times

→ R. (1.32)

The set of all tensors on V of type
(
k
l

)
is denoted by T kl (V ).

Note that T kl (V ) is an R-linear vector space. Also we have T 1
0 (V ) = V ∗ and T 0

1 (V ) = V ∗∗ ∼= V
and by convention we have T 0

0 (V ) = R.

Definition 1.57. Let F ∈ T kl (V ) and G ∈ T pq (V ). The tensor product of F and G, denoted

by F ⊗G ∈ T k+p
l+q (V ), is defined by the natural product:

F ⊗G(X1, ..., Xk+p, ω
1, ..., ωl+q) =

F (X1, ..., Xk, ω
1, ..., ωl) ·G(Xk+1, ..., Xk+p, ω

l+1, ..., ωl+q).
(1.33)

Clearly we have that the tensor product is an associative operator, thus we define:

F ⊗G⊗H = (F ⊗G)⊗H = F ⊗ (G⊗H).

For an arbitrary amount of products its definition is of course very much alike.

Proposition 1.58. Let (E1, ..., En) be a basis for V and (ε1, ..., εn) its corresponding dual
basis. Then the collection

B =
{
εi1 ⊗ ...⊗ εik ⊗ Ej1 ⊗ ...⊗ Ejl

}
1≤i1,...,ik,j1,...jl≤n

is a basis for T kl (V ).

Proof. (Based on [Lee97, p. 13]) Consider an arbitrary multilinear map F ∈ T kl (V ) and define
its components:

F j1...jli1...ik
= F (εi1 , ..., εik , Ej1 , ..., Ejl). (1.34)

Furthermore let 1 ≤ s1, ..., sl, t1, ..., tk ≤ n and note that we have

F j1...jli1...ik
εi1 ⊗ ...⊗ εik ⊗ Ej1 ⊗ ...⊗ Ejl(Et1 , ..., Etl , εs1 , ..., εsk) =

F j1...jli1...ik
εi1(Et1)...εik(Etk)Ej1(εs1)...Ejl(ε

sl) = F j1...jli1...ik
δi1t1 ...δ

ik
tk
δs1j1 ...δ

sl
jl

= F s1...slt1...tk
.

Importantly note the presence of Einstein’s summation convention and the fact V ∗∗ ∼= V . A
tensor is by definition multilinear, therefore one can write

F = F j1...jli1...ik
εi1 ⊗ ...⊗ εik ⊗ Ej1 ⊗ ...⊗ Ejl . (1.35)

Due to the fact F was arbitrary it follows that B spans T kl (V ). Now assume

λj1...jli1...ik
εi1 ⊗ ...⊗ εik ⊗ Ej1 ⊗ ...⊗ Ejl = 0.

With the exact same computation as above, we deduce every λj1...jli1...ik
equals zero. Hence the

elements in B are linearly independent which implies B is a basis for T kl (V ).
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We note that the two equations (1.34) and (1.35) are of major importance in our future study.
Suppose M and N are a smooth n- and m-manifold respectively until the end of this section
and recall that the tangent space TpM is an n-dimensional R-linear vector space.

Definition 1.59. The
(
k
l

)
tensor bundle of M , denoted by T kl M , is the disjoint union of the

spaces T kl (TpM) at all points p ∈M . That is: T kl M = {(p, F ) : p ∈M and F ∈ T kl (TpM)}.

Definition 1.60. A map σ : U → T kl M with U ⊂M an open subset is called a tensor field

of type
(
k
l

)
defined on U whenever we have σ|p ∈ T kl (TpM) for all p ∈ U.

Once more we will often omit the pair notation and write σ|p ∈ T lk(TpM) and σ|p ∈ T kl M
interchangeably since its p dependence is clear from the context. Now let (x1, ..., xn) be any
local coordinates on some open subset U ⊂ M . According to the results above, we note that
a tensor field σ : M → T kl M can be expressed locally on U as

σ = σj1...jli1...ik
dxi1 ⊗ ...⊗ dxik ⊗ ∂

∂xj1
⊗ ...⊗ ∂

∂xjl
(1.36)

where σj1...jli1...ik
: U → R are the component functions of σ with respect to the given local

coordinates. Keep in mind we use the Einstein summation convention. Moreover, as the
equations (1.34) and (1.35) already suggests, we will use the shorthand notation

σj1...jli1...ik
= σ

(
∂

∂xj1
, ..., ∂

∂xjl
, dxi1 , ..., dxik

)
(1.37)

because
σj1...jli1...ik

: U → R, p→ σ|p
(

∂
∂xj1

∣∣
p
, ..., ∂

∂xjl

∣∣
p
, dxi1 |p, ..., dxik |p

)
(1.38)

is what we have due to the multilinearity of σ|p for all p ∈ M. A tensor field is said to be
smooth if it is a smooth map between smooth manifolds however it will suffice again to only
look at the component functions, see lemma 1.61 and its corollary. Note that a tensor field of
type

(
1
0

)
is precisely a covector field hence the notation T 1

0 M is self-explanatory. In general we

denote T kl M as the set of all smooth
(
k
l

)
tensor fields defined on M.

Lemma 1.61. [Lee97, p. 19] Let σ : M → T kl M be a tensor field. Then σ is smooth if and

only if for any smooth chart (of a smooth atlas) its component functions σj1...jli1...ik
are smooth.

Corollary 1.62. Let (U,ϕ) be any smooth chart of M . Then σ : U → T kl M is a smooth

tensor field if and only if the component functions σj1...jli1...ik
with respect to (U,ϕ) are smooth.

The proof is totally conform to that of the vector and covector fields and it requires the natural
structure of tensor bundles. See the general notion of vector bundles [Lee13, p. 249] for more
detail on the natural smooth structures.

Ultimately, recall the definition of a pushforward. Now we will define a similar concept, namely
a pullback of smooth tensor fields. Intuitively it “pulls back” a smooth tensor field on N to a
smooth tensor field on M .

Definition 1.63. Let F : M → N be a smooth map and let σ be a
(
k
0

)
tensor field. Then F ∗σ

is the
(
k
0

)
tensor field on M , called the pullback of σ by F , defined by

(F ∗σ)
∣∣
p
(X1, ..., Xk) = σ

∣∣
F (p)

(F∗X1, ..., F∗Xk) (1.39)

for any vectors X1, ..., Xk ∈ TpM and all p ∈M .

We note that whenever σ is smooth, then the pullback F ∗σ is smooth. This will be deduced
from the following proposition and lemma and is not really that evident.
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Proposition 1.64. Let F : M → N be a smooth map. Suppose (x1, ..., xn) are local coordinates
on U ⊂M and (y1, ..., ym) local coordinates on V ⊂ N such that F (U) = V . Then we have

F ∗dyi =
∂

∂xj

∣∣∣
p
(yi ◦ F ) dxj . (1.40)

Proof. As (1.36) suggests, we can write F ∗dyi = ωidx
i with ωi the component functions of the

covector field F ∗dyi. By unravelling the definitions, we find for all p ∈ U the expression:

ωi(p) = (F ∗dyi)
∣∣
p

(
∂
∂xj

∣∣
p

)
= dyj

∣∣
F (p)

(F∗
∂
∂xj

∣∣
p
) = dyj

∣∣
F (p)

((
F∗

∂
∂xj

∣∣
p

)
(yi) ∂

∂yi

∣∣
F (p)

)
=(

F∗
∂
∂xj

∣∣
p

)
(yi) · dyj

∣∣
F (p)

(
∂
∂yi

∣∣
F (p)

)
= F∗

(
∂
∂xj

∣∣
p

)
(yj) = ∂

∂xj

∣∣
p
(yi ◦ F ).

We used the linearity of the coordinate covectors and F∗
∂
∂xj |p =

(
F∗

∂
∂xj |p

)
(yi) ∂

∂yi |F (p) holds,

which follows from the observation stated below equation (1.16). Ultimately, the above implies
that equation (1.40) holds.

Lastly, we introduce the notation dF i which is a shorthand notation for ∂
∂xj |p(y

i ◦F ) dxj . The
reason for this has some historical background which will be discussed in the next chapter and
moreover it is conform to the concept of a differential of a function, see [Lee13, p. 280].

Furthermore, note that the pullback operator F ∗ is R-linear and that we have the following
two properties: F ∗(fσ) = (f ◦ F )F ∗σ and F ∗(σ ⊗ τ) = F ∗σ ⊗ F ∗τ. Consequently, with the
help of proposition 1.64, one gets the following lemma.

Lemma 1.65. [Lee13, p. 320] Let F : M → N be a smooth map. Suppose (x1, ..., xn) are
local coordinates on U ⊂M and (y1, ..., ym) local coordinates on V ⊂ N such that F (U) = V .
Then the following formula holds:

F ∗(σj1...jkdy
j1 ⊗ ...⊗ dyjk) = (σj1...jk ◦ F )dF j1 ⊗ ...⊗ dF jk . (1.41)

Moreover F ∗σ is a smooth
(
k
0

)
tensor field whenever we have σ ∈ T k0 N.

Note that the smoothness of the pullback map F ∗σ follows from the fact that the composition
functions σj1...jk ◦ F are smooth because σ and F are smooth. We want to highlight the fact
that proposition 1.64 and lemma 1.65 are of major significance in the following chapters.

1.7 Tensor Characterisation Lemma

It is often convenient to generalise the shorthand notation in (1.37). Suppose σ ∈ T kl M and
let X1, ..., Xk and ω1, ..., ωl be any smooth vector and covector fields of M defined on some
open set U ⊂M. Now we define the function σ(X1, ..., Xk, ω

1, ..., ωl) on the subset U such that

σ(X1, ..., Xk, ω
1, ..., ωl)(p) = σ

∣∣
p
(X1

∣∣
p
, ..., Xk

∣∣
p
, ω1|p, ..., ωl|p) (1.42)

for all p ∈ U. An important observation is the following: lemma 1.61 directly implies that σ is
a smooth tensor field if and only if σ(X1, ..., Xk, ω

1, ..., ωl) : U → R is a smooth function for
every smooth vector fields X1, ..., Xk and covector fields ω1, ..., ωl of M defined on U.

Due to the previous section and to keep things readable, we reduce ourselves to
(
k
0

)
tensor

fields. Given a smooth tensor field σ ∈ T k0 M and smooth vector fields X1, ..., Xk ∈ TM , we
now know that σ(X1, ..., Xk) : M → R is a smooth map. Thus σ induces a map

Σ : TM × ...× TM → C∞(M), (1.43)

defined by Σ(X1, ..., Xk) = σ(X1, ..., Xk) of course.
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Due to the fact that σ|p is a tensor on TpM for all p ∈M, we obtain that Σ is multilinear over
the field C∞(M), that is: for any functions f, g ∈ C∞(M) and smooth vector fields X and Y
of M , we have

Σ(..., fX + gY, ...) = fΣ(..., X, ...) + gΣ(..., Y, ...). (1.44)

As the next lemma will show, the converse statement is true as well. The next lemma also
includes a similar fact which will be very useful in chapter 3.

Lemma 1.66. (Tensor Characterisation Lemma) A map

T : TM × ...× TM → C∞(M) (1.45)

is induced by a
(
k
0

)
smooth tensor field τ if and only if it is multilinear over C∞(M). A map

T : TM × ...× TM → TM (1.46)

is induced by a
(
k
1

)
smooth tensor field τ if and only if it is multilinear over C∞(M).

Proof. (Based on [DeB15]) The observation above shows that if τ is a smooth
(
k
0

)
tensor field,

it induces a map T as in (1.45) that is multilinear over C∞(M). This proves one implication.
The converse is completely conform to the proof we are going to give for

(
k
1

)
tensor fields.

Now let τ ∈ T k1 M be a smooth tensor field on M . Similar to the above we note that τ induces
a particular map T as in (1.46). It satisfies

τ(X1, ..., Xk, ω) = (ω ◦ T )(X1, ..., Xk)

for any X1, ..., Xk ∈ TM and ω ∈ T 1
0 M. Again it is straightforward to check in local coordinates

that the vector field T (X1, ..., Xn) so-defined is indeed smooth, see section 1.6. Since ω is
arbitrary, we must have that T is multilinear over C∞(M) too.

Note that τ(X1, ..., Xk, ·) = T (X1, ..., Xk) holds, which explains the similarity between the
induction of a

(
k
0

)
tensor field, see (1.43), and the induction of a

(
k
1

)
tensor field. The existence of

map T is non-trivial, yet it follows quite naturally from the fact that there exists an isomorphism
between T k1 (V ) and the space of multilinear maps

A : V × ...× V︸ ︷︷ ︸
k times

→ V

when V is a finite-dimensional vector space, see for example [Lee97, p. 12]. Denote the space
above by E(V ), we obtain that the map Φ : E(V ) → T k1 (V ) with ΦA the

(
k
1

)
tensor defined

by ΦA(X1, ..., Xk, ω) = (ω ◦A)(X1, ..., Xk) is precisely an isomorphism.

Now suppose the contrary, thus let T : TM × ... × TM → TM be a map that is multilinear
over C∞(M). Now note that the following fact is key.

Fact. Suppose p ∈ M is arbitrary. If the equality Xi = Yi holds for each i on some open
neighbourhood U ⊂M of p, then we have T (X1, ..., Xk)(p) = T (Y1, ..., Yk)(p).

Proof of Fact. Let f ∈ C∞(M) satisfy f(q) = 1 for all q ∈ V with V ⊂ U some open subset
and supp(f) = {p ∈M : f(p) 6= 0} ⊂ U ; the topological closure of the set {p ∈ M : f(p) 6= 0}
is obtained in U. Importantly note that such a function is called a smooth bump function.
Their existence is fully discussed in for example [Lee13, p. 40] and [Tho79, p. 150]. The three
valid statements below prove the fact:

T (fX1, ..., fXk)(p) = f(p)kT (X1, ..., Xk)(p) = T (X1, ..., Xk)(p);

T (fY1, ..., fYk)(p) = f(p)kT (Y1, ..., Yk)(p) = T (Y1, ..., Yk)(p);

T (fX1, ..., fXk) = T (fY1, ..., fYk).
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Note that the last equation holds because fXi is identical to fYi on the entire manifold M .
For each i we have that it agrees on U since the smooth vector fields Xi and Yi agree there
and outside U the smooth vector fields fXi and fYi vanish identically.

Now consider a coordinate chart (U,ϕ) with ϕ = (x1, ..., xn) and let f be again a bump
function satisfying the properties mentioned in the proof of the fact. For any point q ∈ V and
i, j1, ..., jk ∈ {1, ..., n}, let us define T ij1,...,jk by

T

(
f

∂

∂xj1
, ..., f

∂

∂xjk

)
(q) = T ij1,...,jk(q)

∂

∂xi

∣∣∣
p
.

The reason for multiplying the function f to the coordinate vector fields is in order to have
vector fields defined on the entire manifold M (which vanish identically outside U). Addition-
ally, the functions T ij1,...,jk on V are smooth since T sends k-tuples of smooth vector fields to
smooth vector fields, see lemma 1.43.

Doing the procedure above for each p ∈ U gives well-defined functions T ij1,...,jk on U . Note that
this statement follows directly from the fact. Moreover, for any smooth vector fields X1, ..., Xk

on M we can write Xi = Xj
i
∂
∂xj and consequently for any p ∈ U we have

T (X1, ..., Xk)(p) = T (fX1, ..., fXk)(p) = Xj1
1

∣∣
p
· ... ·Xjk

k

∣∣
p
· T
(
f

∂

∂xj1
, ..., f

∂

∂xjk

)
(p).

The first equality follows from the fact, the latter from the multilinearity of T. We now deduce
from the definition of the T ij1,...,jk that in local coordinates on U we have

T = T ij1,...,jkdx
j1 ⊗ ...⊗ dxjk ⊗ ∂

∂xi
.

More precisely, the formula above defines a smooth tensor field τ |U on U which is unique with
the property that for any smooth vector fields X1, ..., Xn on M we have

τ |U (X1|U , ..., Xk|U , ·) = T (X1, ..., Xk)|U ,

since the coefficient functions T ij1,...,js are uniquely determined. The fact that τ |U is uniquely
determined by T ensures that the smooth tensor field τ |Ũ analogously determined by T on a

different chart domain Ũ agrees with τ |U on the overlap U ∩ Ũ . Hence the local smooth tensor
fields τ |U patch together to determine a well-defined smooth tensor field τ on M .

We note that this lemma is a very useful tool for showing that: if a map as in (1.45) or (1.46)
is multilinear over C∞(M), it gives for any smooth vector fields Xi and Yi with Xi|p = Yi|p at
a point p ∈ M the same output at p. This result is used for example in proposition 3.21, one
of the most significant statements in Riemannian geometry.

Ultimately, the proof uses a smooth bump function. It is a function f ∈ C∞(M) satisfying
f(q) = 1 for all q ∈ V with V ⊂ U some open subset of some open subset U and there needs
to hold supp(f) = {p ∈M : f(p) 6= 0} ⊂ U. We say that such function f has support in U.

Proving their existence is quite technical but very intuitive. A construction may be based on
the smooth function

f : R→ R, t 7→
{
e−1/t t > 0
0 t ≤ 0.

(1.47)

Given any real numbers r1, r2 ∈ R with r1 < r2, we subsequently define the smooth function

h : R→ R, t→ f(r2 − t)
f(r2 − t) + f(t− r1)

, (1.48)

which satisfies h(t) = 1 for |t| ≤ r1, 0 < h(t) < 1 for r1 < t < r2, and h(t) = 0 for |t| ≥ r2.
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Finally, we denote the open ball with radius r centred at 0 as B(r) = {x ∈ Rn : |x| < r} and
define the smooth function

H : Rn → R, x→ h(|x|). (1.49)

Note that H is a smooth function because it is smooth on Rn\{0}, since it is a composition of
smooth functions there, and because H is identically equal to 1 on B(r1). It satisfies H(x) = 1
for all x ∈ B̄(r1), 0 < H(x) < 1 for all x ∈ B(r2)\B̄(r1), and H(x) = 0 for all Rn\B(r2). Thus
the function H is a bump function on Rn with supp(H) = B̄(r2).

Figure 1.6: A one-dimensional visualisation of bump function H.

The construction of smooth bump functions on an arbitrary smooth manifold M is similar and
requires the function H (or one of a similar kind) and the coordinate charts of M , see [Lee13,
p. 44]. The existence of bump functions appears to be very useful in proofs concerning local
properties, as we have seen in the proof of lemma 1.66 and as we will see in chapter 3.
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Chapter 2

Riemannian Manifolds

A Riemannian metric on a smooth manifold M will define the lengths of tangent vectors and the
lengths of paths. Throughout this chapter we will focus on some basic concepts of Riemannian
manifolds with as purpose to show that the “curvature” of M is affected by giving M different
metrics. For a complete introduction on (abstract) Riemannian manifolds we refer to [Lee97].

Also recall that we want to consider M as a space on its own and not being part of some
bigger space. In [Tho79], the ambient space is always taken into account which appears to
make calculations possible but difficult and limited. In particular, changing the metric on M
cannot be done when the ambient space is present as well.

2.1 Riemannian Metrics

Let M be a smooth n-manifold. Riemann himself defined a Riemannian metric g on M as
a collection of inner products g|p : TpM × TpM → R for all p ∈ M such that all the g|p vary
smoothly, see [CLN06, p. 2]. Varying smoothly means that

g(X,Y ) : M → R, p 7→ g|p(X|p, Y |p) (2.1)

is a smooth function for any smooth vector fields X and Y on M . This definition for g is still
considered abundantly, for example in [And01] and [Tho79]. For notational simplicity, we also
often write g(X,Y ) instead of g|p(X,Y ) for any X,Y ∈ TpM if p is clear from the context.

Note that a Riemannian metric g is positive definite – that is g(X,X) > 0 if X 6= 0 – and
symmetric – that is g(X,Y ) = g(Y,X) – for all X,Y ∈ TpM and p ∈ M because the g|p are
inner products according to the definition above.

Moreover, recall that the smoothness condition above is equivalent with saying that the com-
ponent functions gij = g( ∂

∂xi ,
∂
∂xj ) for any local coordinate frame ( ∂

∂x1 , ...,
∂
∂xn ) are smooth, see

section 1.7. Hence by lemma 1.61 we have the following equivalent definition.

Definition 2.1. A Riemannian metric g on a smooth n-manifold M is a symmetric, positive
definite smooth tensor field g ∈ T 2

0 (M). We call the pair (M, g) a Riemannian manifold of
dimension n.

This definition can be found for example in [Lee97] and [CLN06] and is very common in the
study of the Ricci flow. Now let (M, g) be a Riemannian n-manifold. Then we define, just as
in Euclidean geometry, the norm of a tangent vector X ∈ TpM as:

|X|g =
√
g(X,X). (2.2)
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Similarly, the angle between two nonzero vectors X,Y ∈ TpM equals the unique θ ∈ [0, π]
that satisfies the next formula:

cos θ =
g(X,Y )

|X|g|Y |g
. (2.3)

Now consider any local coordinates (x1, ..., xn) on U ⊂M open. As we discussed in section 1.6,
we have that a metric g can be expressed locally on the subset U as

g = gijdx
i ⊗ dxj , (2.4)

with gij = g( ∂
∂xi ,

∂
∂xj ) since it is a smooth tensor field. Note Einstein’s summation convention.

We will also often omit the sign ⊗ for practical reasons and because this is common in older
and physics related literature. See again [Car97] and [FG17] for example. Hence the local
expression in (2.4) simply becomes

g = gijdx
idxj . (2.5)

Also it is useful to consider the matrix G = (gij)ij associated to the given chart. When writing
tangent vectors X = Xi ∂

∂xi

∣∣
p

and Y = Y i ∂
∂xi

∣∣
p

of TpM locally, one easily calculates

g(X,Y ) = gijX
iY j =

(
X1 · · · Xn

)
G(p)


Y 1

...

Y n

 (2.6)

via matrix multiplication. Note that the matrix G is positive definite and symmetric for any
point p ∈ U . A Riemannian metric in a local frame is therefore sometimes also denoted by the
matrix G associated to the same frame, see for example [Khu17, p. 7].

Example 2.2. (Euclidean space) Recall definition 1.29 and let ( ∂
∂x1 , ...,

∂
∂xn ) be the standard

local frame for TRn defined on U ⊂ Rn open. Then the pair (U, ḡ) with

ḡ(X,Y ) = ḡ|p
(
Xi ∂

∂xi

∣∣
p
, Y i ∂

∂xi

∣∣
p

)
=
∑n
i=1X

iY i (2.7)

for any tangent vectors X,Y ∈ TpRn and p ∈ U defines a Riemannian manifold. Note that the
component functions gij = g( ∂

∂xi ,
∂
∂xj ) = δij with δij the Kronecker delta are clearly smooth

hence we have ḡ ∈ T 2
0 U due to corollary 1.62. It is moreover symmetric and positive definite,

therefore ḡ is a metric. The metric ḡ can (locally) be written in several ways:

ḡ = δijdx
i ⊗ dxj =

∑n
i=1 dx

i ⊗ dxi =
∑n
i=1(dxi)2. (2.8)

The Riemannian metric ḡ on an open subset of Rn is known as the canonical Euclidean
metric and (Rn, ḡ) is said to be the Euclidean space. Note that the matrix Ḡ associated
to the standard local frame is the identity matrix In and the norm of a vector X ∈ TpRn is
precisely the Euclidean norm of the real vector (X1, ..., Xn)>. 4

Example 2.3. Recall example 1.54 and the two formulae

dx1 = cos θdr − r sin θdθ and dx2 = sin θdr + r cos θdθ.

Hence the canonical Euclidean metric can be expressed in terms of polar coordinates:

ḡ = (dx1)2 + (dx2)2 = (cos θdr − r sin θdθ)2 + (sin θdr + r cos θdθ)2

= (cos2 θ + sin2 θ)dr2 + (−2r cos θ sin θ + 2r cos θ sin θ)drdθ + r2(sin2 θ + cos2 θ)dθ2

= dr2 + r2dθ2.

Note that we have dr2 = (dr)2 = drdr = dr ⊗ dr and not d(r2). Ultimately, we have

ḡ = dr2 + r2dθ2 and Ḡpolar =

(
1 0
0 r2

)
(2.9)

with Ḡpolar the matrix associated to the polar coordinate frame. 4
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Example 2.4. Let g1 and g2 be two Riemannian metrics on M. A convex linear combination,
thus λg1 + (1− λ)g2 with λ ∈ [0, 1], defines again a Riemannian metric on M . 4

In Riemannian geometry, one is mostly interested in whether two Riemannian manifolds have
something in common. First we will define what it means to have conformal metrics.

Definition 2.5. Two metrics g1 and g2 on a manifold M are said to be conformal to one
another if and only if there exists a positive function f ∈ C∞(M) such that g2 = fg1.

Example 2.6. Let (U2, g) be the Riemannian manifold with U2 = {(x, y) ∈ R2 : y > 0} the
open upper half plane and the metric g such that it has the following local expression

g =
dx2 + dy2

y2
(2.10)

in the standard coordinates (x, y) on U2. Note that we do not write the standard coordinates
as (x1, x2) in order to simplify the local expression of g above. Note that the norm of a tangent
vector at p = (x, y) goes to 0 when y →∞ and increases infinitely when y → 0.

The Riemannian manifold (U2, g) is known as the Lobachevsky plane and is a 2-dimensional
version of the Poincaré half-space model. Clearly g is conformal to the canonical Euclidean
metric ḡ on U2 since f : U2 → R, (x, y) 7→ y−2 is a smooth function due to lemma 1.16. The
coordinates (x, y) are also so-called isothermal coordinates on (U2, g) because we can write
the given metric in these coordinates as g = h(x, y)(dx2 + dy2) for some smooth map h.

Now introduce the local coordinates (u, v) on V 2 = R>0×R>0 ⊂ U2 related to (x, y) as follows:

x = u2 − v2 and y = 2uv.

According to the change of coordinates lemma, see lemma 1.55, we find

dx = 2udu− 2vdv and dy = 2udv + 2vdu.

Hence the expression of g in terms of the local coordinates (u, v) is:

g =
(2udu− 2vdv)2 + (2udv + 2vdu)2

4u2v2
=

(
1

u2
+

1

v2

)
(du2 + dv2).

Note that (u, v) are isothermal coordinates too, since we can write g = k(u, v)(du2 + dv2) with
k a smooth map. In general, changing coordinates does not necessarily keep the isothermal
property. The standard coordinates on (R, ḡ) are isothermal coordinates whereas the polar
coordinates on (R, ḡ) are not isothermal, see example 2.3. 4

The definition of conformal is independent of the choice of coordinates and hence this enables
us to classify Riemannian manifolds with it. The following coordinate independent and much
stronger notion provides (as we will see later) an equivalence between Riemannian manifolds.

Definition 2.7. Let (M, g) and (M̃, g̃) be Riemannian manifolds and F : M → M̃ a diffeo-
morphism. The map F is called an isometry if we have F ∗g̃ = g. Moreover, the Riemannian
manifolds (M, g) and (M̃, g̃) are said to be isometric under F when it is an isometry.

Riemannian geometry is primarily concerned with properties that are preserved by isometries.
Such properties are: angles between tangent vectors, lengths of paths and curvature. In simple
terms, doing calculations on (M, g) corresponds to doing calculations on (M̃, g̃).

2.2 Induced Metrics

Intuitively, if two Riemannian manifolds are isometric then they are “the same”. Our next
goal is to link an arbitrary Riemannian manifold (M, g) isometrically to some subspace of Rn
with a specific metric, since doing calculations on Rn is often much easier.
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In order to do this, we first have to determine when the pullback of a metric preserves the
metric properties. Let M and N be two smooth manifolds and recall definition 1.39.

Proposition 2.8. Suppose F : M → N is a smooth map and let g be a Riemannian metric
on N . Then F ∗g is a Riemannian metric on M whenever F is a smooth immersion.

Proof. Since we have g ∈ T 2
0 N , it follows that F ∗g ∈ T 2

0 M holds due to lemma 1.65. Now we
have by definition

(F ∗g)
∣∣
p
(X,Y ) = g|F (p)(F∗X,F∗Y )

for any X,Y ∈ TpM and all p ∈ M . The metric g is symmetric, hence we have that F ∗g is
clearly symmetric too. Moreover F ∗g is positive definite because g is positive definite and due
to the fact F∗ is injective, since it was given that F is a smooth immersion. In conclusion, we
see that the pullback F ∗g is a Riemannian metric on M.

Now recall definitions 1.25 and 1.39. In general S ⊂M is said to be an embedded submanifold
of M if the inclusion map ι : S ↪−→M is an embedding. In that case, the map ι∗ : TpS → TpM
is injective. Therefore, for any X ∈ TpS we have a different vector ι∗X ∈ TpM such that

(ι∗X)(f) = X(f ◦ ι) = X(f |S) (2.11)

for any f ∈ C∞(M). Hence we can naturally identify TpS as a certain linear subspace of TpM
and interpret X as ι∗X and vice versa. For more details, see [Lee13, p. 116].

Recall that, when S is an embedded submanifold of Rn, we can just interpret the tangent
vectors X ∈ TpS and ι∗X ∈ TpRn as the real vector (1.11) discussed in section 1.4. Note that
this identification will be used throughout the entire thesis.

Definition 2.9. Let (M, g) be a Riemannian manifold and S ⊂M an embedded submanifold.
Then the map ι : S ↪−→ M induces a pullback metric g|S := ι∗g on S called the induced
metric. The Riemannian manifold (S, g|S) is a Riemannian submanifold of (M, g).

Note that the definition of the induced metric requires proposition 2.8. Also, by using the
natural identifications described above, we have for any X,Y ∈ TpS the following:

g|S(X,Y ) = ι∗g(X,Y ) = g(ι∗X, ι∗Y ) = g(X,Y ). (2.12)

Hence g|S is just the restriction of g to the tangent bundle TS.

Example 2.10. Consider the Euclidean space (Rn+1, ḡ) and note that the n-dimensional
sphere Sn ⊂ Rn+1 is an embedded submanifold of the smooth manifold Rn+1, as we have seen
in examples 1.20 and 1.36. Then (Sn, ḡ|Sn) is a Riemannian submanifold of the Euclidean
space with g|Sn = ι∗ḡ the induced metric, known as the round metric on Sn. 4

Now let (M, g) be a Riemannian n-manifold and S ⊂ M some m-dimensional submanifold.
Computations on an embedded submanifold are often most conveniently carried out in terms
of a local parametrisation. Recall that a local coordinate map ϕ : U → ϕ(U) with U ⊂ S open
and the local parametrisation ϕ−1 : V → U with V = ϕ(U) ⊂ Rm open are diffeomorphisms
due to example 1.14. Moreover, the maps ϕ and ϕ−1 are embeddings because of lemma 1.33.
Now let us write ρ = ϕ−1 for notational purposes. Since one has ι ◦ ρ = ρ with ι : S ↪→M the
inclusion map, we consequently have that

ρ∗(g|S) = ρ∗(ι∗g) = (ρ ◦ ι)∗g = ρ∗g (2.13)

is the local coordinate representation of g|S . Moreover, the map ρ∗g determines a metric on V
due to proposition 2.8. Note that the Riemannian manifolds (U, g|U ) and (V, ρ∗g) are isometric,
with ρ the isometry, and therefore we can interpret (V, ρ∗g) as the induced Riemannian
manifold of (U, g|U ). See figure 2.1 for a visualisation of this procedure.
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Figure 2.1: A visualisation of the previously discussed compute technique for the induced metric g|S .

Most of the time, one just considers (M, g) to be the Euclidean space (Rn, ḡ). For some local
parametrisation ρ : V → U of S ⊂ Rn, we have that the induced metric ḡ|S of S in standard
coordinates (x1, ..., xm) on V is given by

ρ∗ḡ = δijdρ
idρj = δij

∂ρi

∂xa
∂ρj

∂xb
dxadxb =

n∑
i=1

 m∑
j=1

∂ρi

∂xj
dxj

2

(2.14)

according to proposition 1.64 and lemma 1.65 with ρ = (ρ1, ..., ρn) in standard coordinates.
Note that we have different dimensions within the summations. Now, while one usually does
calculations on some surface in Rn, one can also consider the induced Riemannian manifolds
and do calculations on open subsets of Rm. This approach appears to be quite useful as we
will see in the next chapters. Now we will give some examples to illustrate this approach.

Example 2.11. Let R > 0 and define S1
R = {(x, y) ∈ R2 : (x − a)2 + (y − b)2 = R2} as the

circle centred at (a, b) ∈ R2 with radius R. Consider M = S1
R\{(a, b+R)} and note that it is

an embedded submanifold of R2 due to theorem 1.24, hence the pair (M, ḡ|M ) is a Riemannian
submanifold of the Euclidean space.

Figure 2.2: A visualisation of example 2.11.

Furthermore, V = (0, 2π) is an open submanifold of R and let us denote θ for the (globally
defined) standard coordinate on V . Now consider (V, g) to be the Riemannian manifold such
that we have g = R2dθ2 expressed in the standard coordinate. Note that the map

ρ : V →M, θ 7→ (a+R cos θ, b+R sin θ) (2.15)

is a local (and actually in fact a global) parametrisation of M . Consequently, with the help of
formula (2.14), we find the following:

ρ∗ḡ = (dρ1)2 + (dρ2)2 = (−R sin θdθ)2 + (R cos θdθ)2 = R2dθ2 (2.16)

and note that g = ρ∗ḡ holds. Thus we had given V precisely the coordinate representation of
the induced metric ḡ|M . In conclusion (M, ḡ|M ) and (V, g) are isometric. Note that ρ∗ḡ shares
many properties with the polar metric g = dr2 + r2dθ2. 4
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Example 2.12. Recall example 1.13 and note that S2 and the northern hemisphere S2
+ are

embedded submanifolds of R3, which follows from example 1.36 and theorem 1.24. We now
consider the Riemannian submanifolds (S2, ḡ|S2) and (S2

+, ḡ|S2
+

) of the Euclidean space (R3, ḡ).

Also recall the local parametrisation

ρ : B2 → S2
+, (x, y) 7→ (x, y,

√
1− x2 − y2)

of S2 which is in fact a global parametrisation of S2
+. This local parametrisation will give

us a coordinate representation of ḡ|S2 . Moreover, we can consider the induced Riemmannian
manifold (B2, ρ∗ḡ) that is isometric to (S2

+, g|S2
+

). Subsequently we will do some calculations
on (B2, g) with g = ρ∗ḡ. According to formula (2.14), we have

ρ∗ḡ = (dρ1)2 + (dρ2)2 + (dρ3)2 =

dx2 + dy2 +

(
∂
√

1− x2 − y2

∂x
dx+

∂
√

1− x2 − y2

∂y
dx

)2

= dx2 + dy2 +
(xdx+ ydy)2

1− x2 − y2
,

where we denote (x, y) again, as we did in example 2.6, for the standard coordinates on the
open subset of R2. Expanding the brackets of the above gives us

g =
1− y2

1− x2 − y2
dx2 +

2xy

1− x2 − y2
dxdy +

1− x2

1− x2 − y2
dy2. (2.17)

Also it is useful to consider its matrix G = (gij)ij associated to the standard coordinates:

G =

 1−y2
1−x2−y2

xy
1−x2−y2

xy
1−x2−y2

1−x2

1−x2−y2

 . (2.18)

Now let 0 < a < 1 and consider the point p = (0, a) on B2 in standard coordinates for example
and the tangent vectors X = − ∂

∂y |p and Y = ∂
∂x |p −

∂
∂y |p at p.

Figure 2.3: A visualisation of (B2, g) including a triangle with its nodes at (0, 0), (a, 0) and (0, a) in
standard coordinates. Also a visual interpretation of the tangent vectors X and Y is given.

Note that the matrix G at point p is as follows:

G(p) =

(
1 0
0 1

1−a2

)
.

Now let us determine the angle θ(0,a), see formula (2.3), between the vectors X and Y . In
order to do this, we just need to calculate g(X,X), g(X,Y ) and g(Y, Y ). For example, we have

g(Y, Y ) = g( ∂
∂x |p,

∂
∂x |p) + g( ∂∂y |p,

∂
∂y |p)− 2g( ∂

∂x |p,
∂
∂y |p) = 1 + 1

1−a2 = 2−a2
1−a2

due to the multilinearity and symmetry properties of the Riemannian metric.
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These calculations can also be done by considering the matrix G, because we have

g(Y, Y ) =
(
Y 1 Y 2

)
G(p)

(
Y 1

Y 2

)
=
(
1 1

)(1 0
0 1

1−a2

)(
1
1

)
= 1 + 1

1−a2 = 2−a2
1−a2 .

Via similar calculations we find g(X,X) = g(X,Y ) = 1
1−a2 , and consequently we have

θ(0,a) = arccos
1√

2− a2
. (2.19)

Recall the triangle on B2 we have drawn in figure 2.3. Note that we have already determined
the angle at the node (0, a) and doing so for the remaining two nodes, we get

θtotal = θ(0,0) + θ(a,0) + θ(0,a) =
π

2
+ 2 arccos

1√
2− a2

. (2.20)

In Euclidean geometry we have the well-known triangle postulate: the sum of the angles of a
triangle equals π. On (B2, g) however this is no longer true. Also, we have

θtotal → π
2 as a→ 1 and θtotal → π as a→ 0. (2.21)

Note that we can deduce from (2.21) that the triangle postulate is only satisfied on (B2, g) for
an infinitesimal small triangle. Intuitively this indeed needs to holds, since (S2

+, g|S2
+

) looks
locally like the 2-dimensional Euclidean space.

Figure 2.4: A visualisation of (S2
+, g|S2

+
) including the corresponding triangles and tangent vectors

with some 0 < a < 1 fixed (left illustration) and with a→ 1 (right illustration).

Note that we get a corresponding triangle on S2
+ by transporting a triangle on B2 using ρ. As

we can see in figure 2.4, we have that (S2
+, g|S2

+
) indeed satisfies the fact θtotal → π

2 as a → 1

because the angles at the nodes (0, a) and (0, a) in local coordinates tend to zero. 4

The detailed example above shows that doing calculations on an induced Riemannian manifold
is relatively easy, since coordinate vectors on an open subset of Rm can easily be visualised
and interpreted as discussed in section 1.4. Therefore we preferably do calculations on some
open subset of Rm instead of the surface in Rn itself.

Example 2.13. Consider the 2-dimensional sphere S2
R = {(x, y, z) ∈ R3 : x2 + y2 + z2 = R2}

with radius R > 0. An alternative way, compared to example 2.12, to express (an open subset
of) S2

R in local coordinates is by means of geographical coordinates. That is:

ρ : (0, π)× (0, 2π)→ S2
R\{N,S}, (φ, θ) 7→ (R sinφ cos θ,R sinφ sin θ,R cosφ) (2.22)

is a local parametrisation of S2
R with N = (0, 0, R) the north and S = (0, 0,−R) the south

pole. The inverse map ρ−1 is the so-called geographical coordinate map and we denote
(φ, θ) as its local coordinates, which is commonly known as the geographical coordinates.
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Now let us consider the Riemannian submanifold (S2
R, ḡ|S2

R
) of the Euclidean space. The local

parametrisation ρ gives us a coordinate representation of ḡ|S2
R

, and according to (2.14) we have

ρ∗ḡ = (dρ1)2 + (dρ2)2 + (dρ3)2

= R2(cosφ cos θdφ− sinφ sin θdθ)2 +R2(cosφ sin θdφ+ sinφ cos θdθ)2 +R2(− sinφdφ)2

= R2(cos2 φ cos2 θ + cos2 φ sin2 θ)dφ2 +R2
(

cosφ cos θ sinφ sin θ

− cosφ sin θ sinφ cos θ
)
dφdθ +R2(sin2 φ sin2 θ + sin2 φ cos2 θ)dθ2 +R2 sin2 φdφ2

= R2dφ2 +R2 sin2 φdθ2

where we also write (φ, θ) for the standard coordinates on V = (0, π) × (0, 2π). For most
practical purposes, note that (V, ρ∗ḡ) is isometric with (M, ḡ|M ) where M = S2

R\{N,S}. 4

Figure 2.5: A visualisation of example 2.13.

Remark 2.14. The metric of some induced Riemannian manifold, say (ϕ−1)∗(ḡ|S) = (ϕ−1)∗ḡ,
does indeed give a local coordinate representation of ḡ|S in a direct way. When we determine
with formula (2.14) the metric (ϕ−1)∗ḡ = gijdx

idxj with (x1, ..., xn) the standard coordinates
on some open submanifold of Rn, we also have

gij = (ϕ−1)∗(ḡ|S)

(
∂

∂xi
,
∂

∂xj

)
= ḡ|S

(
(ϕ−1)∗

∂

∂xi
, (ϕ−1)∗

∂

∂xj

)
(2.23)

by definition and note that (ϕ−1)∗
∂
∂xi is the i-th coordinate vector field on S associated with the

local coordinate map ϕ. Thus we can locally express ḡ|S = g̃ijdx
idxj with g̃ij(p) = gij(ϕ(p))

and (x1, ..., xn) are the local coordinates of S associated with ϕ. For example, see the above,
we locally have ḡ|S2

R
= R2dφ2 + R2 sin2 φdθ2 with (φ, θ) the geographical coordinates. Both

interpretations can be used interchangeably, which is frequently done in this thesis.

The last brief example shows an isometry that has nothing to do with induced metrics.

Example 2.15. Recall the 2-dimensional Poincaré half-space model (U2, g), see example 2.6.
We claim that it is isometric with the 2-dimensional version of the Poincaré ball model; the
Riemannian manifold (B2, h) with the disk B2 = {(x, y) ∈ R2 : x2 + y2 < 1} and

h =
4

(1− x2 − y2)2
(dx2 + dy2) (2.24)

in standard coordinates (x, y) on B2. Note that h is also conformal to the Euclidean metric.
Moreover, by using proposition 1.64 and lemma 1.65, we find ϕ∗g = h with the diffeomorphism

ϕ : B2 → U2, (x, y) 7→
(

2x

x2 + (y − 1)2
,

1− x2 − y2

x2 + (y − 1)2

)
.

It is a long calculation but easily verified. Be aware that, in contrast to the previous examples,
the component functions are not all constant. If one wants to use formula (2.14), one needs
to multiply it with the function σ(x, y) = (x2 + (y − 1)2)2(1− x2 − y2)−2, which just follows
from lemma 1.65. For more details on hyperbolic spaces, see [Lee97, p. 38]. 4
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Finally, let us recall the previous examples where we have visualised an induced Riemannian
manifold (V, ρ∗g). We note that the “curvature” of the original surface is “hidden” inside the
metric ρ∗g. For example, when we look at figure 2.3, then one says intuitively that the sum of
the angles of the given triangle equals π. The “curvature” of the original surface S2

+ however,
what causes the sum not to equal π, is “hidden” inside the metric of B2.

2.3 Lengths of Paths

Let γ : (a, b) → M be a smooth path. At any time t0 ∈ (a, b) we define the velocity of the
given path γ to be the push-forward γ′(t0) = γ∗

d
dt

∣∣
t0

with d
dt

∣∣
t0
∈ Tt0R the standard coordinate

vector of R at t0. Hence by definition, it acts on functions f ∈ C∞(M) as

γ′(t0)f = γ∗
d

dt

∣∣∣
t0
f =

d

dt

∣∣∣
t0

(f ◦ γ) =
d(f ◦ γ)

dt
(t0). (2.25)

Note that defining the velocity of a path in this way generalises what we have discussed in the
beginning of section 1.4, or especially equations (1.9) and (1.11). Now let (U,ϕ) be a smooth
chart on M and (x1, ..., xn) the local coordinates. Suppose γ(t0) ∈ U , then we can write the
tangent vector γ′(t0) as a linear combination of coordinate vectors:

γ′(t0) = (γi)′(t0)
∂

∂xi

∣∣∣
γ(t0)

(2.26)

with (γj)′(t0) = γ′(t0)xj , which is just the j-th coordinate representation of γ. Note the
Einstein summation convention and recall that the above is possible because the coordinate
vectors at γ(t0) form a basis for Tγ(t0)M , see definition 1.34. Also remember that we have
already seen formula (2.26) for an open submanifold of Rn in the beginning of section 1.4.

Definition 2.16. A vector field along a smooth path γ : (a, b)→M is a (not necessarily
smooth) map V : (a, b)→ TM such that V (t) ∈ Tγ(t)M for all t ∈ (a, b).

A vector field along a smooth path V is of course said to be smooth if it is a smooth map
between smooth manifolds and we denote T (γ) as the set of all smooth vector fields along the
smooth path γ. The most obvious and also most significant example of a smooth vector field
along γ is the velocity vector field γ′ : (a, b) → TM, t → γ′(t). Suppose (U,ϕ) is a smooth
chart on M such that γ

(
(a, b)

)
⊂ U , then we can write the vector field γ′ globally as:

γ′(t) = (γi)′(t)
∂

∂xi

∣∣∣
γ(t)

. (2.27)

Note that the smoothness of γ′ follows from equation (2.27) and definition 1.18, where we
need to consider the smooth structure of the tangent bundle, as discussed in section 1.5, and
interpret the interval (a, b) as an open submanifold of R.

Example 2.17. Consider the smooth manifold M = R2 and let r : (a, b) → R be a smooth
map. Then it defines a smooth path

γ : (a, b)→M, t 7→ (t, r(t)). (2.28)

Let (x1, x2) be the standard coordinates onM , then we have due to formula (2.27) the following:

γ′(t) =
d(x1 ◦ γ)

dt
(t)

∂

∂x1

∣∣∣
γ(t)

+
d(x2 ◦ γ)

dt
(t)

∂

∂x2

∣∣∣
γ(t)

=
∂

∂x1

∣∣∣
γ(t)

+ r′(t)
∂

∂x2

∣∣∣
γ(t)

. (2.29)

We can interpret γ′(t) geometrically as the real vector γ′(t)ι =
(
1, r′(t)

)
for any t ∈ (a, b). 4
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Example 2.18. Recall example 1.36 and define the smooth path

γ : (0, π)→ S2
+, t 7→

(
1
2 cos t, 1

2 sin t, 3
4

)
.

In terms of the chart (S2
+, ϕ = (x1, x2)), we get according to formula (2.27) the following:

γ′(t) =
d(x1 ◦ γ)

dt
(t)

∂

∂x1

∣∣∣
γ(t)

+
d(x2 ◦ γ)

dt
(t)

∂

∂x2

∣∣∣
γ(t)

= −1

2
sin t

∂

∂x1

∣∣∣
γ(t)

+
1

2
cos t

∂

∂x2

∣∣∣
γ(t)

.

Consequently, with the help of the results in example 1.36, we can geometrically interpret the
coordinate vectors of S2

+ at γ(t) as:

∂

∂x1

∣∣∣
p
ι =

(
1, 0,− 1

3

√
3 cos t

)>
and

∂

∂x2

∣∣∣
p
ι =

(
0, 1,− 1

3

√
3 sin t

)>
.

Hence we can geometrically interpret γ′(t) as the real vector field

γ′(t)ι =
(
− 1

2 sin t, 1
2 cos t, 0

)>
which follows by substitution of the two equation above into one another. Note that this result
can also be determined immediately by just differentiating γ as a real function. 4

In conclusion, when M ⊂ Rk is an embedded submanifold of Rk, we have that the geometric
interpretation of γ′ is just differentiating γ as a real function (as we previously also did in
section 1.4). This is clear from the two examples above.

The reason to define the velocity vector with a pushforward, is because it then works for
abstract manifolds as well. But more importantly it is now a derivation and hence a tangent
vector in our abstract sense. This enables us to define the following.

Definition 2.19. Let (M, g) be a Riemannian manifold. Then one defines the length of a
smooth path γ : (a, b)→M by the following formula:

Lg(γ) =

ˆ
γ

ds =

ˆ b

a

|γ′(t)|g dt. (2.30)

Note that the length of a smooth path, just as in ordinary and complex calculus, is well-defined
because of the following proposition.

Proposition 2.20. [Lee97, p. 92] The length of a path is independent of the parametrisation
choice. In other words, we have L(γ) = L(γ̃) with γ̃ any reparametrisation of γ.

In a lot of literature, see for example [Car97, p. 48] and [Ros03, p. 61], one writes ds2 instead
of g. Note that this does not mean ds⊗ ds. The reason behind this notion is for example the
infinitesimal version of the Pythagorean theorem: ds2 = dx2 + dy2.

Example 2.21. Recall example 2.17 and consider the Euclidean metric ḡ. We know

γ′(t) = ∂
∂x1

∣∣
γ(t)

+ r′(t) ∂
∂x2

∣∣
γ(t)

,

hence we have |γ′(t)|2ḡ = ḡ(γ′(t), γ′(t)) = 1 + r′(t)2 and thus

Lḡ(γ) =

ˆ b

a

|γ′(t)|ḡdt =

ˆ b

a

√
1 + r′(t)2 dt. (2.31)

Note that this is the well-known arc length formula of a function r. 4

Ultimately, as we already claimed a several times, we have that isometric Riemannian manifolds
are equivalent in some sense. Various properties are preserved under isometry and one of those
properties is the lengths of smooth paths.
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Proposition 2.22. The lengths of smooth paths are isometry invariant. More precisely, let
(M, g) and (M̃, g̃) be two Riemannian manifolds and F : M → M̃ an isometry. Then we have
that the equality Lg(γ) = Lg̃(F ◦ γ) holds for every smooth path γ on M.

Proof. Let γ : (a, b)→M be an arbitrary smooth path. Then for all t0 ∈ (a, b) we have

(F ◦ γ)′(t0) = (F ◦ γ)∗
d

dt

∣∣∣
t0

= (F∗ ◦ γ∗)
d

dt

∣∣∣
t0

= F∗(γ
′(t0)).

Since F is an isometry, we have F ∗g̃ = g and therefore the following holds:

|F∗X|2g̃ = g̃(F∗X,F∗X) = F ∗g̃(X,X) = g(X,X) = |X|2g

and hence |F∗X|g̃ = |X|g for any X ∈ TpM and all p ∈M. Consequently, we have

Lg̃(F ◦ γ) =

ˆ b

a

|(F ◦ γ)′(t)|g̃ dt =

ˆ b

a

|F∗(γ′(t))|g̃ dt =

ˆ b

a

|γ′(t)|g dt = Lg(γ). (2.32)

We conclude that lengths of smooth paths are isometry invariant.

Example 2.23. Let N = (0, 1) be the north pole of S1
R = {(x, y) ∈ R2 : x2 + y2 = R2}, the

circle centred at the origin with radius R > 0. Now define M = S1
R\{N} and note that it is an

embedded submanifold of the Euclidean space (R2, ḡ), see also example 2.11. Hence, we will
consider the Riemannian manifold (M, ḡ|M ).

Figure 2.6: A visualisation of the stereographic projection with equidistant points on the circle.

Let ϕ be the stereographic projection of S1
R, that is:

ϕ : M → R, (x, y) 7→ Rx

R− y
. (2.33)

Note that it is an local coordinate map of S1
R and again a diffeomorphism between smooth

manifolds with the smooth inverse

ρ : R→M, t 7→
(

2R2t

t2 +R2
,
R(t2 −R2)

t2 +R2

)
. (2.34)

This local parametrisation ρ is in fact a global parametrisation of M and therefore we will
consider the induced Riemmannian manifold (R, ρ∗g) that is isometric to (M, g|M ). Let us
write g̃ = ρ∗g. Now we get due to formula (2.14) the following:

g̃ = ρ∗g = (dρ1)2 + (dρ2)2 =(
2R2(t2 +R2)− 4R2t2

(t2 +R2)2
dt

)2

+

(
2Rt(t2 +R2)− 2Rt(t2 −R2)

(t2 +R2)2
dt

)2

=

4R2

(t2 +R2)2

[(
R− 2Rt2

t2 +R2

)2

+

(
t− t(t2 −R2)

t2 +R2

)2
]
dt2 =

4R4

(t2 +R2)2
dt2.
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Note that we write t for our standard coordinate on R. Moreover note that the component
function of g̃ vanishes as t → ±∞ and attains it maximum at t = 0. As we see in figure 2.6:
the equidistant points on the circle move on R more apart when going towards infinity.

Ultimately, consider the path
γ : (−∞,∞)→ R, s→ s.

Then the length of our path γ, which can be interpreted as the length of our real line R, equals

Lg̃(γ) =

ˆ ∞
−∞
|γ′(t)|g̃ dt =

ˆ ∞
−∞

√
g̃
(
γ′(t), γ′(t)

)
dt =

ˆ ∞
−∞

√
g̃
(
d
dt

∣∣
t
, ddt
∣∣
t

)
dt =

ˆ ∞
−∞

√
4R2

(t2 +R2)2
dt = 2

ˆ ∞
−∞

R2

t2 +R2
dt = 2πR

according to formula (2.27). This indeed corresponds, as we have proven in proposition 2.22,
to the length of the circle S1

R (without the north pole). 4

The above can also be done for arbitrary dimension. Consider the n-sphere SnR\{N} without its
north pole with radius R > 0. Then (SnR\{N}, g|SnR\{N}) is isometric to its induced Riemannian
manifold (Rn, g) with

g =
4R4

(
∑n
i=1(xi)2 +R2)2

n∑
i=1

(dxi)2 (2.35)

in standard coordinates (x1, ..., xn) on Rn. Note that g is conformal to the canonical Euclidean
metric and (x1, ..., xn) are isothermal coordinates. See [Lee97, p. 36] for more details on g.

Finally, at the end of the previous section we noted that the “curvature” of the original surface
is “hidden” inside the metric of the induced Riemannian manifold. Again, the previous example
encourages this idea. Consider (R, g̃) from the previous example, then one would intuitively
say that the length of R is infinitely large. The “curvature” of the original surface S1

R however,
what causes the length to equal 2πR, is “hidden” inside the metric g̃.
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Chapter 3

How to measure Curvature

We, as inhabitants of the earth, were only able to deduce the geometry of the earth, before the
invention of airspace technology, by measurements made on earth itself. Although the earth is
within a bigger space, our universe, we did not have an observer in space to do measurements
for us. Nonetheless, restricting ourselves with measurements we can do on earth, we could still
measure the length of a trajectory travelled for example and via some calculations we are able
to determine the velocity and speed along a path too.

Mathematically though, one often considers the extrinsic point of view: paths and surfaces
are lying in some Euclidean space and the length of a path on a surface is calculated by just
interpreting it as a path through Euclidean space. As discussed in the previous paragraph, the
presence of some ambient space for calculating lengths of paths is unnecessary, which we have
also seen in section 2.3. Hence all we need is a Riemannian metric defined on some smooth
manifold M of our interest. All the geometry which can be derived from just a given metric,
and thus without an observer in an ambient space, is what we call intrinsic geometry.

The intrinsic point of view, in which one cannot speak of moving outside the geometric object,
is way more flexible. In this chapter we will work towards an intrinsic definition of curvature. In
general relativity for example, see [Car97] or [FG17], one considers the curvature of space-time
which cannot naturally be taken as extrinsic, since what would be the outside of our universe?
For our purpose, the intrinsic approach enables us to define the Ricci flow because changing a
metric on M is the main key behind the Ricci flow, which cannot be done when the ambient
space is present as we discussed previously. Lastly, a fundamental result in intrinsic geometry
is Gauss’s Theorema Egregium. In short, see also section 3.4, it shows that the Gaussian
curvature, a way of defining curvature extrinsically, can also be calculated intrinsically.

Now some technicalities, if (x1, ..., xn) are local coordinates of M and there can be no confusion
about which local coordinate system is meant, we abbreviate a coordinate vector ∂

∂xi with ∂i.
As usual, we use the Einstein summation convention and note that writing ∂i is more common
then ∂

∂xi in the literature. This also explains the upper and lower index rule, see remark 1.30.

3.1 Connections

In order to define curvature, it first requires more knowledge concerning Riemannian manifolds.
To gain more information, we would like for example to differentiate (in some sense) vector
fields on M . Let us implement this idea in the following example.

Example 3.1. Consider the 2-sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} with radius one
and its ambient space: the Euclidean space (R3, ḡ) where ḡ is the canonical Euclidean metric.
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Recall the geographical coordinate map ϕ and the corresponding local parametrisation

ϕ−1 : (0, π)× (0, 2π)→ S2\{N,S}, (φ, θ) 7→ (sinφ cos θ, sinφ sin θ, cosφ),

as discussed in example 2.13. For the geographical coordinates (φ, θ) on S2\{N,S}, we have
that the coordinate vectors at p ∈ S2\{N,S} are given by:

∂

∂φ

∣∣∣
p

= (ϕ−1)∗
∂

∂φ

∣∣∣
ϕ(p)

and
∂

∂θ

∣∣∣
p

= (ϕ−1)∗
∂

∂θ

∣∣∣
ϕ(p)

.

As suggested by formula (1.17) we calculate the Jacobian of ϕ−1, which gives:

Jϕ−1 =

cosφ cos θ − sinφ sin θ
cosφ sin θ sinφ cos θ
− sinφ 0

 .

Consequently, the natural identification of the coordinate vector fields ∂
∂φ and ∂

∂θ are given by

the real vector fields φ̂ and θ̂ respectively:

φ̂ =
(

cosφ cos θ, cosφ sin θ, − sinφ
)>

and θ̂ =
(
− sinφ sin θ, sinφ cos θ, 0

)>
. (3.1)

Our goal is now to differentiate the tangent vector fields φ̂ and θ̂ with respect to φ and θ.

Figure 3.1: A visualisation of example 3.1 with ∂θ̂
∂θ

(on the left) the partial derivative of θ̂ with respect

to θ and ∂θ̂
∂θ tangent

(on the right) its orthogonal projection on the tangent space TpS
2.

As suggested by the figure above, we determine the derivative of θ̂ with respect to θ:

∂θ̂

∂θ
=
(
− sinφ cos θ, − sinφ sin θ, 0

)>
(3.2)

Unfortunately we encounter a problem as we can see from (3.2) and in figure 3.1. Differentiation
of a coordinate vector field with respect to some coordinate does not (always) give us a tangent
vector field in return. A solution to this problem is quite straightforward: orthogonally project
the derivative of the (real) vector field at any p on TpS. Doing this gives us:

∂θ̂

∂θ tangent
=
∂θ̂

∂θ
− N̂

〈∂θ̂
∂θ
, N̂
〉

(3.3)

with 〈·, ·〉 the standard inproduct (since we consider the Euclidean space) and N̂ the normal
unit (real) vector field, that is: for any p ∈ S2\{N,S} we have N̂ |p ∈ R3 such that 〈N̂p, N̂p〉 = 1,
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which makes it a unit vector, and more importantly 〈N̂ |p, θ̂|p〉 = 0 and 〈N̂ |p, φ̂|p〉 = 0 because
then it is orthogonal to any real identification of our tangent vectors at p. Note that we have

N̂ =
(

sinφ cos θ, sinφ sin θ, cos θ
)>
. (3.4)

Hence, by the above and formula (3.3) we get the following expression:

∂θ̂

∂θ tangent
= 0 · θ̂ − sinφ cosφ · φ̂ = − sinφ cosφ · φ̂, (3.5)

as we already illustrated in figure 3.1. Note that the component functions associated to the
geographical coordinates (φ, θ) of vector field (3.5) are smooth maps. Therefore, the corre-
sponding (abstract) vector field defined on S2\{N,S} is according to corollary 1.44 smooth.
Conversely, the expression of (3.5) in our abstract sense is written as

∇ ∂
∂θ

∂
∂θ = − sinφ cosφ ∂

∂φ (3.6)

with ∇ the so-called tangential connection. Similarly, one can deduce

∇ ∂
∂θ

∂
∂φ = ∇ ∂

∂φ

∂
∂θ = cosφ

sinφ
∂
∂θ and ∇ ∂

∂φ

∂
∂φ = 0. (3.7)

Again these are smooth vector fields on S2\{N,S}. For more details concerning the (other)
calculations, consult [Khu17, p. 52] for example. 4

As suggested by the above, we want to define an operator on M which enables us to differentiate
smooth vector fields in some sense which gives us a smooth vector field in return. Note that the
above is a local approach while the following definition is globally. Let M be an n-dimensional
smooth manifold unless otherwise specified.

Definition 3.2. A (linear) connection on M is a map

∇ : TM × TM → TM

denoted as ∇(X,Y ) = ∇XY that satisfies the following three properties:

• it is C∞(M)-linear in the first argument:

∇fX1+gX2
Y = f∇X1

Y + g∇X2
Y for all f, g ∈ C∞(M); (3.8)

• it is R-linear in the second argument:

∇X(aY1 + bY2) = a∇XY1 + b∇XY2 for all a, b ∈ R; (3.9)

• it satisfies the Leibniz rule:

∇X(fY ) = f∇XY + (Xf)Y for all f ∈ C∞(M). (3.10)

We moreover call ∇XY the covariant derivative of Y in the direction of X.

Note that for X ∈ TM and f ∈ C∞(U) with U ⊂M open, the smooth function Xf ∈ C∞(U)
is defined for all p ∈ U as the point-wise action Xf(p) = X|p f. If we have g ∈ C∞(U), then
the product rule holds:

X(fg) = fXg + gXf. (3.11)

See [Lee13, p. 180] for more details. Moreover, even though a connection is defined as a global

operator, it is actually a local operator since we have ∇X̃ Ỹ |p = ∇XY |p whenever X(p) = X̃(p)

and Y = Ỹ in an arbitrarily small neighbourhood of the point p ∈ M, see [Lee97, p. 50].
Recall the end of section 1.7 and note that the proof of the statement above is highly reliant
on the existence of bump functions.
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Therefore, let (x1, ..., xn) be any local coordinates on some open submanifold U ⊂ M and let
us consider the corresponding local coordinate frame (∂1, ..., ∂n) for TM . Assume that ∇ is a
connection on U, then for any i and j we can write the covariant derivative ∇∂i∂j in terms of
the same local frame. In other words, we have

∇∂i∂j = Γkij∂k (3.12)

for some particular functions Γkij : U → R. Equivalently, one can write Γkij = dxk(∇∂i∂j).

Definition 3.3. The n3 smooth functions Γkij : U → R are the Christoffel symbols of the
connection ∇ on U with respect to the local coordinate frame (∂1, ..., ∂n).

Note that the smoothness of the Christoffel symbols follows immediately from corollary 1.44.
Moreover, any smooth vector fields X,Y ∈ T U can be expressed in terms of the coordinate
vector fields by X = Xi∂i and Y = Y j∂j , hence we have

∇XY = ∇X(Y j∂j) = Y j∇X∂j + (XY j)∂j = (XY j)∂j + Y j∇Xi∂i∂j =

(XY j)∂j +XiY j∇∂i∂j = (XY j)∂j +XiY jΓkij∂k =
[
XY k +XiY jΓkij

]
∂k

(3.13)

in terms of the local coordinates. Note that we have used properties (3.10) and (3.8) re-
spectively. Observe that the component functions of ∇XY contain X(Y k), the directional
derivative of a component function of Y in the direction of X (see the beginning of section
1.4), and some extra term which is the main reason why ∇XY is said to be the “covariant”
derivative of Y in the direction of X.

Example 3.4. Let U ⊂ Rn be an open submanifold and consider the Euclidean connection
on U , which is defined by

∇XY = ∇X(Y j∂j) = (XY j)∂j (3.14)

in standard coordinates. The three properties of a connection are clearly satisfied. In particular,

∇∂iY = (∂iY
j)∂j =

∂Y j

∂xi
∂j

is the smooth vector field whose component functions are just the i-th partial derivative of
the components functions of Y defined on U (which can be whole Rn). Also note that all the
Christoffel symbols are identically zero. 4

Recall the problem we encountered in example 3.1, just differentiating tangent vector fields
will not give us a tangent vector field in return, and note that this problem does not appear
when we consider (an open subset of) the Euclidean space.

Definition 3.5. Let X and Y be two smooth vector fields on M . The Lie bracket [X,Y ]
of X and Y is the smooth vector field defined on M by

[X,Y ]
∣∣
p
f = X|p(Y f)− Y |p(Xf) (3.15)

for any smooth function f ∈ C∞(M) and any point p ∈M.

Note that [X,Y ] is a vector field on M because for every p ∈M we have [X,Y ]
∣∣
p
∈ TpM since

[X,Y ]
∣∣
p
(fg) = f(p)[X,Y ]

∣∣
p
g + g(p)[X,Y ]

∣∣
p
f,

which follows from (3.11). Note that we also can write [X,Y ]f = XY f−Y Xf. The smoothness
of a Lie bracket, thus [X,Y ] ∈ TM , follows from lemma 1.43 and the local expressions:

[X,Y ] = [Xj∂j , Y
j∂j ] =

(
XY j − Y Xj

)
∂j =

(
Xi∂iY

j − Y i∂iXj
)
∂j . (3.16)

Expression (3.16) follows from a direct computation and relies on the fact that mixed partial
derivatives of smooth functions commute, see also [Lee13, p. 187]. Hence, the Lie bracket of
two coordinate vector fields always vanishes identically, in other words: [∂i, ∂j ] = 0.
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Definition 3.6. Suppose (M, g) is a Riemannian manifold. A connection ∇ on M is said to
be compatible with the metric g if

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ) (3.17)

holds and ∇ is said to be torsion-free if we have

∇XY −∇YX = [X,Y ]. (3.18)

By definition we have for any X,Y ∈ TM that ∇XY is a smooth vector field too and recall
that the function g(X,Y ) : M → R is a smooth function, see section 1.7. Consequently, we
have the smooth function Xg(Y,Z) ∈ C∞(M). Moreover, the two properties (3.17) and (3.18)
are of major significance as we will see and they arise in the following example.

Example 3.7. Recall the Euclidean connection ∇. Note that ∇ is clearly torsion-free due to
equation (3.16). On can also easily deduce that the connection is compatible with ḡ, since the
standard coordinate frame (∂1, ..., ∂n) is global. We have

Xḡ(Y,Z) = X(Y iZi) = Y i(XZi) + Zi(XY i) =

ḡ((XZi)∂i, Y
i∂i) + ḡ((XY i)∂i, Z

i∂i) = ḡ(∇XZ, Y ) + ḡ(∇XY,Z).
(3.19)

Therefore ∇ is the unique Levi-Civita connection on (U, ḡ) with U ⊂ Rn open. Note that ∇ is
also one of the main reasons why one would consider these properties in the first place. 4

Theorem 3.8. (Fundamental Theorem of Riemannian Geometry) [Lee97, p. 68] Let
us consider a Riemannian manifold (M, g). There exists a unique connection ∇ on M that is
compatible with g and torsion-free. This connection is called the Levi-Civita connection.

We like to note that studying the proof of this theorem is quite worthwhile because it implies
the following corollary, which is one of the most important results in Riemannian geometry.

Corollary 3.9. Let (M, g) be a Riemannian manifold and G = (gij)ij the matrix associated
with the local frame (∂1, ..., ∂n) defined on U ⊂ M open. Consider the inverse G−1 = (gij)ij .
Then from the proof one obtains an explicit formula for the Christoffel symbols of the Levi-
Civita connection on (U, g|U ), which is:

Γkij = 1
2g
kl(∂igjl + ∂jgil − ∂lgij). (3.20)

Be aware of the Einstein summation convention. Note that ∂k is a vector field and acts on
the functions gij : U → R as follows: ∂kgij it is the k-th partial derivative of the coordinate
representation of the function gij on U , see the discussion in section 1.4 below equation (1.16).
Lastly it is important to note the symmetry within the Christoffel symbols: Γkij = Γkji.

As the proof of theorem 3.8 in [Lee97, p. 68] claims, we have that the Levi-Civita connection
on (U, g|U ) fixes the Levi-Civita connection on (M, g) for all points in U. In [Tu17, p. 77] one
can find the following more detailed explanation. We define ∇U : T U × T U → T U such that
for any point p ∈ U we have

∇UXY |p = ∇X̃ Ỹ |p (3.21)

where X̃ and Ỹ are smooth global vector fields on M that agree with X and Y in a neigh-
bourhood of p. Because ∇ is a local operator, it is independent of the choices of X̃ and Ỹ .
One easily show that ∇U satisfies the properties of a connection and moreover, when ∇ is the
Levi-Civita connection on (M, g) then ∇U is the Levi-Civita connection on (U, g|U ). Thus due
to (3.21) we can speak of the Christoffel symbols of the Levi-Civita connection on (M, g). Note
that the existence of bump functions play a crucial part in the procedure above.

In conclusion, covariant differentiation with the Levi-Civita connection is instrinsic, since it
can be fully determined with the given metric only: apply formulae (3.13) and (3.20). Now let
us consider some explicit examples.
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Example 3.10. Again consider the Euclidean connection on (Rn, ḡ). Alternatively, we deduce
with formula (3.20) that all Christoffel symbols are identically zero. By applying (3.13), we
can also conclude that ∇ is precisely the Levi-Civita connection. 4

Example 3.11. Recall example 2.3 and the fact that (r, θ) are local polar coordinates of R2,
defined on the open submanifold R (see example 1.7), with

Gpolar =

(
1 0
0 r2

)
and G−1

polar =

(
1 0
0 1

r2

)
the matrix associated to the canonical Euclidean metric ḡ in polar coordinates and its inverse.
According to (3.20), the Christoffel symbols of the Levi-Civita connection on (R2, ḡ) associated
to the polar coordinates are:

Γ1
22 = 1

2g
11

(
0 + 0− ∂g22

∂r

)
+ 0 =

1

2
(−2r) = −r; (3.22)

Γ2
12 = Γ2

21 = 0 + 1
2g

22

(
∂g22

∂r
+ 0− 0

)
=

1

2r2
(2r) = 1

r ; (3.23)

since differentiating with respect to θ results into zero elements and we claim that all the other
Christoffel symbols are identically zero. This is easily verified with equation (3.20). 4

The following example is a very useful generalisation of the above.

Example 3.12. Let (M, g) be a Riemannian manifold such that g = p du2 + q dv2 in local
coordinates (u, v) where the coordinate representations p = p(u, v) and q = q(u, v) are smooth
functions and nowhere zero. Then

G =

(
p(u, v) 0

0 q(u, v)

)
and G−1 =

(
1

p(u,v) 0

0 1
q(u,v)

)

are the matrix associated with g in (u, v) coordinates and its inverse. According to (3.20), we
have that the Christoffel symbols of the Levi-Civita connection on (M, g) are:

Γ1
11 = 1

2g
11∂1g11 =

pu
2p

; Γ1
12 = Γ1

21 = 1
2g

11∂2g11 =
pv
2p

;

Γ1
22 = − 1

2g
11∂1g22 = − qu

2p
; Γ2

11 = − 1
2g

22∂2g11 = −pv
2q

;

Γ2
12 = Γ2

21 = 1
2g

22∂1g22 =
qu
2q

; Γ2
22 = 1

2g
22∂2g22 =

qv
2q
.

(3.24)

Note that we write pu and qu to indicate the differentiation with respect to u. In other words,

they represent ∂p(u,v)
∂u and ∂p(u,v)

∂u respectively. Also, the results found in example 3.11 can be
calculated immediately with the formulae above. 4

Now recall example 2.13 and the significant remark 2.14. Let (φ, θ) be the geographical coor-
dinates and note that

ḡ|S2 = dφ2 + sin2 φdθ2

is a local coordinate representation of the induced metric on S2 with the component functions
nowhere zero. With the help of the previous example, we deduce that the Christoffel symbols
of the Levi-Civita connection on (S2, g|S2) with respect to the geographical coordinates are:

Γ1
22 = − sinφ cosφ and Γ2

12 = Γ2
21 =

cosφ

sinφ
(3.25)

and the others are identically zero. Importantly note that these components correspond to
what we have seen in example 3.1 for the component functions of (3.6) and (3.7). In general,
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the Levi-Civita connection on an embedded submanifold S of Euclidean space (Rn, ḡ) has
precisely the interpretation as discussed in example 3.1.

The tangential connection (as we have introduced in example 3.1) orthogonally projects
the Euclidean connection on Rn onto S, see [Lee97, p. 66] for the precise definition. It indeed
satisfies the properties of a connection and is moreover torsion-free and compatible with the
induced metric, see [Lee97, p. 67] and [Lee97, p. 68]. This makes the tangential connection the
unique Levi-Civita connection and therefore the Levi-Civita connection on S can be interpreted
as the operator that orthogonally projects differentiated vector fields as if they were vector fields
in Rn onto the submanifold S.

We end this section with a lemma needed for the next chapter, which is moreover directly
related to the Levi-Civita connection.

Lemma 3.13. Let (M, g) and (M,λg) with λ > 0 be two Riemannian manifolds and denote
their unique Levi-Cevita connections with ∇g and ∇λg respectively. We have ∇λg = ∇g.

Proof. Let X,Y, Z ∈ TM be arbitrary smooth vector fields. By definition we have that a
tangent vector satisfies the Leibniz condition, see (1.8). Consequently, the following holds:

X(λg(Y,Z)) = λX(g(Y, Z)).

Since ∇λg is compatible with λg we have X(λg(Y, Z)) = λg(∇λgX Y, Z) + λg(Y,∇λgX Z), and by
applying the equality above and subsequently dividing both sides with λ we get the expression:

X(g(Y, Z)) = g(∇λgX Y, Z) + g(Y,∇λgX Z).

In conclusion, the connection ∇λg is compatible with g, hence by theorem 3.8 we have that
the equality ∇λg = ∇g holds due to the uniqueness of the Levi-Cevita connection.

3.2 Flat Riemannian Manifolds

Recall the definition of an isometry, see definition 2.7, and the fact: when two Riemannian
manifolds are isometric, they are said to be equivalent because many properties, as discussed in
the previous chapter, are preserved. Precisely for this reason we are also interested in whenever
a Riemannian manifold is locally equivalent to some other Riemannian manifold.

Definition 3.14. A Riemannian manifold (M, g) is called locally isometric to a Riemannian

manifold (M̃, g̃) if the following holds: each point p ∈M has a neighbourhood that is isometric

to an open subset of M̃ .

An open subset of a Riemannian manifold (M, g) obtains the metric which is just the restriction
of the metric g on its tangent bundle, which is discusses in section 2.2. Also note that every
isometry is a local isometry. Furthermore, in Riemannian geometry one is often interested in
whether a Riemannian manifold is locally isometric to the Euclidean space.

Definition 3.15. An n-dimensional Riemannian manifold (M, g) is said to be flat if it is
locally isometric to the Euclidean space (Rn, ḡ).

Suppose we have a Riemannian m-submanifold (S, ḡ|S) of the Euclidean space (Rn, ḡ). Then
the above is equivalent with saying that for any point p ∈ S there exists a local parametrisation
ρ : V → U with V ⊂ Rm and p ∈ U ⊂ M open such that the induced Riemannian manifold
has ρ∗ḡ = δijdx

idxj in standard coordinates of V .

Note that the observation above does not actually need to require the Riemannian manifold
to be a Riemannian submanifold at all. Moreover, according to remark 2.14, an equivalent
statement is that for any p ∈ S there exists local coordinates (x1, ..., xm) around p such that
its metric can be locally expressed as g = δijdx

idxj .
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Example 3.16. Recall example 2.11 and now consider a small adjustment of (2.15) which
gives us the following local parametrisation of the circle S1

R:

ρ : V → ρ(V ), θ 7→ (a+R cos θ
R , b+R sin θ

R ) (3.26)

with V = (θ1, θ2) an open interval such that θ2 − θ1 ≤ 2πR. Let p ∈ S1
R be arbitrary, then

there clearly exists a set V such that ρ contains the point p in its image. A simple calculation,
conform to example 2.11 and using formula (2.14), will show that the open subset ρ(V ) of
the circle S1

R with its induced metric is isometric to (V, dθ2), where we also denote θ as the
standard coordinate on R. In conclusion, any circle is flat. 4

In fact, one can show that every 1-dimensional Riemannian manifold is flat, see [Lee97, p. 116].
Therefore we might say that Riemannian 1-manifolds are not that interesting since they are all
the same in some sense. For this reason, we now look at 2-dimensional Riemannian manifolds.

Example 3.17. Consider the cone K = {(x, y, z) ∈ R3 : x2 +y2−k2z2 = 0, z > 0} with k > 0
which is an embedded submanifold of R3, according to theorem 1.24. Now write the Euclidean
space as (R3, ḡ3) and let us give K the induced metric ḡ3|K . We claim that (K, ḡ3|K) is locally
isometric to the Euclidean plane (R2, ḡ2), hence the cone is flat. We note that

ρα : V → ρα(V ), (u, v) 7→


x = k

√
u2+v2

k2+1 cos
(√

k2+1
k arctan2(v, u) + α

)
y = k

√
u2+v2

k2+1 sin
(√

k2+1
k arctan2(v, u) + α

)
z =

√
u2+v2

k2+1

(3.27)

with
V = {(x, y) ∈ R2 : − πk√

k2+1
< arctan2(y, x) < πk√

k2+1
} (3.28)

are local parametrisations of K such that {ρα(V )}α covers K entirely.1 More importantly, the
local parametrisations ρα are isometries, thus we have (ρα)∗ ḡ3 = ḡ2 on V .

Showing that ρα is an isometry can be done with brute force by using formula (2.14), however
the following approach also shows how we even came up with these local parametrisations.

Figure 3.2: A visualisation of example 3.17.

First let us consider the smooth chart (U,ϕ) such that its local parametrisation is

ϕ−1 : W → U, (t, θ) 7→ (kt cos θ, kt sin θ, t) (3.29)

with W = R>0 × (−π, π) open. Carefully note that the equality U = ρ0(V ) holds.

1The function arctan2(y, x) returns the angle of (x, y) ∈ R2\{(0, 0)} within the interval (−π, π].
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According to formula (2.14) and remark 2.14, we obtain the local expression of

g|K = (k cos θdt− kt sin θdθ)2 + (k sin θdt+ kt cos θdθ)2 + dt2 = (k2 + 1)dt2 + k2t2dθ2

where we also denote (t, θ) for the local coordinates on U = ρ0(V ) associated to the coordinate
map ϕ. We observe that the local representation of g|K looks a lot like the polar representation
of the Euclidean metric, see example 2.3.

Therefore we introduce, analogous to example 1.7, the implicit formulae with a, b ∈ R constants:

u = at cos(bθ) and v = at sin(bθ) (3.30)

with (u, v) the local coordinates defined on U that satisfy the above. Changing coordinates,
according to lemma 1.55, gives us the following expression:

du2 + dv2 = (a cos(bθ)dt− abt sin(bθ)dθ)2 + (a sin(bθ)dt+ abt cos(bθ)dθ)2 =

a2dt2 + (ab)2t2dθ2.

Hence we fix the constants a =
√
k2 + 1 and b = k√

k2+1
in order to correspond with the induced

metric on K, which implies that (u, v) are local coordinates on K such that g|K = du2 + dv2.
We like to note, as discussed previously, that this observation is enough to conclude that the
cone is flat (since we can easily modify the (co)domains).

Ultimately, formula (3.27) with α = 0 is obtained by writing the implicit formulae given in
equation (3.30) as, see also example 1.7, the following equivalent implicit formulae:

t = a−1
√
u2 + v2 =

√
u2 + v2

k2 + 1
and θ = b−1 arctan2(v, u) =

√
k2 + 1

k
arctan2(v, u). (3.31)

The fact that ρα is an isometry follows from the above. Thus the cone is indeed flat. 4

Nonetheless, not all the Riemannian 2-manifolds are locally isometric with the Euclidean plane.

Proposition 3.18. The 2-dimensional sphere S2 is not flat. Due to fact that S2 is highly
symmetric, we have the following: for any point p ∈ S2 there exists no neighbourhood of p that
is isometric to an open subset of the Euclidean plane (R2, ḡ).

Note that the second part of the proposition above is an immediate consequence of the first
part. Moreover, showing that the 2-dimensional sphere is not locally isometric to the Euclidean
plane can be done in various ways. See for example problem 5.4 of [Lee97, p. 87]. Another way
to prove this proposition, as we will do in the next section, is by defining an intrinsic concept
that we call curvature.

3.3 Curvature Tensor Fields

Throughout this section, when we consider a connection ∇ then it is assumed to be the unique
Levi-Civita connection. Also recall the fact that covariant differentiation is then intrinsic. Now
note that for the Euclidean space (Rn, ḡ), see example 3.4, we have the expression:

∇X∇Y Z = ∇X(∇Y Z) = ∇X(Y (Zk)∂k) = X(Y (Zk))∂k

and similarly we deduce ∇Y∇XZ = Y (X(Zk))∂k. Consequently, we obtain the formula

∇X∇Y Z −∇Y∇XZ = ∇[X,Y ]Z (3.32)

which follows from the local expression (3.16). Equation (3.32) is said to be the flatness
criterion because the Euclidean space is flat. It also motivates the following definition.
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Definition 3.19. Let (M, g) be a Riemannian manifold. Then the Riemann curvature
endomorphism is the map R : TM × TM × TM → TM defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (3.33)

where one denotes R(X,Y, Z) as R(X,Y )Z.

We first observe that the map R is skew-symmetric in the first two arguments if [X,Y ] = 0, in
other words: R(X,Y )Z = −R(Y,X)Z for all Z ∈ TM if [X,Y ] = 0.

Example 3.20. Consider the Euclidean space (Rn, ḡ). Its connection satisfies the flatness
criterion and therefore the Riemann curvature endomorphism R vanishes identically. 4

Recall that a connection is defined as a global operator, but it is actually a local operator: we
have ∇X̃ Ỹ |p = ∇XY |p if X(p) = X̃(p) and Y = Ỹ holds in an arbitrarily small neighbourhood
of any point p ∈ M. For the Riemann curvature endomorphism we have a similar but much
stronger result.

Proposition 3.21. For any X,Y, Z ∈ TM and any smooth function f ∈ C∞(M), we have

R(fX, Y )Z = R(X, fY )Z = R(X,Y )fZ = fR(X,Y )Z. (3.34)

Moreover, we have that (R(X,Y )Z)|p ∈ TpM depends only on X|p, Y |p, Z|p ∈ TpM . Thus we
may consider the Riemann curvature endomorphism as the collection of multilinear maps

R|p : TpM × TpM × TpM → TpM

for each p ∈M .

Proof. (Based on [Lee97, p. 118]) We will first show (3.34). For any f ∈ C∞(M) we compute

R(fX, Y )Z = ∇fX∇Y Z −∇Y∇fXZ −∇[fX,Y ]Z

= f∇X∇Y Z − (f∇Y∇XZ + (Y f)∇XZ)−∇f [X,Y ]−(Y f)XZ

= f∇X∇Y Z − f∇Y∇XZ − (Y f)∇XZ −∇f [X,Y ]Z + (Y f)∇XZ
= fR(X,Y )Z,

where we have used in the second equality the following:

[fX, Y ]g = fX(Y g)− Y (fXg) = fX(Y g)− fY (Xg)− (Xg)Y f = f [X,Y ](g)− (Y f)Xg

for any g ∈ C∞(M). Also, we have mentioned earlier that R(X,Y )Z is skew-symmetric in the
first two arguments. This implies that R(X, fY )Z = fR(X,Y )Z holds. Lastly, we compute

R(X,Y )fZ = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)

= ∇X((Y f)Z + f∇Y Z)−∇Y ((Xf)Z + f∇XZ)− ([X,Y ]f)Z − f∇[X,Y ]Z

= (Y f)∇XZ +X(Y f)Z + f∇X∇Y Z + (Xf)∇Y Z − (Xf)∇Y Z − Y (Xf)Z

− f∇Y∇XZ − (Y f)∇XZ − ([X,Y ]f)Z − f∇[X,Y ]Z

= f∇X∇Y Z − f∇Y∇XZ −∇f [X,Y ]Z +X(Y f)Z − Y (Xf)Z − ([X,Y ]f)Z

= fR(X,Y )Z,

because we can simply write the Lie bracket of X and Y as [X,Y ]f = X(Y f)− Y (Xf).

Ultimately, the map R is clearly multilinear over R and hence (3.34) implies that R is multi-
linear over C∞(M). By the Tensor Characterization Lemma, see 1.66, we conclude that R is
induced by a

(
3
1

)
tensor field. Hence the statement above follows.

48



Now let (∂1, ..., ∂n) be any local coordinate frame for TM defined on U ⊂ M open. Due to
proposition 3.21, we can consider the local expressions

R(∂i, ∂j)∂k = Rlijk∂l (3.35)

with smooth functions Rlijk : U → R, see lemma 1.61 and the proof above, which are said to be
the component functions of the Riemann curvature endomorphism associated to the given
local frame. Equivalently, one can write Rlijk = dxl(R(∂i, ∂j)∂k).

The following lemma implies that the Riemann curvature endomorphism is intrinsic.

Lemma 3.22. In local coordinates we have

Rlijk = ∂iΓ
l
jk − ∂jΓlik + ΓmjkΓlim − ΓmikΓljm. (3.36)

Proof. Recall the observation done in (3.21). It therefore suffices to do calculations on an open
submanifold (U, g|U ) of (M, g) with (∂1, ..., ∂n) a local coordinate frame on U. Since the Lie
bracket of two coordinate vector fields always vanishes identically, thus [∂i, ∂j ] = 0, we only
have to look at the following:

∇∂i∇∂j∂k=∇∂i(Γmjk∂m)=Γmjk∇∂i∂m + (∂iΓ
m
jk)∂m =

ΓmjkΓlim∂l + (∂iΓ
m
jk)∂m = (∂iΓ

l
jk + ΓmjkΓlim)∂l.

Note that in the first and third equality we have applied the definition of Christoffel symbols,
see formula (3.20). The second equality uses the Leibniz property of a connection and the last
equality is just a change of index. By doing the same for ∇∂j∇∂i∂k, and subsequently using
that Rlijk = dxl(R(∂i, ∂j)∂k) holds, we have finished the proof.

Example 3.23. Recall example 3.17 and that

ḡ|K = (k2 + 1) dt2 + k2t2dθ2

is a local coordinate representation of the induced metric on K with the component functions
nowhere zero. With the help of example 3.11, we deduce that the Christoffel symbols of the
Levi-Civita connection on (K, ḡ|K) with respect to the local coordinates (t, θ) are:

Γ1
22 = − k2

k2 + 1
t and Γ2

12 = Γ2
21 =

1

t
(3.37)

and the others are identically zero. According to lemma 3.22, we have for example

R2
121 =

∂Γ2
21

∂t
− ∂Γ2

11

∂θ
+ Γ1

21Γ2
11 + Γ2

21Γ2
12 − Γ1

11Γ2
21 − Γ2

11Γ2
22

= − 1

t2
− 0 + 0 +

1

t2
− 0− 0 = 0

and

R1
122 =

∂Γ1
22

∂t
− ∂Γ1

12

∂θ
+ Γ1

22Γ1
11 + Γ2

22Γ1
12 − Γ1

12Γ1
21 − Γ2

12Γ1
22

= − k2

k2 + 1
− 0 + 0 + 0− 0 +

k2

k2 + 1
= 0

and similarly we obtain that all the component functions of R are identically zero. This implies,
since we can vary the domains of the local coordinates (t, θ) such that it covers K, that the
Riemann curvature tensor vanishes identically on K. In other words, the cone (K, ḡ|K) satisfies
the flatness criterion, see formula (3.32). 4
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From example 3.17 and the example above we now know that the cone is both flat and it satisfies
the flatness criterion. The following theorem shows that it is (obviously) no coincidence.

Theorem 3.24. [Lee97, p. 119] A Riemannian manifold is flat if and only if it satisfies the
flatness criterion: its Riemann curvature endomorphism vanishes identically.

Instead of working with the Riemann curvature endomorphism R explicitly, one often considers
the Riemann curvature tensor. This is done because it is directly related to a

(
4
0

)
tensor field.

Definition 3.25. The Riemann curvature tensor is defined by

Rm(X,Y, Z,W ) = g(R(X,Y )Z,W ) (3.38)

for all X,Y, Z,W ∈ TM.

Note that Rm is a smooth
(

4
0

)
tensor field due to the Tensor Characterisation Lemma, see 1.66,

because the map Rm is multilinear over C∞(M). This basically follows from (3.34) in propo-
sition 3.21 and because g is a

(
2
0

)
tensor field. In local coordinates we can write

Rm = Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl (3.39)

with smooth component functions Rijkl : U → R. Note that Rijkl = glmR
m
ijk holds.

Neither a
(

4
0

)
nor a

(
3
1

)
tensor field is very convenient to work with. Therefore the question

arises: is there a way to simplify the above definitions without loosing too much information?

Definition 3.26. The Ricci curvature tensor is a smooth
(

2
0

)
tensor field defined by

Ric|p(Y,Z) = tr
(
TpM → TpM, X 7→ R|p(X,Y )Z

)
(3.40)

for all Y,Z ∈ TpM and all p ∈M .

Note that Ric is well-defined thanks to proposition 3.21 and because of the known fact that
the trace of an finite dimensional endomorphism is basis independent. Now let (∂1, ..., ∂n) be
any local frame of TM defined on U . Then we have

Ric|p(∂i|p, ∂j |p) = tr
(
TpM → TpM, Xk(p)∂k|p → Xk(p)Rlkij(p)∂l|p

)
= Rkkij(p)

for any p ∈ U because (Rlkij(p))kl is the matrix associated to the linear map above with

respect to the basis (∂1|p, ..., ∂n|p) of TpM whose diagonal elements are R1
1ij(p), ..., R

n
nij(p). To

summarise, in local coordinates we have:

Ric = Ricijdx
idxj = Rkkijdx

idxj . (3.41)

Note that the smoothness of Ric follows from the fact that its components in any local frame
are smooth, see lemma 1.61. Since we have gjkg

ik = δkj , we also have Ricij = gklRkijl. The
Ricci curvature tensor is also a symmetric tensor field, because the following holds:

Ricij = gklRkijl = gklRjlki = gklRljik = glkRljik = Ricji,

where we have used in the second-last equality the fact that a Riemannian metric is symmetric
and in the second and third equality we have used the symmetries of the Riemann curvature
tensor: Rijkl = −Rijlk = −Rjikl = Rklij . For a proof see [Lee97, p. 121].

Ultimately, a useful observation is that whenever the Ricci curvature tensor does not vanish,
we have that the Riemann curvature endomorphism does not vanish as well. Therefore it
follows immediately from theorem 3.24 that the Riemannian manifold is not flat. Note that
from lemma 3.22 we have in local coordinates the following expression:

Ricij = Rkkij = ∂kΓkij − ∂iΓkkj + ΓmijΓ
k
km − ΓmkjΓ

k
im. (3.42)
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From the above we also deduce that the Ricci curvature tensor is intrinsic too. Completely
written out we have that a 2-dimensional Riemannian manifold has the following expression
for the first component of the Ricci curvature tensor:

Ric11 = ∂1Γ1
11 + ∂2Γ2

11 − ∂1Γ1
11 − ∂1Γ2

21 + Γ1
11Γ1

11 + Γ1
11Γ2

21

+ Γ2
11Γ1

12 + Γ2
11Γ2

22 − Γ1
11Γ1

11 − Γ2
11Γ1

12 − Γ1
21Γ2

11 − Γ2
21Γ2

12

= ∂2Γ2
11 − ∂1Γ2

21 + Γ1
11Γ2

21 + Γ2
11Γ2

22 − Γ1
21Γ2

11 − Γ2
21Γ2

12.

Example 3.27. Recall example 2.13 and the fact that in geographical coordinates (φ, θ) we
have the following local coordinate representation of the induced metric on the 2-sphere:

ḡ|S2 = dφ2 + sin2 φdθ2.

Recall that this followed from remark 2.14. Earlier we also deduced with example 3.12 that
the Christoffel symbols of (S2, ḡ|S2) with respect to the geographical coordinates are

Γ1
22 = − sinφ cosφ and Γ2

12 = Γ2
21 =

cosφ

sinφ
(3.43)

and the others are identically zero. Via formula (3.42) we obtain the component functions of
the Ricci curvature tensor:

Ric11 = −∂Γ2
21

∂φ
− Γ2

21Γ2
12 =

1

sin2 φ
− cos2 φ

sin2 φ
= 1;

Ric22 =
∂Γ1

22

∂φ
− Γ1

22Γ2
21 = (− cos2 φ+ sin2 φ) + cos2 φ = sin2 φ;

and similarly we deduce that Ric12 = Ric21 = 0 holds. So in local coordinates we have the
coordinate expression Ric = dφ2 + sin2 φdθ2. Note that Ric = ḡ|S2 on S2\{N,S} holds and
because of the fact that S2 is highly symmetric, we conclude that the equality Ric = ḡ|S2 holds
globally.

Ultimately, the Ricci curvature tensor does not vanish and therefore the Riemann curvature
endomorphism does not vanish as well. Hence the 2-dimensional sphere is not flat according
to theorem 3.24, which proves proposition 3.18 as promised.

In general, for any n > 0 we will write the Ricci curvature tensor on (Sn, ḡ|Sn) as Ric[ḡ|Sn ]
and similar to the above one can show that Ric[ḡ|Sn ] = (n − 1)ḡ|Sn holds. We conclude that
all spheres of dimension bigger than 1 are not locally isometric to the Euclidean space. 4

Example 3.28. Let us now consider T = {(x, y, z) ∈ R3 : (
√
x2 + y2−R)2 +z2−r2 = 0}, the

torus of revolution with R > r > 0. Note that it is an embedded submanifold of R3, according
to theorem 1.24. Moreover, we have the local parametrisation

ρ : V → ρ(V ), (φ, θ) 7→
(
(R+ r cosφ) cos θ, (R+ r cosφ) sin θ, r sinφ

)
(3.44)

with for example V = (0, 2π) × (0, 2π). Let us also denote (φ, θ) as the local coordinates
associated to the coordinate map ρ−1.

Conform to many previous examples, we find with the help of equation (2.14) the following
local representation of the induced metric on the torus:

ḡ|T = r2dφ2 + (R+ r cosφ)2dθ2. (3.45)

We deduce with example 3.12 that the Christoffel symbols on (T, ḡ|T ) are

Γ1
22 =

1

r
sin θφ(R+ r cosφ) and Γ2

12 = Γ2
21 = − r sinφ

R+ r cosφ
(3.46)
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and any other Christoffel symbol vanishes identically. Via lemma 3.22 we conclude

Ricḡ|T =
r cosφ

R+ r cosφ
dφ2 +

1

r
cosφ(R+ r cosφ)dθ2 (3.47)

in local coordinates (φ, θ). Note that torus T is a typical example of a surface of revolution,
see chapter 5. Therefore one can verify the local expression of the Ricci curvature tensor via
equation (5.10). In conclusion, the torus is not flat either. 4

Figure 3.3: A visualisation of example 3.28

In the beginning of this section we said that the Riemann curvature endomorphism is skew-
symmetric in the first two arguments when [X,Y ] = 0. From this we conclude, which can
also be seen in lemma 3.22, that we have Rkkij = −Rkikj . Therefore we could have defined the
Ricci curvature tensor by taking the trace over the second argument, because it would have
given us the same tensor field up to only a sign. Taking the trace of the Riemann curvature
endomorphism over the third argument though results into losing all information.

Proposition 3.29. We have Rkijk = 0 for all indices 1 ≤ i, j ≤ n in any local frame.

Proof. According to lemma 3.22, we have

Rkijk = ∂iΓ
k
jk − ∂jΓkik + ΓmjkΓkim − ΓmikΓkjm = ∂iΓ

k
jk − ∂jΓkik,

because ΓmjkΓkim−ΓmikΓkjm = 0 holds due to the presence of the Einstein summation convention.
Similarly, we deduce with (3.20) the following:

2Γkik = gkl(∂igkl + ∂kgil − ∂lgik) = gkl∂igjl.

Consequently, substituting the two expression of the above into one another gives

2Rkijk = ∂ig
kl∂jgkl + gkl∂i∂jgkl − ∂jgkl∂igkl − gkl∂j∂igkl = ∂ig

kl∂jgkl − ∂jgkl∂igkl.

This is the result of the product rule and because all component functions gkl are smooth we
can exchange the order of differentiation. Our goal is now to show the following:

∂ig
kl∂jgkl − ∂jgkl∂igkl = 0.

This encourages us to look at the derivative of the inverse matrix G−1. Suppose A = (aij)ij is
an n × n matrix with aij = aij(z) functions dependent on the variable z. Then we can write
I = AA−1 and subsequently by differentiating both sides, we get 0 = ( ddzA)A−1 + A( ddzA

−1).
Consequently, we have

d

dz
A−1 = −A−1

(
d

dz
A

)
A−1.
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In components, the above reduces to(
d

dz
A−1

)
ij

= −
∑
m

∑
n

aim

(
d

dz
amn

)
anj = −

∑
m

∑
n

aimanj

(
d

dz
amn

)
.

Hence we conclude that ∂ig
kl = −gkmgnl∂igmn holds. Finally, we obtain

2Rkijk = −gkmgnl∂igmn∂jgkl + gkmgnl∂jgmn∂igkl =

−gkmgnl∂igmn∂jgkl + gnlgkm∂jglk∂ignm = 0,

where we have only changed the index names in the second equality and used the fact that the
Riemannian metric g is symmetric. In conclusion, all components vanish identically.

We end this section with two important propositions needed for the next two chapters.

Proposition 3.30. Let (M, g) and (M,λg) with λ > 0 be two Riemannian manifolds. By
denoting their unique Riemann curvature endomorphism, tensor and Ricci curvature tensor
with their metric, we have R[λg] = R[g], Rm[λg] = Rm[g] and Ric[λg] = Ric[g].

This is clearly an immediate consequence of proposition 3.13. Lastly, as we have claimed a
several times in the previous chapter: curvature is preserved under isometries.

Proposition 3.31. [Lee97, p. 119] The Riemann curvature tensor and Ricci curvature tensor

are isometry invariant. More precisely, let F : (M, g)→ (M̃, g̃) be an isometry. Then we have

F ∗R̃m = Rm and F ∗R̃ic = Ric. (3.48)

The proof basically follows from [Lee97, p. 70] and it is quite similar to the proof of the fact
that lengths of paths are isometry invariant, see proposition 2.22. Note that the above clarifies
the fact that deducing the curvature of a Riemannian submanifold of Euclidean space can
either be done on the surface itself, as we now have done a several times, or on the induced
Riemannian manifold. The latter will be very useful when considering the Ricci flow.

3.4 Gaussian Curvature

In the beginning of this chapter we said that we want an intrinsic way of measuring curvature.
We have shown for example that the Ricci curvature tensor measures curvature in some sense,
because when a Riemannian manifold is flat then Ric vanishes identically, and when Ric does
not vanish it implies that is not a flat. More importantly, it is an intrinsic way of measuring
curvature since we can write its component functions as

Ricij = ∂kΓkij − ∂iΓkkj + ΓmijΓ
k
km − ΓmkjΓ

k
im.

Thus Ric can be fully determined with only the knowledge of the given metric g. Alternatively,
one can also measure curvature in some sense by not doing measurements on the object itself
but by considering its ambient space. The upcoming text is quite succinct, thus for a more
complete approach of the Gaussian curvature we refer to [Tho79, p. 82] and [Lee97, p. 131].

Suppose we have a 2-dimensional Riemannian submanifold (S, ḡ|S) of Euclidean space (R3, ḡ).
One defines the Weingarten map at some point p ∈ S to be the map Lp that measures the
turning of a unit normal vector N as one moves in S through p in the direction of X ∈ TpS.
Note that the derivation N is nothing else then the abstract version of N̂ , see example 3.1.
Mathematically, the Weingarten map is just:

Lp : TpS → TpS, X → −∇XN. (3.49)
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The minus sign is a choice made for the upcoming definition. One defines the map

kp : TpS → R, X 7→ ḡ(Lp(X), X)

ḡ(X,X)
, (3.50)

where kp(X) is said to be the normal curvature of S at p in the direction of X. Note that if
we have k(X) > 0 then S bends towards the unit normal N in the direction of X, and similarly
if k(X) < 0 then S bends away from N in the direction of X. See also figure 3.4.

Ultimately, for any p ∈ S we denote κ1(p) and κ2(p) for the minimum and maximum value of
the normal curvature kp, which are known as the principal curvatures of S at p.

Definition 3.32. The Gaussian curvature of (S, ḡ|S) is the smooth map K : S → R defined
by the product of the principal curvatures. In other words: K(p) = κ1(p)κ2(p) for all p ∈ S.

Figure 3.4: A visualisation of the definitions above with κ1(p) = kp(X) and κ2(p) = kp(Y ).

For any p ∈ S we have either K(p) < 0, K(p) > 0 or K(p) = 0 and we say that S has negative,
positive or zero curvature at p respectively. Note that K is independent of the direction of the
unit normal vector N .

Gauss himself proved almost 200 years ago that the Gaussian curvature of S (with its induced
metric) is an intrinsic property of S. In other words, we have that K is independent of its
isometric embedding in the Euclidean space, even though one determines the value of K at
any point p via its ambient space.

Theorem 3.33. (Gauss’s Theorema Egregium, 1828) [Lee97, p. 143] Suppose (S, ḡ|S) is
a 2-dimensional Riemannian submanifold of (R3, ḡ). For all p ∈M we have

K(p) =
Rm(X,Y, Y,X)

ḡ|S(X,X)ḡ|S(Y, Y )− ḡ|S(X,Y )2
(3.51)

for any X,Y ∈ TpM that form a basis of TpM .

From formula (3.51) one deduces that the Gaussian curvature is an intrinsic measure of cur-
vature, which is moreover strongly related to the Riemann curvature endomorphism. The
theorem above also implies, as discussed in [Lee97, p. 144], that in local coordinates we have

Rmijkl = K(gilgjk − gikgjl), (3.52)

where we write ḡ|S = gijdx
idxj . Consequently we have

Ricij = gklRkijl = K(gklgklgij − gklgkjgil) = K(2gij − gij) = Kgij , (3.53)

since we have gjkg
ik = δij . In conclusion, the equality Ric = K ḡ|S holds. In other words, we

have that Ric is conformal to ḡ|S with the smooth function being the Gaussian curvature K.
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Recall examples 3.23, 3.27 and 3.28. We obtain (by looking at the Ricci curvature tensor) that

K[ḡ|C ] = 0, K[ḡ|S2 ] = 1 and K[ḡ|T ] =
cosφ

r(R+ r cosφ)
(3.54)

are the Gaussian curvature’s of the cone, 2-sphere and torus respectively.

Figure 3.5: A visualisation of three 2-dimensional Riemannian submanifolds of Euclidean space with
negative, zero and positive Gaussian curvature everywhere.

For a 2-dimensional submanifold of Euclidean space we have that the intrinsic and extrinsic
way of measuring curvature coincide. Hence, the observation above again motivates us to use
the Ricci curvature tensor, since we are left with enough significant information concerning the
“curvature” of a surface. Also note that we now define the Gaussian curvature for an arbitrary
2-dimensional Riemannian manifold by formula (3.51), see section 4.5.

3.5 Curvature and Parallel Transport

Another important concept in Riemannian geometry is parallel transport. In this thesis we
will not discuss parallel transport in great depth but we will mention it briefly for a complete
overview of the matter. We refer to [Lee97, p. 59] for the complete abstract approach and
[Tho79, p. 46] for a more complete intuitive approach.

Let (M, g) be a Riemannian manifold, which we will interpret as a Riemannian submanifold
of Euclidean space, and γ : I → M a smooth path. Moreover recall section 2.3. A smooth
vector field V along γ is said to be Levi-Civita parallel if V is a constant vector field along
the path γ as seen from M. Visually, when a human points his arm into a direction, he fixes
his arm and keeps on pointing into that direction while moving over the surface along γ.

Mathematically, see [Lee97, p. 57] or [Tho79, p. 45], one needs to define the covariant
derivative along a path which needs to be identically zero for all t (in order to experience
no change). Note that we will consider the Levi-Civita connection on M and hence the parallel
transport depends on the (induced) metric g.

Given a smooth path γ : I → M , t0 ∈ I and a tangent vector V0 ∈ Tγ(t0)M , there exists a
unique parallel vector field V along γ such that V (t0) = V0. Thus we can speak of parallel
transporting a vector X ∈ Tγ(t0)S along the path γ. For a proof, see either [Lee97, p. 60] or
[Tho79, p. 47].
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A piecewise smooth path γ : [a, b]→M is a continuous map such that the restrictions γ|(ti,ti+1)

are smooth for each i ∈ {0, 1, ..., k} with a = t0 < t1 < ... < tk+1 = b. The parallel transport
of a tangent vector X ∈ Tγ(a)S along a (piecewise) smooth path γ is obtained by transporting
the vector X along γ to γ(t1) to get the tangent vector X1 ∈ Tγ(t1)S, then transporting X1

along γ to γ(t2) to get X2 ∈ Tγ(t1)S, and so on.

Figure 3.6: A visualisation of parallel transporting a tangent vector X ∈ Tγ(a)M along a smooth path
γ : [a, b]→M with M being a 2-dimensional plane H (left) and sphere S2 (right).

As the figure above suggests, when γ : I →M is a (piecewise) smooth path and t0, t1 ∈ I, we
denote the parallel transport operator from t0 towards t1 as follows:

Pt0t1 : Tγ(t0)M → Tγ(t1)M. (3.55)

Importantly note that Pt0t1 is a linear isomorphism, see [Lee97, p. 62] or [Tho79, p. 51].

Now consider figure 3.6. Note that Pab(X) = X holds in the case of M being the plane H,
where we use the real identification given in section 1.4. This is because Levi-Civita parallel
corresponds with Euclidean parallel on a plane. Moreover, when γ is a closed smooth path on
the plane H, we obtain that the parallel transport operator Pab is the identity map.

Proposition 3.34. [Lee97, p. 129] Parallel transport around any sufficiently small closed
smooth path is the identity whenever (M, g) is flat. More precisely, for any p ∈M there exists
an open neighbourhood U ⊂ M of p such that if γ : [a, b] → U is a piecewise smooth path
starting and ending at p, then we have that Pab : TpM → TpM is the identity map.

On the other hand, we deduce from figure 3.6 that we cannot obtain the identity map for a
sufficiently small closed smooth path with some kind of triangular shape on the 2-sphere. Due
to this observation and the proposition above, we conclude that parallel transport depends
on the “curvature” of the manifold. The following theorem is a much stronger statement and
gives a geometric interpretation of the Riemann curvature endomorphism.

Theorem 3.35. [Ros03, p. 106] Consider a 2-dimensional Riemannian submanifold (S, ḡ|S) of
Euclidean space and suppose (U,ϕ) is a chart containing the point p = ϕ−1(x, y). Additionally
write ϕ = (x1, x2) and suppose X,Y, Z ∈ TpM are three tangent vectors such that X = ∂

∂x1

∣∣
p

and Y = ∂
∂x2

∣∣
p

holds. Now define a linear isomorphism

P = P(x,y;∆x,∆y) : TpS → TpS, (3.56)

with ∆x and ∆y sufficiently small, by P (Z) = “the parallel transport of Z along the boundary
of the rectangle Rec = {ϕ−1(a, b) : x ≤ a ≤ x+ ∆x, y ≤ b ≤ y+ ∆y} via the counter-clockwise
way”. Then the following holds:

R(X,Y, Z)
∣∣
p

= lim
∆x,∆y→0

1

∆x∆y

(
Z − P (Z)

)
. (3.57)
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The theorem above is well-formulated due to proposition 3.21. For a more abstract formulation
of theorem 3.35, which is in fact a generalisation, see [Lee97, p. 174].

Figure 3.7: A visualisation of theorem 3.35.

In conclusion, the Riemann curvature endomorphism does not only determine whether a Rie-
mannian manifold is flat or not, it also tells us how much it deviates from being flat. This
again illustrates that both R and Ric are justifiable ways of measuring “curvature”.
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Chapter 4

Initiation of the Ricci Flow

In the early 1980’s, the Ricci flow was first introduced by Hamilton in his paper: “Three-
manifold with positive Ricci curvature”, see [Ham82]. The Ricci flow equation is inspired by
the classical heat equation from physics. Since heat tends to spread through a solid body
until it reaches an equilibrium state of temperature, the Ricci flow was hoped to produce
an “equilibrium geometry” for a smooth manifold. Hamilton’s idea was to define a kind of
non-linear diffusion equation which would smooth out irregularities in a given metric.

The Ricci flow is a geometric evolution of Riemannian metrics where one starts with a Rie-
mannian manifold (M, g0) and evolves its metric by Hamilton’s Ricci flow equation

∂

∂t
g(t) = −2Ric[g(t)]. (4.1)

This equation was proposed as a strategy for proving the Thurston’s Geometrisation conjecture,
which concerns the topological classification of 3-dimensional smooth manifolds. A corollary of
the Geometrisation conjecture is the well-known Poincaré conjecture. For about 20 years the
Ricci flow was quite unknown, until Perelman sketched in 2003 a proof of the Geometrisation
conjecture using (an adaptation of) the Ricci flow, see also section 4.5.

Throughout this chapter we will first rigorously define the meaning of ∂
∂tg(t) in equation (4.1).

Subsequently, we consider three types of Ricci flow solutions and examine possible singularities.
In the last section, short- and long-term existence and uniqueness of the Ricci flow will be
discussed, some intuition behind the link between the classification of manifolds and the Ricci
flow will be given, and we will briefly look at the Ricci flow with surgery.

In the last chapter, we will consider a more visual approach of the Ricci flow.

4.1 Time Derivative of Tensor Fields

Most definitions below are are based on the notions in [AH11, p. 69].

Let {F (t)}t∈I be a one-parameter family of smooth
(
k
l

)
tensor fields on a smooth manifold M

defined on a not necessarily open time interval I ⊂ R. The family {F (t)}t∈I is said to be a
sufficiently smooth family of

(
k
l

)
tensor fields if for all points p ∈M we have that

F
∣∣
p
(X1, ..., Xk, ω1, ..., ωl) : I → R, t 7→ F (t)

∣∣
p
(X1, ..., Xk, ω1, ..., ωl) (4.2)

is a continuously differentiable function for any tangent vectors X1, ..., Xk ∈ TpM and cotan-
gent vectors ω1, ..., ωl ∈ T ∗pM . In other words, we require F

∣∣
p
(X1, ..., Xk, ω1, ..., ωl) ∈ C1(I).
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Now let ξ : I × U → R be any function with U ⊂ M such that t → ξ(t, p) is continuously
differentiable for every p ∈ U . The time derivative of ξ is defined by the following usual
function:

∂

∂t
ξ : I ×M → R, (s, p) 7→ ∂ξ(t, p)

∂t

∣∣∣
t=s

. (4.3)

We will also consider for any t ∈ I the functions ∂
∂tξ(t) : M → R, p→

(
∂
∂tξ
)

(t, p) which is the
time derivative evaluated at time t. Furthermore, note that when {F (t)}t∈I is a sufficiently
smooth family of

(
k
l

)
tensor fields, we can consider the time derivative of the function

F (X1, ..., Xk, ω1, ..., ωl) : I ×M → R, (t, p) 7→ F (t)
∣∣
p
(X1|p, ..., Xk|p, ω1|p, ..., ωl|p) (4.4)

with X1, ..., Xk ∈ TM and ω1, ..., ωk ∈ T 1
0 M arbitrary.

Definition 4.1. The time derivative of a sufficiently smooth family {F (t)}t∈I of
(
k
l

)
tensor

fields is a one-parameter family, denoted by { ∂∂tF (t)}t∈I , of tensor fields of the same type such
that for all time t ∈ I we have(

∂

∂t
F (t)

)
(X1, ..., Xk, ω1, ..., ωl) =

∂

∂t
F (X1, ..., Xk, ω1, ..., ωl)(t) (4.5)

for any smooth vector fields X1, ..., Xk ∈ TM and covector fields ω1, ..., ωk ∈ T 1
0 M.

Note that for every t ∈ I we have that ∂
∂tF (t) is a multilinear map over C∞(M). Therefore,

according to the Tensor Characterisation Lemma it indeed defines a family of
(
k
l

)
tensor fields.

Example 4.2. Let F ∈ T kl M be any smooth tensor field. Consider {G(t)}t∈I to be a one-
parameter family with G(t) = σ(t)F for all t ∈ I. Suppose σ ∈ C1(I), then we have a sufficiently
smooth family of tensor fields, and moreover the equality ∂

∂tG(t) = σ′(t)F holds. 4

In any local coordinates, we have F (t) = F i1...ikj1...jl
(t) dxj1 ⊗ ...⊗ dxjl ⊗ ∂i1 ⊗ ...⊗ ∂ik and hence

∂

∂t
F (t) =

∂

∂t
F i1...ikj1...jl

(t) dxj1 ⊗ ...⊗ dxjl ⊗ ∂i1 ⊗ ...⊗ ∂ik . (4.6)

Now we have enough tools to define the Ricci flow properly. Note that when the pair (M, g) is
a Riemannian manifold, we denote its Ricci curvature tensor with Ric[g].

Definition 4.3. A Ricci flow is a sufficiently smooth family of metrics {g(t)}t∈I on a smooth
manifold M defined on a time interval I such that it satisfies the initial value problem

∂

∂t
g(t) = −2Ric[g(t)]

g(0) = g0.
(4.7)

The metric g0 is said to be the initial metric on M and (M, g0) the initial state.

Thus a Ricci flow is some geometric evolution where one starts with a smooth Riemannian
manifold (M, g0) and where its geometry gets altered by changing the metric via the Hamilton’s
Ricci flow equation. From now one, we will simply say that g(t) is a Ricci flow solution.

In any local coordinates, we have g(t) = gij(t) dx
i ⊗ dxj and we can write

∂

∂t
g =

∂

∂t
gij dx

i ⊗ dxj . (4.8)

Recall that a Riemannian metric and the Ricci curvature tensor are symmetric, and that Ric is
an operator which involves second order derivatives of the metric, see formula (3.42). Therefore
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the initial value problem (4.7) induces in any local coordinates a system of 1
2n(n + 1) second

order non-linear partial differential equations:
∂

∂t
gij = −2Ricij [g]

gij(0) = (g0)ij .
(4.9)

Whenever the local coordinates are in fact global, we have that the initial value problem is
equivalent to system (4.9). Otherwise, multiple systems are required to obtain a global solution.
Note that we write ∂

∂tg(t) and ∂
∂tg interchangeably. The reason for writing g(t) instead of g in

definition 4.3 is to emphasize the fact that the operator on the right hand side changes over
time too.

A Ricci flow solution may have very different behaviours. In the study of differential equations,
one usually asks the questions: what happens if we let t → ±∞; on what time interval does
the solution exist; is the given solution unique; and does there exist a solution at all? We will
discuss these questions in the following sections.

4.2 Ancient Solutions

A solution g(t) of Hamilton’s Ricci flow equation is said to be an ancient solution if it exists
on a maximal time interval −∞ < t < T for a specific T <∞. A well-known ancient solution
is the Ricci flow solution of an n-dimensional sphere.

Example 4.4. Recall example 2.13. Consider the n-sphere SnR with radius R > 0 and its in-
duced metric g|SnR , and let (Sn, g0) be the Riemannian manifold with g0 = R2ḡ|Sn . Importantly
note that the Riemannian manifolds (SnR, ḡ|SnR) and (Sn, g0) are isometric, since

F : Sn → SnR, (x1, ..., xn)→ (Rx1, ..., Rxn)

defines an isometry between them, which we will show at the end of this example. Therefore
we can interpret (Sn, g0) as the n-sphere with radius R embedded in Euclidean space.

Now we are interested in a Ricci flow solution g(t) with (Sn, g0) the initial state. Since the
sphere is highly symmetric, we assume that the solution is of the following form:

g(t) = r(t)2g|Sn (4.10)

with r : I → R a scalar function such that r(0) = R holds. Note that (4.10) satisfies initial
condition g(0) = g0. As we have discussed in example 4.2, we have

∂

∂t
g(t) = 2r(t)r′(t)g|Sn , (4.11)

since the only term that evolves in time is the scalar function r. In example 3.27 we deduced
that (Sn, ḡ|Sn) has Ricci curvature Ric[ḡ|Sn ] = (n− 1)ḡ|Sn . When (4.10) is indeed a Ricci flow
solution, we obtain via proposition 3.30 that (Sn, g(t)) has the same Ricci curvature tensor for
all time t. In short, we have

Ric[g(t)] = Ric[ḡ|Sn ] = (n− 1)g|Sn . (4.12)

Substituting the results (4.11) and (4.12) into Hamilton’s Ricci flow equation gives us

2r(t)r′(t)g|Sn = −2(n− 1)g|Sn ,

which reduces to the following ordinary differential equation:

r(t)r′(t) = −(n− 1). (4.13)
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Solving the ordinary differential equation above, that satisfies the initial condition r(0) = R
as well, gives us the following solution:

r(t) =
√
R2 − 2(n− 1)t. (4.14)

Thus we obtain that
g(t) = (R2 − 2(n− 1)t)g|Sn . (4.15)

is a Ricci flow solution. By uniqueness, see section 4.5, we conclude that this is the solution to
Hamilton’s Ricci flow equation with initial state (Sn, g0). Note that g(t) is an ancient solution
that implodes in finite time

T =
R2

2(n− 1)

and blows up as t → −∞. Similar to what we discussed in the beginning of this example, we
can interpret (Sn, g(t)) as the n-dimensional sphere with radius r(t) embedded in Euclidean
space. Hence the sphere shrinks with constant speed under the Ricci flow.

As promised, we will show that the map F is indeed an isometry and we reduce to the n = 2
case. Write (φ, θ) and (φR, θR) for the geographical coordinates on S2 and S2

R respectively.
Then we have the local expressions

ḡ|S2
R

= R2dφ2
R +R2 sin2 φRdθ

2
R and g0 = R2dφ2 +R2 sin2 φdθ2.

With the help of proposition 1.64 and lemma 1.65, we locally get

F ∗ḡ|SnR = R2(dF 1)2 +R2 sin2 φ(dF 2)2 = R2dφ2 +R2 sin2 φdθ2 = g0,

because dF 1 = ∂
∂φ

(
φR ◦ F ◦ ρ)dφ + ∂

∂θ

(
φR ◦ F ◦ ρ)dθ = 1 · dφ + 0 · dθ = dφ and dF 2 = dθ

holds where ρ denotes the local parametrisation associated to (φR, θR). Since S2 is highly
symmetric, we obtain F ∗ḡ|S2 = g0 globally. 4

Due to the example above, we note that the Ricci flow is relatively easily deduced for generalised
Riemannian manifolds with a so-called Einstein metric.

Definition 4.5. A metric g on a smooth manifold M is said to be an Einstein metric if we
have Ric[g] = λg for some λ ∈ R, and (M, g) is then called an Einstein manifold.

Note that the n-dimensional sphere is an Einstein manifold with λ = n − 1. The Euclidean
space has λ = 0 and in general a Riemannian manifold is said to be Ricci-flat if λ = 0. Also
note that the Ricci flow is a stationary flow if we have a Ricci-flat manifold.

As we recall the Lobachevsky plane and the Poincaré disk in examples 2.6 and 2.15, we note
that it has constant Gaussian curvature K = λ = −1. We can for example obtain, with the
help of example 3.12, the Christoffel symbols on the 2-dimensional version of the Poincaré
model associated to the standard coordinates:

Γ1
11 = −Γ1

22 = Γ2
12 = Γ2

21 =
2x

1− x2 − y2
and Γ1

12 = Γ1
21 = −Γ2

11 = Γ2
22 =

2y

1− x2 − y2
.

Subsequently, one deduces with formula (3.42) that the following holds:

Ric11 =
∂Γ1

22

∂y
− Γ2

21

∂x
= − 4

(1− x2 − y2)2
= −g11, (4.16)

since the other terms cancel one another and similarly we deduce that Ric12 = Ric21 = 0 and
Ric22 = −g22 holds. Therefore we have indeed λ = −1 for both Riemannian manifolds, since
they are isometric and because of proposition 3.31 or theorem 3.33.
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Example 4.6. (Einstein solutions) Suppose that the initial state (M, g0) is an Einstein
manifold, thus we have Ric[g0] = λg0 for some λ ∈ R. Completely conform to example 4.4,
we reduce the Ricci flow equation to the ordinary differential equation r′(t)r(t) = −λ and
conclude that

g(t) = (1− 2λt)g0 (4.17)

is a Ricci flow solution. In conclusion, when λ < 0, λ = 0 or λ > 0 holds we have that the
initial metric g0 expands, is steady or shrinks respectively under the Ricci flow. 4

Recall that we examined in example 4.4 an isometry to interpret the Ricci flow visually. Hence
a shrinking or expanding metric can be interpreted as a shrinking or expanding manifold via
the same approach.

Remark 4.7. When we consider a Riemannian submanifold (S, ḡ|S) of Euclidean space, we
can either look at the Riemannian manifold locally or at its induced Riemannian manifold
with the differential equations given by (4.9). Proposition 3.31 tells us that we will get the
same Ricci flow (under local isometry). In the last chapter we will work with the induced
Riemannian manifold again to enable a visualisation, as in example 4.4, of the Ricci flow.

4.3 Immortal Solutions

A solution g(t) of Hamilton’s Ricci flow equation is said to be an immortal solution if it
exists on a maximal time interval T < t <∞ for a specific T > −∞. Inspired by the analysis
in [CK04, p. 34], we consider the following simplified example.

Example 4.8. Suppose g(t) is a Ricci flow solution on R2 defined for all t > T for some fixed
time −∞ < T < 0. In polar coordinates, we assume g(t) to have the local representation

g(t) = (t− T )(f(r)2dr2 + r2dθ2), (4.18)

with f : R2 → R>0 some positive smooth function yet to be determined and f(r) the polar
coordinate representation of f independent of θ. Again with example 3.12, we obtain

Γ1
11 =

f ′(r)

f(r)
, Γ1

22 = − r

f(r)2
and Γ2

21 = Γ2
12 =

1

r
(4.19)

for all t and the remaining Christoffel symbols on (R2, g(t)) vanish identically. Furthermore,
with formula (3.42) we deduce that in polar coordinates we have

Ric11[g(t)] =
f ′(r)

rf(r)
and Ric22[g(t)] =

rf ′(r)

f(r)3
(4.20)

and the other two components are zero. Moreover, we clearly have

∂

∂t
g(t) = f(r)2dr2 + r2dθ2. (4.21)

Substituting equations (4.20) and (4.21) into the local version of Hamilton’s Ricci flow equation,
see also (4.9), results into the following equations that need to hold:

f(r)2 = −2f ′(r)

rf(r)
and r2 = −2rf ′(r)

f(r)3
. (4.22)

Surprisingly, the two equations above are equivalent statements. In order to determine f , we
therefore need to solve the following ordinary differential equation:

2f ′ + rf3 = 0. (4.23)
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Since f must be positive, we obtain the following solutions of the above:

f(r) =

√
2

c+ r2
(4.24)

for any c > 0. Because the function f is required to be smooth on R2 we need to extend it
smoothly, hence we conclude that

f : R2 → R>0, (x, y) 7→
√

2

c+ x2 + y2
(4.25)

for any c > 0 are the possible functions in order to let g(t) be a Ricci flow solution. For more
information on this Ricci flow, we refer to [CK04, p. 34]. 4

Via this procedure, we see that we are able to find infinitely many explicit Ricci flow solutions.
Also note that by replacing (t−T ) with (t−T )2, we would get two equations like in (4.22) that
are unfortunately not equivalent statements, hence no such function f exists. This procedure
can therefore be used to check whether solutions of some sort exist.

4.4 Eternal Solutions

A solution g(t) of Hamilton’s Ricci flow equation is said to be an eternal solution if it exists
for all time −∞ < t < ∞. These are the solutions that do note attain a singularity at any
time T ∈ R. Before we look at an explicit example of an eternal solution, we first consider a
generalisation of the Einstein solutions.

Definition 4.9. A Ricci flow solution g(t) on M is called a Ricci soliton if there exists a
one-parameter family of diffeomorphisms {Ft : M →M}t∈I with F0 the identity map such that

g(t) = σ(t)F ∗t g(0) (4.26)

holds for any t ∈ I and σ : I → R>0 a continuously differentiable scalar function with σ(0) = 1.
A Ricci soliton g(t) is said to be shrinking, steady or expanding at time t0 ∈ I if we have
respectively 0 < σ(t0) < 1, σ(t0) = 1 or σ(t0) > 1.

As we recall the Einstein solutions in example 4.6, we note that they are Ricci solitons with
the scalar function σ(t) = 1− 2λt and with ϕt = ϕ0 for all t ∈ I.

Note that the ancient and immortal solutions we have discussed in the previous sections are
all Ricci solitons with a trivial one-parameter family of diffeomorphisms, that is ϕt = ϕ0 for
any t ∈ I. The upcoming example is a very well-known Ricci flow solution with a non-trivial
family of diffeomorphisms.

Example 4.10. (Cigar soliton) Denote (x, y) for the standard coordinates on R2. Let us
now consider the one-parameter family of metrics {g(t)}t∈R defined on R2 by

g(t) =
1

e4t + x2 + y2
(dx2 + dy2). (4.27)

We note that this is a Ricci flow solution for the initial state (R2, g0) with g(0) = g0. Showing
this is analogous to the previous examples. We compute, via example 3.12, that the Christoffel
symbols on (R2, g(t)) associated to the standard coordinates are

Γ1
11 = −Γ1

22 = Γ2
12 = Γ2

21 = − x

e4t + x2 + y2
;

Γ1
12 = Γ1

21 = −Γ2
11 = Γ2

22 = − y

e4t + x2 + y2
.

(4.28)
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With formula (3.42) we deduce

Ric11[g(t)] = ∂2Γ2
11 − ∂1Γ2

21 =
e4t + x2 − y2

(1 + x2 + y2)2
+

e4t − x2 + y2

(1 + x2 + y2)2
=

2e4t

(e4t + x2 + y2)2
,

since many terms cancel each other out. Similarly we find Ric12[g(t)] = Ric21[g(t)] = 0 and
ultimately Ric22[g(t)] = Ric11[g(t)]. In conclusion we have

Ric[g(t)] =
2e4t

(e4t + x2 + y2)2
(dx2 + dy2). (4.29)

According to (4.8), by differentiating metric (4.27) with respect to time we find

∂

∂t
g(t) =

−4e4t

(e4t + x2 + y2)2
(dx2 + dy2) (4.30)

as desired because the above now shows that g(t) indeed satisfies the Ricci flow equation. This
solution is called the Cigar soliton because it is a steady Ricci soliton:

Ft : R2 −→ R2, (x, y) 7→ (e−2tx, e−2ty) (4.31)

defines a one-parameter family of diffeomorphisms that satisfies g(t) = F ∗t g0. We show this
with the help of proposition 1.64 and lemma 1.65. We have

F ∗t g0 =
1

1 + e−4tx2 + e−4ty2

(
(dF 1)2 + (dF 2)2

)
=

e−4t

1 + e−4tx2 + e−4ty2
(dx2 + dy2) = g(t).

Note that the above is just a change of coordinates with x̃ = e−2tx and ỹ = e−2ty. For more
information on this Ricci flow, we refer to [CK04, p. 24] and [CLN06, p. 159]. 4

Lastly, note that for all the examples of this chapter we found Ricci flow solutions of the form

g(t) = f(t)g0 (4.32)

with {f(t)}t∈I a family of smooth functions, thus f(t) ∈ C∞(M) for all t ∈ I. Equivalently,
for all time t ∈ I we have that g(t) and g0 are conformal. In examples 4.4 and 4.8 we have for
any t ∈ I that f(t) is some positive constant and hence smooth. Moreover, note that the cigar
soliton can be written as the above with

f(t) =
e4t + x2 + y2

1 + x2 + y2
.

Clearly we have 0 < f(t) ∈ C∞(M) for all t ∈ R, in other words: the cigar solution g(t) is
conformal to g(0) for any time t ∈ R. The following proposition shows that this is no coincidence
for 2-dimensional Riemannian manifolds.

Proposition 4.11. Let (M, g0) be a 2-dimensional Riemannian manifold. Suppose g(t) is a
Ricci flow solution with g0 as initial metric. Then g(t) is conformal to g0 for all t ∈ I.

Proof. Recall section 3.4 where we have deduced that Ric[g] = Kg holds with K the Gaussian
curvature as defined in theorem 3.33. Note that K is a smooth function on M . The Ricci flow
initial value problem for a 2-dimensional Riemannian manifold is hence equivalent to

∂

∂t
g(t) = −2K[g(t)]g(t)

g(0) = g0.
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Without loss of generality, we assume I = [0, T ) for some T > 0. Note that a solution of the
above needs to be a sufficiently smooth family of metrics, hence t→ K[g(t)](p) is continuously
differentiable for all p ∈M . A solution must therefore be of the following implicit form:

g(t) = g0 exp

(
−2

ˆ t

0

K[g(s)]ds

)
= f(t)g0.

Since K[g(t)] ∈ C∞(M) holds for all t ∈ I, we have 0 < f(t) ∈ C∞(M) for all t ∈ I because the
exponential map is positive. The metrics g(t) and g0 on M are thus conformal for all t ∈ I.

We note that the proposition above is very useful for chapter 5. Moreover, it gives rise to
the idea that we can classify Riemannian 2-manifold with the conformal property, as we will
discuss in the next section. The fact above is unfortunately not true for higher dimensions.

4.5 Main Results of the Ricci Flow

In this section we will succinctly discuss some highlights of the Ricci flow equation. First, an
essential step in the study of differential equations is to investigate whether the given initial
problem is well-posed and thus has a unique solution. Note that a manifold is said to be closed
if it is compact in the topological sense (and has moreover no boundary; we excluded manifolds
with boundary, see [Lee13, p. 23] for the definition, throughout this entire thesis).

Theorem 4.12. (Short-Time Existence and Uniqueness) [CK04, p. 67] Any Riemannian
metric g0 on a closed smooth n-manifold M admits a unique Ricci flow solution g(t) on some
positive time interval [0, ε) such that g(0) = g0.

In 1982 Hamilton originally proved the short-time existence and uniqueness of the Ricci flow,
which relied on difficult machinery of the Nash-Moser inverse function theorem, see [Ham82].
Shortly thereafter, in 1983, DeTurck suggested a simplified proof for the short-time existence
and uniqueness of the Ricci flow by considering an “equivalent” non-linear system. This is
known as DeTurck’s trick, which will be discussed in detail in section 5.3. A more brief
overview of this proof can also be found in [CLN06, p. 113].

In the two dimensional case we know that the Ricci curvature tensor can be written in terms
of the Gaussian curvature K as Ric = Kg. Examining the Ricci flow equation (4.1) directly,
we observe that regions tend to expand when K < 0 holds, and similarly regions tend to shrink
when we have K > 0.

Figure 4.1: A visualisation of the observation discussed above. Here R > r > 0 holds.

Now one might guess that the Ricci flow tries to make a 2-sphere even more round. This is
indeed the case because in example 4.4 we have deduced that a 2-sphere shrinks evenly to a
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point under the Ricci flow.

Due to the existence of ancient solutions, we may obtain at some finite time T a singularity
and hence we are confronted with the problem that a given manifold may shrink to a point. It
is indeed a problem since then we will lose all information concerning the metric. This problem
can be solved by considering an adaptation of the Ricci flow. Let us consider the normalised
Ricci flow initial value problem:

∂

∂t
g(t) = −2Ric[g(t)] + V ol[g(t)]

g(0) = g0.
(4.33)

The operator V ol is added to the Ricci flow equation in order to preserve the volume of the
manifold during the flow. See [CK04, p. 105] or [She06, p. 65] for more detail. Note that
integration on smooth manifolds has not been examined throughout this thesis, hence we refer
to [Lee13, p. 388] for the Riemannian volume form and [Lee13, p. 400] for a complete course
on integration on smooth manifolds.

By preserving the volume of the manifold during the flow, the problem of the manifold shrinking
to a point in finite time is eliminated. Consequently, the normalised Ricci solution g(t) cannot
obtain any singularities, which can suggest long-time existence and uniqueness.

Theorem 4.13. (Long-Time Existence and Uniqueness) [CK04, p. 105] Let (M, g0) be a
closed 2-dimensional Riemannian manifold. There exists a unique solution g(t) on [0,∞) of the
normalised Ricci flow equation such that g(0) = g0. Furthermore, the solution g(t) converges
to a metric g∞ that is conformal to g0 with (M, g∞) having constant Gaussian curvature.

In other words, solution g(t) convergences conformally to an Einstein metric g∞. Note that
the above results into a proof of the Uniformisation Theorem: every closed Riemannian
manifold (M, g0) admits a metric g∞ conformal to g0 such that (M, g∞) has constant Gaussian
curvature. We also must note that the Uniformisation Theorem is not given in its full generality
and was originally not proven with the Ricci flow.

The proof given in [CK04] does not prove the Uniformisation Theorem since this classical fact
is used within the proof of theorem 4.13. According to [CLT06] however, one can make small
adjustments in [CK04] that removes any reliance on the fact and hence the Ricci flow itself
proves the Uniformisation Theorem.

Theorem 4.13 now implies that we can categorise all closed Riemannian 2-manifolds into con-
formal classes. Suppose g0 is conformal to g1, then there exists a positive function f ∈ C∞(M)
such that g0 = fg1 holds. We also have that g2 = λg1 with λ > 0 is conformal to g0.
Now recall proposition 3.30, we know that Ric[g1] = Ric[g2] holds and therefore we have the
following equality: K[g1] = λ−1K[g2]. Since we can simply rescale, we conclude thanks to
the Uniformisation Theorem that every closed 2-dimensional Riemannian manifold admits a
conformal metric with constant Gaussian curvature K = −1, 0 or 1.

Due to the observation above, any closed Riemannian 2-manifold can be classified by precisely
one out of the following three spaces:

• the Lobachevsky plane (U2, g) / Poincaré disk (B2, h) (recall examples 2.6 and 2.15);

• the Euclidean plane (R2, ḡ);

• and the 2-sphere (S2, ḡ|S2),

because these spaces have constant Gaussian curvature K = −1, 0 and 1 respectively, which is
stated in (3.54) and (4.16). The precise formulations of geometric structures and the manifold
classification above require algebraic topology which is far beyond the scope of this thesis. We
like to refer to [Zha14, p. 10, 14] for a detailed overview of the subject matter.
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The three dimensional equivalent of the Uniformisation Theorem is Thurston’s Geometri-
sation Conjecture, a generalisation of the well-known Poincaré conjecture. It shows that
any closed Riemannian 3-manifold can be classified by precisely one out of eight different
spaces. See [Zha14, p. 16] for more information.

Perelman sketched a proof of the full Geometrisation conjecture in 2003 using (an adjustment
of) the Ricci flow. In the two dimensional case we know that the Ricci flow equation, once it
is suitably renormalised, let arbitrary metrics flow to Einstein metrics. Unfortunately, renor-
malisation alone does not work in the three dimensional case since singularities as given in
figure 4.2 can occur. He deals with these singularities by implementing the Ricci flow with
surgery: very roughly, the manifold under the Ricci flow gets cut along the singularities, the
manifold then splits into several pieces which are subsequently made smooth again, and then
the Ricci flow continues on each of these pieces.

Figure 4.2: A visualisation of the Ricci flow with surgery.

A singularity like in the figure above is commonly known as a neck pinch. For a more detailed
introduction on surgeries, we refer to [Top06, p. 12].
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Chapter 5

Visualisation of the Ricci Flow

The first two sections of this chapter are fully inspired by the work of Rubinstein and Sinclair
titled: “Visualizing Ricci Flow of Manifolds of Revolution”, see [RS08]. Recall the purpose of
this thesis is to establish as much intuition concerning the Ricci flow as possible, which can be
achieved best by visualising the geometric evolution equation.

In the article above important results are given without any calculations, therefore we have
worked out some of these results in section 5.1 thoroughly. In the next section we demonstrate
some visualisations of the Ricci flow thanks to the publicly available code from [RS08], which
had to be adjusted in order to work on a Windows computer. In the last section we explain
DeTurck’s trick in detail and use this for our analysis on the short-time existence and uniqueness
of the Ricci flow for a surface of revolution. We tried to approach this problem without using
parabolic PDE theory on manifolds and this approach seems to have succeeded. There are
only a few parts left which need to be verified in more detail.

Lastly we work with the following mindset: start with a Riemannian submanifold of Euclidean
space, consider the Ricci flow on its induced Riemannian manifold(s) and additionally embed
for all time t the manifold back into Euclidean space, see also remark 4.7. We are going to ex-
amine 2-dimensional manifolds of revolution. That these surfaces tend to remain isometrically
embedded in R3 is discussed and also proven in [RS08, p. 2], and this is what makes direct
visualisation possible. As result we are just changing the metric of the initial state but obtain
a visual interpretation of the Ricci flow where the manifold itself evolves.

5.1 Surface of Revolution

Let us consider a smooth injective curve γ(φ) = (a(φ), b(φ)) in the xz-plane of R3 defined on
some (not necessarily open) interval I with the following two properties: we require γ̇(φ) 6= 0
for all φ ∈ I, and a > 0 on the interior and a = 0 at the possible end points of I.

Subsequently, let S ⊂ R3 be the surface of revolution obtained by revolving the image of
the curve γ about the z-axis. Hence a local parametrisation of S would for example be

ρ(φ, θ) = (a(φ) cos θ, a(φ) sin θ, b(φ)), (5.1)

with a domain V = (φ1, φ2) × (θ1, θ2) where (φ1, φ2) ⊂ I and 0 < θ2 − θ1 ≤ 2π. Recall (φ, θ)
may be interpreted as standard coordinates on V or as local coordinates on S, see remark 2.14.

Furthermore, note that we are deliberately going to use the same notation for variables and
components as in [RS08]. The only difference is that we write φ instead of ρ in order to be
consistent with previous chapters.
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Obviously a surface of revolution naturally extends to a smooth manifold. Examples of surfaces
of revolutions are: the cone, see example 3.23; the sphere, see example 2.13; and the torus, see
example 3.28. Recall that a manifold is said to be closed if it is compact in the topological
sense. The cone is not closed and would be obtained by a generating curve that has an open
interval I. On the other hand, the sphere and torus are closed and would be obtained by a
generating curve that has a closed interval I.

Now we will equip the surface of revolution S with its induced metric ḡ|S , which in local
coordinates (φ, θ) has the following expression according to formula (2.14):

ρ∗ḡ = d(ρ1)2 + d(ρ2)2 + d(ρ3)2

=

[(
da

dφ

)2

cos2 θ +

(
da

dφ

)2

sin2 θ +

(
db

dφ

)2
]
dφ2 +

(
(−a sin θ)2 + (a cos θ)2

)
dθ2

=

[(
da

dφ

)2

+

(
db

dφ

)2
]
dφ2 + a2dθ2.

Figure 5.1: A visualisation of a closed surface of revolution with a local parametrisation ρ and where
we have taken θ1 = 0 and θ2 = 2π.

So we can locally write ḡ|S = h(φ)dφ2 +m(φ)2dθ2 with h and m yet to be determined. Note
their independence of θ. For our convenience we will interpret (φ, θ) as the standard coordinates
on the induced Riemannian manifold (V, ρ∗ḡ) and consider the matrix notation

G =

(
h(φ) 0

0 m(φ)

)
. (5.2)

From the derivation above, we deduce the following relations:

a(φ) =
√
m(φ) (5.3)

and

db

dφ
=

√√√√h(φ)−

(
d
√
m(φ)

dφ

)2

and hence

b(φ) =

ˆ φ

C

√√√√h(s)−

(
d
√
m(s)

ds

)2

ds, (5.4)

with C ∈ I some arbitrary constant.
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From now on, we will consider the closed interval I = [0, π] and a closed surface S. Note that
in [RS08, p. 4] they have chosen for C = 0, however we like to point out that for C = π

2 we
obtain the sphere with the centre of mass at the origin. More precisely, consider

G =

(
1 0
0 sin2 φ

)
.

Then by (5.3) and (5.4) we get a(φ) = sinφ and

b(φ) =

ˆ φ

C

√
1− cos2 sds = cos2 φ− cos2 C,

which equals cos2 φ−1 for C = 0 and cos2 φ for C = π
2 . The latter implies the 2-sphere S2. We

note that the only difference is the precise embedding into the Euclidean space, as we already
knew from equation (5.1).

Before we determine a Ricci flow of S we first extend m and h at the poles. Since S is assumed
to be a closed surface, we require

m(φpole) = 0 (5.5)

for φpole ∈ {0, π}. Note that this follows from the fact a(φpole) = 0. Intuitively, m should tend
to zero as φ→ φpole because θ is undefined at the poles. See also [RS08, p. 4]. Similarly, since
smoothness at the poles are demanded, we also require

∂
√
m(φ)

∂φ

∣∣∣
φ=φpole

=
√
h(φpole) (5.6)

for φpole ∈ {0, π}. This relation is obtain by considering the equations (5.1) and (5.4).

Now let us determine the Ricci curvature tensor for the surface of revolution (S, ḡ|S). As we
recall example 3.12, we deduce that the Christoffel symbols of (S, ḡ|S) with respect to the local
coordinates (φ, θ) are

Γ1
11 =

hφ
2h

; Γ1
12 = Γ1

21 = 0;

Γ1
22 = −mφ

2h
; Γ2

11 = 0;

Γ2
12 = Γ2

21 =
mφ

2m
; Γ2

22 = 0.

(5.7)

Via formula (3.42) we obtain the component functions of the Ricci curvature tensor:

Ric11 = −∂1Γ2
21 + Γ1

11Γ2
21 − Γ2

21Γ2
12 = − d

dφ

(mφ

2m

)
+
hφmφ

4hm
−

m2
φ

4m2
=

m2
φ

2m2
− mφφ

2m
+
hφmφ

4hm
−

m2
φ

4m2
=

m2
φ

4m2
− mφφ

2m
+
hφmφ

4hm
,

(5.8)

and analogously one shows that Ric12 = Ric21 = 0 holds and

Ric22 =
m2
φ

4mh
− mφφ

2h
+
hφmφ

4h2
. (5.9)

Hence we have obtained the Ricci curvature tensor on the induced manifold (V, ρ∗g) too with
the local coordinates (φ, θ) being the standard coordinates. Also importantly note the following
antisymmetry:

Ric11 =
Q

g22
and Ric22 =

Q

g11
, (5.10)

where Q = Q(φ) =
m2
φ

4m −
mφφ

2 +
hφmφ

4h . This is because the object is rotationally symmetric.
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Now let us consider a Ricci flow of S with its induced metric. Thanks to proposition 4.11, we
know that a Ricci flow solution is conformal for all t, as long the solution exists, to the initial
metric ḡ|S . The Ricci flow initial value problem induces therefore a system of just two instead of
three second order non-linear partial differential equations on the induced Riemannian manifold
(V, ρ∗ḡ), see system (4.9). Moreover, we obtain that the local solution

G(t) =

(
h(t;φ) 0

0 m(t;φ)

)
(5.11)

remains independent of the local coordinate θ due to its rotational symmetry.

Since h and m are independent of the local coordinate θ, we can just equivalently consider
the partial differential equations on the interior of I. Hence, let us suggest the following initial
boundary problem:

ht =
mφφ

m
−

m2
φ

2m2
− hφmφ

2hm
, φ ∈ (0, π),

mt =
mφφ

h
−

m2
φ

2mh
− hφmφ

2h2
, φ ∈ (0, π),

m(t;φpole) = 0, φpole ∈ {0, π},

∂
√
m(t;φ)

∂φ

∣∣∣
φ=φpole

=
√
h(t;φpole), φpole ∈ {0, π},

h(0;φ) = h0(φ) and m(0;φ) = m0(φ), φ ∈ [0, π].

(5.12)

The boundary conditions above ensure us that as time flows onward, the embedded manifold in
Euclidean space remains closed and remains smooth at the poles, see (5.5) and (5.6). Therefore,
problem (5.12) is an equivalent formulation (under local isometry) of the Ricci flow equation
with initial state (S, ḡ|S) due to the main results above. Even more precisely, the equivalence
follows from the fact that the surface of revolution remains isometrically embedded so long as
the Ricci flow equation gives a sufficiently smooth solution, see [RS08, p. 3].

The system above can be solved numerically, as is done in the article. We note that the authors
approach it a bit differently and define reparametrisations in order to establish a numerical
stable program. Also note that by solving it numerically, we use the fact that there exists a
unique (short-time) Ricci flow solution, see theorem 4.12.

By solving the system above, one needs to choose h0 and m0 properly because not all functions
define a surface of revolution, see equation (5.3) and (5.4). As suggested by [RS08, p. 5], the
initial metric in the code is chosen to be based on

h0(φ) = 1 and m0(φ) =

(
sinφ+ c3 sin(3φ) + c5 sin(5φ)

1 + 3c3 + 5c5

)2

, φ ∈ [0, π] (5.13)

with −εi < ci < ξi and εi, ξi > 0 sufficiently small. This metric is inspired by the metric of the
2-sphere: c3 = c5 = 0. Observe that h0 and m0 are chosen such that it satisfies the boundary
conditions. Indeed we have

m0(φpole) = 0 and
∂
√
m0(φ)

∂φ

∣∣∣
φ=φpole

=
√
h0(φpole). (5.14)

5.2 Visuals and Code

The Ricci_rot program is a publicly available code written in C and visualises the Ricci flow
of a surface of revolution with the induced Riemannian metric based on formulae (5.13).
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As is mentioned in the article [RS08, p. 6], it has only been tested on a Mac OS X. To get it
to work on a computer with Windows 10, we have to:

• replace#include <GLUT/ g lu t . h> by #include <GL/ g lu t . h>;

• add the line#include <windows . h> at the beginning of the code;

• make sure that OpenGL Utility Toolkit (GLUT) is installed and added into the library.

We compiled the (modified) code with the free platform Code::Blocks. The original code and
application can be found in the ricci_src file in following link:

http://pub.math.leidenuniv.nl/~hupkeshj/ricci_simulations.zip

This link moreover includes an executable file Ricci_rot_windows of the Ricci_rot program
that should work on a Windows 10 computer instantly. Note that, when opening this file, the
files glut32 . dll and libgcc_s_dw2−1.dll should both be contained in the same folder as
the executable file.

How to use the program: Upon launch, a window is opened with the image of a 2-sphere.
This initial state can be altered by holding down the left mouse button and dragging the mouse
in any direction. The possible initial states are based on (5.13), where c3 is varied by horizontal
and c5 by vertical motion of the mouse.

Pressing f will put the program into flow mode. At this moment, dragging the mouse will
rotate the surface. When one has chosen a particular surface, press the up-arrow key. Holding
it results into seeing the Ricci flow continuously. Pressing n will put the program back into its
initial state.

Once the program meets numerical instability, the flow will stop. Any ripples which may
appear on the surface at this stage are a result of numerical instability. The down-arrow key
flows the surface backwards in time. This evolution however is highly unstable.

Pressing m at any moment will change the display mode into showing the components of the
induced metric: h(t;φ) in green and m(t;φ) in blue. Pressing s brings us back to the surface
in R3. See [RS08, p. 6] for a more detailed description of the Ricci_rot program.

On the next two pages, one finds three visualisations of possible Ricci flow solutions. The
pictures have been taken at equal time intervals ∆t and are drawn to the same scale. In order
to track the elapsed time of the Ricci flow, two small pieces were added into the code. After
lines 860 and 934 of the original code, the following were added:

861 /* Addition */

862 printf ( ” Elapsed time : ” ) ;
863 printf ( ”%f \n” , tm ) ;
864 /* Addition */

and respectively

935 /* Addition */

936 printf ( ”New time : ” ) ;
937 tm = 0 . 0 ;
938 printf ( ”%f \n” ) ;
939 /* Addition */

We briefly note that the Ricci_rot program is a very nice visualisation tool which is endowed
with not that large numerical errors. For example, the 2-sphere S2 with radius 1 (the simplest
case) shrinks theoretically to a point at exactly T = 0.5, see formula (4.4). Numerically however
it shrinks within less then 0.2, where time steps are taken of dt = 0.0001.
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Figure 5.2: Evolution of the Ricci flow with c3 = c5 = 0, see equation (5.13). The pictures have been
taken at equal time intervals ∆t = 0.0150 and are drawn to the same scale.

Figure 5.3: Evolution of the Ricci flow with c3 = −0.12 and c5 = 0.55, see equation (5.13). The
pictures have been taken at equal time intervals ∆t = 0.0050 and are drawn to the same scale.
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Figure 5.4: Evolution of the Ricci flow with c3 = 0.7 and c5 = −0.15, see equation (5.13). The pictures
have been taken at equal time intervals ∆t = 0.0050 and are drawn to the same scale.

Observe that the behaviour of the Ricci flow solutions of surfaces of revolution based on (5.13)
is just like one would expect, recall the discussion in section 4.5. The surfaces tend to go to a
surface with positive constant Gaussian curvature, namely a sphere.
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5.3 Short-Time Existence and Uniqueness

Theorem 4.12 was first proven by Hamilton and shortly thereafter a more elegant proof was
given by DeTurck. The short-time existence of the Ricci flow can established by considering
DeTurck’s trick, which will be discussed in detail soon. We hence consider this trick for our
explicit initial boundary problem (5.12) too. We note that our upcoming approach will be a
lot more explicit and also quite different in comparison to the general approach.

In order to explain DeTurck’s trick, we first must define the Lie derivative of a metric.

Definition 5.1. Let (M, g) be a Riemannian manifold. The Lie derivative of the metric g
along a vector field X ∈ TM , denoted by LXg, is defined at any point p ∈M by

(LXg)|p =
d

dt

∣∣∣
t=0

(F ∗t g)
∣∣
p
, (5.15)

where {Ft}t∈I is a one-parameter family of diffeomorphisms from a neighbourhood in M to
another neighbourhood in M with F0 : M →M the identity map.

Intuitively, if you have a metric g and a vector field X, then LXg is the infinitesimal change
you would experience when we flow g using the vector field X. To make the Lie derivative
more manageable, we will now state an important result. Note that the upcoming requires the
Tensor Characterisation Lemma and other observations from section 1.7.

Proposition 5.2. [Lee13, p. 321] Let (M, g) be a Riemannian manifold. The Lie derivative
of the metric g along a vector field X ∈ TM is a smooth

(
2
0

)
tensor field such that

(LXg)(Y,Z) = Xg(Y, Z)− g([X,Y ], Z)− g(Y, [X,Z]) (5.16)

holds for any vector fields Y,Z ∈ TM.

Now suppose (∂1, ..., ∂n) is any local frame. In these local coordinates, we can locally write the
smooth vector fields as X = Xk∂k and obtain the local expression

(LXg)ij = Xk∂kgij + gik∂jX
k + gjk∂iX

k. (5.17)

Note that the above follows from the local expression of the Lie bracket, see equation (3.16), and
the fact that a metric g is bilinear. Now DeTurck’s trick is basically that we are encouraged
to consider a Ricci-DeTurck flow initial value problem, which is defined as

∂

∂t
g(t) = −2Ric[g(t)] + LW (t)[g(t)]

g(0) = g0

(5.18)

with {W (t)}t∈I a one-parameter family of global vector fields, often said to be a time-dependent
vector field W (t), such that in any local coordinates its components satisfy

W k = gij
(
Γkij − Γ̃kij

)
. (5.19)

These functions Γ̃kij denote the Christoffel symbols of the Levi-Civita connection on (M, g̃)
with g̃ an arbitrary Riemannian metric on M . Fix a metric g̃ and call it our background
metric. Because the difference of two connections becomes a smooth tensor field, see [Lee97,
p. 63], it follows that the smooth vector field W is well-defined, that is: W (t) is independent
of the choice of local coordinates.

Note that in any local coordinates a Ricci-DeTurck flow is written as
∂

∂t
gij = −2Ricij [g] + (LW g)ij

gij(0) = (g0)ij .
(5.20)
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Now one might wonder why we would look at the Ricci-DeTurck flow equation (5.18) instead
of the original Ricci flow equation. More importantly, why would this even help at all? We will
answer this question very briefly and refer to [CK04, p. 81] for more details. Whenever g(t)
is a Ricci-DeTurck flow solution, one can define a one-parameter family of diffeomorphisms
{Ft : M →M}t∈I such that F0 : M →M is the identity map and we have

∂

∂t
Ft = −W (t). (5.21)

Because M is a closed smooth manifold, there exists such a one-parameter family. Subse-
quently, with the help of definition 5.1, we obtain that F ∗t g(t) is a Ricci flow solution:

d

dt

(
F ∗t g(t)

)
=

d

ds

∣∣∣
s=0

(
F ∗t+sg(t+ s)

)
= F ∗t

(
d

dt
g(t)

)
+

d

ds

∣∣∣
s=0

(
F ∗t+sg(t)

)
= F ∗t

(
− 2Ric[g(t)]) + LW (t)[g(t)]

)
+

d

ds

∣∣∣
s=0

(
(F−1
t ◦ Ft+s)∗F ∗t g(t)

)
= −2Ric[F ∗t g(t)] + F ∗t

(
LW (t)[g(t)]

)
− L(F−1

t )∗W (t)

(
F ∗t g(t)

)
= −2Ric[F ∗t g(t)].

In conclusion, if we can proof the short-time existence and uniqueness for the Ricci-DeTurck
flow, we have a unique solution g(t) of (5.18) and therefore we have obtained the short-time
existence of the Ricci flow. The uniqueness of the Ricci flow follows from the fact that the
one-parameter family {Ft}t∈I is unique, see [CK04, p. 89].

The reason why we can “easily” proof that the Ricci-DeTurck flow admits short-time existence
and uniqueness is because it is a parabolic equation. In other words, we have ∂

∂tg(t) = L[g(t)]
with L[g] = −2Ric[g]+LW (t)[g] which is an elliptic operator, see [CK04, p. 71] for the precise
definition. A crucial example of an elliptic operator L is the standard Laplacian ∆.

As mentioned earlier, our aim is to proof short-time existence and uniqueness of the initial
boundary problem (5.12) without using this parabolic PDE theory on manifolds. Thanks to
the above, our approach became to consider an explicit Ricci-DeTurck flow and show that it
admits short-time existence and uniqueness. Consequently, we tried to show the short-time
properties with the help of standard parabolic PDE theory on the interval I = [0, π].

Consider a Ricci-DeTurck flow on a surface of revolution (S, g0) with g0 = g|S . In the original
proof one takes g̃ to be arbitrary, but we will let g̃ = g0 be our background metric in order
to simply the problem. Recall the Christoffel symbols of the surface (S, g0) associated to the
local coordinates (φ, θ), see equation (5.7). Hence the time-dependent component functions of
the global time-dependent vector field W (t) are

W 1 = g11(Γ1
11 − Γ̃1

11) + g22(Γ1
22 − Γ̃1

22) =
hφ
2h2
− mφ

2hm
+ Ψ and W 2 = 0, (5.22)

and due to the initial conditions (5.13) we have

Ψ =
m0φ

2h0m
−

h0φ

2h0h
=
m0φ

2m
. (5.23)

The Lie derivative along W associated to the coordinates (φ, θ), see formula (5.17), is given by

(LW g)11 = W 1∂1g11 + 2g11∂1W
1

=

(
hφ
2h2
− mφ

2hm

)
hφ + 2h

(
hφφ
h2

+
hφmφ

h2m
−

2h2
φ

h3
− mφφ

hm
+

m2
φ

hm2

)
+ Ψ1 (5.24)
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=
hφφ
h
− mφφ

m
+
hφmφ

2hm
+
m2
φ

m2
−

3h2
φ

2h2
+ Ψ1,

with

Ψ1 = Ψ · hφ + 2h · ∂Ψ

∂φ
=
hm0φφ

m
−
hmφm0φ

m2
+
m0φhφ

2m
. (5.25)

Similarly we obtain (LW g)12 = (LW g)21 = 0 and

(LW g)22 = W 1∂1g22 + 0 =

(
hφ
2h2
− mφ

2hm

)
mφ =

hφmφ

2h2
−

m2
φ

2hm
+ Ψ2, (5.26)

with
Ψ2 = Ψ ·mφ =

m0φmφ

2h0m
. (5.27)

Subsequently, we can now look at the Ricci-DeTurck flow in local coordinates (φ, θ), see also
system (5.20). Note that the above is again independent of the coordinate θ. With an analogous
observation as in the end of section 5.1, we obtain that the initial boundary problem

ht =
hφφ
h
−

3h2
φ

2h2
+

m2
φ

2m2
+ Ψ1, φ ∈ (0, π),

mt =
mφφ

h
−
m2
φ

mh
+ Ψ2, φ ∈ (0, π),

m(t;φpole) = 0, φpole ∈ {0, π},

∂
√
m(t;φ)

∂φ

∣∣∣
φ=φpole

=
√
h(t;φpole), φpole ∈ {0, π},

h(0;φ) = h0 and m(0;φ) = m0, φ ∈ [0, π],

(5.28)

is an equivalent formulation (under local isometry) of the Ricci-DeTurck flow equation with
initial state (S, g0). It now suffices to show that this initial boundary problem admits short-time
existence and uniqueness.

As we mentioned previously, the Ricci-DeTurck flow should give rise to the intuition that the
original Ricci flow problem has a unique short-time solution. We will give a brief discussion
on why system (5.28) should have the short-time properties at first glance. We want to note
that the below is a typical approach with regard to standard parabolic PDE theory.

Let us start by writing the coupled differential equations in (5.28) as(
ht
mt

)
= F(h, hφ, hφφ,m,mφ,mφφ) = F2(h,m),

where we denote F2 to indicate that it is a function that also depends on the first and second
derivative of the smooth input functions. Linearising the system gives us

F2(h̄+ h, m̄+m) = F2(h̄, m̄) +DF2(h̄, m̄)[h,m] +O(h2 +m2),

where h̄ and m̄ represent the evaluation of a solution at some time t ≥ 0, and h and m represent
small distortions. Via a direct computation, we obtain

DF2(h̄, m̄)[h,m] =


1

h̄
hφφ 0

0
1

h̄
mφφ

+ lower order derivatives
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=


1

h̄
∆h 0

0
1

h̄
∆m

+ lower order derivatives,

with ∆ the 1-dimensional Laplacian. We importantly note that the factor 1
h̄

in front of the
Laplacian behaves well for small t ≥ 0 because h = 1 on [0, π] at t = 0.

The “lower order derivatives” contain the remaining terms of the linearisation. Note that it
also contains the linearisation about the evaluations h̄φ, h̄φφ, m̄φ and m̄φφ at some t ≥ 0 near
the initial time t = 0. It follows from standard parabolic PDE theory that the “lower order
derivatives” are typically not of interest, since they cause a “limited distortion” compared to
the highest order derivatives hφφ and mφφ.

From the analysis above, one can conclude that system (5.28) admits short-time existence and
uniqueness, since the system appears to be well-behaved about t = 0. However, the “lower
order derivatives” may not behave as nice as we would like. Suggested by [LSU68, p. 449], we
can write the differential equations of system (5.28) in divergence form:

ht =
∂

∂φ

[
hφ
h

]
+A(h,m, hφ,mφ)

mt =
∂

∂φ

[mφ

h

]
+B(h,m, hφ,mφ).

(5.29)

We basically want to show that that the above satisfies certain elliptic operator conditions, see
equation (6.9) in [LSU68, p. 449]. The only problem now is that A and B may not be totally
bounded, since for φ→ φpole we may have that A,B → ±∞ holds because m = 0 at the poles
due to the given boundary conditions and dividing by m happens multiple times in F2(h,m).

Specifically from this point, the problem seemed to be more difficult than expected in the first
place. At the end, we tried to show that A and B behave well as φ tends to the poles via several

substitutions. Eventually we considered the substitution n(t;φ) = m(t;φ)
m0(φ) and determined the

equivalent initial boundary problem in h and n. Recall

h0(φ) = 1 and m0(φ) =

(
sinφ+ c3 sin(3φ) + c5 sin(5φ)

1 + 3c3 + 5c5

)2

, φ ∈ [0, π]. (5.30)

The substitution is as follows. Substituting within the second boundary condition gives us

√
h =

∂
√
m

∂φ
=

1

2
√
nm0

(nφm0 + nm0φ) =
nφ
√
m0

2
√
n

.

Taking limits φ→ φpole gives

n
∣∣
φ=φpole

=
4hm0

m2
0φ

∣∣∣
φ=φpole

= h
∣∣
φ=φpole

, (5.31)

since m2
0φ

= 4m0 for any valid c3 and c5. Importantly note that we are left with one degree of
freedom with regard to the boundary conditions. We hence simply take

∂n

∂φ

∣∣∣
φ=φpole

= 0. (5.32)

This choice can easily be justified by visualising n(t;φ) for small t ≥ 0. Furthermore, we have

ht =
hφφ
h
−

3h2
φ

2h2
+

[nm0]2φ
2(nm0)2

+
hm0φφ

nm0
−
h[nm0]φm0φ

(nm0)2
+
m0φhφ

2nm0
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=
hφφ
h
−

3h2
φ

2h2
+

[nφm0 + nm0φ ]2

2(nm0)2
+
hm0φφ

nm0
−
h[nφm0 + nm0φ ]m0φ

(nm0)2
+
m0φhφ

2nm0

=
hφφ
h
−

3h2
φ

2h2
+

n2
φ

2n2
+
nφm0φ

nm0
+
m2

0φ

2m2
0

+
hm0φφ

nm0
−
hnφm0φ

n2m0
+
hm2

0φ

nm2
0

+
m0φhφ

2nm0

=
∂

∂φ

[
hφ
h

]
+ Ã(h, n, hφ, nφ),

and

nt =

[
m

m0

]
t

=
mt

m0

=
[nm0]φφ
hm0

−
[nm0]2φ
nm2

0h
+

[nm0]φ ·m0φ

2nm2
0

=
nφφ
h

+
2nφm0φ

m0h
+
nm0φφ

m0h
−

(
n2
φ

nh
+

2nφm0φ

m0h
+
nm2

0φ

m2
0h

)
+
nφm0φ

2nm0
+
m2

0φ

2m2
0

=
nφφ
h

+
nm0φφ

m0h
−
n2
φ

nh
−
nm2

0φ

m2
0h

+
nφm0φ

2nm0
+
m2

0φ

2m2
0

=
∂

∂φ

[nφ
h

]
+ B̃(h, n, hφ, nφ).

From the detailed calculations above, we obtain the equivalent transformed initial boundary
problem 

ht =
∂

∂φ

[
hφ
h

]
+ Ã(h, n, hφ, nφ), φ ∈ (0, π),

nt =
∂

∂φ

[nφ
h

]
+ B̃(h, n, hφ, nφ), φ ∈ (0, π),

n(t;φpole) = h(t;φpole), φpole ∈ {0, π},

∂n(t;φ)

∂φ

∣∣∣
φ=φpole

= 0, φpole ∈ {0, π},

h(0;φ) = h0 and n(0;φ) = 1, φ ∈ [0, π].

(5.33)

A solution of (5.33) hence needs to satisfy h = n at t = 0 because h0 = 1 and we have h = n
at the poles for all time t. Exceptionally remarkable, we observe that

Ã(h, h, hφ, hφ) = B̃(h, h, hφ, hφ) (5.34)

holds. This indicates that h = n everywhere is a solution of (5.33) if and only if h0 = 1, which
is indeed the case, see the initial conditions (5.13).

We can now either look at Ã and B̃ in (5.33) as φ tends to its poles or consider a one-dimensional
initial value problem that would imply the short-time existence of system (5.33). We like to
note that in both cases our upcoming analysis would be essentially the same.

Finally consider the one-dimensional initial value Neumann boundary problem
ht =

∂

∂φ

[
hφ
h

]
+ Ã(h, h, hφ, hφ), φ ∈ (0, π),

∂h(t;φ)

∂φ

∣∣∣
φ=φpole

= 0, φpole ∈ {0, π},

h(0;φ) = 1, φ ∈ [0, π].

(5.35)
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Now we want to show that Ã(h, h, hφ, hφ) is a well-behaving function as h changes slightly. We
deduce from the analysis above the following:

Ã(h, h, hφ, hφ) = B̃(h, h, hφ, hφ)

=
h2
φ

h2
+
m0φφ

m0
−
h2
φ

h2
−
m2

0φ

m2
0

+
nφm0

2hm0
+
m2

0φ

2m2
0

=
m0φφ

m0
−
m2

0φ

2m2
0

+
hφm0φ

2hm0
. (5.36)

Let us consider the first two of the three terms in (5.36). Importantly note that the terms

m0φφ

m0
and

m2
0φ

2m2
0

diverge individually as φ→ φpole. Combined however we have

m0φφ

m0
−
m2

0φ

2m2
0

= −2 · sinφ+ 9c3 sin(3φ) + 25c5 sin(5φ)

sinφ+ c3 sin(3φ) + c5 sin(5φ)
(5.37)

= −2 · 1 + 27c3 + 125c5
1 + 3c3 + 5c5

+O
(
(φ− φpole)2

)
, φ→ φpole. (5.38)

We note that equation (5.38) follows from a Taylor expansion about the poles. We moreover
deduce, from (5.37), that the two terms combined also behave well on the interior (0, π), since
the constants c3 and c5 need to be chosen small enough in the first place, recall section 5.1.
Thus the two terms combined does not diverge and hence is fully defined on [0, π].

We conclude that Ã(h, h, hφ, hφ) is a well-behaving function as h changes slightly whenever

the third term in (5.36) behaves well too. Again, we observe that
m0φ

m0
diverges as φ tends to

the poles and that hφ → 0 holds as φ → φpoles. Note that the latter follows from the second
boundary condition of system (5.35).

Our aim is to show that hφ tends to 0 fast enough so that the divergence of
m0φ

m0
gets cancelled.

This is intuitively true when one interprets and visualises n(t;φ) for small t ≥ 0. By again
considering Taylor expansions about the poles, we more formally have

m0φ

m0
= 2(φ− φpole)−1 +O(φ− φpole), φ→ φpole. (5.39)

h = constant +O
(
(φ− φpole)2

)
, φ→ φpole. (5.40)

Note that approximation (5.40) follows from the boundary condition and because we want the
solution to be sufficiently smooth for small t ≥ 0. Thanks to results (5.39) and (5.40) we obtain

hφm0φ

2hm0
= constant +O

(
(φ− φpole)2

)
, φ→ φpole. (5.41)

Observe that the convergence is even quadratic. From this approximation we conclude that the
third term behaves well at the poles. Consequently Ã(h, h, hφ, hφ) is a well-behaving function.

In conclusion, based on the analysis in [LSU68, p. 475] which discusses a general initial value
Neumann boundary problem and conform to theorem 6.1 in [LSU68, p. 452], we obtain short-
time existence and uniqueness of system (5.35). Subsequently, this unique solution h implies
that system (5.33) admits short-time existence because h = n is a solution of (5.33) thanks to
the observation made in (5.34).
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We want to point out that h = n being a solution is a remarkable result, which can be explained
by the fact that the initial state is rotationally symmetric. Using this fact in particular makes
our approach very different compared to the original proofs, because in the general case this
symmetry is no longer true.

We end our sketch by simply claiming that the short-time solution of system (5.33) found above
is unique. Recall that we were not really able to deduce the short-time properties by standard
parabolic PDE theory immediately, since the functions Ã(h, n, hφ, nφ) and B̃(h, n, hφ, nφ) do
not seem to behave well when we both change h or n slightly.

Ultimately, thanks to the above we are confident of the short-time existence and uniqueness of
system (5.33), which then implies the short-time existence and uniqueness of a Ricci-DeTurck
flow, and therefore we have achieved the short-time properties of the Ricci flow of a surface of
revolution.

Discussion

We like to stretch out once more that this final section is just a sketch and not a full proof for
the short-time properties of the Ricci flow of a surface of revolution. Our explicit approach
appeared to be way more difficult than expected. We have tried numerous approaches but we
deliberately did not try using the parabolic PDE theory on manifolds, because we wanted to
keep things as explicit and intuitive as possible for the reader and ourselves.

Even though our thorough analysis was often quite cumbersome and there are still a few gaps
that need to be filled in, this part of this thesis was very educative for the author. Therefore
we also like to end this chapter with the comment that it is a fascinating fact that the Ricci
flow is a well-posed problem.
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ambient space, 10
ancient solution, 61
angle, 28
atlas, 6

background metric, 76
bump function, 23, 24

Change of Coordinates, 14, 18, 20
Christoffel symbols, 42
Cigar soliton, 64
compatible, 7
compatible with the metric, 43
complete, 7
component functions, 17, 19, 21, 49
conformal, 29
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coordinate chart, 6
coordinate covector field, 19
coordinate vector field, 17
coordinate vectors, 13
cotangent bundle, 18
cotangent space, 18
covariant derivative, 41
covariant derivative along a path, 55
covector, 18
covector field, 19

derivation, 11
determined, 7
DeTurck’s trick, 66, 76
diffeomorphism, 7
directional derivative, 11
dual field, 19

Einstein manifold, 62
Einstein metric, 62
Einstein solutions, 63
Einstein’s summation convention, 12
elliptic operator, 77

embedded submanifold, 10
embedding, 10, 16
eternal solution, 64
Euclidean connection, 42
Euclidean metric, 28
Euclidean space, 28
Euclidean tangent space, 12
expanding, 64
extrinsic, 39

flat, 45
flatness criterion, 47

Gauss’s Theorema Egregium, 39
Gaussian curvature, 54
geographical coordinate map, 33
geographical coordinates, 33

hyperbolic spaces, 34

immersion, 16
immortal solution, 63
induced metric, 30
induced Riemannian manifold, 30
initial metric, 60
initial state, 60
intrinsic, 39
isometric, 29
isometry, 29
isothermal coordinates, 29

length, 36
Levi-Civita, 43
Levi-Civita parallel, 55
Lie bracket, 42
Lie derivative, 76
Lobachevsky plane, 29
local coframe, 19
local coordinate map, 6
local coordinates, 6
local frame, 19
local parametrisation, 6
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locally n-dimensional Euclidean, 5
locally isometric, 45

natural smooth structure, 16
neck pinch, 68
norm, 27
normal curvature, 54
normalised Ricci flow, 67
northern hemisphere, 8

open submanifold, 8

parabolic equation, 77
parallel transport, 56
Poincaré ball model, 34
Poincaré conjecture, 68
Poincaré half-space model, 29
polar coordinates, 6
principal curvatures, 54
projection maps, 11
pullback, 21
pushforward, 12

Ricci curvature tensor, 50
Ricci flow, 60
Ricci flow equation, 59
Ricci flow solution, 60
Ricci flow with surgery, 68
Ricci soliton, 64
Ricci-DeTurck flow, 76
Ricci-flat, 62
Riemann curvature endomorphism, 48
Riemann curvature tensor, 50
Riemannian manifold, 27
Riemannian metric, 27
Riemannian submanifold, 30
round metric, 30

shrinking, 64
smooth, 7, 9, 17, 19, 21, 35
smooth n-manifold, 7
smooth atlas, 7
smooth structure, 7
space curve, 10
standard coordinate vectors, 12
standard coordinates, 6
standard smooth structure, 8
steady, 64
submanifold of Euclidean space, 10
sufficiently smooth family, 59
surface of revolution, 69

tangent bundle, 16
tangent space, 11
tangent vector, 11
tangential connection, 41, 45
tensor, 20
tensor bundle, 21
Tensor Characterisation Lemma, 23
tensor field, 21
tensor product, 20
Thurston’s Geometrisation Conjecture, 68
time derivative, 60
time interval, 59
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Uniformisation Theorem, 67

vector field, 17
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